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Abstract: Hierarchical Latent Attribute Models (HLAMSs) are a family of discrete latent variable mod-
els that are attracting increasing attention in educational, psychological, and behavioral sciences. The
key ingredients of an HLAM include a binary structural matrix and a directed acyclic graph spec-
ifying hierarchical constraints on the configurations of latent attributes. These components encode
practitioners’ design information and carry important scientific meanings. Despite the popularity of
HLAMSs, the fundamental identifiability issue remains unaddressed. The existence of the attribute
hierarchy graph leads to degenerate parameter space, and the potentially unknown structural matrix
further complicates the identifiability problem. This paper addresses this issue of identifying the latent
structure and model parameters underlying an HLAM. We develop sufficient and necessary identifia-
bility conditions. These results directly and sharply characterize the different impacts on identifiability
cast by different attribute types in the graph. The proposed conditions not only provide insights into
diagnostic test designs under the attribute hierarchy, but also serve as tools to assess the validity of

an estimated HLAM.
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1. Introduction

Latent attribute models are a family of discrete latent variable models popular in multiple
scientific disciplines, including cognitive diagnosis in educational assessments (Junker and
Sijtsma, 2001; von Davier, 2008; Henson et al., 2009; Rupp et al., 2010; de la Torre, 2011;

Wang et al., 2018), psychiatric diagnosis of mental disorders (Templin and Henson, 2006;



de la Torre et al., 2018), and epidemiological and medical measurement studies (Wu et al.,
2017; O’Brien et al., 2019). Based on subjects’ responses (often binary) to a set of items, a
latent attribute model enables fine-grained inference on subjects’ statuses of an underlying set
of latent traits; this further allows for clustering the population into interpretable subgroups
based on the inferred attribute patterns. In a latent attribute model, each attribute is
often assumed binary and carries specific scientific meaning. For example, in an educational
assessment, the observed responses are students’ correct or wrong answers to a set of test
items, and the latent attributes indicate students’ binary states of mastery or deficiency
of certain skills measured by the assessment (Junker and Sijtsma, 2001; von Davier, 2008;
Rupp et al., 2010). On top of this, the dependence among the latent attributes can be further
modeled to incorporate practitioners’ prior knowledge. A particularly popular and powerful
way of modeling attribute dependence in educational and psychological studies is to enforce
hard constraints on the hierarchical configurations of the attributes. Specifically, educational
experts often postulate some prerequisite relations exist among the binary skill attributes,
such that mastering some skills serve as a prerequisite for mastering some others (Leighton
et al., 2004). Such a family of Hierarchical Latent Attribute Models (HLAMSs) are attracting
increasing attention in cognitive diagnostic applications in recent years; see Leighton et al.
(2004); Gierl et al. (2007); Templin and Bradshaw (2014); Wang and Lu (2020). Despite
the popularity, the fundamental identifiability issue of HLAMs remains unaddressed. This
paper fills this gap and provides the identifiability theory for HLAMs.

HLAMSs have close connections with many other popular statistical and machine learn-
ing models. Since each possible configuration of the discrete attributes represents a pattern

defining a latent subpopulation, the HLAM can be viewed as a structured mixture model



(McLachlan and Peel, 2004) and gives rises to model-based clustering (Fraley and Raftery,
2002) of multivariate categorical data. HLAMs are related to several multivariate discrete
latent variable models in the machine learning literature, including latent tree graphical
models (Choi et al., 2011), restricted Boltzmann machines (Hinton, 2002), latent feature
models (Ghahramani and Griffiths, 2006), but with the following two key differences. First,
the observed variables are assumed to have certain structured dependence on the latent
attributes. This dependence is summarized by a structural matrix, the so-called Q-matrix
(Tatsuoka, 1990), to encode scientific interpretations. The second key feature is that HLAMs
incorporate the hierarchical structure among the latent attributes. For instance, in educa-
tional cognitive diagnosis, the possession of certain skill attributes are often assumed to be
the prerequisite for possessing some others (Leighton et al., 2004; Templin and Bradshaw,
2014).

The real-world applications of HLAMs are challenged by the identifiability issues of the
attribute hierarchy, the structural Q-matrix, and other model parameters. First, in many
applications, the attribute hierarchy and the structural Q-matrix are specified by the domain
experts based on their understanding of the diagnostic tests. Such specification could be
subjective and may not reflect the underlying truth. Second, the attribute hierarchy and the
Q-matrix may even be entirely unknown in exploratory data analysis, where researchers hope
to identify and estimate these quantities directly from the observed data. In both of the above
situations, a fundamental yet open question is whether and when the attribute hierarchy
and even the structural Q-matrix are identifiable. The identifiability of HLAMs has a close
connection to the uniqueness of tensor decompositions, as the probability distribution of an

HLAM can be written as a mixture of highly constrained higher-order tensors. Particularly,



HLAMSs can be viewed as a special family of restricted latent class models, with the Q-matrix
imposing constraints on the model parameters. However, related works on the identifiability
of latent class models and uniqueness of tensor decompositions (e.g. Allman et al., 2009;
Anandkumar et al., 2014) cannot be directly applied to HLAMs due to the constraints
induced by the Q-matrix.

