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Abstract 

Verification activities are intended to reduce the costs of system development by identifying design 

errors before deploying the system. However, subcontractors in multi-firm projects are motivated 

to implement locally cost-effective verification strategies over verification strategies that benefit 

the main contractor. Incentivizing verification activities is one mechanism by which the contractor 

can motivate subcontractors to implement verification strategies desirable to the contractor. Prior 

work on mathematical models of verification in systems engineering has neither explored optimal 

verification strategies nor incentives in multi-firm projects. In this paper, we present a modeling 

concept for determining optimal verification strategies in multi-firm projects. Our models are 

belief based, which means that contractors and subcontractors incorporate their at times limited 

knowledge about true verification state through a probabilistic assessment of possible states. We 

develop an initial two-level model, where one contractor directly works with multiple 
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subcontractors at the next lower level. This model is then extended to a general network model 

with multiple, multi-level contractor-subcontractor relationship. We derive solution algorithms 

that characterize the optimal verification strategies and incentives for each of the firms. Our work 

contributes to the systems engineering literature by laying the foundation for the study of 

incentives as a mechanism to align verification activities in multi-firm systems engineering 

projects.    
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1 Introduction  

Verification activities, such as design analyses, inspections and tests, help reduce development 

costs by identifying errors early in the development cycle. They seek confirmation that a system’s 

behavior and attributes match those expected during its design and fabrication [1]. Verification 

activities are executed at several design integration levels and at different points throughout the 

system life cycle [2]. Implementing optimal project-wide verification strategies is thus key to 

maximizing the main contractor’s rewards. 

However, most firms do not follow such a comprehensive and structured approach to 

verification [3]. Consequently, verification activities consume a larger than necessary amount of 

resources during the system design process [4]. This problem is exacerbated when multiple firms 

are involved in the system design process, since planning and executing verification activities 

become increasingly complex [5].  

In multi-firm projects, each firm is motivated by their individual interests. While the 

contractor seeks to improve the confidence in the correctness of the system design as a whole, each 

subcontracted firm’s strategy is motivated by the maximization of their individual rewards, which 



may not align with that of the contractor [6]. To address this problem, the systems engineering 

research community has studied how incentives can overcome conflicting interests in multi-firm 

projects [7-11]. Prior work, however, has mainly focused on design activities, and not on 

verification. 

In the supply chain literature, incentives have been widely studied for verification as an 

activity to improving product quality, e.g., [12-14]. However, this literature focuses mainly on the 

repeatable manufacturing of products with given designs. This is unlike most systems engineering 

projects where engineers develop systems with a high degree of novelty to meet mission 

requirements.    

In this research article, we provide a foundational modeling approach for using incentives 

(monetary or otherwise) to align verification activities in multi-firm systems engineering projects. 

We contribute two belief-based models of verification: 1) a two-level model, where there are 

multiple subcontractors, each working on a critical component, for a main contractor, and 2) the 

network model, which models a general multi-firm systems engineering project with the firms 

organized in a hierarchy and each working on a critical component for the system. For each model, 

we present exact algorithms that can be used by a practitioner to determine optimal incentives and 

verification strategies. We illustrate our models with numerical examples that capture the benefits 

of incentivizing verification activities in multi-firm design projects, with one of the benefits being 

the maximization of the main contractor’s expected reward. This paper extends our prior work on 

the two-firm, contractor-subcontractor model [15], which provided an initial concept on how the 

contractor can benefit from offering incentives to the subcontractor for verification activities, both 

in terms of expected reward and an improved confidence in the correctness of the system design. 



As such, the work is restricted to the design of verification strategies and does not address the 

design of validation strategies.  

The remainder of this paper is organized as follows. In section 2, we provide a brief overview 

of the literature on verification activities and our motivation for using belief distributions. In 

section 3, we provide a summary of our prior two-firm model [15], which forms the basic building 

block of the two-level and network models presented in this paper. We then develop the two-level 

model in section 4. Here, we provide an exact algorithm to compute optimal incentives for all 

subcontractors and illustrate the concepts with a numerical example. We extend the two-level 

model to the network model in section 5, where we provide an exact algorithm to compute the 

optimal incentives in the network model and illustrate the same with a numerical example. We 

conclude by summarizing key insights in section 6.   

2 Background 

The uncertainty about processes observed in nature are often due to variations in the 

underlying natural process. Such uncertainty is aleatory in nature, where a frequentist approach 

can be used to suitably represent the natural process as a stochastic process. Aleatory uncertainty 

is fundamentally different from the uncertainty observed in systems engineering projects, which 

is primarily epistemic in nature [16]. That is, the primary uncertainty in systems engineering 

projects is due to the lack of knowledge about the true state of the system design. Indeed, multiple 

works [17-19] have identified that designers maintain subjective beliefs about the true state of the 

system design during the design process. In this regard, verification activities mitigate the 

epistemic uncertainty on a system design by revealing more information about the true current 

state of the system design [20]. Yet, majority of the literature on verification activities adopts the 

aleatory uncertainty approach [3, 5, 21-37]. The reader is referred to [38, 39] for a discussion on 



these works and the drawbacks of adopting the aleatory uncertainty approach to model systems 

engineering projects.  

Recent works on verification in systems engineering have begun to explore the benefits of 

modeling the epistemic uncertainty in systems engineering projects with belief distributions [38-

47]. In these works, belief distributions are used to model the subjective confidence of designers 

in the true state of the system design. By leveraging Bayesian, Markovian, and machine learning 

frameworks in addition to belief distributions, these works have tried to uncover the scientific 

foundations of verification activities in systems engineering. A variety of fundamental research 

questions have been explored by these works, which include the fundamental nature of verification 

activities [42-44], eliciting beliefs from designers and using Bayesian inference populate the 

tradespace of verification strategies [40], and capturing the information dependencies between 

verification activities over the system’s lifecycle with Bayesian networks [45].  

In addition to exploring fundamental research questions on verification activities, a few of 

these belief-based approaches to verification have exploited algorithmic approaches to determine 

optimal verification strategies in systems engineering projects [38, 39, 47-49]. These include the 

use of reinforcement learning [47] and dynamic programming [38, 39] to explore the space of 

verification strategies in order to determine the optimal verifications strategy for a single firm. Our 

work contributes to this area of research by developing two initial concept models of verification 

in multi-firm projects using belief distributions and developing exact algorithms to determine 

optimal verification for the same.     

Though it is tempting to assume complete cooperation in multi-firm projects, prior work has 

acknowledged that appropriate incentives are necessary to overcome self-interest in multi-firm 

projects [7-11]. However, to the best of our knowledge, other than in our recent work [15, 50-52], 



incentivizing verification activities in multi-firm projects has not been explored in systems 

engineering literature. There is, however, a significant number of works dealing with a similar 

problem in quality control literature for supply chains [12, 13, 53-55]. In this literature, the focus 

is mainly on those scenarios where products are mass produced, or a single order consists of 

multiple products of the same type. Furthermore, such works assume that verification activities are 

not contracted upon, and instead, the contracts only specify product quality level the supplier must 

meet [56].   

As we observed in our prior work [15], verification in systems engineering projects is 

fundamentally different from verification in supply chains, since systems engineering projects 

often involve novel designs that are often complex and costly, and which require the participation 

of engineers from multiple disciplines. Furthermore, in systems engineering projects, the 

contractor may only discover an erroneous component design when the entire system design is 

verified (e.g., discovering errors in embedded systems through hardware-in-loop simulations). For 

this reason, we build our two-level and network models of verification by using our belief-based 

two-firm model presented in [15] as the basic building block for the two-level and network models, 

which builds upon multiscale decision theory (MSDT) [57].  

3 Two-firm model 

In this section, we present the two-firm model of incentives for verification [15]. Note that 

incentives are not restricted to monetary ones but can also be of non-monetary nature. The two-

firm model forms the basic building block of the two-level and network models. For the sake of 

brevity, we restrict our discussion to the description and main results of the two-firm model. For a 

detailed discussion on the two-firm model, including parameter analysis, the reader is referred to 

[15]. 



