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Abstract: Hierarchical Latent Attribute Models (HLAMs) are a family of discrete latent variable mod-

els that are attracting increasing attention in educational, psychological, and behavioral sciences. The

key ingredients of an HLAM include a binary structural matrix and a directed acyclic graph spec-

ifying hierarchical constraints on the configurations of latent attributes. These components encode

practitioners’ design information and carry important scientific meanings. Despite the popularity of

HLAMs, the fundamental identifiability issue remains unaddressed. The existence of the attribute

hierarchy graph leads to degenerate parameter space, and the potentially unknown structural matrix

further complicates the identifiability problem. This paper addresses this issue of identifying the latent

structure and model parameters underlying an HLAM. We develop sufficient and necessary identifia-

bility conditions. These results directly and sharply characterize the different impacts on identifiability

cast by different attribute types in the graph. The proposed conditions not only provide insights into

diagnostic test designs under the attribute hierarchy, but also serve as tools to assess the validity of

an estimated HLAM.
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1. Introduction

Latent attribute models are a family of discrete latent variable models popular in multiple

scientific disciplines, including cognitive diagnosis in educational assessments (Junker and

Sijtsma, 2001; von Davier, 2008; Henson et al., 2009; Rupp et al., 2010; de la Torre, 2011;

Wang et al., 2018), psychiatric diagnosis of mental disorders (Templin and Henson, 2006;
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de la Torre et al., 2018), and epidemiological and medical measurement studies (Wu et al.,

2017; O’Brien et al., 2019). Based on subjects’ responses (often binary) to a set of items, a

latent attribute model enables fine-grained inference on subjects’ statuses of an underlying set

of latent traits; this further allows for clustering the population into interpretable subgroups

based on the inferred attribute patterns. In a latent attribute model, each attribute is

often assumed binary and carries specific scientific meaning. For example, in an educational

assessment, the observed responses are students’ correct or wrong answers to a set of test

items, and the latent attributes indicate students’ binary states of mastery or deficiency

of certain skills measured by the assessment (Junker and Sijtsma, 2001; von Davier, 2008;

Rupp et al., 2010). On top of this, the dependence among the latent attributes can be further

modeled to incorporate practitioners’ prior knowledge. A particularly popular and powerful

way of modeling attribute dependence in educational and psychological studies is to enforce

hard constraints on the hierarchical configurations of the attributes. Specifically, educational

experts often postulate some prerequisite relations exist among the binary skill attributes,

such that mastering some skills serve as a prerequisite for mastering some others (Leighton

et al., 2004). Such a family of Hierarchical Latent Attribute Models (HLAMs) are attracting

increasing attention in cognitive diagnostic applications in recent years; see Leighton et al.

(2004); Gierl et al. (2007); Templin and Bradshaw (2014); Wang and Lu (2020). Despite

the popularity, the fundamental identifiability issue of HLAMs remains unaddressed. This

paper fills this gap and provides the identifiability theory for HLAMs.

HLAMs have close connections with many other popular statistical and machine learn-

ing models. Since each possible configuration of the discrete attributes represents a pattern

defining a latent subpopulation, the HLAM can be viewed as a structured mixture model
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(McLachlan and Peel, 2004) and gives rises to model-based clustering (Fraley and Raftery,

2002) of multivariate categorical data. HLAMs are related to several multivariate discrete

latent variable models in the machine learning literature, including latent tree graphical

models (Choi et al., 2011), restricted Boltzmann machines (Hinton, 2002), latent feature

models (Ghahramani and Griffiths, 2006), but with the following two key differences. First,

the observed variables are assumed to have certain structured dependence on the latent

attributes. This dependence is summarized by a structural matrix, the so-called Q-matrix

(Tatsuoka, 1990), to encode scientific interpretations. The second key feature is that HLAMs

incorporate the hierarchical structure among the latent attributes. For instance, in educa-

tional cognitive diagnosis, the possession of certain skill attributes are often assumed to be

the prerequisite for possessing some others (Leighton et al., 2004; Templin and Bradshaw,

2014).

The real-world applications of HLAMs are challenged by the identifiability issues of the

attribute hierarchy, the structural Q-matrix, and other model parameters. First, in many

applications, the attribute hierarchy and the structural Q-matrix are specified by the domain

experts based on their understanding of the diagnostic tests. Such specification could be

subjective and may not reflect the underlying truth. Second, the attribute hierarchy and the

Q-matrix may even be entirely unknown in exploratory data analysis, where researchers hope

to identify and estimate these quantities directly from the observed data. In both of the above

situations, a fundamental yet open question is whether and when the attribute hierarchy

and even the structural Q-matrix are identifiable. The identifiability of HLAMs has a close

connection to the uniqueness of tensor decompositions, as the probability distribution of an

HLAM can be written as a mixture of highly constrained higher-order tensors. Particularly,
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HLAMs can be viewed as a special family of restricted latent class models, with the Q-matrix

imposing constraints on the model parameters. However, related works on the identifiability

of latent class models and uniqueness of tensor decompositions (e.g. Allman et al., 2009;

Anandkumar et al., 2014) cannot be directly applied to HLAMs due to the constraints

induced by the Q-matrix.

To tackle identifiability under such structural constraints, some recent works (Xu, 2017;

Xu and Shang, 2018; Gu and Xu, 2019b; Fang et al., 2019; Gu and Xu, 2020, 2019a; Chen

et al., 2020) proposed identifiability conditions for latent attribute models. However, most

of them (Xu, 2017; Xu and Shang, 2018; Gu and Xu, 2019b; Fang et al., 2019; Chen et al.,

2020) considered scenarios without any attribute hierarchy; Gu and Xu (2020) assumed

both the true Q-matrix and true configurations of attribute patterns are known and fixed;

Gu and Xu (2019a) considered the problem of learning the set of truly existing attribute

patterns but assumed the Q-matrix is correctly specified beforehand. All these previous

works did not directly take into account the hierarchical graphical structure of the attribute

hierarchy, therefore their results can not provide explicit and sharp identifiability conditions

for an HLAM. On the other hand, in the cognitive diagnostic modeling literature, researchers

(Köhn and Chiu, 2019; Cai et al., 2018) recently studied the “completeness” of the Q-matrix,

a relevant concept to be revisited in Section 3, under attribute hierarchy. But these results

can not ensure identifying uniquely the model parameters that determine the probabilistic

HLAM. In summary, establishing identifiability without assuming any knowledge of the Q-

matrix and the attribute hierarchy still remains unaddressed in the literature, and it is indeed

a technically challenging task.

This paper addresses this identifiability question for popular HLAMs under an arbitrary
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attribute hierarchy. We develop explicit sufficient conditions for identifying the attribute

hierarchy, the Q-matrix, and all the model parameters in an HLAM. These sufficient con-

ditions become also necessary when the latent pattern space is saturated with no hierarchy.

While for cases where there is a nonempty hierarchy, we discuss the necessity of these indi-

vidual conditions and relax them in several nontrivial and interesting ways. Based on these

and going further, we then establish the fully general necessary and sufficient identifiability

conditions for the attribute hierarchy and all the model parameters under a fixed Q-matrix.

Our results in this regard sharply characterize the different roles played by different types

of attributes in the attribute hierarchy graph. The theoretical developments can be used

to assess the validity of an estimated HLAM obtained from any estimation method. They

also provide insights into designing useful diagnostic tests under attribute hierarchy with

minimal restrictions.

The rest of the paper is organized as follows. In Section 2, we introduce the model

setup of the HLAMs. In Section 3, we present sufficient conditions on identifiability of Q,

attribute hierarchy, and model parameters. In Section 4, to thoroughly investigate how to

close the gap between the necessity and sufficiency of the identifiability conditions, we focus

on the case where Q is fixed and derive the fully general necessary and sufficient conditions

for identifying the attribute hierarchy and model parameters. In Section 5, we provide an

extension of the identifiability result to other types of HLAMs that have potentially more

parameters than that studied in Sections 3-4. We give a brief discussion in Section 6. All

the technical proofs are presented in the Supplementary Material.
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2. Model Setup and Examples

This section introduces the model setup of HLAMs. We first introduce some notation. For

an integer m, denote [m] = {1, 2, . . . ,m}. For a set A, denote its cardinality by |A|. Denote

the K ×K identity matrix by IK and the K-dimensional all-one and all-zero vectors by 1K

and 0K , respectively.