To tackle identifiability under such structural constraints, some recent works (Xu, 2017;
Xu and Shang, 2018; Gu and Xu, 2019b; Fang et al., 2019; Gu and Xu, 2020, 2019a; Chen
et al., 2020) proposed identifiability conditions for latent attribute models. However, most
of them (Xu, 2017; Xu and Shang, 2018; Gu and Xu, 2019b; Fang et al., 2019; Chen et al.,
2020) considered scenarios without any attribute hierarchy; Gu and Xu (2020) assumed
both the true Q-matrix and true configurations of attribute patterns are known and fixed;
Gu and Xu (2019a) considered the problem of learning the set of truly existing attribute
patterns but assumed the Q-matrix is correctly specified beforehand. All these previous
works did not directly take into account the hierarchical graphical structure of the attribute
hierarchy, therefore their results can not provide explicit and sharp identifiability conditions
for an HLAM. On the other hand, in the cognitive diagnostic modeling literature, researchers
(Kéhn and Chiu, 2019; Cai et al., 2018) recently studied the “completeness” of the Q-matrix,
a relevant concept to be revisited in Section 3, under attribute hierarchy. But these results
can not ensure identifying uniquely the model parameters that determine the probabilistic
HLAM. In summary, establishing identifiability without assuming any knowledge of the Q-
matrix and the attribute hierarchy still remains unaddressed in the literature, and it is indeed
a technically challenging task.

This paper addresses this identifiability question for popular HLAMs under an arbitrary



attribute hierarchy. We develop explicit sufficient conditions for identifying the attribute
hierarchy, the Q-matrix, and all the model parameters in an HLAM. These sufficient con-
ditions become also necessary when the latent pattern space is saturated with no hierarchy.
While for cases where there is a nonempty hierarchy, we discuss the necessity of these indi-
vidual conditions and relax them in several nontrivial and interesting ways. Based on these
and going further, we then establish the fully general necessary and sufficient identifiability
conditions for the attribute hierarchy and all the model parameters under a fixed Q-matrix.
Our results in this regard sharply characterize the different roles played by different types
of attributes in the attribute hierarchy graph. The theoretical developments can be used
to assess the validity of an estimated HLAM obtained from any estimation method. They
also provide insights into designing useful diagnostic tests under attribute hierarchy with
minimal restrictions.

The rest of the paper is organized as follows. In Section 2, we introduce the model
setup of the HLAMs. In Section 3, we present sufficient conditions on identifiability of Q,
attribute hierarchy, and model parameters. In Section 4, to thoroughly investigate how to
close the gap between the necessity and sufficiency of the identifiability conditions, we focus
on the case where Q is fixed and derive the fully general necessary and sufficient conditions
for identifying the attribute hierarchy and model parameters. In Section 5, we provide an
extension of the identifiability result to other types of HLAMSs that have potentially more
parameters than that studied in Sections 3-4. We give a brief discussion in Section 6. All

the technical proofs are presented in the Supplementary Material.



2. Model Setup and Examples

This section introduces the model setup of HLAMs. We first introduce some notation. For
an integer m, denote [m] = {1,2,...,m}. For a set A, denote its cardinality by |.A|. Denote
the K x K identity matrix by Ix and the K-dimensional all-one and all-zero vectors by 1
and Og, respectively.

An HLAM consists of two types of subject-specific binary variables, the observed re-
sponses 7 = (r1,...,75) € {0,1}7 to J items; and the latent attribute pattern a =
(ai,...,ax) € {0,1}F with «y, indicating the mastery or deficiency of the kth attribute. In
this work, K is assumed known and fixed. This assumption is well suited for the motivat-
ing applications in cognitive diagnosis, where the number and also the real-world meanings
of the latent attributes are usually known in the context of the application, and it is of
interest to identify and learn other quantities from data. Next, we first describe the dis-
tribution of the latent attributes. Attribute k is said to be the prerequisite of attribute ¢
and denoted by £k — £, if any pattern a with o = 0 and oy = 1 is “forbidden” to exist.
This is a common assumption in applications such as cognitive diagnosis to model subjects’
learning process (Leighton et al., 2004; Templin and Bradshaw, 2014). A subject’s latent
pattern a is assumed to follow a categorical distribution of population proportion parame-
ters p = (pa, @ € {0,1}), with po > 0 and }__ po = 1. In particular, any pattern a not
respecting the hierarchy is deemed impossible to exist with population proportion p, = 0.
An attribute hierarchy is a set of prerequisite relations among the K attributes:

E = {k — ¢ : attribute k is a prerequisite for ¢}.
Generally, an attribute hierarchy £ implies a directed acyclic graph among the K attributes

with no directed cycles; this graph constrains which attribute patterns are permissible or



forbidden. Specifically, any £ would induce a set of allowable configurations of attribute
patterns out of {0, 1} which we denote by A(E), or simply A when it causes no confusion.
For an arbitrary &, the all-zero and all-one attribute patterns Ox and 1x always belong to
the induced A. This is because any prerequisite relation among attributes would not rule out
the existence of the pattern possessing no attributes or the pattern possessing all attributes.
When there is no attribute hierarchy among the K attributes, & = @ and A = {0,1}%.
The set A is a proper subset of {0,1}¥ if £ # @. An attribute hierarchy determines the
sparsity pattern of the vector of proportion parameters p, because p, > 0 if and only if
a € A(E), that is, if and only if « is permissible under £. In this sense, a nonempty
attribute hierarchy necessarily leads to degenerate parameter space for p, as certain entries
of p will be constrained to zero.