3.1 Model environment and scope 

The two-firm model consists of a contractor and subcontractor. The contractor is responsible for 

designing a system for the customer, and the contractor delegates the design of a system component 

to a subcontractor.  The design process for a system is modeled as a series of development phases 

[38, 39]. In each development phase, a firm (contractor or subcontractor) is assumed to first carry 

out some design activities and can choose to carry out verification activities once the design 

activities have concluded. Examples of design activities include modeling, tradespace studies, 

mock-ups, prototypes, and fabrication of final components, while the examples of verification 

activities include testing, inspection, and analysis. Only verification activities are considered, not 

validation ones. Similar to [15], we restrict the model scope to a single development phase, which 

we will refer to as the phase of interest. This restriction is motivated by our work being an initial 

concept and to ensure mathematical tractability when the two-firm model is scaled to two-level 

and network models.  

The two-firm model developed in [15] makes a significant restrictive assumption about the 

phase of interest: the subcontractor’s component design is integrated into the contractor’s system 

design. This integration of contractor and subcontractor designs could be an integration of models, 

simulations, prototypes, or the final fabricated components themselves. The purpose of assuming 

that the designs of the two firms will be integrated in the phase of interest is to capture the value 

added by the subcontractor’s component design on the contractor’s system design. This value then 

implicitly determines the potential increase in the contractor’s expected reward if the subcontractor 

is incentivized to verify the component design, given that the subcontractor was initially inclined 

not to verify the component design.  



In the two-firm model, verification of a firm’s design is optional. It is usually the case that 

subcontractors verify their design prior to delivering it to the contractor. Hence, our assumption 

may appear to be unrealistic since a subcontractor may be contractually obligated to verify its 

component design prior to its integration into the system design. However, it is possible that due 

to a lack of understanding of the component design, the contractually required verification 

activities may be inadequate [46]. Thus, the choice to verify in two-firm model can also represent 

additional verification activities the contractor may require the subcontractor to execute to improve 

confidence in the component design. At the same time, the contractor may also decide to conduct 

a verification activity on its own that the subcontractor had already performed at its level. The 

same holds for the contractor with the customer requiring the contractor to perform certain 

verification activities. Since these additional verification activities are not contractually required, 

the subcontractor may be unwilling to execute them without incentives from the contractor, which 

in turn is in line with the motivation for the two-firm model. We assume that the incentives are 

quantifiable. This quantification could take the form of a subjective value for the loss of goodwill 

when a faulty design is delivered, an objective penalty levied by the customer on the firm for a 

faulty design, or something else, as long as it is quantifiable. The field of decision analysis provides 

means to quantify seemingly non-quantifiable variables [58]. 

We assume that if a firm decides to verify its design in the phase of interest, then all design 

errors will be discovered and rectified, where an error in design is a deviation from requirements. 

Though verification activities, in general, do not reveal all possible errors in an artifact design,  

this assumption was adopted for mathematical tractability [15]. In this paper, we adopt this 

assumption for the same reason.  



For the subcontractor, verifying the component design implies that the subcontractor will 

discover all errors in the component design. Whereas, for the contractor, since the component 

design is integrated into the system design, verifying the system design implies that the contractor 

will discover errors in the component design as well. This is under the understanding that system 

integration and verification embed component validation; so the contractor may identify 

component errors that affect the ability of the system to fulfill its requirements. The implication 

that the contractor will discover errors in the component design, though restrictive, sets up the 

motivation for the contractor to incentivize the subcontractor to verify the component design, and 

potentially avoid costly rework activities on the system level.     

The state of each firm’s design is broadly classified as either ideal, or non-ideal. A design is 

said to be in the ideal state if it meets all its requirements and is said to be in the non-ideal state 

otherwise. Each state of a firm’s design is associated with a state-based reward. Furthermore, each 

firm’s verification activity is associated with a fixed set-up cost for verification and a potential 

expected cost of design rework if verification reveals an error in firm’s design. That is, if a firm 

chooses to execute the verification of its design in the phase of interest, then it will certainly incur 

the set-up cost and will incur the expected cost of rework if verification reveals an error in its 

design.  

Since prior to verification, neither firm can know the true state of its design (ideal or non-

ideal), we use belief distributions [15, 38, 39, 44] to model a firm’s knowledge in the state of its 

design. Then, the goal of each firm is to select the action that maximizes its expected rewards 

based on its belief in the ideal state of its design. We assume that each firm’s belief is transformed 

during the design activities in the phase of interest. The factor by which each firm’s belief in the 

ideal state of its design is transformed is modeled as the probability of a firm committing an error 



during the design activities, where an error is a feature of the artifact design that deviates from the 

artifact’s requirements.   

3.2 Model description and notation 

In line with the notation used in [15], henceforth, we refer to the contractor as SUP and the 

subcontractor as INF. The phase of interest is represented by a time horizon. Each firm’s time 

horizon begins with a mandatory design period and ends with the optional verification period. A 

firm’s design is in its ideal state, denoted by 1, if the design meets all its requirements, else, it is 

considered to be in the non-ideal state, denoted by 0. Here, SUP’s state variable denotes the state 

of the overall system design and INF’s state variable denotes the state of the component design.  

The start of a firm’s time horizon is denoted by ,xt  a firm’s decision epoch (where it chooses 

to verify its design or not) is denoted by ˆ ,xt  and the end of the firm’s time horizon is denoted by 

,xt  where {SUP, }.INFx  At the end of INF’s time horizon, SUP integrates INF’s component 

design into the system design and this design integration occurs prior to SUP’s decision epoch. 

SUP’s timescale is thus longer than INF’s time scale.  

Each firm receives state-based rewards at the end of its time horizon. SUP covers the state-

based rewards of INF and has the option to incentivize INF to verify its component design when 

INF is not inclined to verify its component design. A firm receives a reward of xg  if its design is 

in the ideal state and a reward of xl  if its design is in the non-ideal state at the end of its time 

horizon. Since the design phase is mandatory, we assume that the rewards of both firms are 

normalized with respect to their design costs. Verification costs, however, are dependent on a 

firm’s decision to verify its design or not. If a firm chooses to verify its design, denoted by ,xv  



then it incurs a fixed setup cost of ,xc  and an expected repair cost of xr  if any errors are present 

in the design. No costs are incurred by a firm if it chooses not to verify its design, and this action 

denoted by .xv−     

The design and verification activities of the INF firm influence the overall system design and 

verification activities executed by SUP. Similar to [15], we use the MSDT modeling approach to 

mathematically model the value added by INF’s activities on SUP’s activities as follows. Let 

ˆ  an,  , dx x xSS S  be the state variables that denote the state of a firm’s design at time ˆ  and , , ,x x xt tt  

respectively, with , ,ˆ {0,1}.x x xS SS   Here, 
SUP SUP SUP, ,ˆ  and SS S  represent the state of the overall 

system design, whereas, 
INF INF INF, ,ˆ  and SS S  represent the state of INF’s component design. Let 

SUP  denote the probability of SUP making a design error when it chooses not to delegate any 

design tasks to INF. The following equation models the influence of INF’s activities on SUP’s 

final system design 

SUP INF SUP SUP SUP SUP INF( 0 |ˆ ˆ ˆ1,delegation) 1,no-delegation, , ))( (0 |S S S fp p S SS S= == = = +   

SUP INF SUP SUP SUP INF
ˆ ˆ1,delegatio( n) (   wher  0 | , ), e,S S f Sp SS = = = +   (1) 
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is the influence function. Note, that SUP,0(0 ) 1f = −  implies that INF works on a critical 

component for SUP. That is, if INF’s component has a design error, then SUP’s system design 

will certainly not meet one or more of its requirements.   



Equations (1) and (2) essentially define 
SUP

ˆ )( 0 |Sp =   as a linear model with SUP  and  . 

Unlike prior works, such as Salado et al. [44, 45, 59], where 
SUP

ˆ )( 0 |Sp =   would be defined using 

a stochastic matrix, we choose to define 
SUP

ˆ )( 0 |Sp =   as a linear, as described in Kulkarni et al. 

[51]. Representing
SUP

ˆ )( 0 |Sp =   as a linear model enables us to scale the two-firm model to 

multiple firms and multiple hierarchical levels. Though a linearity assumption is restrictive, more 

general models of multi-firm projects are out of the scope of this paper.   

The influence function )(f   quantifies the benefits of delegation. Since SUP works on fewer 

components when it delegates design tasks to INF, if INF’s component has no design errors, then 

the probability of SUP’s system design having an error is reduced from SUP  to SUP . −  Similarly, 

if INF’s component has a design error, then the probability of SUP’s system design having an error 

is increased from SUP  to SUP SUP1 1. + − =  That is, if INF’s component has a design error, then 

the contractor’s system is certain to have a design error after integration.  