An HLAM consists of two types of subject-specific binary variables, the observed re-

sponses r = (r1, . . . , rJ) ∈ {0, 1}J to J items ; and the latent attribute pattern α =

(α1, . . . , αK) ∈ {0, 1}K , with αk indicating the mastery or deficiency of the kth attribute. In

this work, K is assumed known and fixed. This assumption is well suited for the motivat-

ing applications in cognitive diagnosis, where the number and also the real-world meanings

of the latent attributes are usually known in the context of the application, and it is of

interest to identify and learn other quantities from data. Next, we first describe the dis-

tribution of the latent attributes. Attribute k is said to be the prerequisite of attribute `

and denoted by k → `, if any pattern α with αk = 0 and α` = 1 is “forbidden” to exist.

This is a common assumption in applications such as cognitive diagnosis to model subjects’

learning process (Leighton et al., 2004; Templin and Bradshaw, 2014). A subject’s latent

pattern a is assumed to follow a categorical distribution of population proportion parame-

ters p = (pα, α ∈ {0, 1}K), with pα ≥ 0 and
∑
α pα = 1. In particular, any pattern α not

respecting the hierarchy is deemed impossible to exist with population proportion pα = 0.

An attribute hierarchy is a set of prerequisite relations among the K attributes:

E = {k → ` : attribute k is a prerequisite for `}.

Generally, an attribute hierarchy E implies a directed acyclic graph among the K attributes

with no directed cycles; this graph constrains which attribute patterns are permissible or
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forbidden. Specifically, any E would induce a set of allowable configurations of attribute

patterns out of {0, 1}K , which we denote by A(E), or simply A when it causes no confusion.

For an arbitrary E , the all-zero and all-one attribute patterns 0K and 1K always belong to

the induced A. This is because any prerequisite relation among attributes would not rule out

the existence of the pattern possessing no attributes or the pattern possessing all attributes.

When there is no attribute hierarchy among the K attributes, E = ∅ and A = {0, 1}K .

The set A is a proper subset of {0, 1}K if E 6= ∅. An attribute hierarchy determines the

sparsity pattern of the vector of proportion parameters p, because pα > 0 if and only if

α ∈ A(E), that is, if and only if α is permissible under E . In this sense, a nonempty

attribute hierarchy necessarily leads to degenerate parameter space for p, as certain entries

of p will be constrained to zero.

In the practice of studying the attribute hierarchy in cognitive diagnosis, the case of

k → ` and `→ k would indicate the two skill attributes αk and α` are prerequisites for each

other, which is not interpretable and hence is not used in modeling. Similarly, the case of

having any cycle in the attribute hierarchy graph in the form of k1 → k2 → · · · → km → k1

is also not interpretable. Therefore, a directed acyclic graph (DAG) structure among the

latent attributes is well suited to describe the hierarchical nature of attributes that carry

these substantive meanings. We emphasize here that the DAG of attribute hierarchy in

an HLAM has a different nature from that in a Bayesian network (Pearl, 1986). This is

because the DAG of attribute hierarchy encodes hard constraints on what variable patterns

are permissible/forbidden, while the DAG in a Bayesian network encodes the conditional

independence relations among the variables.

Remark 1. Our attribute hierarchy constraints that “k → ` implies αk = 0 and α` = 1
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is impossible” have interesting connections to some other constraints in the statistics liter-

ature. In variable selection where the main effects of variables and their interaction effects

may be present, the effect heredity principle (Hamada and Wu, 1992) posits that only if the

main effects of variables exist will their corresponding interaction effect potentially exist. In

particular, with θi and θj denoting the continuous regression coefficients associated with two

heredity terms, Yuan et al. (2009) used a linear inequality θi ≤ θj (continuous relaxation of

the hard constraints on the binary indicators of variable inclusions) to cleverly enforce the

heredity constraint and facilitate computation. In causal inference, the monotonicity con-

straint in instrumental variable analyses (Hernán and Robins, 2006; Swanson et al., 2015)

posits that if the instrumental variable satisfies z1 < z2 then the counterfactual treatment is a

non-decreasing function of the instrument, i.e., Xz1
i ≤ Xz2

i for all subjects i. A key difference

of the attribute hierarchy constraints from the aforementioned constraints is the involvement

of many latent variables in HLAMs; indeed, all the α1, . . . , αK among which the hierarchical

constraints exist are latent. The binary patterns α that respect the attribute hierarchy E

follow an unknown categorical distribution with parameters p = (pα) with
∑
α pα = 1, and

the observed data distribution is obtained upon marginalizing out the latent structure and is

quite complicated as a result.

Example 1. Fig 1 presents several hierarchies with the size of the associated A, where a

dotted arrow from αk to α` indicates k → ` and k is a direct prerequisite for `. Note that

under the hierarchy in Fig 1(a), the prerequisite 1→ 3 is an indirect prerequisite implied by

1→ 2 (or 4) and 2 (or 4) → 3.

On top of the model of the latent attributes, an HLAM uses a J × K binary matrix

Q = (qj,k) to encode the structural relationship between the J observed response variables
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Figure 1: Different attribute hierarchies among binary attributes for K = 4 where
|{0, 1}4| = 16. For example, the set of allowed attribute patterns under hierarchy (a) is
A1 = {04, (1000), (1100), (1001), (1101), 14}.

Q6×3 :=


q1

q2

q3

q4

q5

q6

 :=


1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1

 ;

r1 r2 r3 r4 r5 r6 r ∈ {0, 1}6

α1 α2 α3 α ∈ {0, 1}3

(a) Q-matrix (b) graphical model & attribute hierarchy

Figure 2: A binary structural matrix and the corresponding graphical model with (solid)
directed edges from the latent to the observed variables representing dependencies. Below
the observed variables in (b) are the row vectors of Q6×3, i.e., the item loading vectors.
The dotted arrows indicate the attribute hierarchy with E = {1 → 2, 1 → 3} and A =
{03, (100), (110), (101), 13}.

and the K latent attributes. In cognitive diagnostic assessments, the matrix Q is often

specified by domain experts to summarize which abilities each test item targets on (Tatsuoka,

1990; von Davier, 2008; Rupp et al., 2010; de la Torre, 2011). Specifically, qj,k = 1 if and

only if the response rj to the jth item has statistical dependence on latent variable αk. The

distribution of rj, i.e., θj,α := P(rj = 1 | α), only depends on its “parent” latent attributes

αk’s that are connected to rj, i.e., {αk : qj,k = 1}. The structural matrix Q naturally induces

a bipartite graph connecting the latent and the observed variables, with edges corresponding

to entries of “1” in Q = (qj,k). Fig 2 presents an example of a structural matrix Q and

its corresponding directed graphical model between the K = 3 latent attributes and J = 6

observed variables. The solid edges from the latent attributes to the observed variables are

specified by Q6×3. As also can be seen from the graphical model, the observed responses to
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the J items are conditionally independent given the latent attribute pattern α.

In the psychometrics literature, various HLAMs adopting the Q-matrix concept have

been proposed with the goal of diagnosing targeted attributes (Junker and Sijtsma, 2001;

Templin and Henson, 2006; von Davier, 2008; Henson et al., 2009; de la Torre, 2011). They

are often called the cognitive diagnostic models. The general family of latent attribute models

are also widely used in other scientific areas including psychiatric evaluation (Templin and

Henson, 2006; de la Torre et al., 2018) with the goal of diagnosing patients’ various mental

disorders, and epidemiological diagnosis of disease etiology (Wu et al., 2016, 2017; O’Brien

et al., 2019). These applications share the common key interest in identifying the multivariate

discrete latent attributes.

In this work, we mainly focus on a popular and fundamental type of modeling assump-

tions under such a framework; as to be revealed soon, this modeling assumption also has

close connections to Boolean matrix factorization (Ravanbakhsh et al., 2016; Rukat et al.,

2017). Specifically, we mainly consider the HLAMs that assume a logical ideal response

Γqj ,α given an attribute pattern α and an item loading vector qj in the noiseless case. Then

item-level noise parameters are further introduced to account for uncertainty of observations.