In the practice of studying the attribute hierarchy in cognitive diagnosis, the case of
k — ¢ and ¢ — k would indicate the two skill attributes oy and «, are prerequisites for each
other, which is not interpretable and hence is not used in modeling. Similarly, the case of
having any cycle in the attribute hierarchy graph in the form of k; = ks — -+ = k,,, = k;
is also not interpretable. Therefore, a directed acyclic graph (DAG) structure among the
latent attributes is well suited to describe the hierarchical nature of attributes that carry
these substantive meanings. We emphasize here that the DAG of attribute hierarchy in
an HLAM has a different nature from that in a Bayesian network (Pearl, 1986). This is
because the DAG of attribute hierarchy encodes hard constraints on what variable patterns
are permissible/forbidden, while the DAG in a Bayesian network encodes the conditional

independence relations among the variables.

Remark 1. Our attribute hierarchy constraints that “k — € implies ag, = 0 and ap = 1



15 1mpossible” have interesting connections to some other constraints in the statistics liter-
ature. In variable selection where the main effects of variables and their interaction effects
may be present, the effect heredity principle (Hamada and Wu, 1992) posits that only if the
main effects of variables exist will their corresponding interaction effect potentially exist. In
particular, with 0; and 0; denoting the continuous regression coefficients associated with two
heredity terms, Yuan et al. (2009) used a linear inequality 8; < 0; (continuous relazation of
the hard constraints on the binary indicators of variable inclusions) to cleverly enforce the
heredity constraint and facilitate computation. In causal inference, the monotonicity con-
straint in instrumental variable analyses (Herndn and Robins, 2006; Swanson et al., 2015)
posits that if the instrumental variable satisfies zy < zo then the counterfactual treatment is a
non-decreasing function of the instrument, i.e., X' < X7 for all subjectsi. A key difference
of the attribute hierarchy constraints from the aforementioned constraints is the involvement
of many latent variables in HLAMs; indeed, all the ay, ..., ax among which the hierarchical
constraints exist are latent. The binary patterns o that respect the attribute hierarchy £
follow an unknown categorical distribution with parameters p = (pa) with Y, pa = 1, and
the observed data distribution is obtained upon marginalizing out the latent structure and s

quite complicated as a result.

Example 1. Fig 1 presents several hierarchies with the size of the associated A, where a
dotted arrow from o« to o, indicates £ — ¢ and k is a direct prerequisite for /. Note that
under the hierarchy in Fig 1(a), the prerequisite 1 — 3 is an indirect prerequisite implied by

1—2(or4)and 2 (or 4) — 3.

On top of the model of the latent attributes, an HLAM uses a J x K binary matrix

Q = (g ) to encode the structural relationship between the J observed response variables



Figure 1: Different attribute hierarchies among binary attributes for K = 4 where
[{0,1}*| = 16. For example, the set of allowed attribute patterns under hierarchy (a) is
Ay = {04, (1000), (1100), (1001), (1101), 14}.
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Figure 2: A binary structural matrix and the corresponding graphical model with (solid)
directed edges from the latent to the observed variables representing dependencies. Below
the observed variables in (b) are the row vectors of Qgys, i.e., the item loading vectors.
The dotted arrows indicate the attribute hierarchy with &€ = {1 — 2,1 — 3} and A =
{03, (100), (110), (101), 13}.

and the K latent attributes. In cognitive diagnostic assessments, the matrix Q is often
specified by domain experts to summarize which abilities each test item targets on (Tatsuoka,
1990; von Davier, 2008; Rupp et al., 2010; de la Torre, 2011). Specifically, ¢;r = 1 if and
only if the response r; to the jth item has statistical dependence on latent variable c. The
distribution of r;, i.e., 04 := P(r; = 1 | ), only depends on its “parent” latent attributes
ay’s that are connected to 7, i.e., {ay : ¢, = 1}. The structural matrix Q naturally induces
a bipartite graph connecting the latent and the observed variables, with edges corresponding
to entries of “1” in Q = (g;x). Fig 2 presents an example of a structural matrix Q and
its corresponding directed graphical model between the K = 3 latent attributes and J = 6
observed variables. The solid edges from the latent attributes to the observed variables are

specified by Qgx3. As also can be seen from the graphical model, the observed responses to



the J items are conditionally independent given the latent attribute pattern o.

In the psychometrics literature, various HLAMs adopting the Q-matrix concept have
been proposed with the goal of diagnosing targeted attributes (Junker and Sijtsma, 2001;
Templin and Henson, 2006; von Davier, 2008; Henson et al., 2009; de la Torre, 2011). They
are often called the cognitive diagnostic models. The general family of latent attribute models
are also widely used in other scientific areas including psychiatric evaluation (Templin and
Henson, 2006; de la Torre et al., 2018) with the goal of diagnosing patients’ various mental
disorders, and epidemiological diagnosis of disease etiology (Wu et al., 2016, 2017; O’Brien
et al., 2019). These applications share the common key interest in identifying the multivariate
discrete latent attributes.

In this work, we mainly focus on a popular and fundamental type of modeling assump-
tions under such a framework; as to be revealed soon, this modeling assumption also has
close connections to Boolean matrix factorization (Ravanbakhsh et al., 2016; Rukat et al.,
2017). Specifically, we mainly consider the HLAMs that assume a logical ideal response
Iy, o given an attribute pattern o and an item loading vector g; in the noiseless case. Then
item-level noise parameters are further introduced to account for uncertainty of observations.
The following are two popular ways to define the ideal response.