To model a firm’s confidence in the state of its design, we use belief distributions. A firm’s 

belief in the ideal state of its design is denoted by x  at the start of the time horizon, by ˆ
x  at the 

decision epoch, and by x  at the end of the time horizon. Design and verification activities 

transform a firm’s belief in the ideal state of its design. INF’s beliefs are governed only by INF’s 

design and verification activities, whereas SUP’s beliefs are governed by both SUP and INF’s 

design and verification activities. 

We denote the probability of INF making a design error, during its design phase, by INF.  

Thus, at INF’s decision epoch, INF INF INF(ˆ 1 ).  = −  If INF chooses to verify its design at INF
ˆ ,t  



then INF finds and repairs all the errors in its design and 
INF 1. =  Else, INF’s belief in the ideal 

state of its design is unchanged after the design phase and 
INF INF

ˆ . =   

Since INF’s component is integrated into SUP’s system design before 
SUP
ˆ ,t  SUP’s beliefs at 

SUPt̂  are affected by INF’s beliefs at INF.t  Using equations (1) and (2), SUP’s belief in the ideal 

state of the system design at SUP’s decision epoch is defined by 

SUP INF SUP SUP INF SUP INF
ˆ (( 1 (1) 1 ) )( )      = − + − −−   

SUP INF SUP SUP 1 INF( (1 ) .ˆ )     + = −    (3) 

Finally, if SUP chooses to verify the system design at 
SUP
ˆ ,t  then  SUP 1, =  else SUP’s beliefs 

are unchanged after the completion of its design phase and SUP SUP
ˆ . =  Figure 1 graphically 

depicts the two-firm model scenario.  

 

Figure 1: Graphical representation of the two-firm scenario 

3.3 Optimal verification strategies2 

 
2 Note that this is a summary of the main results in [15]. 
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The possible strategies for INF are to either verify or not verify its component design. SUP’s 

strategy space consists of all feasible combinations of SUP’s decision to either verify or not verify 

the system design and whether or not to incentivize INF to verify its component design.    

3.3.1 Optimal verification strategy for INF without incentives 

Denoting the rewards for INF by RINF, the expected rewards for INF associated with its two 

possible choices, when SUP provides no additional incentives, are given by  

INF INF INF INF INF INF INF| , ) ( ˆE( ),   a1 nd R v g c r = − − −   (4) 

INF INF INF INF INF INF INF| , ) ( ˆE( ,)v g l lR  − = − +    (5) 

where INF INF INF(ˆ 1 ).  = −  Only if INF INF INF INF INF INFE( E| , ) | , ),(R Rv v  −  will INF verify its 

component design. This implies that INF will verify its component design when 

 *INF
INF INF

INF INF INF

ˆ ˆ1 .( )c

g l r
 =

− −
 −   (6) 

The indifference threshold, denoted by *

INF  in equation (6), is the belief threshold at which 

INF is indifferent between verifying and not verifying its design. We say that INF is of type 

confident if *

INF INF
ˆ ( ,1]   and of type not-confident if *

INF INF
ˆ [0, ].   Thus, when SUP offers no 

additional incentives, the optimal strategy for INF is to verify its design if it is of type not-confident 

at the end of the design phase.  

3.3.2 Optimal incentive for a confident type INF 

Since INF will verify its design without any additional incentives from SUP if it is of type not-

confident, SUP need only consider incentivizing INF when INF is of type confident. For the two-



firm model, we assume that any firm in the role of an INF will report its beliefs truthfully to its 

associated SUP. Though, this is a restrictive assumption, Kulkarni et al. [15] have shown that there 

exist incentive mechanisms by which SUP can offer the optimal incentive to a confident type INF, 

while discouraging a not-confident type INF from falsifying its belief in the ideal state of the 

component design and eliciting an incentive from SUP. With no incentives to lie about its beliefs, 

INF is assumed to report its beliefs truthfully to SUP.  

To alter a confident type INF’s strategy, SUP can affect the value of *

INF  via incentives since 

it is a function of INF’s rewards and costs. The optimal incentive is then that which changes INF’s 

indifference threshold from *

INF  to *

INF INF
ˆ , =  when *

INF INF 1ˆ ( , ].   By shifting INF’s threshold 

from *

INF  to *

INF INF
ˆ , =  SUP effectively converts a confident type INF agent to a not-confident 

type INF agent and also offers the minimum incentive required to change INF’s strategy from not 

verifying to verifying INF’s design.  

Let INF {0,1},z   with INF 1z =  denoting SUP incentivizes INF and INF 0z =  denoting SUP does 

not incentivize INF. Let INF INF
ˆ( )i   denote the optimal incentive amount that SUP must offer to 

INF when INF is of type confident. The expected reward for a confident type INF when SUP offers 

it incentives to verify its component design is defined by   

INF INF INF INF INF INF INF INF INF INF| , , 1) (1 ( )ˆ ˆE( )  .v z g c r iR   += = − − −   (7) 

Since the optimal incentive shifts the belief threshold from *

INF  to *

INF INF
ˆ , =  we know that  

INF INF INF INF INF INF INF INFE( E| , , 1) | , , 0)(v z vR R z = = − =   

 INF INF INF INF INF INF INF( )ˆ ˆ) ).( (1( )i c r g l = + − − −   (8) 



3.3.3 Optimal strategy for SUP 

Let *

INF INF INF
ˆ( , )d z   denote INF’s optimal verification strategy, where *

INF INF( ) vd  =  if either 

*

INF INF
ˆ ˆ[0, ]   or INF 1,z =  and *

INF INF)(d v = −  if *

INF INF
ˆ ˆ 1( , ]   and INF 0.z =  Denoting the rewards 

for SUP by RSUP, the SUP’s expected rewards for its possible strategies are given by 

* * *

SUP SUP INF SUP INF INF SUP SUP SUP SUP INF INF SUP| , , , , ) ( ) (1 )E ˆ (( )v z d g l lR d     − = − − + +   

                         * *
INF INF INF INF

INF INF INF INF INF INF INF INF, ,

ˆ E( ) (1 ) | , ) ,( and( )
vd dv

i z vz R g   
−

− +− − −   (9) 

* * *

SUP SUP INF SUP INF INF SUP SUP SUP SUP SUP INF INF
ˆE | , , , , ) 1 (1 ) ( )( ( )v z d g cR r d     = − − − − +   

                          * *
INF INF INF INF

INF INF INF INF INF INF INF INF, ,
( ) (1 )ˆ (  ,E | , )( )

vd vd
z Ri z v g   

−
− − +− −   (10) 

where * *

INF INF( ) 1d =  if *

INF INF( )d v =  and * *

INF INF INF( ) ˆd =  if *

INF INF)( ,d v= −  and   is the indicator 

variable defined by , 1a b =  when a b=  and , 0a b =  when .a b   

From equations (9) and (10) we know that SUP will verify its design only if  

 * * * *INF
SUP SUP INF INF SUP SUP INF SUP

INF INF INF

(1 ) ( ) ( , ) ,ˆ ˆ1( )c
d

g l r
       − + =

− −
 − =   (11) 

where *

SUP SUP INF( , )̂    denotes SUP’s belief in the ideal state of the system design at SUPt̂  given 

INF’s final belief in the ideal state of the component design is *

INF  after considering SUP’s 

decision to incentivize INF or not. We see that SUP’s indifference threshold *

SUP̂  is independent 

of INF’s rewards and incentives since SUP offers INF the same rewards and incentives irrespective 

of SUP’s final strategy.  



We say that SUP is of type not-confident, and will thus verify the system design, if 

* *

SUP INF SUP( )ˆ ˆ[0, ]     and that SUP is of type confident, and will thus not verify the system design 

if * *

SUP INF SUP( ) ,ˆ( ]ˆ 1 .    We denote SUP’s optimal verification strategy for a given 
SUP̂  by 

*

SUP SUP
ˆ( ).d   Since the optimal verification strategy of SUP, *

SUP )( ,d   is a function of SUP’s 

incentive strategy, SUP’s strategy space can be reduced to its incentive strategy alone. SUP’s 

optimal incentive strategy *

INFz   is then defined by the equation 

 
INF

* * *

INF SUP INF INF INF SUP SUP
{0,1}

ˆ ˆarg max E( | , , , , ).
z

dRz z d 


=   (12)  

4 Two-level model 

The model scope and assumptions for the two-level model are similar to those of the two-firm 

model with one addition: there are now n  subcontractors working for the contractor. Each 

subcontractor works on a unique component design. 