The following are two popular ways to define the ideal response.

The first is the Deterministic Input Noisy output “And” gate (DINA) model (Junker and

Sijtsma, 2001; de la Torre and Douglas, 2004; von Davier, 2014). The DINA model assumes

a conjunctive relationship among the attributes. The ideal response of attribute pattern α

to item j is

(DINA ideal response) ΓAND
qj ,α

=
K∏
k=1

α
qj,k
k , (2.1)
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where the convention 00 ≡ 1 is adopted. It is not hard to check that the above definition is

equivalent to

ΓAND
qj ,α

= 1(αk ≥ qj,k for all the k ∈ [K]). (2.2)

The above equivalent definition intuitively and explicitly explains that the DINA adopts

the conjunctive modeling assumption, because only if a subject with attribute pattern α

possesses all of the attributes required by the loading vector qj would he/she be considered

as capable of this item j and have Γqj ,α = 1. Such a conjunctive relationship is often

assumed for diagnosis of students’ mastery or deficiency of skill attributes in educational

assessments, and Γqj ,α naturally indicates whether a student with α has mastered all the

attributes required by the test item j. With Γqj ,α in (2.1), the uncertainty of the responses

is further modeled by the item-specific Bernoulli parameters

θ+
j = P(rj = 1 | Γqj ,α = 1), θ−j = P(rj = 1 | Γqj ,α = 0), (2.3)

where θ+
j > θ−j is assumed for identifiability. For each item j, the ideal response Γqj ,·,

if viewed as a function of attribute patterns, divides the patterns into two latent classes

{α : Γqj ,α = 1} and {α : Γqj ,α = 0}; and for these two latent classes, respectively, the item

parameters quantify the noise levels of the response to item j that deviates from the ideal

response. Note that the θj,α equals either θ+
j or θ−j , depending on the ideal response Γj,α.

Denote the item parameter vectors by θ+ = (θ+
1 , . . . , θ

+
J )> and θ− = (θ−1 , . . . , θ

−
J )>.

The second model is the Deterministic Input Noisy output “Or” gate (DINO) model
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(Templin and Henson, 2006). The DINO model assumes the following ideal response

(DINO ideal response) ΓOR
qj ,α

= I(qj,k = αk = 1 for at least one k). (2.4)

Such a disjunctive relationship is often assumed in psychiatric measurement of mental dis-

orders (Templin and Henson, 2006; de la Torre et al., 2018). With Γqj ,α in (2.4), the uncer-

tainty of the responses is modeled by the item-specific parameters as defined in (2.3). In the

Boolean matrix factorization literature, a similar model was proposed (Ravanbakhsh et al.,

2016). Adapted to the terminology here, Rukat et al. (2017) assumes the ideal response

takes the form

(equivalent to (2.4)) ΓOR
qj ,α

= 1−
K∏
k=1

(1− αkqj,k), (2.5)

which is equivalent to the definition in (2.4), while the model in Rukat et al. (2017) constrains

all the item-level noise parameters to be the same.

We next first focus on the asymmetric DINA-based HLAMs, as they are very popular

and fundamental models widely used in the motivating applications of educational cognitive

diagnosis. We also study the identifiability of DINO-based HLAMs and another type of

HLAMs in Section 5. For notational simplicity, we next write ΓAND
qj ,α

simply as Γqj ,α. Denote

by Γ(Q, E) the J × |A(E)| ideal response matrix with the (j,α)th entry being Γqj ,α for α ∈

A(E). Under the introduced setup of DINA-based HLAMs, the probability mass function of

the J-dimensional random response vector R takes the form of

P (R = r | Q, E ,θ+,θ−,p) =
∑

α∈A(E)

pα

J∏
j=1

[Γqj ,αθ
+
j + (1− Γqj ,α)θ−j ]rj
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× [1− Γqj ,αθ
+
j − (1− Γqj ,α)θ−j ]1−rj ,

where r ∈ {0, 1}J is an arbitrary response pattern.

3. Identifiability of Q, Attribute Hierarchy, and Model Parameters: Establish-

ing Sufficiency

This section presents one main result on the sufficient conditions for identifiability of Q,

E , and model parameters θ+, θ−, and p. Following the definition of identifiability in the

statistics literature, we say that (Q, E ,θ+,θ−,p) of an HLAM are identifiable if for any

(Q, E ,θ+,θ−,p) in the parameter space constrained by Q and E , there exist no (Q̄, Ē , θ̄+
, θ̄
−
, p̄) 6=

(Q, E ,θ+,θ−,p) such that

P(R = r | Q̄, Ē , θ̄+
, θ̄
−
, p̄) = P(R = r | Q, E ,θ+,θ−,p), ∀r ∈ {0, 1}J . (3.6)

We point out that in the above definition of identifiability, the alternative vector of proportion

parameters p̄ is not constrained to have support on A(E). Instead, the vector p̄ should be

allowed to have an arbitrary support Ā potentially resulting from an arbitrary Ē ; the goal

of establishing identifiability is indeed to develop conditions to ensure that as long as (3.6)

holds, one must have p̄ = p and Ē = E from the equations in (3.6).

We further introduce some notation and important concepts. Since an attribute hi-

erarchy is a directed acyclic graph, the K attributes {1, 2, . . . , K} can be arranged in a

topological order such that the prerequisite relation “→” only happens in one direction; in

other words, we can assume without loss of generality that k → ` only if k < `. Define the

following reachability matrix E among the K attributes under the attribute hierarchy. The
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E = (ek,`) is a K×K binary matrix, where ek,k = 1 for all k ∈ [K] and e`,k = 1 if attribute k

is a direct or indirect prerequisite for attribute `. In cognitive diagnosis, the concept of the

reachability matrix was first considered in Tatsuoka (1986) to represent the direct and indi-

rect relationships between attributes. It is not hard to see that if the attributes 1, 2, . . . , K

are in a topological order described earlier, the reachability matrix E is a lower-triangular

matrix with all the diagonal entries being one.

Under DINA-based HLAMs, any non-empty attribute hierarchy E defines an equivalence

relation on the set of all the Q-matrices. To see this, recall Γ(Q, E) denotes the J × |A(E)|

ideal response matrix. If Γ(Q1, E) = Γ(Q2, E), then Q1 and Q2 are said to be in the

same E-induced equivalence class and we denote this by Q1
E∼ Q2. To interpret, if under

a certain hierarchy E , two different Q-matrices lead to identical ideal responses for all the

permissible latent patterns in A(E), then these two Q-matrices are indistinguishable based

on the response data; therefore they should be treated as equivalent. The following example

illustrates how an attribute hierarchy determines a set of equivalent Q-matrices.

Example 2. Consider the attribute hierarchy E = {1→ 2, 1→ 3} in Fig 2, which results in

A(E) = {03, (100), (110), (101),13}. The identity matrix I3 is equivalent to the reachability

matrix E under E and

I3 =

1 0 0
0 1 0
0 0 1

 E∼ E =

1 0 0
1 1 0
1 0 1

 E∼

1 0 0
∗ 1 0
∗ 0 1

 , (3.7)

where the “∗”’s in the third matrix above indicate unspecified values, any of which can

be either 0 or 1. This equivalence is due to that attribute α1 serves as the prerequisite

for both α2 and α3, and any item loading vector qj measuring α2 or α3 is equivalent to

a modified one that also measures α1, in terms of classifying the patterns in A into two

categories {α : Γqj ,α = 1} and {α : Γqj ,α = 0}. Note that any Q-matrix equivalent to
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IK under the E = {1 → 2, 1 → 3} must take the form of the third Q-matrix in (3.7).

Under a DINA-based HLAM, if the true Q-matrix Qtrue is not known, then any other Q

with Q
E∼ Qtrue can not be distinguished from Qtrue based on the observations, even if the

continuous parameters (θ+,θ−,p) are all known. This is because the ideal response matrix

Γ(Q, E) is the key latent structure underlying a DINA-based HLAM, and that if Q
E∼ Qtrue

(equivalently, Γ(Q, E) = Γ(Qtrue, E)), then Q and Qtrue are inherently not distinguishable.