The first is the Deterministic Input Noisy output “And” gate (DINA) model (Junker and
Sijtsma, 2001; de la Torre and Douglas, 2004; von Davier, 2014). The DINA model assumes
a conjunctive relationship among the attributes. The ideal response of attribute pattern
to item j is

(DINA ideal response) ravb — 1 apn (2.1)

qj7a
k=1

10



where the convention 0° = 1 is adopted. It is not hard to check that the above definition is
equivalent to

2D — 1(ay, > g5 for all the k € [K]). (2.2)

qj7a

The above equivalent definition intuitively and explicitly explains that the DINA adopts
the conjunctive modeling assumption, because only if a subject with attribute pattern «
possesses all of the attributes required by the loading vector g; would he/she be considered
as capable of this item j and have Iga = 1. Such a conjunctive relationship is often
assumed for diagnosis of students’ mastery or deficiency of skill attributes in educational
assessments, and I'q o naturally indicates whether a student with o has mastered all the
attributes required by the test item j. With I'q o in (2.1), the uncertainty of the responses
is further modeled by the item-specific Bernoulli parameters

0F =P(r;=1|Tqa=1), 0 =P(r;=1|T o=0), (2.3)

where 9; > 0 is assumed for identifiability. For each item j, the ideal response I'q .,
if viewed as a function of attribute patterns, divides the patterns into two latent classes
{a: Ty, o =1} and {a: 'y, o = 0}; and for these two latent classes, respectively, the item
parameters quantify the noise levels of the response to item j that deviates from the ideal
response. Note that the 0;, equals either 9; or ¢, depending on the ideal response I'; 4.
Denote the item parameter vectors by 87 = (6f,...,07)" and 0~ = (6, ,...,0;)".

The second model is the Deterministic Input Noisy output “Or” gate (DINO) model

11



(Templin and Henson, 2006). The DINO model assumes the following ideal response
DINO ideal response IR — I(¢;x = a; = 1 for at least one k). 2.4
q;,c s

Such a disjunctive relationship is often assumed in psychiatric measurement of mental dis-
orders (Templin and Henson, 2006; de la Torre et al., 2018). With ['g . in (2.4), the uncer-
tainty of the responses is modeled by the item-specific parameters as defined in (2.3). In the
Boolean matrix factorization literature, a similar model was proposed (Ravanbakhsh et al.,
2016). Adapted to the terminology here, Rukat et al. (2017) assumes the ideal response

takes the form

K

(equivalent to (2.4)) IR, =1 ] — awgin). (2.5)

qjya
k=1

which is equivalent to the definition in (2.4), while the model in Rukat et al. (2017) constrains
all the item-level noise parameters to be the same.

We next first focus on the asymmetric DINA-based HLAMs, as they are very popular
and fundamental models widely used in the motivating applications of educational cognitive
diagnosis. We also study the identifiability of DINO-based HLAMs and another type of

HLAMs in Section 5. For notational simplicity, we next write F{:jl\fg

simply as I'q, o. Denote
by I'(Q, €) the J x [A(£)] ideal response matrix with the (j, ar)th entry being I'q o for av €
A(E). Under the introduced setup of DINA-based HLAMs, the probability mass function of
the J-dimensional random response vector R takes the form of

J
PR=7[Q.,6%0 . p)= Y pa [[[Tgabf +(1-Tqa)0;]"
acA(€) Jj=1

12



x [1— qu,aej —(1— rqj,a)ejf]l%‘

Y

where € {0,1}7 is an arbitrary response pattern.

3. Identifiability of Q, Attribute Hierarchy, and Model Parameters: Establish-

ing Sufficiency

This section presents one main result on the sufficient conditions for identifiability of Q,
£, and model parameters 87, 8, and p. Following the definition of identifiability in the

statistics literature, we say that (Q,&,0%,07,p) of an HLAM are identifiable if for any

(Q, €, o, 0™, p) in the parameter space constrained by Q and &, there exist no (Q, g, éJr, 0 ,p) #
(Q,&,0",07,p) such that
PR=r|Q,E067,6 ,p)=PR=r|Q,E0",6,p), vre{0,1}. (3.6)

We point out that in the above definition of identifiability, the alternative vector of proportion
parameters p is not constrained to have support on A(E). Instead, the vector p should be
allowed to have an arbitrary support A potentially resulting from an arbitrary &£; the goal
of establishing identifiability is indeed to develop conditions to ensure that as long as (3.6)
holds, one must have p = p and € = £ from the equations in (3.6).

We further introduce some notation and important concepts. Since an attribute hi-
erarchy is a directed acyclic graph, the K attributes {1,2,..., K} can be arranged in a
topological order such that the prerequisite relation “—” only happens in one direction; in
other words, we can assume without loss of generality that & — ¢ only if £ < ¢. Define the

following reachability matriz E among the K attributes under the attribute hierarchy. The

13



E = (eyy) is a K x K binary matrix, where e, = 1 for all £ € [K] and ey, = 1 if attribute &
is a direct or indirect prerequisite for attribute ¢. In cognitive diagnosis, the concept of the
reachability matrix was first considered in Tatsuoka (1986) to represent the direct and indi-
rect relationships between attributes. It is not hard to see that if the attributes 1,2,..., K
are in a topological order described earlier, the reachability matrix E is a lower-triangular
matrix with all the diagonal entries being one.