4.1 Model description and notation 

We continue to refer to the main contractor as SUP, but we will refer to a generic INF firm as INF 

firm ,x  where {1, , }.x n   Similar to the two-firm model, SUP covers the state-based rewards 

of INF firm x and SUP has the choice to offer incentives for verification to an INF firm x that is 

not inclined to verify its design.  

The structure of the time horizon for all firms is the same as the two-firm model: a mandatory 

design phase followed by an optional verification phase. The component design of each INF firm 

is completed and integrated into the system design before SUP’s decision epoch, SUP
ˆ .t  The state 

of a firm’s design is again broadly classified as either ideal or non-ideal. In addition, we assume 



that the state of a given INF firm’s design is independent of the state of any other INF firm’s 

design. That is, each INF’s component design is decoupled from the designs of the components of 

other INFs.  

We will use the same notation as the two-firm model for SUP’s rewards, costs, probability of 

design error, time horizon epochs, and beliefs. For the INF firms, however, we will use the 

subscript x to denote INF firm x’s rewards, costs, probability of design error, time horizon epochs, 

and beliefs instead of the subscript INF used in the two-firm model.   

4.2 Optimal verification strategies for all firms 

From the results of the two-firm model, we know that for INF firm x  in the two-level model there 

is a belief threshold, denoted by *,x  that determines INF firm x’s optimal verification strategy 

without incentives given ˆ .x  For INF firm x, (1ˆ ),x x x  = −  and INF firm x will verify its design 

if  

 *ˆ ˆ1 .( ) x
x

x

x x x

c

g l r
 

−
=

−
 −   (13) 

We say that INF firm x is of type not-confident, and will thus verify its design without additional 

incentives, if *ˆ ˆ[0, ],x x   and that INF firm x is of type confident, and will thus not verify its 

design without additional incentives if *ˆ ˆ .( ,1]x x    

From the two-firm model, we know that SUP need only offer )ˆ(x xi   to a confident type INF 

agent in order to motivate it to verify its design. To define optimal INF firm strategies with 

incentives, let {0,1},xz   with 1xz =  implying that SUP incentivizes INF firm x and 0xz =  

implying that SUP does not incentivize INF firm x. Let * , ˆ( )x x xd z   denote the optimal strategy of 



INF firm x, where *

INF)(xd v =  if 1xz =  or *ˆ ˆ[0, ]x x   and *

INF)(xd v = −  if *ˆ ˆ( ,1]x x   and 0.xz =  

In addition, we denote INF firm x’s final belief resulting from its optimal strategy with incentives 

by * *),(x xd  where * *( ) 1x xd =  if * )(x xd v =  and * * ˆ( )x x xd =  if * )( .x xd v= −   

Similar to the INF firms, SUP’s verification strategy is governed by a belief threshold, denoted 

by *

SUP
ˆ ,  that is a function of SUP’s rewards and costs, but independent of the rewards and 

incentives SUP offers to INF firms. Given *

SUP
ˆ ,  SUP’s verification strategy is completely 

characterized by its belief in the ideal state of the system design at 
SUP
ˆ ,t  or 

SUP
ˆ ,  which in turn is 

a function of the final INF firm beliefs in the ideal states of their respective designs.  

To determine 
SUP

ˆ ,  we first define the influence function for the two-level model. Let SUP  

denote the probability of SUP making a design error when it does not delegate any design tasks to 

an INF firm, and let 
1 , , nj j   denote the value of the influence function when 1 1 ,, .n njS jS= =  

Since all the INF firms work on critical designs we know  

 
1SUP , , , SUP1,

ˆ {1, , }such that( 0 | 0) 1 1 .
w nw j j jS w n Sp   == = = = −      (14) 

Equation (14) implies that the influence exerted by the activities of the INF firms on SUP’s 

activities is the same when one or more INF firms have an error in design since an error in one 

INF firm’s design implies an error in the overall system design. To complete the definition of the 

influence function, we define the influence of the activities of the INF firms on SUP’s activities 

when all INF firms design their components without any error as  

 
SUP 1 SUP 1, ,1( 0 | 1) .ˆ

nS S Sp    = −== = =   (15) 



We will denote 1, ,1   by .  The influence function for the two-level model is then defined as 

1

SUP

 if 
)
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1

w se
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
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Given the vector of final INF firm beliefs INF 1( , ),, n  =  from the definition of the 

influence function, we know that SUP’s belief in the ideal state of the system design at its decision 

epoch is given defined by 

 SUP SUP INF SUP SUP

1

( , (1 ) .ˆ )
n

x

x

      
=

= − +    (16) 

Thus, we know that SUP will verify its design in the two-level scenario only if  

 
*INF

SUP SUP INF SUP

INF INF INF

( .ˆ ˆ1, ) ( )c

g l r
   

− −
 − =   (17) 

We say that SUP is of type confident if 
*

SUP SUP INF SUP
ˆ ˆ[0,( , ) ]     and SUP is of type not-

confident if 
*

SUP SUP INF SUP
ˆ ˆ( , ) ,1].(     SUP’s optimal verification strategy is to then verify the 

system design if it is of type not-confident at SUP
ˆ .t   

4.3 Optimal incentive strategy for SUP 

SUP’s optimal verification strategy is a function of INF firm beliefs, which in turn is a function of 

the incentives offered by SUP to the INF firms. Thus, SUP’s strategy space can be reduced to the 

space of feasible incentives. Let 1( , , )nZ z z=   denote SUP’s incentive strategy. For a given 

vector of INF beliefs at their respective decision epochs INF 1( ,ˆ ˆ ˆ, ),n  =  let the vector of optimal 

INF firm strategies be denoted by * *

INF 1 1 1( , ) ( ,ˆ ˆ ˆ,), ( , ) .( )n n nD Z dd z z  =   We denote the vector 



of final INF firm beliefs resulting from 
*D  by * * * * * *

INF 1 1 ), , )( ) ( ( .( )n nD d d  =   In addition, let 

SUP SUP SUP{ , }.d vv −  SUP’s expected rewards for strategy SUPd  is then defined by  

SUP SUP

* * *

SUP SUP INF INF SUP , SUP SUP SUP SUP SUP

1

ˆE | , , , , , ) ( ) (1 )( ( )
n

d v x

x

Z D d g lR l       −

=

= − − + +   

                                                   
SUP SUP

*

, SUP SUP SUP SUP SUP

1

1 (1 )( ( ))
n

d v x

x

g c r    
=

+ − − − − +     

                                                * *, ,
1

( ) (1 ) | , )ˆ E( .( ( ))
xx x x

n

xd vx x x d x

x

x vx xi z v gz R   
−

=

− + − − +   (18) 

SUP’s belief in the ideal state of the system design at SUPt̂  resulting from 
*

INF  is denoted by 

*

SUP SUP INF
ˆ ( , ).    We denote SUP’s optimal verification strategy by 

*

SUP SUP
ˆ( ),d   where 

*

SUP SUP( ) vd  =  if 
*

SUP SUP
ˆ ˆ) [0,( ]    and 

*

SUP SUP)(d v = −  if 
*

SUP SUP
ˆ ˆ ]( ,1 .   Then, SUP’s optimal 

incentive strategy, denoted by 
*,Z  solves SUP’s incentive problem T  defined by 

* * *

SUP SUP INF INF SUP
{0,1}

| , , , , , ).ˆmax E(
nZ

Z D dR   


 

From equation (16) we know that T  is a nonlinear 0-1 integer programming problem which is 

known to be an NP-hard problem [60].   

4.4 Exact algorithm for SUP’s incentive problem  

We will exploit the problem structure to derive an exact algorithm for T .  Toward this end, when 

SUP does not incentivize any INF firm, let 0V  denote the set of INF firms that are of type not-

confident and let 0V  denote the set of INF firms that are of type confident. Let 0cI V  denote the 



set of confident type INF firms currently incentivized by SUP and let 0 \c cV V I=  denote the set of 

confident type INF firms not currently incentivized by SUP. Let 
, 2 cV

c kG   denote the collection 

of all k-subsets of ,cV  where a k-subset is a subset consisting of k elements. Finally, let AZ  denote 

an incentive strategy vector for SUP such that 1wz w A=    and AZ = 0  if .A =   

From the definitions presented above, we know that the current set of INF firms that verify 

are 0cI V  and 0 0 0 {1 , }.,c cV I VV nV   = =  Given ,cI  we say that it is profitable for SUP to 

incentivize INF firms in cA V  if 
* *

SUP SUP SUP SUPE( , , ) E( , , ).| , | ,
c cI A IR Z d R Z d      

We begin by determining the best incentive strategy for SUP when it finds it profitable to 

incentivize a set of INF firms individually.    