Given any hierarchy E , the equivalence IK
E∼ E is always true, for which Eq. (3.7)

in Example 2 is an example. Before presenting the theorem on sufficient conditions for

identifiability, we introduce two useful operations on a Q-matrix given an attribute hierarchy

E : the “densifying” operation DE(·) and the “sparsifying” operation SE(·), as follows.

Definition 1. Given an attribute hierarchy E and a matrix Q, do the following: for any

qj,h = 1 and k → h, set qj,k to “1” and obtain a modified matrix DE(Q). This DE(Q) is said

to be the “densified” version of Q.

Definition 2. Given an attribute hierarchy E and a matrix Q, do the following: for any

qj,h = 1 and k → h, set qj,k to “0” and obtain a modified matrix SE(Q). This SE(Q) is said

to be the “sparsified” version of Q.

Under the above two definitions, given any attribute hierarchy E , the two statements

DE(IK) = E and SE(E) = IK always hold. Specifically, DE(IK) = E means that in the

special case where J = K and Q takes the form of an identity matrix IK , densifying such a

Q always gives a K×K reachability matrix E under the hierarchy E . Similarly, SE(E) = IK

means that in another special case where J = K and Q takes the form of the reachability

matrix E, sparsifying such a Q always gives the identity matrix IK . These two special

examples illustrate the definitions of the sparsifying/densifying operations on Q-matrices
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and the relationship between E and IK . In cognitive diagnosis, the densified Q-matrix

with all the row vectors respecting the attribute hierarchy E is also said to satisfy the

“restricted Q-matrix design” (e.g., Cai et al., 2018; Tu et al., 2019); for such Q, it holds that

Q = DE(Q). It is worth pointing out that either the sparsifying or the densifying operation

modifies Q only within a same equivalence class. Indeed, DE(Q) denotes the densest Q with

the largest number of “1”s in the equivalence class, while SE(Q) denotes the sparsest Q

with the largest number of “0”s in the equivalence class. In the special case with an empty

attribute hierarchy, each equivalence class of Q contains only one element which is Q itself,

so Q = DE(Q) = SE(Q) for E = ∅. As will be revealed in the following theorem, our

identifiability conditions are essentially requirements on the equivalence class of Q described

using the densifying and sparsifying operations.

Theorem 1. Consider an HLAM under the DINA model an attribute hierarchy E. Then

(Γ(Q, E), θ+, θ−, p) are jointly identifiable if the true Q satisfies the following conditions.

A. The Q contains K×K submatrix Q0 that is equivalent to the identity matrix IK under

the hierarchy E.

(Without loss of generality, assume the first K rows of Q form Q0, and denote the

remaining submatrix of Q by Q?.)

B. The SE(Q), sparsified version of Q, has at least three entries of “1”s in each column.

C. The DE(Q?), densified version of the submatrix Q?, contains K distinct column vectors.

Furthermore, Conditions A, B and C are necessary and sufficient when there exists no hier-

archy with pα > 0 for all α ∈ {0, 1}K.

We make several remarks on the relationship between the new theory and existing works.
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Remark 2. In the cognitive diagnostic modeling literature, a Q-matrix is said to be “com-

plete” if it can distinguish all the 2K latent attribute profiles (Chiu et al., 2009). When the

latent pattern space A is saturated with A = {0, 1}K , the completeness of Q is a natural

necessary requirement for identifiability. When A = {0, 1}K , the Q-matrix is complete if

it contains all the K distinct standard basis vectors as row vectors, that is, Q contains an

IK . When there exists a certain attribute hierarchy E leading to some A ( {0, 1}K , the

requirement for the “completeness” of Q will change. Recently, Köhn and Chiu (2019) and

Cai et al. (2018) studied conditions for the completeness of Q under the attribute hierarchy.

But these conditions can not ensure the entire probabilistic model structure involving Q,

E , and parameters p, θ+ and θ− are identifiable and estimable from data. To our knowl-

edge, Theorem 1 establishes the first identifiability result under the attribute hierarchy in

the literature. Condition A in Theorem 1 is equivalent to requiring SE(Q) contains an IK .

Therefore, Conditions A and B combined are equivalent to the following statement about

SE(Q): the SE(Q) contains an IK and each column of it has at least three entries of “1”s.

Remark 3. As stated in the last part of Theorem 1, when there is no attribute hierarchy

with E = ∅, Conditions A, B, and C become necessary and sufficient for the identifiability

of both Q and (E , θ+, θ−, p). In such a special case with E = ∅, Gu and Xu (2021)

established the necessary and sufficient identifiability conditions termed as “completeness”

that requires the true Q to contain an identity submatrix IK , “repeated-measurement” that

requires Q to have at least three entries of “1” in each column, and “distinctiveness” requiring

that in addition to containing an IK , the Q should contain distinct column vectors in the

remaining submatrix; we denote these three requirements by Conditions A0, B0, and C0,

respectively. Our current conditions A, B, and C in Theorem 1 can be thought of as “E-

17



completeness”, “E-repeated-measurement”, “E-distinctiveness” given an attribute hierarchy

E . When E = ∅, the SE(Q) = DE(Q) = Q holds; as a result, Condition A exactly becomes

requiring Q itself to contain a submatrix IK ; similarly, Conditions B and C exactly reduce

to the conditions B0 and C0 on Q itself. Indeed, in such cases with E = ∅, the current

conditions of “E-completeness”, “E-repeated-measurement”, “E-distinctiveness” just reduce

to the “completeness”, “repeated-measurement”, “distinctiveness” conditions proposed in

Gu and Xu (2021). Establishing identifiability under an arbitrary attribute hierarchy E as

done in Theorem 1 is technically much more challenging than the existing result for E = ∅.

Moreover, in the later Section 4, we will thoroughly study that under a fixed Q-matrix, how

the necessity of the identifiability conditions changes when there is a nonempty hierarchy.

Theorem 1 ensures the discrete ideal response structure Γ(Q, E) and all the associated

model parameters (θ+, θ−, p) are identifiable. The following proposition complements this

conclusion and further establishes identifiability of E and Q based on Theorem 1.

Proposition 1. Consider a DINA-based HLAM. In addition to Conditions A–C in Theorem

1, if the true Q is known to contain an IK, then (E ,θ+, θ−, p) are identifiable. On the other

hand, it is indeed necessary for Q to contain an IK to ensure an arbitrary E is identifiable.

Proposition 2. Consider a DINA-based HLAM. If Conditions A–C in Theorem 1 are sat-

isfied and the true Q is known in part to contain a submatrix IK for certain K items, then

the equivalence class of Q defined by the attribute hierarchy E is identifiable. That is, the

specific Q is not strictly identifiable within its equivalence class under any E 6= ∅, but the

densified DE(Q) and the sparsified SE(Q) are identifiable.

The statement in Proposition 2 that Q is identifiable only up to its equivalence class is

inherent to all the DINA- or DINO-type HLAMs and it is an inevitable consequence of any
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nonempty attribute hierarchy E 6= ∅; see Example 2. But this statement will not undermine

the efficacy of the identifiability conclusion, because DE(Q) and SE(Q) themselves are still

identifiable and provide practical interpretability of the structural matrix. We next present

a toy example illustrating how to apply Theorem 1 to check identifiability.

Example 3. Consider the attribute hierarchy {α1 → α2, α1 → α3} among K = 3 attributes

as in Fig 2. The following 8 × 3 structural matrix Q satisfies Conditions A, B and C in

Theorem 1. In particular, the first 3 rows of Q serve as Q0 in Condition A, and the last 5

rows serve as Q?. In the following display, the matrix entries modified by the sparsifying

operation in Condition B and the densifying operation in Condition C are highlighted. The

resulting SE(Q) and DE(Q) satisfy the requirements in Conditions B and C. So the HLAM

associated with Q is identifiable.

Q =

(
Q0

Q?