Under DINA-based HLAMs, any non-empty attribute hierarchy £ defines an equivalence
relation on the set of all the Q-matrices. To see this, recall T'(Q, £) denotes the J x |A(E)|
ideal response matrix. If I'(Q1,&) = I'(Qa, &), then Q; and Qy are said to be in the
same £-induced equivalence class and we denote this by Q; £ Q.. To interpret, if under
a certain hierarchy &, two different Q-matrices lead to identical ideal responses for all the
permissible latent patterns in A(E), then these two Q-matrices are indistinguishable based
on the response data; therefore they should be treated as equivalent. The following example

illustrates how an attribute hierarchy determines a set of equivalent Q-matrices.

Example 2. Consider the attribute hierarchy € = {1 — 2, 1 — 3} in Fig 2, which results in
A(€) = {03, (100), (110), (101), 13}. The identity matrix I3 is equivalent to the reachability

matrix E under £ and

1 00 1 00 1 00
L=|010|%E=(110|% [+« 1 0], (3.7)

0 01 1 01 x* 0 1
where the “x”’s in the third matrix above indicate unspecified values, any of which can

be either 0 or 1. This equivalence is due to that attribute a; serves as the prerequisite
for both ay and a3, and any item loading vector g; measuring oy or a3 is equivalent to
a modified one that also measures «q, in terms of classifying the patterns in A into two

categories {a : I'g o = 1} and {a : T'y, o = 0}. Note that any Q-matrix equivalent to

14



Ik under the & = {1 — 2, 1 — 3} must take the form of the third Q-matrix in (3.7).
Under a DINA-based HLAM, if the true Q-matrix Q™"® is not known, then any other Q
with Q S Q' can not be distinguished from Q®"® based on the observations, even if the
continuous parameters (0,07, p) are all known. This is because the ideal response matrix
['(Q, E) is the key latent structure underlying a DINA-based HLAM, and that if Q L Qe

(equivalently, I'(Q, &) = T'(Q™°, £)), then Q and Q" are inherently not distinguishable.

Given any hierarchy &£, the equivalence Iy L Eis always true, for which Eq. (3.7)
in Example 2 is an example. Before presenting the theorem on sufficient conditions for
identifiability, we introduce two useful operations on a Q-matrix given an attribute hierarchy

E: the “densifying” operation D(-) and the “sparsifying” operation S¢(-), as follows.

Definition 1. Given an attribute hierarchy £ and a matrix Q, do the following: for any
gjn =1 and k — h, set ¢;x to “1” and obtain a modified matriz DF(Q). This D*(Q) is said

to be the “densified” version of Q.

Definition 2. Given an attribute hierarchy £ and a matrix Q, do the following: for any
qjn =1 and k — h, set q;1, to “0” and obtain a modified matriz S¢(Q). This S°(Q) is said

to be the “sparsified” version of Q.

Under the above two definitions, given any attribute hierarchy &, the two statements
D¢(Igx) = E and S(E) = I always hold. Specifically, D*(Ix) = E means that in the
special case where J = K and Q takes the form of an identity matrix I, densifying such a
Q always gives a K x K reachability matrix E under the hierarchy £. Similarly, S¢(E) = I
means that in another special case where J = K and Q takes the form of the reachability
matrix E, sparsifying such a Q always gives the identity matrix [x. These two special

examples illustrate the definitions of the sparsifying/densifying operations on Q-matrices
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and the relationship between E and [Ix. In cognitive diagnosis, the densified Q-matrix
with all the row vectors respecting the attribute hierarchy £ is also said to satisfy the
“restricted Q-matrix design” (e.g., Cai et al., 2018; Tu et al., 2019); for such Q, it holds that
Q = D°(Q). It is worth pointing out that either the sparsifying or the densifying operation
modifies Q only within a same equivalence class. Indeed, Df(Q) denotes the densest Q with
the largest number of “1”s in the equivalence class, while S¢(Q) denotes the sparsest Q
with the largest number of “0”s in the equivalence class. In the special case with an empty
attribute hierarchy, each equivalence class of Q contains only one element which is Q itself,
so Q = DF(Q) = S4(Q) for £ = @. As will be revealed in the following theorem, our
identifiability conditions are essentially requirements on the equivalence class of Q described

using the densifying and sparsifying operations.

Theorem 1. Consider an HLAM under the DINA model an attribute hierarchy €. Then

(T(Q, &), 6%, 60—, p) are jointly identifiable if the true Q satisfies the following conditions.
A. The Q contains K x K submatriz Q° that is equivalent to the identity matriz Ix under
the hierarchy .

(Without loss of generality, assume the first K rows of Q form Q°, and denote the

remaining submatriz of Q by Q*.)
B. The S¢(Q), sparsified version of Q, has at least three entries of “1”s in each column.
C. The D*(Q*), densified version of the submatriz Q*, contains K distinct column vectors.

Furthermore, Conditions A, B and C are necessary and sufficient when there exists no hier-

archy with pe, > 0 for all a € {0, 1},

We make several remarks on the relationship between the new theory and existing works.
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Remark 2. In the cognitive diagnostic modeling literature, a Q-matrix is said to be “com-
plete” if it can distinguish all the 2% latent attribute profiles (Chiu et al., 2009). When the
latent pattern space A is saturated with A = {0,1}¥, the completeness of Q is a natural
necessary requirement for identifiability. When A = {0,1}¥, the Q-matrix is complete if
it contains all the K distinct standard basis vectors as row vectors, that is, QQ contains an
Ix. When there exists a certain attribute hierarchy £ leading to some A C {0,1}¥, the
requirement for the “completeness” of Q will change. Recently, Kéhn and Chiu (2019) and
Cai et al. (2018) studied conditions for the completeness of Q under the attribute hierarchy.
But these conditions can not ensure the entire probabilistic model structure involving Q,
£, and parameters p, 87 and @~ are identifiable and estimable from data. To our knowl-
edge, Theorem 1 establishes the first identifiability result under the attribute hierarchy in
the literature. Condition A in Theorem 1 is equivalent to requiring S¢(Q) contains an If.
Therefore, Conditions A and B combined are equivalent to the following statement about

S¢(Q): the S%(Q) contains an I and each column of it has at least three entries of “17s.