Theorem 1 For a given SUP ,d  if it is profitable for SUP to incentivize a set of INF firms 1 ,, mx x

individually, where 1 ,m n   then incentivizing all INF firms in the set 1 },{ , mx x  is a part of 

SUP’s optimal incentive strategy.                  □ 

Proof of Theorem 1 is provided in Appendix A. Theorem 1 implies that each time SUP finds it 

profitable to incentivize a single INF firm ,jx  the search space can be reduced to }\{c jV x  from 

,cV  since incentivizing firm jx  will be a part of SUP’s optimal incentive strategy. However, 

Theorem 1 only provides a sufficient condition for reducing search space and not a necessary one. 

Thus, it is possible for SUP that incentivizing all firms in ,cA V where | 2| ,A   is part of SUP’s 

optimal incentive strategy even if it is true that SUP does not find it profitable to incentivize each 

firm in A  individually.  



Consider the scenario where it is not profitable for SUP to incentivize any individual INF 

firm, and it is profitable for SUP to incentivize each set of INF firms
1 ,1, 2 \, ,cV

m cA A G   where 

jA  is a collection of two or more INF firms for , .1,j m=   Here, the best strategy for SUP  is to 

choose the set 
*A  such that

1

* *

SUP SU
{ ,

P
, }

arg max E( , ,| , )
c

mA A
I A

A

A R Z d
=

=    for 
*A  defines the optimal 

set of firms to incentivize in ,cV  and incentivizing any set of INF firms other than 
*A  can 

potentially result in a sub-optimal incentive strategy. The implication of this is that if SUP finds 

no firm individually profitable in ,cV  then SUP has to search through 
,1| 2 \ |cV

cG  combinations of 

INF firms to determine the optimal incentive strategy.  Using Theorem 1 and the concepts 

presented above, we now define the exact algorithm to solve .T   

Exact algorithm for T  

Input 

 0V   

Initialize 

 
* * *

0 INF INF SUP
ˆ,, , , , ,

cc c II D dV V Z  = =   

Execute  

1 Set * * *

SUP, SUP SUP INF INF SUP
ˆE ,( | , , , , )cR R Z D d  =   

2 
Determine ,1 1cG   such that for 1,x  

* * *

SUP SUP INF { } INF SUP SUP,
ˆE | , , , ,( , )x cZ D dR R       

3 Set 1 1, \c c cVI V= =   

4 If ,cV = set 
*

c cI I=  and go to Return 

5 Using ,
cIZ  update 

* * *

INF INF SUP
ˆ , , ,D d    

6 Set * * *

SUP, SUP SUP INF INF SUP
ˆE ,( | , , , , )cR R Z D d  =  

7 Solve 
,1

* * * *

SUP SUP INF INF SUP

2 \

ˆ| , ,arg ma E( ,x , , )
c

Vc
c

I A

A G

A Z dR D  



=   

8 If *

* * *

SUP SUP INF INF SUP SUP,| , , , , , )E( ,ˆ
c

cI A
ZR D d R  


  then set 

* *.c cI I A=   



Return 
*

cI   

     

4.5 Numerical example 

There are 10 subcontractors, INF firms, working under the supervision of a single contractor, 

SUP. Each INF firm works on a unique and critical component design for SUP. For {1, ,10},x   

let xq  denote the probability of SUP making a design error if it chose to design the component 

delegated to INF firm .x  Furthermore, let SUP 0.1q =  be the probability of SUP making a design 

error in the components it does not delegate to any INF firm. From the values of xq  and SUP ,q  we 

know 

 SUP SUP

1

) 0.9523.1 (1 ) (1
n

x

x

q q
=

− − == −    (19) 

When SUP delegates the 10 components to the INFs, SUP SUP 0.1q = = . Thus, 0.8523. =   

The parameter values associated with the INF firms we consider for this example are presented 

in Table 1, and the parameter values associated with SUP that we consider for this example are 

presented in Table 2. The optimal verification strategies for all firms, with and without incentives, 

is presented graphically in Figure 2.  

Table 1: INF firm parameters for two-level model 

INF 

firm xg  xl  xc  xr  x  xq  x  
*ˆ
x  

1 400 200 50 50 0.1 0.28 1 0.667 

2 400 200 50 60 0.1 0.29 1 0.643 

3 400 200 50 10 0.1 0.26 1 0.737 

4 400 200 80 80 0.2 0.27 0.1 0.333 

5 400 200 50 60 0.2 0.27 0.1 0.643 

6 400 200 130 60 0.1 0.23 1 0.071 



7 400 200 120 70 0.1 0.26 1 0.077 

8 400 200 130 50 0.3 0.21 1 0.133 

9 800 200 400 170 0.1 0.27 1 0.07 

10 800 200 500 90 0.1 0.20 1 0.012 

Note: xg : reward if in ideal state; xl : reward if in non-ideal state; xc : fixed setup costs of a 

verification activity; xr : expected repair costs if error present; x : probability of design error; xq

: probability of design error if SUP makes design of INF; x : belief in ideal state at the start of 

time horizon; 
*ˆ
x : indifference threshold. 

Table 2: SUP parameters for two-level model 

SUPg  SUPl  SUPc  SUPr  SUP  1  SUP  
*

SUP̂  

10,000 7,000 1,000 1,000 0.9523 0.8523 0.9 0.5 

Note: SUPg : reward in ideal state; SUPl : reward if if non-ideal state; SUPc : fixed setup cost to execute 

a verification activity; SUPr : expected repair cost if design error is present; SUP : probability of 

design error; 1 : value of influence function; SUP : belief in ideal state at start of the time horizon; 

*

SUP̂ : indifference threshold. 

As shown in Figure 4, without incentives, only SUP and INF firms 4 and 5 verify their designs. 

INF firms 4 and 5 verify their design since their initial beliefs in the ideal state of their respective 

designs is lower than their respective belief thresholds at the start of the design phase, and thus 

they end up being not-confident type firms at the end of their respective design phase. Though 

SUP’s initial belief in the ideal state of the system design is 1, which is greater than 
*

SUP
ˆ 0.5, =  

the combined influence of 8 INF firms not verifying their designs without incentives lowers SUP’s 

belief in the ideal state of the system design, and prompts SUP to verify the system design when 

it doesn’t offer any incentives to the INF firms. 



 

Figure 2: Two-level model solutions 

When SUP is willing to incentivize the verification strategies of the INF firms, the optimal 

incentive strategy for SUP, as shown in figure 4, is to incentivize all INF firms except 9 and 10, 

with INF firms 4 and 5 verifying their designs without incentives. This results in all INF firms, 

except 9 and 10, verifying their design. The combined influence of INF firms 1, ,8  verifying 

their designs leads to SUP having sufficient confidence in the ideal state of the system design, and 

thus with incentives, SUP prefers not to verify the system design when it chooses to incentivize 

the INF firms. In addition, when SUP doesn’t offer any incentives to the INF firms, SUP’s 

expected reward is 4010. When SUP chooses to incentivize INF firms, its expected reward is 5169. 

Thus, by incentivizing the INF firms, SUP increases its expected rewards, after accounting for 

incentives, by approximately 22%, implying that incentivizing the INF firms to verify their designs 

maximizes SUP’s rewards.     

5 Network model 

The two-level model consists of two hierarchical levels, one for the contractor and one for the 

subcontractors. The network model generalizes the two-level model to those scenarios where the 

subcontractors may hire subcontractors, and those subcontractors may hire additional 
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subcontractors and so on. Due to multiple hierarchical levels, we will modify the notation used in 

the two-level model to ease the description of the network model.  

5.1 Model description 

In the network model, there is one main contractor. Every other firm is a subcontractor of some 

other firm working in a supervisory role. There are n  firms in the hierarchy and we refer to a 

generic firm as firm {1, , }.x n   We use the subscript x  to denote the model parameters 

associated with firm .x  The time horizon for each firm in the hierarchy once again consists of a 

mandatory design phase followed by an optional verification phase, and the state of each firm’s 

design is once again broadly classified as either ideal or non-ideal.  