)
=


I3

1 0 0
1 0 0
1 1 0
0 0 1
1 1 1


Sparsify
=⇒ SE(Q) =


I3

1 0 0
1 0 0
0 1 0
0 0 1
0 1 1

 ; (3.8)

Densify
=⇒ DE(Q) =


E

1 0 0
1 0 0
1 1 0
1 0 1
1 1 1

 . (3.9)

When estimating an HLAM with the goal of recovering the ideal response structure

Γ(Q, E) and continuous parameters, Theorem 1 guarantees Conditions A, B and C suffice and

are close to being necessary. If the goal is to uniquely determine the attribute hierarchy from

the identified Γ(Q, E), the additional condition that Q contains an IK becomes necessary.

This phenomenon can be better understood if related to the identification of the factor
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loading matrix in factor analysis (Anderson, 2009; Bai and Li, 2012); the loading matrix

there is often required to include an identity submatrix or satisfy certain rank constraints,

since otherwise the loading matrix can not be identifiable due to rotational indeterminacy.

The existing results of identifiability for non-hierarchical latent attribute models (i.e.,

with an empty graph E = ∅ in Gu and Xu, 2021) adopt a key assumption that pα > 0 for any

possible binary patternα ∈ {0, 1}K , and the proofs in Gu and Xu (2021) heavily relied on this

assumption on p to derive the identifiability conditions. Importantly, when the assumption

that “pα > 0 for any α ∈ {0, 1}K” fails to hold, the proof arguments in Gu and Xu (2021)

also do not hold and hence the conclusions there cannot be simply modified. Rather, a

careful analysis of the polynomial systems arising from the probability mass function (PMF)

of the observed R is required to derive suitable identifiability conditions.

We would like to point out that dealing with such a degenerate parameter space of p

under an attribute hierarchy E requires quite delicate algebraic work. Specifically, our proof

technique of identifiability is based on investigating under what conditions, the highly com-

plex and Q-matrix-constrained polynomial equations given by the PMF of the vector R has

unique roots; uniqueness of roots indicates identifiability of parameters. When using this

proof technique, we start by inspecting polynomial equations P(R = r | Q̄, Ē , θ̄+
, θ̄
−
, p̄) =

P(R = r | Q, E ,θ+,θ−,p), ∀r ∈ {0, 1}J for unknown true parameters (Q, E ,θ+,θ−,p) and

arbitrary alternative parameters (Q̄, Ē , θ̄+
, θ̄
−
, p̄), and investigate what conditions guaran-

tee the alternative parameters are identical to the true ones. Under an unknown attribute

hierarchy E , certain true proportions pα equal zero but we do not know which ones equal

zero. Therefore complex constraints on polynomial equations will occur because certain

terms vanish from the one hand side of the equation (corresponding to the true parameters

20



pα’s) but do not vanish from the other hand side of the equation (corresponding to the

unknown alternative parameters pα’s; we do not know which pα = 0 out of all the possible

α ∈ {0, 1}K). This fact makes the study of the identifiability issues in the current work con-

siderably harder and quite different from existing results for non-hierarchical latent attribute

models (e.g., Gu and Xu, 2021).

As stated in the end of Theorem 1, Conditions A, B, and C become not only sufficient but

also necessary for identifiability when there is no hierarchy among attributes. Interestingly,

the necessity of these conditions will subtly change when a nonempty attribute hierarchy

comes into play. Our next section thoroughly investigates these aspects.

4. Identifiability of Attribute Hierarchy and Model Parameters: Pushing To-

wards Necessity

In order to close the gap between necessity and sufficiency, in this section we thoroughly

investigate the necessity of the identifiability conditions for (E ,θ+,θ−,p) under the assump-

tion that Q is known and fixed. In the following Subsection 4.1, we first investigate the

necessity of the conditions proposed in Section 3 individually, to gain insight into how the

necessity changes as the attribute hierarchy changes. Then in Subsection 4.2, we further es-

tablish the general necessary and sufficient conditions for identifying the attribute hierarchy

and other parameters under an arbitrary hierarchy graph E .

4.1 Investigating the Necessity of Conditions A, B, C Individually

Our first result establishes the necessity of Condition A in Theorem 1.

Proposition 3. Consider a DINA-based HLAM. Condition A that the sparsified SE(Q)
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4.1 Investigating the Necessity of Conditions A, B, C Individually

contains an IK is necessary for identifiability of (Γ(Q, E), θ+,θ−, p).

Proposition 3 shows that Condition A can not be relaxed under any attribute hierarchy.

On the other hand, Condition B and Condition C are more “local” in the sense that they re-

gard individual attributes (equivalently, individual columns of the Q-matrix). Interestingly,

it turns out that the necessity of these two conditions highly depends on the role of each

attribute in the attribute hierarchy graph. We next characterize the fine boundary between

sufficiency and necessity of identifiability conditions for various types of attributes. Given

any attribute hierarchy graph E , we define the following four types of attributes.

Definition 3 (Singleton Attribute). An attribute k is a “singleton attribute” if there neither

exists any attribute h such that k → h nor exists any attribute ` such that `→ k.

Definition 4 (Root Attribute). An attribute k is an “root attribute” if there exists some

attribute h such that k → h but does not exist any attribute ` such that `→ k.

Definition 5 (Leaf Attribute). An attribute k is a “leaf attribute” if there exists some

attribute ` such that `→ k but does not exist any attribute h such that k → h.

Definition 6 (Intermediate Attribute). An attribute k is an “intermediate attribute” if there

exists some attribute ` with `→ k and also exists some attribute h with k → h.

The above four definitions together describe a full categorization of attributes given any

attribute hierarchy. In other words, given any E , an attribute is either a singleton, or a root,

or a leaf, or an intermediate attribute. As a special case, when the attribute pattern space

A = {0, 1}K is saturated, all the K attributes are singleton attributes.

Example 4. Leighton et al. (Leighton et al., 2004) is among the first works that considered

the attribute hierarchy method for the purpose of cognitive diagnosis. In particular, they
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4.1 Investigating the Necessity of Conditions A, B, C Individually

presented and named the four different types of hierarchies among K = 6 attributes, as

shown in our Fig 3. In our terminology, in plot (a), attribute 1 is a root attribute, attribute

6 is a leaf attribute, and the remaining attributes 2, 3, 4, 5 are intermediate attributes; in

plot (b), the roles of the six attributes are the same as those in plot (a); in plot (c), attribute

1 is a root attribute, attribute 2 and 3 are intermediate attributes, attributes 4, 5, 6 are leaf

attributes; in plot (d), attribute 1 is a root, and the remaining 2, 3, 4, 5, 6 are leaves.

α1

α2

α3

α4

α5

α6

α1

α2

α3 α4

α5

α6

α1

α2 α3

α4 α5 α6

α1

α2 α3 α4 α5 α6

(a) (b) (c) (d)

Figure 3: Four attribute hierarchies presented in Leighton et al. (2004), named as: (a)
linear, (b) convergent, (c) divergent, and (d) unstructured. For example, in (b), α1 is a root
attribute, α2, . . . , α6 are intermediate attributes, α7 is a leaf attribute, and there are no
singleton attributes.

For ease of discussion, in the following conclusions regarding necessity of the identifiabil-

ity conditions, we shall focus on the Q-matrices that satisfy the restricted Q-matrix design.

Recall that a Q-matrix is said to satisfy the restricted Q-matrix design if each of its row

vectors is a permissible attribute pattern under the hierarchy E . In the literature of cogni-

tive diagnostic modeling, the restricted Q-matrix design is shown empirically to be useful

in improving clustering accuracy of diagnostic test takers (Tu et al., 2019). Our theoreti-

cal findings in the rest of this subsection reveal that in addition to the restricted Q-matrix
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4.1 Investigating the Necessity of Conditions A, B, C Individually

design, what other requirements are necessary to ensure identifiability.