Remark 3. As stated in the last part of Theorem 1, when there is no attribute hierarchy
with £ = @, Conditions A, B, and C become necessary and sufficient for the identifiability
of both Q and (£, 0", 0, p). In such a special case with £ = @, Gu and Xu (2021)
established the necessary and sufficient identifiability conditions termed as “completeness”
that requires the true Q to contain an identity submatrix Ix, “repeated-measurement” that
requires Q to have at least three entries of “1” in each column, and “distinctiveness” requiring
that in addition to containing an I, the Q should contain distinct column vectors in the
remaining submatrix; we denote these three requirements by Conditions A°, BY, and C°,

respectively. Our current conditions A, B, and C in Theorem 1 can be thought of as “£-
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completeness”, “E-repeated-measurement”, “E-distinctiveness” given an attribute hierarchy
E. When £ = @, the S°(Q) = D*(Q) = Q holds; as a result, Condition A exactly becomes
requiring @Q itself to contain a submatrix [x; similarly, Conditions B and C exactly reduce
to the conditions B? and C° on Q itself. Indeed, in such cases with £ = @, the current
conditions of “E-completeness”, “E-repeated-measurement”, “E-distinctiveness” just reduce
to the “completeness”, “repeated-measurement”, “distinctiveness” conditions proposed in
Gu and Xu (2021). Establishing identifiability under an arbitrary attribute hierarchy £ as
done in Theorem 1 is technically much more challenging than the existing result for £ = @.
Moreover, in the later Section 4, we will thoroughly study that under a fixed Q-matrix, how

the necessity of the identifiability conditions changes when there is a nonempty hierarchy.

Theorem 1 ensures the discrete ideal response structure I'(Q, £) and all the associated
model parameters (8", 8, p) are identifiable. The following proposition complements this

conclusion and further establishes identifiability of £ and Q based on Theorem 1.

Proposition 1. Consider a DINA-based HLAM. In addition to Conditions A—C'in Theorem
1, if the true Q is known to contain an I, then (£,07, 0~ p) are identifiable. On the other

hand, it is indeed necessary for Q to contain an Ik to ensure an arbitrary £ s identifiable.

Proposition 2. Consider a DINA-based HLAM. If Conditions A—C in Theorem 1 are sat-
isfied and the true Q is known in part to contain a submatriz I for certain K items, then
the equivalence class of Q defined by the attribute hierarchy & is identifiable. That is, the

specific Q is not strictly identifiable within its equivalence class under any € # &, but the

densified D*(Q) and the sparsified S€(Q) are identifiable.

The statement in Proposition 2 that Q is identifiable only up to its equivalence class is

inherent to all the DINA- or DINO-type HLAMs and it is an inevitable consequence of any
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nonempty attribute hierarchy £ # @; see Example 2. But this statement will not undermine
the efficacy of the identifiability conclusion, because D¢(Q) and S¢(Q) themselves are still
identifiable and provide practical interpretability of the structural matrix. We next present

a toy example illustrating how to apply Theorem 1 to check identifiability.

Example 3. Consider the attribute hierarchy {ay — ag, @y — a3} among K = 3 attributes
as in Fig 2. The following 8 x 3 structural matrix Q satisfies Conditions A, B and C in
Theorem 1. In particular, the first 3 rows of Q serve as Q° in Condition A, and the last 5
rows serve as Q*. In the following display, the matrix entries modified by the sparsifying
operation in Condition B and the densifying operation in Condition C are highlighted. The
resulting S¢(Q) and D (Q) satisfy the requirements in Conditions B and C. So the HLAM

associated with Q is identifiable.

13 ]3
1 0 0 1 0 0
. QO . 1 0 0 Sparsify < o 1 0 O
o= (311 1 0] = s@-|; | | (3.9
0 0 1 0 0 1
1 1 1 0O 1 1
E
0
Densif; 0
s 'Dg(Q): ) (3.9)
0
1

When estimating an HLAM with the goal of recovering the ideal response structure
['(Q, &) and continuous parameters, Theorem 1 guarantees Conditions A, B and C suffice and
are close to being necessary. If the goal is to uniquely determine the attribute hierarchy from
the identified I'(Q, &), the additional condition that Q contains an [ becomes necessary.

This phenomenon can be better understood if related to the identification of the factor
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loading matrix in factor analysis (Anderson, 2009; Bai and Li, 2012); the loading matrix
there is often required to include an identity submatrix or satisfy certain rank constraints,
since otherwise the loading matrix can not be identifiable due to rotational indeterminacy.

The existing results of identifiability for non-hierarchical latent attribute models (i.e.,
with an empty graph £ = @ in Gu and Xu, 2021) adopt a key assumption that p, > 0 for any
possible binary pattern ae € {0, 1}, and the proofs in Gu and Xu (2021) heavily relied on this
assumption on p to derive the identifiability conditions. Importantly, when the assumption
that “ps > 0 for any a € {0,1}%” fails to hold, the proof arguments in Gu and Xu (2021)
also do not hold and hence the conclusions there cannot be simply modified. Rather, a
careful analysis of the polynomial systems arising from the probability mass function (PMF)
of the observed R is required to derive suitable identifiability conditions.