The number of hierarchical levels in the model is denoted by H  and the hierarchical level of 

firm x  is denoted by ,xh where {1, , }.xh H   The set of supervising firms, or firms that oversee 

the activities of at least one subordinate firm, is denoted by W  and the set of subordinate firms, 

or firms that are supervised by another firm, is denoted by .U  We refer to a generic supervising 

firm as firm w W  and a generic subordinate firm is referred to as firm .u U   

We denote the set of immediate subordinates of a supervising firm w  by ,wT  and we assume 

that each subordinate firm has at most one immediate supervisor. In addition, we assume that the 

state of design of firm 1 wx T  for any w W  is independent of the state of design of firm 2 wx T  

when 1 2.x x  An immediate subordinate of a supervising firm w  is the firm u  such that 1wuh h= +  

and wu T , and the immediate supervisor for firm u  is the firm w  such that 1w uh h= −  and .wu T  

It follows from the definitions above that no two supervising firms oversee same immediate 



subordinate, which in turn implies that 
1 2w wT T  for 1 2,w w W  and 1 2 ,w w  and the state of 

design of any firm 1 {1, , }nx    is independent of the state of design of any other firm 

2 {1, , },x n   where 1 2 ,x x  if no hierarchical path exists between 1x  and 2.x   

In the network model, each firm in a supervising role will compensate the state-based rewards 

of its immediate subordinate and each supervising firm has the ability to incentivize a set of firms 

lower than itself in the hierarchy. The set of firms that a supervising firm w  can potentially 

incentivize is referred to as firm w’s set of control and is denoted by .wM  Since no two subordinate 

firms have the same immediate supervisor, it follows that 
1 2w wM M  for 1 2,w w W  and 1 2.w w  

Figure 4 depicts the network model of a sample multi-firm project that consists of 10 firms 

including the main contractor.   

 

Figure 3: Example of a network representation of a multi-firm project 

There is sequential delegation of critical component designs in the network model. The main 

contractor, firm 1, delegates the designs of a critical sub-system/component firms in 1.T  The firms 

in 1T  then proceed to do the same with their subordinates and so on till the critical component 

designs are delegated to firms in \ ,U W  or the firms with no subordinates. Design integration 
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occurs in the reverse order. The firms in \U W  are the first to finish and their designs are integrated 

by their immediate supervisors before the decision epochs of these supervisors. This proceeds up 

the hierarchy till all firms in 1T  complete their designs and the main contractor integrates the 

designs of firms in 1T  into the system design before 1.t  Thus, in the network model we have ˆ
x wt t  

for all wx T  and for all .w W        

5.2 Optimal verification strategies for all firms 

Without incentives, for firm x  there is a belief threshold 
*ˆ
x  such that firm x  will verify its design 

if its belief in the ideal state of its design at ˆ ,xt denoted by ˆ ,x  is less than or equal to 
*ˆ .x  We say 

that firm x is of type not-confident if 
*ˆ ˆ[0, ]x x   and it is of type confident if 

*ˆ ˆ( ,1].x x   Thus, 

all not-confident type firms in the hierarchy will verify their design.  

Firms in the set \U W  have no subordinates and thus for any firm \ ,x U W  (1ˆ ).x x x  = −  

The beliefs of a supervising firm ,w however, is dependent on the final beliefs of firms in the set 

of its immediate subordinates .wT  Since all firms work on critical component designs, from the 

results of the two-level model we know that the influence function between firm w  and the firms 

in wT  can be defined as   
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where w  is the probability of firm w making a design error when it does not delegate any design 

tasks to firms in .wT  Given the vector 
1 | |INF, ( , ),

Tw
w x x  =  of final beliefs of firms immediately 



subordinate to firm w  in the ideal state of their respective designs, the belief of a supervising firm 

w  in the ideal state of its design at ŵt  is defined by  

 
INF,

{1, ,| |}

ˆ , )( (1 .)
j

w

w w w w w w

j T

x      
 

= − +    (21) 

The optimal verification strategy for each firm in the hierarchy is defined based on its type 

and whether or not it is incentivized to verify its design when it is of type confident. Let {0,1},uz   

with 1uz =  denoting that firm u  is incentivized to verify its design by some firm higher up in the 

hierarchy and 0uz =  denoting that firm u  is not incentivized to verify its design. For each 

subordinate firm ,u  let 
* *( )u ud  denote firm u’s final belief in the ideal state of its design that 

results from firm u’s optimal verification strategy with incentives. A supervising firm w’s belief 

at ŵt  is denoted by ,*
ˆ ,w  where *

,* INF,(ˆ ˆ , ).w w w w   =  In addition, let 
,*

ˆ ˆ
x x =  for all \x U W  

since these firms have no subordinates. We then denote the optimal strategy of a subordinate firm 

u by *

,*
ˆ( , ),uu ud z   where 

*( )u ud v =  if either 1uz =  or *

,*
ˆ ˆ[0 ],u u   and 

*( )u ud v = −  if 0uz =  and 

*

,*
ˆ ˆ( ,1].u u   Finally, the optimal strategy of firm 1 is denoted by *

1 1,*
ˆ( )d   where 

*

1 1)( vd  =  if 

*

1,* 1
ˆ ˆ[0, ]   and 

*

1 1d v= −  otherwise.    

5.3 Optimal incentive strategy for a supervising firm 

In the network model if a firm 1 {1, , }nx    verifies its design, then it effectively verifies the design 

of firm 2 {1, , },x n   where 2 1x x  and 2x  is a firm lower than 1x  in the hierarchy such that there 

exists a path between 1x  and 2x  in the hierarchy. Thus, a supervising firm w  need only consider 



incentivizing firms in the set wwY M  such that each firm wx Y  is a confident type firm that is 

not currently incentivized and all firms on the hierarchical path between firms  and w x  are also 

confident type firms that are not currently incentivized. We refer to wY  as the set of consideration 

for firm .w   

We now formulate a supervising firm w’s incentive problem. We only consider the case where 

wY    since wY = implies that all firms in the set of consideration of firm w  will verify their 

design without any additional incentives from firm .w  For ease of notation let 1 | |,( , ).
ww YyY y=   

We denote firm w’s incentive strategy by 
1 | |

( , , )
Yw

w y yzZ z =  and let the vector of subordinate firm 

beliefs at their decision epoch resulting from the incentive strategy wZ  be denoted by 

1 | |INF, ,* , ,* *
ˆ ˆ ˆ ), , .(

Yw
w y y  =   The vector of optimal verification strategies of firms in the set of 

consideration for firm w  that results from wZ  and 
INF, ,*

ˆ
w  is denoted by *

INF, ,*
ˆ( , ),w w wD Z   where

1 1 1 | | | | | |

* * *

INF, ,* , ** ,
ˆ ˆ ˆ( , ) ( , ), ( , ) .,( )

Y Y Yw w w
y y yw y yw w yD Z d z d z  =   Finally, the vector of final beliefs of firms 

under w’s depth of consideration in the ideal state of their design that results from 
*

wD  is denoted 

by 
1 1 | | | |

* * * * * *

INF, ) ) , .( , )( (( )
Y Yw w

y yw yw yD d d  =     

From the results of the two-firm model, we know that firm w  need only offer )ˆ(j ji   to a 

confident type firm j  under firm w’s depth of consideration in order to incentivize firm j  to 

verify its design. Firm w’s rewards associated with its verification strategy ,{ }w w wd v v−  is 

defined by 
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Firm w’s optimal incentive strategy 
*

wZ  then solves the incentive problem ,A w  defined by 

| |

* * *

INF, ,* INF,
{0,1}

ˆma | , , ,( ), .x E
Yw

w

w w w w w w w
Z

R Z D d  


 

It follows from equations (21) and (22) that ,A w  is an NP-hard problem.  

Each subordinate firm in the network model faces its decision epoch before its immediate 

supervising firm. This implies that for a supervising firm ,w  any firm wx T W   must solve its 

incentive problem ,A x  before firm w  solves ,A w  so that firm w  can determine ,wY  the set of 

consideration for firm ,w  appropriately. In addition, from the definition of the network model, we 

know that no two supervising firms oversee the same subordinate firm. This implies that if 

1 2, ,wx Wx T   then it is irrelevant as to which firm, 1x  or 2 ,x  solves their incentive problem first 

for the solution to 
1,A x  is independent of the solution to 

2,A x  due to 
1 2

.x xY Y  Thus, the only 

requirement to determine the optimal incentive strategy for the entire hierarchy is for all firms 

wx T W   to solve their incentive problems before firm w  solves its incentive problem.    