Before presenting the next identifiability result, we first introduce a new notion of iden-

tifiability of the attribute hierarchy E and proportion parameters p; that is, identifiability

up to equivalence classes [E ] and [p]. Under an unknown nonempty hierarchy E 6= ∅, if all

row vectors of Q respect the attribute hierarchy, then there exists a trivial nonidentifiability

issue that can be resolved by introducing an equivalence relation, similar in spirit to that

in Gu and Xu (2020). To see this, consider K = 2 and E = {1 → 2}, then a Q-matrix

Q = E = (1, 0; 1, 1) has both rows respecting the attribute hierarchy. Further, consider the

simplest special case without any item-level noise, 1 − θ+
1 = 1 − θ+

2 = θ−1 = θ−2 = 0. Now

if E is unknown, then it is not hard to see that any alternative proportion parameters p̄

satisfying the following equations will be nondistinguishable from the true parameters p:

p(00) = p̄(00) + p̄(01); p(10) = p̄(10); p(11) = p̄(11). (4.10)

The above phenomenon is closely related to the p-partial identifiability defined in Gu

and Xu (2020), which means when Q does not contain an identity submatrix IK (often

called “incomplete” in cognitive diagnosis models), the proportion parameters can at best

be identified up to the equivalence classes induced by Q. In the toy example in the last

paragraph, the attribute patterns (00) and (01) are equivalent under the incomplete Q =

(1, 0; 1, 1) because ΓQ,(00) = ΓQ,(01); so p̄(00) and p̄(01) can be identified up to their sum at best,

as illustrated in (4.10). Therefore, we will say (θ+,θ−, [E ], [p]) are identifiable, if continuous

parameters (θ+,θ−) are identifiable in the usual sense, and the E and p are identifiable up

to the equivalence classes each of them belongs to; namely, the only nonidentifiability issue

regarding E (and hence p) is due to the equivalence relation induced by Q like the example

in (4.10). We give more formal definitions of [E ] and [p] as follows: given an attribute

hierarchy E and a Q-matrix with all row vectors respecting the hierarchy E (i.e., satisfying
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4.1 Investigating the Necessity of Conditions A, B, C Individually

the restricted Q-matrix design), define the equivalence class of attribute hierarchies [E ] and

that of proportion parameters [p] as

[E ] = {Ē : Γ(Q, E) = Γ(Q, Ē)};

[p] = {p̄ : p̄ is associated with some Ē ∈ [E ], with (θ+ = 1J×1,θ
− = 0J×1, E ,p) and

(θ+ = 1J×1,θ
− = 0J×1, Ē , p̄) giving rise to the same distribution of R}

= {p̄ = (p̄α,α ∈ {0, 1}K) : ∀α that respects the hierarchy E ,
∑

α′: ΓQ,α′=ΓQ,α

p̄α′ = pα}.

We point out that the above nonidentifiability of a specific E within its equivalence class

[E ] is somewhat trivial and can be easily resolved, by simply defining the final Ē? to be the

hierarchy with the most directed edges among all the possible hierarchies in the equivalence

class [Ē ]. It is easy to see that such Ē? equals the true E in the toy example, because in order

for Ē to have the most directed edges, one needs to set p̄(01) = 0 under (4.10) and that exactly

makes the resulting p̄ = p and Ē? = E = {1 → 2}. By a similar reasoning, this procedure

also works more generally for any hierarchy E . Therefore, when a fixed Q-matrix has all rows

respecting the hierarchy, it is still very meaningful and useful to study the identifiability of

(θ+,θ−, [E ], [p]) and to investigate the minimal identifiability conditions. Our results in this

section will establish the necessary and sufficient identifiability conditions in this regard.

In the following Propositions 4–6, we show how Condition B can be generally relaxed,

depending on whether the attribute is root, leaf, or intermediate.

Proposition 4 (Necessary Condition for Singleton Attribute). Consider a DINA-based

HLAM with a fixed Q-matrix whose row vectors respect the hierarchy E. The following

hold for a singleton attribute k in any attribute hierarchy.

(a)
∑J

j=1 qj,k ≥ 3 is necessary for the identifiability of (E ,θ+,θ−,p).
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4.1 Investigating the Necessity of Conditions A, B, C Individually

(b) There exists scenarios where the equality in part (a) is achieved with
∑J

j=1 qj,k = 3 and

the identifiability of (θ+,θ−, [E ], [p]) is guaranteed.

Proposition 5 (Necessary Condition for Root or Leaf Attribute). Consider a DINA-based

HLAM with a fixed Q-matrix whose row vectors respect the hierarchy E. Denote the (j, k)th

entry of SE(Q) by qsparse
j,k . The following conclusions hold for k if attribute k is either a root

attribute or a leaf attribute.

(a)
∑J

j=1 q
sparse
j,k ≥ 2 is necessary for the identifiability of (E ,θ+,θ−,p).

(b) There exist scenarios where the equality in part (a) is achieved with
∑J

j=1 q
sparse
j,k = 2

and the identifiability of (θ+,θ−, [E ], [p]) is guaranteed.

Proposition 6 (Necessary Condition for Intermediate Attribute). Consider a DINA-based

HLAM with a fixed Q-matrix whose row vectors respect the hierarchy E. Denote the (j, k)th

entry of SE(Q) by qsparse
j,k . The following statements hold for an intermediate attribute k.

(a)
∑J

j=1 q
sparse
j,k ≥ 1 is necessary for the identifiability of (E ,θ+,θ−,p).

(b) There exist scenarios where the equality in part (a) is achieved with
∑J

j=1 q
sparse
j,k = 1

and the identifiability of (θ+,θ−, [E ], [p]) is guaranteed.

Propositions 4–6 together characterize the different identifiability phenomena caused

by different types of attributes in the attribute hierarchy graph. An intuitive explanation

behind these conclusions is as follows. For a singleton attribute k that is not connected to

any other attribute in the attribute hierarchy graph, no additional information is provided

by the other attributes. Therefore the requirement of k being measured by ≥ 3 items in

the Q-matrix is necessary. This aligns well with the conclusion for a latent attribute model

without any hierarchy established in Xu and Zhang (2016) and Gu and Xu (2019b), where
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4.2 Bridging the Necessity and Sufficiency of the Identifiability Conditions

all the attributes are singletons and each needs to be measured by ≥ 3 items. However, this

requirement can be relaxed for any other type of attribute which is somewhat connected in

the attribute hierarchy graph. In particular, fewer measurements are needed for k in the

Q-matrix as more information is available for this attribute in the attribute hierarchy graph.

For a root attribute k with some “child” or a leaf attribute with some “parent” as one-sided

information, the requirement is relaxed to k being measured by ≥ 2 items in SE(Q); while for

an intermediate attribute k with both some child and some parent as two-sided information,

the requirement is further relaxed to k being measured by ≥ 1 items in SE(Q).

We next discuss the necessity of Condition C. Given a Q, we denote by Q1:K,: the

submatrix consisting of its first K rows and by Q(K+1):J,: the submatrix consisting of its last

J − K rows. For a Q with rows respecting the attribute hierarchy, Condition C requires

Q(K+1):J, k 6= Q(K+1):J, ` for any k 6= ` when Q1:K,: = E. We have the following result.

Proposition 7 (Discussing Necessity of Condition C). Consider a DINA-based HLAM with a

fixed Q whose row vectors respect the hierarchy E. The condition that Q(K+1):J, k 6= Q(K+1):J, `

(when Q1:K,: = E) is necessary for identifiability if both αk and α` are singleton attributes.

4.2 Bridging the Necessity and Sufficiency of the Identifiability Conditions

Still under a fixed and known Q-matrix as in Section 4.1, we next investigate how the

sufficient identifiability conditions for (θ+,θ−,p) can meet the necessary identifiability con-

ditions proposed earlier in Propositions 5–7. In the next theorem, we establish that the

individual necessary conditions established in Section 4.1 combined are actually sufficient

to guarantee the identifiability in fully general scenarios. This result therefore establishes

the general necessary and sufficient condition on the Q-matrix for identifiability under an
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4.2 Bridging the Necessity and Sufficiency of the Identifiability Conditions

arbitrary attribute structure.

Theorem 2 (Necessary and Sufficient Conditions under a Fully General E). Consider a

DINA-based HLAM with a fixed Q-matrix whose row vectors respect the hierarchy E. Then

Condition A and the following Condition B? and C? are necessary and sufficient for the

identifiability of (θ+,θ−, [E ], [p]).

B?. In SE(Q), any intermediate attribute is each measured by ≥ 1 items, any root attribute

and any leaf attribute is each measured by ≥ 2 items, and any singleton attribute is

each measured by ≥ 3 items.