We would like to point out that dealing with such a degenerate parameter space of p
under an attribute hierarchy £ requires quite delicate algebraic work. Specifically, our proof
technique of identifiability is based on investigating under what conditions, the highly com-
plex and Q-matrix-constrained polynomial equations given by the PMF of the vector R has
unique roots; uniqueness of roots indicates identifiability of parameters. When using this
proof technique, we start by inspecting polynomial equations P(R = r | Q, &, 0%.6, D) =
PR=r|Q,&60",0,p), Vr € {0,1} for unknown true parameters (Q,&,0%,0,p) and
arbitrary alternative parameters (Q, &, 9+, 0 ,p), and investigate what conditions guaran-
tee the alternative parameters are identical to the true ones. Under an unknown attribute
hierarchy &, certain true proportions p, equal zero but we do not know which ones equal
zero. Therefore complex constraints on polynomial equations will occur because certain

terms vanish from the one hand side of the equation (corresponding to the true parameters
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Po’s) but do not vanish from the other hand side of the equation (corresponding to the
unknown alternative parameters p,,’s; we do not know which p,, = 0 out of all the possible
a € {0, 1}). This fact makes the study of the identifiability issues in the current work con-
siderably harder and quite different from existing results for non-hierarchical latent attribute
models (e.g., Gu and Xu, 2021).

As stated in the end of Theorem 1, Conditions A, B, and C become not only sufficient but
also necessary for identifiability when there is no hierarchy among attributes. Interestingly,
the necessity of these conditions will subtly change when a nonempty attribute hierarchy

comes into play. Our next section thoroughly investigates these aspects.

4. Identifiability of Attribute Hierarchy and Model Parameters: Pushing To-

wards Necessity

In order to close the gap between necessity and sufficiency, in this section we thoroughly
investigate the necessity of the identifiability conditions for (£,0%,0, p) under the assump-
tion that Q is known and fixed. In the following Subsection 4.1, we first investigate the
necessity of the conditions proposed in Section 3 individually, to gain insight into how the
necessity changes as the attribute hierarchy changes. Then in Subsection 4.2, we further es-
tablish the general necessary and sufficient conditions for identifying the attribute hierarchy

and other parameters under an arbitrary hierarchy graph £.

4.1 Investigating the Necessity of Conditions A, B, C Individually

Our first result establishes the necessity of Condition A in Theorem 1.

Proposition 3. Consider a DINA-based HLAM. Condition A that the sparsified S¢(Q)
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4.1  Investigating the Necessity of Conditions A, B, C Individually

contains an I is necessary for identifiability of (1'(Q, &), 67,07, p).

Proposition 3 shows that Condition A can not be relaxed under any attribute hierarchy.
On the other hand, Condition B and Condition C are more “local” in the sense that they re-
gard individual attributes (equivalently, individual columns of the Q-matrix). Interestingly,
it turns out that the necessity of these two conditions highly depends on the role of each
attribute in the attribute hierarchy graph. We next characterize the fine boundary between
sufficiency and necessity of identifiability conditions for various types of attributes. Given

any attribute hierarchy graph &£, we define the following four types of attributes.

Definition 3 (Singleton Attribute). An attribute k is a “singleton attribute” if there neither

exists any attribute h such that k — h nor exists any attribute ¢ such that { — k.

Definition 4 (Root Attribute). An attribute k is an “root attribute” if there exists some

attribute h such that k — h but does not exist any attribute { such that { — k.

Definition 5 (Leaf Attribute). An attribute k is a “leaf attribute” if there exists some

attribute € such that { — k but does not exist any attribute h such that k — h.

Definition 6 (Intermediate Attribute). An attribute k is an “intermediate attribute” if there

exists some attribute ¢ with ¢ — k and also exists some attribute h with k — h.

The above four definitions together describe a full categorization of attributes given any
attribute hierarchy. In other words, given any &£, an attribute is either a singleton, or a root,
or a leaf, or an intermediate attribute. As a special case, when the attribute pattern space

A ={0,1}¥ is saturated, all the K attributes are singleton attributes.

Example 4. Leighton et al. (Leighton et al., 2004) is among the first works that considered
the attribute hierarchy method for the purpose of cognitive diagnosis. In particular, they

22



4.1  Investigating the Necessity of Conditions A, B, C Individually

presented and named the four different types of hierarchies among K = 6 attributes, as
shown in our Fig 3. In our terminology, in plot (a), attribute 1 is a root attribute, attribute
6 is a leaf attribute, and the remaining attributes 2, 3, 4, 5 are intermediate attributes; in
plot (b), the roles of the six attributes are the same as those in plot (a); in plot (c), attribute
1 is a root attribute, attribute 2 and 3 are intermediate attributes, attributes 4, 5, 6 are leaf

attributes; in plot (d), attribute 1 is a root, and the remaining 2, 3, 4, 5, 6 are leaves.

»

@ W@ @ W

(b) () (d)

Figure 3: Four attribute hierarchies presented in Leighton et al. (2004), named as: (a)
linear, (b) convergent, (c) divergent, and (d) unstructured. For example, in (b), o is a root
attribute, ao,...,ag are intermediate attributes, «r is a leaf attribute, and there are no
singleton attributes.