5.4 Exact algorithm for a supervising firm’s incentive problem 



In the network model, a supervising firm w  can potentially incentivize | |wY  firms below it in the 

hierarchy. Firm w  must potentially evaluate 
| |

2 wY
 incentive strategies to determine the optimal 

incentive strategy. However, the structure of the network model can be exploited to narrow the 

search space to only those strategies that are potentially optimal and the search for the optimal 

incentive strategy can be optimized by utilizing the exact algorithm to solve T  as follows.  

Let {1, , } \{ }w wG n   denote those firms below a supervising firm w  in the hierarchy such 

that if ,wx G  then firm x’s design is eventually integrated into firm w’s design, and let xG =  

for all \ .x U W  The definition of wG  implies that for any firm ,wx G  there exists a hierarchical 

path between firm x  and firm .w  We refer to xG  as the complete set of firm x’s subordinates.  

Any supervising firm in the network model can potentially minimize the incentives it offers 

to a firm wx Y  by incentivizing the verification of one or more firms in .x wG Y  Toward this end, 

let 
*

,w y y wG Y    be the set of firms such that if incentivizing firm y  is a part of firm w’s optimal 

incentive strategy, then incentivizing all firms in 
*

,w y  is also part of firm w’s optimal incentive 

strategy. Thus, if ,wy Y  then firm w  can ignore all incentive strategies with 1yz =  and 0xz =  

for any 
* ,yx  where .x y   

For a supervising firm ,w  we say that a set of firms wA G  is a set of subordinate firms with 

complete coverage if ˆ
w  can be determined from the final beliefs of firms in A  when no firm in 

wG  verifies its design. For the example presented in figure 4, for firm 1, given that no firm in 1G  



verifies its design, the set of firms {2,3,4} is a set of subordinate firms with complete coverage 

since 

 
4

1 1 1 1 4

2

(1 ) .ˆ

j

    
=

= − +    (23) 

The set of firms {5,6,7,3,4}  is also set of subordinate firms with complete coverage since 2  in 

equation (23) can be replaced with 
7

2 2 2 2 2

5

(1ˆ ) .j

j

     
=

= = − +   Thus, the remaining sets of 

subordinate firms with complete coverage for firm 1 are {2,3,8},  {5,6,7,3,8},  {2,3,9,10},  and 

{5,6,7,3,9,10}.  Since no two supervising firm oversee the same subordinate and all firms work 

on unique critical component designs, it follows that the state of design for any firm in a set of 

subordinate firms with complete coverage is independent of the state of design of any other firm 

in the same set.  

For a supervising firm w  let 2 wG

wK   denote the collection of sets such that if ,wB K  then 

B  is a set of subordinate firms with complete coverage for firm .w  For a supervising firm w  and 

,wB K  let , ( )T w B  denote the solution to a two-level problem where w is SUP and the firms in 

set B  are the INF firms with the firms in the set wB Y  not verifying their designs without 

additional incentives from the SUP firm .w  The following proposition defines how ,A w  can be 

solved by utilizing the exact algorithm for .T   

Proposition 1 The solution to the incentive problem for a supervising firm w  in the network 

model, , ,A w  is the solution to , ( )T w B  for some wB K  when the search space for , ( )T w B  for 



all wB K  is restricted to the incentives offered only to firms in wB Y  and 

,
*

,* ,*( ˆ ) ˆ( )

w x

x x j

j

ji i 


=   

for all wx B Y                               □ 

The proof of the proposition 1 is constructed as follows. Since  ˆ
w  can only be computed from the 

final beliefs of firms in ,wB K  or the set of firms with complete coverage for firm ,w  we know 

that optimal incentive strategy for a supervising firm w  can be determined by solving the two-

level problem with w  as SUP and the firms in 1w wT KB=   as INF firms with the search space for 

the two-level problem restricted to the firms in 1 .wB Y  If this is not true, then it must be true that 

firm w’s optimal incentive strategy requires firm w to not incentivize some firm .w wx T Y   To 

maintain complete coverage, we must replace firm x  with the firms in .x wT Y  But this leads to 

another set of firms 2 .wB K  Proceeding in a similar fashion we see that each time the set of 

subordinate firms in the two-level problem is equal to some set ,wB K  which in turn proves 

proposition 3.     

Proposition 1 implies that the exact algorithm to solve ,A w  is essentially solving , ( )T w B  

for all wB K  provided that for each , ( ),T w B  the value of xz  for any firm wx YB   be 

unchanged and the cost of incentivizing firm x B  be set to 
*

,

,*( ˆ )

w x

jj

j

i 


  to account for the fact 

that in , ,A w  if firm w  incentivizes firm x  then the optimal incentive strategy is to also all firms 

in ,

* .w x  The optimal incentive strategy for firm w  is then the solution to , ( ),T w B  for some 

,wB K  that maximizes firm w’s rewards.  



The exact algorithm for 
,A w

 requires the characterization of *

,w y  for all .wy Y  This is 

achieved by solving 
, ( ),A y yB  where ,y yB K  while fixing *

yd  to 
yv  and defining the set  

.y w yY Y G=  Solving 
,A w

 is thus a recursive process where *

,w y  is determined first by solving 

two-level problems for all sets 
y yB K  for each firm ,yy K  before finally solving firm w’s 

incentive problem , .A w  Using the concepts presented above, we now define the exact algorithm 

for , .A w   

Exact algorithm for ,A w  

Input 

 wY   

Initialize 

 
* * * *

INF,w,* INF,w, , (ˆ ), wD D d    

Execute  

1 For each ,wy Y  set *

y yd v=  and determine *

,w y  by solving , )(T y yB  for all .y yB K   

2 
Determine the set of firms *

w wI Y  that maximizes firm w’s rewards by solving 

, ( )T w B  for all wB K     

Return *

wI   

 

5.5 Numerical example 

There are 18 firms in a network hierarchy, each of whom works on a critical component design for 

the main contractor, firm 1. The hierarchy consists of 4 levels. Firm 1 is on level 1, firms 2 to 4 

are on level 2, firms 5 to 10 are on level 3 and firms 11 to 18 are on level 4. The set of supervising 

firms {1,2, ,7,9},W =  the set of subordinate firms 8}{2, ,1U =  and the set of firms that have 

no subordinates \ {8,10,11, ,18}.U W =   Each supervising firm’s set of immediate subordinates 

and set of control is presented in table 6. Values of the model parameters that we consider for this 



example is presented in table 7, the expected rewards for all firms, with and without incentives, 

along with the optimal strategies for supervising firms when verification activities are incentivized 

are presented in table 8, and the optimal verification strategies for all firms, with and without 

incentives, is graphically depicted in figure 7.  

Table 3: Sets associated with supervising firms for the network model 

Supervising 

Firm wh  wT  wM  

1 1 {2,3,4}  {2,3,4,5,6,7,8,9,10,16,17,18}   

2 2 {5,6}   {5,6,11,12,13,14}   

3 2 {7}  {7}  

4 2 {8,9,10}   {8,9,10,16,17,18}   

5 3 {11,12,13}   {11,12,13}   

6 3 {14}   {14}   

7 3 {15}   {15}   

9 3 {16,17,18}   {16,17,18}   

 

Table 4: Parameters for the network model 

Firm xh   xg   xl   xc   xr   x   x   x   

1 1 500,000 200,000 200,000 100,000 0.6 0.43 0.98 

2 2 40,000 20,000 15,000 10,000 0.4 0.21 0.99 

3 2 40,000 20,000 10,000 30,000 0.4 0.24 0.91 

4 2 50,000 20,000 10,000 30,000 0.4 0.3 0.99 

5 3 5,000 2,000 1,000 2,000 0.3 0.12 0.96 

6 3 5,000 2,000 1,000 2,000 0.3 0.11 0.9 

7 3 5,000 2,000 1,000 1,000 0.3 0.14 0.92 

8 3 7,000 2,000 1,500 2,000 0.3 0.13 0.95 

9 3 7,000 2,000 1,500 2,000 0.3 0.13 0.99 

10 3 5,000 2,000 1,000 1,000 0.3 0.17 0.99 

11 4 400 200 100 100 0.2 0.04 0.91 

12 4 500 200 50 100 0.2 0.09 0.99 

13 4 500 200 100 200 0.2 0.03 0.99 

14 4 500 200 100 100 0.2 0.1 0.94 

15 4 400 200 50 200 0.2 0.08 0.98 

16 4 300 200 50 100 0.2 0.1 0.91 

17 4 500 200 500 300 0.2 0.1 0.94 

18 4 500 200 100 200 0.2 0.02 0.99 



  