C?. For any two singleton attributes αk and α`, there is Q(K+1):J, k 6= Q(K+1):J, `. (Assume

Q1:K,: = E under Condition A.)

Theorem 2 covers any type of attribute structure and allows for any type of attributes

in the attribute hierarchy graph. In the special case where there are no singleton attributes

in the attribute hierarchy graph, the necessary and sufficient identifiability conditions in

Theorem 2 can be simplified. We term such a family of hierarchies without any singleton

attributes the connected-graph hierarchy.

Corollary 1 (Necessary and Sufficient Condition under a Connected Graph Hierarchy).

Consider a DINA-based HLAM with fixed Q-matrix whose row vectors respect the hierarchy

E. Suppose the K attributes form a connected graph. Then Condition A and the following

Condition D are necessary and sufficient for the identifiability of (E ,θ+,θ−, [p]).

D. In SE(Q), any root attribute and any leaf attribute is each measured by ≥ 2 items, and

any intermediate attribute is each measured by ≥ 1 items.
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Remark 4. In the first extreme case, if E = ∅ without any true hierarchy among attributes,

then Conditions A, B?, and C? in Theorem 2 exactly become Conditions A, B, C in Theorem

1 in Section 3. In the second extreme case, if there does not exist any singleton attribute

in the attribute hierarchy graph, then Condition B? in Theorem 2 reduces to Condition D

in the above Corollary 1; and Condition C? in Theorem 2 should be understood as always

satisfied and hence can be omitted. Namely, under a connected-graph hierarchy without any

singleton attributes, the Conditions A, B?, and C? in Theorem 2 exactly reduce to Conditions

A and D in Corollary 1. Therefore, Theorem 2 covers Corollary 1 as a special case and is

indeed fully general. We state these two results separately to highlight both the most general

form of the result, and also how the necessary and sufficient conditions simplify under the

popular family of connected-graph hierarchy as depicted in Corollary 1.

The following example illustrates the minimal requirements on Q under those attribute

hierarchies considered in Leighton et al. (2004).

Example 5. Under the linear hierarchy E = E linear in Fig 4(b), the 8×6 matrix Qlinear
8×6 shown

in Fig 4(a) encodes the minimal requirement for identifiability. Fig 4(b) visualizes the spar-

sified version of Qlinear
8×6 as the directed solid edges from the latent attributes to the observed

item responses. Under the so-called convergent hierarchy and divergent hierarchy presented

earlier in Fig 3, the minimal requirement on Q for model identifiability are presented in

parts (c)-(d) and parts (e)-(f) of Figure 4, repectively. For the divergent hierarchy E = Ediv

in Fig 4(f), the Qdiv
10×6 in Fig 4(c) gives an identifiable model under minimal conditions.

5. Identifiability of other HLAMs different from the DINA-based HLAMs

We also study identifiability of some other HLAMs in addition to the DINA-based HLAMs.
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5.1 DINO-based HLAMs

Qlinear
8×6 =



1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 1 1



α1 α2 α3 α4 α5 α6

r7 r1 r2 r3 r4 r5 r6 r8

(a) Qlinear
8×6 (b) visualization of the sparsified SE(Qlinear

8×6 )

Qconv
8×6 =



1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 0 1 0 0
1 1 1 1 1 0
1 1 1 1 1 1
1 0 0 0 0 0
1 1 1 1 1 1


α1 α2

α3

α4

α5 α6

r1r7 r2

r3

r4

r5 r6 r8

(c) Qconv
8×6 (d) visualization of the sparsified SE(Qconv

8×6 )

Qdiv
10×6 =



1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1



α1

α2 α3

α4 α5 α6

r1 r7

r2 r3

r4

r8 r5 r9

r6

r10

(e) Qdiv
10×6 (f) visualization of the sparsified SE(Qdiv

10×6)

Figure 4: Minimally sufficient requirements on Q for identifiability under the linear hierarchy,
convergent hierarchy, and divergent hierarchy proposed in Leighton et al. (2004), respectively.

5.1 DINO-based HLAMs

As introduced earlier in Section 2, the DINO model is also a popular type of latent attribute

model often used for psychiatric and clinical measurement of mental disorders (Templin
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5.1 DINO-based HLAMs

and Henson, 2006; de la Torre et al., 2018). A careful examination of the definitions of

ideal responses ΓAND and ΓOR in (2.1) and (2.5) reveals the following relationship ΓOR
qj ,α

=

1−ΓAND
qj ,1K−α, where 1K−α = (1−α1, . . . , 1−αK)> also denotes an attribute pattern. Building

upon such duality between DINA and DINO, the following proposition characterizes how

the identifiability results obtained under a DINA-based HLAM can be translated into those

under a DINO-based HLAM.

Proposition 8. Consider a DINO-based HLAM with a fixed Q-matrix and an unknown

attribute hierarchy E. Define the reversed attribute hierarchy E reverse as

E reverse = {`→ k : if k → ` under the original hierarchy E}. (5.11)

(a) For any α ∈ {0, 1}K, α ∈ A(E) if and only if 1K − α ∈ A(E reverse). That is, any

attribute pattern α that is allowable under the original hierarchy E if and only if another

attribute pattern α′ = 1−α is allowable under the reversed hierarchy E reverse.

(b) The attribute hierarchy E and model parameters under the DINO-based HLAM are

identifiable if and only if the reversed attribute hierarchy E reverse and model parame-

ters are identifiable under a DINA-based HLAM with the same Q-matrix.

For any attribute hierarchy graph E , the reversed hierarchy E reverse in (5.11) is another

directed graph among attributes, where the direction of each arrow in E is reversed. There-

fore, for the same set of K attributes, any root attribute in E becomes a leaf attribute in

E reverse, and any leaf in E in turn becomes a root in E reverse. Any intermediate attribute

or singleton attribute remain the same type when E is reversed to be E reverse. Proposition

8 provides guidelines on how to check identifiability for a DINO-based HLAM using the

identifiability results established earlier for DINA-based HLAMs. In particular, we have
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5.2 Main-effect-based HLAMs

the following necessary and sufficient conditions for identifiability of (E ,θ+,θ−,p) under a

DINO-based HLAM with a fixed Q-matrix.

Corollary 2 (Necessary and Sufficient Conditions under a General E for a DINO-based

HLAM). Consider a DINO-based HLAM with an attribute hierarchy E and a fixed Q-matrix

whose rows respect the reversed hierarchy E reverse. Consider the following condition.

A?. The E reverse-densified matrix DEreverse(Q) contains a submatrix which is the reachability

matrix under the reversed hierarchy E reverse.

Then this Condition A?, and the earlier Conditions B?–C? given in Theorem 2 are necessary

and sufficient for the identifiability of (E ,θ+,θ−,p).

5.2 Main-effect-based HLAMs

Another family of HLAMs in the literature (e.g., DiBello et al., 1995; von Davier, 2008;

Henson et al., 2009) incorporate the main effects of latent attributes into the model. We

next review these main-effect-based HLAMs in the following Example 6 and then provide

the identifiability result for them.

Example 6 (HLAMs which Model the Main Effects of Attributes). The main-effect HLAMs

assume the main effects of the attributes measured by each item indicated by qj play a role

in distinguishing the item parameters. Under a main-effect HLAM the Bernoulli parameter

θj,α can be written as

θmain-eff
j,α = f

(
βj,0 +

∑K

k=1
βj,kqj,kαk

)
, (5.12)

where f(·) is a link function. Note not all the β-coefficients in the above display are needed in

the model specification; instead, only when qj,k = 1 will βj,k be needed and truly incorporated
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5.2 Main-effect-based HLAMs

in the model. Different link functions f(·) in (5.12) lead to different models, including the

Linear Logistic Model (LLM; Maris, 1999) with f(·) being the sigmoid function, and the

Additive Cognitive Diagnosis Model (ACDM; de la Torre, 2011) with f(·) being the identity.

When f(·) is a monotonically increasing function, it is usually assumed in practice that each

βj,k > 0 wherever qj,k = 1 for interpretability.

There are also all-effect HLAMs that model not only the main effects but also all the

interaction effects of attributes. The Bernoulli parameter θj,α of an all-effect model is

θall-eff
j,α = f

(
βj,0 +

∑K

k=1
βj,k(qj,kαk) +

∑
1≤k1<k2≤K

βj,k1k2(qj,k1αk1)(qj,k2αk2)+ (5.13)

· · ·+ βj,12···K
∏K

k=1
(qj,kαk)

)
.

Similarly as in (5.12), not all the β-coefficients above are needed in the model specification.

When f(·) in (5.13) is the identity function, (5.13) gives the Generalized DINA (GDINA)

model in de la Torre (2011); and when f(·) is the sigmoid function, (5.13) gives the Log-

linear Cognitive Diagnosis Models (LCDMs) in Henson et al. (2009); see also the General

Diagnostic Models (GDMs) in von Davier (2008). We generally call the main-effect HLAMs

in (5.12) and the all-effect HLAMs in (5.13) the main-effect-based HLAMs, because they

both incorporate the main effects of the latent attributes in to the model.

Under the main-effect-based HLAMs, the probability mass function of the J-dimensional

random response vector R can be generally written as

P (R = r | Q, E ,θ+,θ−,p) =
∑

α∈A(E)

pα

J∏
j=1

θ
rj
j,α × (1− θj,α)1−rj ,

where r ∈ {0, 1}J is an arbitrary response pattern. Notably, these main-effect-based HLAMs

generally have quite different algebraic structures from the family of two-parameter HLAMs,

the DINA and the DINO models. The key structure of any two-parameter HLAM is captured
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5.2 Main-effect-based HLAMs

by the ideal response Γqj ,α in (2.1) or (2.4), under the “AND” or “OR” operations, respec-

tively. Intuitively, the two-parameter HLAMs are characterized by a probabilistic version of

the Boolean product of two groups of binary vectors, the group of qj’s and the group of α’s;

however, this is not the case for any HLAM in Example 6 due to the incorporation of the

main effects of attributes. Indeed, incorporating main effects in the form of
∑K

k=1βj,kqj,kαk

in (5.12) or (5.13) is taking a inner product of vectors qj, α and an additional β-coefficient

vector, rather than the Boolean product. Because of such distinction, the necessary and suf-

ficient identifiability conditions derived carefully for the two-parameter HLAMs in Sections

3-4 are not applicable to main-effect-based HLAMs.

Next we give a set of sufficient conditions for the identifiability of main-effect-based

HLAMs. The technical concept of Γ(Q, E) (specifically, with Γ = ΓAND defined in (2.1))

introduced earlier in Section 3 is still useful here. Denote the collection of all the per-item

Bernoulli parameters by Θ = (θj,α). We have the following theorem.

Theorem 3 (Identifiability of HLAMs which Model the Main Effects of Attributes). Con-

sider an HLAM that incorporates the main effects of the attributes with Q and E both un-

known. Suppose Θ satisfies a natural inequality constraint θj,α 6= θj,α′ if Γqj ,α 6= Γqj ,α′. If

Γ(Q, E) satisfies the following conditions with the number of columns known, then the (Θ,p)

and Γ(Q, E) are identifiable.

E. There exist two disjoint sets of items S1, S2 ⊆ [J ], such that Γ(QS1,: , E) and Γ(QS2,: , E)

each has distinct column vectors.

F. For any α 6= α′ ∈ A(E), there exists some j 6∈ S1 ∪ S2 such that Γqj ,α 6= Γqj ,α′.

G. For any α ∈ A(E), α′ ∈ {0, 1}\A(E), there exists some j ∈ [J ] such that Γqj ,α 6= Γqj ,α′.
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5.2 Main-effect-based HLAMs

In addition to the above three conditions, if Q is known in part to contain an identity sub-

matrix IK, then the attribute hierarchy E is identifiable from Γ(Q, E).

For the main-effect-based HLAMs, the ideal response matrix Γ(Q, E) may not sharply

characterize the entire latent structure due to the incorporation of the main effects, which is

in contrary to the DINA-based HLAMs. To see this, considering two latent patterns α and

α′ with Γqj ,α = Γqj ,α′ = 0, then the specification in (5.12) or (5.13) implies it is possible that

θj,α 6= θj,α′ . Therefore it is hard, if at all possible, to explicitly characterize the necessary

identifiability conditions in terms of Γ(Q, E) for main-effect-based HLAMs. However, the

Γ(Q, E) is still useful to derive sufficient conditions for identifiability, as revealed in the

above Theorem 3. This is because if Γqj ,α = Γqj ,α′ = 1, the two attribute patterns α and

α′ both satisfy α � qj and α′ � qj by the definition in (2.1). This implies both patterns

α and α′ possess all the attributes measured by the vector qj. As a result, the definition

of main-effect-based models in (5.12) or in (5.13) shows that there must be θj,α = θj,α′ for

these two patterns. This intuitively explains why Γ(Q, E) can be used to describe a set of

sufficient identifiability conditions for the main-effect-based HLAMs.

We make a remark on the relationship between the main-effect-based HLAMs and the

DINA-based HLAMs studied in the previous Sections 3–4. On the one hand, the main-effect-

based HLAMs are more general than DINA-based HLAMs in the sense that the formulation

of θmain-eff
j,α in (5.12) or θall-eff

j,α in (5.13) can generally allow for more than two Bernoulli pa-

rameters for each j, while DINA-based HLAMs always have two parameters θ+
j and θ−j for

each j. On the other hand, however, we would like to point out that in this work we still

put the main focus on the DINA-based two-parameter HLAMs, which are widely used in the

motivating applications of cognitive diagnosis in educational settings. Indeed, these educa-
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tional settings are where the attribute hierarchy receives the most attention in modeling the

sequential acquisition of skill attributes (e.g., Leighton et al., 2004; Gierl et al., 2007; Wang

and Lu, 2020). On the practical side, assuming the conjunctive relationship among the at-

tributes as in DINA is often believed to be suitable for modeling the response mechanism of

diagnostic test items in such settings (e.g., Junker and Sijtsma, 2001; de la Torre and Dou-

glas, 2004). On the theoretical side, the identifiability of two-parameter DINA-based HLAMs

is also more intriguing to study because of the Boolean product involved. The rich combi-

natorial nature of such models gives the opportunity to close the gap between the necessity

and sufficiency of identifiability requirements; interestingly, these minimal requirements are

explicit conditions on the discrete structure: the Q-matrix and attribute types, as depicted

in Section 4. Therefore, we believe that closely examining the DINA-based two-parameter

HLAMs and establishing the minimal identifiability conditions for them (as done in Sections

3–4) are highly desirable, due to their theoretical interest and practical relevance.

6. Discussion

In this paper, we provide a first study on identifiability of the hierarchical latent attribute

model, a complex-structured latent variable model popular in modeling modern assessment

data. We propose sufficient identifiability conditions that explicitly depend on the attribute

hierarchy graph and the structural Q-matrix. We also discuss the necessity of the identi-

fiability conditions and sharply characterize the different impacts on identifiability cast by

different types of attributes in the attribute hierarchy graph. In this paper we mainly focus

on the basic and popular HLAMs, the DINA-based HLAMs, where each item is modeled

using two parameters. We also extend the theory to other types of HLAMs in Section 5.
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One nice implication of identifiability is the estimability of both the latent structure

and the parameters that define the probabilistic model. When the proposed conditions are

satisfied, all the components of the HLAM can be uniquely and consistently estimated from

data based on maximum likelihood. In practical data analysis under the HLAM framework,

if the Q and E are specified by domain experts or applied researchers, then before seeing

any data, one can check whether Q and E satisfy our proposed conditions to assess model

identifiability. On the other hand, if Q and E are not known and one hopes to estimate them

exploratorily from data, our identifiability results can also be useful. In such scenarios, one

can check whether the estimated Q̂ and Ê satisfy necessary identifiability conditions; if not,

then more careful investigation of the diagnostic test design may be needed. Therefore, this

study provides useful insights into designing valid diagnostic tests and drawing valid scientific

conclusions from assessment data under a potentially complicated attribute hierarchy.
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