Table 5: Results for the network model example 

Firm 

Net expected 

reward when no 

firm incentivizes 

Optimal 

incentive 

strategy (firms to 

incentivize) 

Net expected 

reward after 

incentivization 

Gain in expected 

rewards (%) 

1 123,560 {2,3,4}  278,640 125.52 

2 17,150 {5,6}   24,520 42.96 

3 26,190 {7}  29,740 13.56 

4 20,630 {8,10}   26,140 26.73 

5 2,040 {11,12,13}   2,780 35.9 

6 3,400 {14}   3,620 6.52 

7 3,630 {15}   3,870 6.65 

8 5,940 - 5,940 0 

9 3,250 {16,18}   3,510 8.02 

10 4,580 - 4,580 0 

11 350 - 350 0 

12 460 - 460 0 

13 450 - 450 0 

14 450 - 450 0 

15 370 - 370 0 

16 280 - 280 0 

17 450 - 450 0 

18 440 - 440 0 

 

 

Figure 4: Graphical representation of the solutions for the network model example 

Doesn’t verify
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strategies without incentives



Without incentives, no firm verifies its design except firm 9. For values of x  considered for 

this example, the expected costs of verification outweigh the benefits of verification for all firms 

except firm 9 when verification activities are not incentivized. However, this is remedied when 

verification activities are incentivized. With incentives, all firms except firms 1 and 17 verify their 

design. Each firm in a supervising role incentivizes at least one subordinate firm. In addition, each 

supervising firm experiences a net gain in rewards when it chooses to incentivize the verification 

activities of one or more of its subordinates.  

In both scenarios, the main contractor, firm 1, chooses not to verify its design. The reasons 

for the main contractor not verifying the system design in the two scenarios, however, are not the 

same. Without incentives, verification of the system design is too costly for the main contractor, 

and the main contractor prefers not to verify the system design even when none of its immediate 

subordinates verify their design. Whereas, with incentives, the main contractor chooses not to 

verify the system design due to its belief in the ideal state of the system design being higher than 

*

1
ˆ ,  which results from firms 2,3 and 4 verifying their design due to incentives from the main 

contractor. Of all the supervising firms, the main contractor benefits the most from verification 

activities being incentivized, with the expected reward of the main contractor more than doubling 

when verification activities are incentivized.  

6 Model validity 

We have developed a normative decision-theoretic model of verification in this paper. Our model 

was not developed using a dataset obtained from the industry and is theoretical in nature. Hence, 

a data-driven validation process is not applicable for our work. Instead, we validate our model with 

the intention of providing a potential user with more confidence in its applicability. In this regard, 



hypotheses validity and logical validity are two qualitative validation methods frequently used on 

decision-theoretic models  [61, 62]. We discuss both below.  

6.1 Hypothesis validity  

Hypothesis validity checks if the model has adequately reproduced the connections between the 

elements of the subject being modeled [62, 63]. In the context of our model, the subject is the 

decision to verify (or not) a system design in a particular phase of its development. This decision 

affects a firm’s confidence in the correctness of its system design as the design evolves over the 

development process, which is modeled as a belief distribution. Furthermore, this decision is 

governed by the costs associated with verification and the probability of a firm making a design 

error during the design activities. The inputs to our model are then the aforementioned parameters, 

with the outputs being the optimal decision, the firm’s transformed belief in the correctness of its 

design and the expected cost of verification. Then, the connections between the elements of the 

subject, in the context of our model, are the relationships between the input parameters to the 

model and the output metrics observed from the model.  

We say that the organization’s confidence in the correctness of its design, represented as a 

belief in our model, binds all the parameters of our model. Our argument is as follows. The 

development process generates rich data in the form of design discussions, logs of activities, 

observations, and test results, for example. This rich data influences the organization’s 

understanding of the state of its design. Since the true state of the design is unknown prior to 

verification, the organization’s understanding of the state of its design is subjective. That is, the 

organization does not know the true state of its design but can be thought of as being confident in 

the correctness of the design. The organization will make verification decisions based on this 

confidence. Since the costs of verification are set by the organization’s decision, it then follows 



that adequately modeling the organization’s confidence in the correctness of its design activities 

is sufficient to connect our model input to its outputs.  

There are two aspects to modeling the organization’s confidence: 1) quantifying the 

confidence, and 2) modeling the change in this confidence. To quantify the organization’s 

confidence in the correctness of its design activities, we use belief distributions. The organization’s 

confidence is changed by the actions of the design activities. However, these activities have been 

abstracted away in our model. Thus, we need a parameter that adequately represents the way in 

which design activities vary the organization’s belief in the correctness of its design. This function 

is accomplished by the probability of making a design error  .   

6.2 Logical validity 

Logical validity checks if a model has been correctly converted into a numerical computer model 

that produces solutions [61]. There is no standard methodology for determining logical validity, 

but qualitative inspections have been used in the past [61]. To the best of our knowledge, the results 

of our model are numerically correct. However, we do contend that numerical accuracy does not 

necessarily imply applicability in reality. In this regard, our model makes two assumptions that 

leads to numerically correct but inapplicable results in those scenarios where the organization’s 

baseline confidence in the correctness of its design maturity/capability is low throughout the design 

process: 1) the system design either is either faulty, or not and 2) when the system is verified, the 

belief in the correct state of the system design becomes absolute.  

The two assumptions mentioned above, together, overlook the possibility of the system design 

being in more granular states during the design and verification process. Still, our model does 

derive a numerically correct strategy for those scenarios where the organization’s baseline 



confidence in the correctness of its design activities is low – no verification in any phase but the 

last. This is so since our model suggests that even if the system is verified, the confidence of it 

being in the correct state will be low throughout the process, and hence it is best not to waste 

monetary resources on the same. However, in reality, the organization would prefer to verify its 

design if its baseline confidence in the correctness of its design activities is low. We conjecture 

that this issue can be resolved by expanding the size of the state space and by allowing a more 

granular increase in belief after verification activities.  

7 Conclusion 

Incentivizing verification activities in multi-firm design projects is a significant challenge for the 

main contractor. In this paper, we developed a belief-based modeling approach to derive optimal 

verification strategies in multi-firm scenarios, along with the incentives that can implement these 

strategies. The optimal incentives are a function of the subordinate firm’s beliefs and the influence 

exerted by the subordinate firm on the supervising firm with respect to verification activities.  

We presented the two-firm model of verification as a building block and then extended the 

results to three scenarios: 1) a two-level model and 2) the network model. For each scenario, we 

presented an exact algorithm that determines optimal verification and incentive strategies. The 

exact algorithms for the two-level and network models were both observed to be NP-hard. 

Numerical examples were presented for each scenario to illustrate the benefits of incentivizing 

verification activities.  

In conclusion, our work lays a foundation for studying the problem of incentivizing 

verification in multi-firm scenarios. We focused on scenarios where the state space for each firm 

can be broadly categorized as either ideal or non-ideal and the decision space for each firm 



consisted of two possible actions. By deriving exact algorithms for all scenarios explored, we have 

also laid a foundation for the derivation of efficient heuristics that can determine near-optimal 

incentive and verification strategies for multi-firm projects with a large number of participating 

firms. Future work is suggested to incorporate explicit models of human and organizational 

behavior. 

Appendix A 

Proof of Theorem 1 We will prove Theorem 1 for SUP SUP .d v= −  The proof for SUP SUPd v=  is similar. 

For any ,c kA G  and for any {1, ,| |},cVk   we define \ .cA V A=  Since it is profitable for SUP 

to incentivize each firm in the set 1 },{ , mx x  individually, for {1, , },j m   we know  

SUP { SUP SU} P SUPE( , , ) E( , , )| , | ,
c j cI x IR Z v R Z v  −    −   

 SUP SUP SUP SUP 1
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j j j
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u x x x

V xu

g il      
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− − + −    (24) 

Let 1 ,, mj j  be an arbitrary ordering of the set 1 ,{ , }.mx x  This implies 1 1, {, , , }m mj xj x    

and 1 .mj j  Using condition (24) we know 
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since 
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