@@+ @@
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For ease of discussion, in the following conclusions regarding necessity of the identifiabil-
ity conditions, we shall focus on the Q-matrices that satisfy the restricted Q-matrix design.
Recall that a Q-matrix is said to satisfy the restricted Q-matrix design if each of its row
vectors is a permissible attribute pattern under the hierarchy £. In the literature of cogni-
tive diagnostic modeling, the restricted Q-matrix design is shown empirically to be useful
in improving clustering accuracy of diagnostic test takers (Tu et al., 2019). Our theoreti-

cal findings in the rest of this subsection reveal that in addition to the restricted Q-matrix

23



4.1  Investigating the Necessity of Conditions A, B, C Individually

design, what other requirements are necessary to ensure identifiability.

Before presenting the next identifiability result, we first introduce a new notion of iden-
tifiability of the attribute hierarchy £ and proportion parameters p; that is, identifiability
up to equivalence classes [€] and [p]. Under an unknown nonempty hierarchy £ # @, if all
row vectors of Q respect the attribute hierarchy, then there exists a trivial nonidentifiability
issue that can be resolved by introducing an equivalence relation, similar in spirit to that
in Gu and Xu (2020). To see this, consider K = 2 and £ = {1 — 2}, then a Q-matrix
Q =E = (1,0; 1,1) has both rows respecting the attribute hierarchy. Further, consider the
simplest special case without any item-level noise, 1 — 7 =1 — 05 = 0; = 6, = 0. Now
if £ is unknown, then it is not hard to see that any alternative proportion parameters p

satisfying the following equations will be nondistinguishable from the true parameters p:

Poo) = Doy + Po1);  P(ioy = P(io);  P(11) = P(11)- (4.10)

The above phenomenon is closely related to the p-partial identifiability defined in Gu
and Xu (2020), which means when Q does not contain an identity submatrix Ix (often
called “incomplete” in cognitive diagnosis models), the proportion parameters can at best
be identified up to the equivalence classes induced by Q. In the toy example in the last
paragraph, the attribute patterns (00) and (01) are equivalent under the incomplete Q =
(1,0; 1, 1) because I'q (00) = I'q,(01); S0 Poo) and p(o1) can be identified up to their sum at best,
as illustrated in (4.10). Therefore, we will say (07,07, [£],[p]) are identifiable, if continuous
parameters (07, 07) are identifiable in the usual sense, and the £ and p are identifiable up
to the equivalence classes each of them belongs to; namely, the only nonidentifiability issue
regarding £ (and hence p) is due to the equivalence relation induced by Q like the example
in (4.10). We give more formal definitions of [£] and [p] as follows: given an attribute

hierarchy £ and a Q-matrix with all row vectors respecting the hierarchy £ (i.e., satisfying
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4.1  Investigating the Necessity of Conditions A, B, C Individually

the restricted Q-matrix design), define the equivalence class of attribute hierarchies [£] and

that of proportion parameters [p] as

€] ={£:T(Q,&) =T(Q,&)};
[p] = {p : p is associated with some £ € [£], with (07 = 1,,,,0" = 0,,1,&,p) and
(07 =1;,1,0" =0,,1,&,p) giving rise to the same distribution of R}

= {P = (P, @ € {0,1}) : Vax that respects the hierarchy &, Z Por = Do }-
al: I'qo=Tq,a

We point out that the above nonidentifiability of a specific £ within its equivalence class
[£] is somewhat trivial and can be easily resolved, by simply defining the final £* to be the
hierarchy with the most directed edges among all the possible hierarchies in the equivalence
class [€]. Tt is easy to see that such £* equals the true &£ in the toy example, because in order
for € to have the most directed edges, one needs to set P(o1) = 0 under (4.10) and that exactly
makes the resulting p = p and £* = £ = {1 — 2}. By a similar reasoning, this procedure
also works more generally for any hierarchy £. Therefore, when a fixed Q-matrix has all rows
respecting the hierarchy, it is still very meaningful and useful to study the identifiability of
(07,07, (€], [p]) and to investigate the minimal identifiability conditions. Our results in this
section will establish the necessary and sufficient identifiability conditions in this regard.

In the following Propositions 4-6, we show how Condition B can be generally relaxed,

depending on whether the attribute is root, leaf, or intermediate.

Proposition 4 (Necessary Condition for Singleton Attribute). Consider a DINA-based
HLAM with a fired Q-matriz whose row wvectors respect the hierarchy £. The following

hold for a singleton attribute k in any attribute hierarchy.

(a) Z;le qjx > 3 is necessary for the identifiability of (€£,0",07,p).
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4.1  Investigating the Necessity of Conditions A, B, C Individually

(b) There exists scenarios where the equality in part (a) is achieved with Z;.Izl gk =3 and

the identifiability of (07,07, (€], [p]) is guaranteed.

Proposition 5 (Necessary Condition for Root or Leaf Attribute). Consider a DINA-based
HLAM with a fized Q-matriz whose row vectors respect the hierarchy £. Denote the (j, k)th
entry of S¢(Q) by ¢ The following conclusions hold for k if attribute k is either a root

attribute or a leaf attribute.

(a) Z‘j]:l ¢ > 2 is necessary for the identifiability of (£, 07,07 ,p).

(b) There exist scenarios where the equality in part (a) is achieved with Z‘j]:l qjﬁj‘rse =92

and the identifiability of (01,07, (€], [p]) is guaranteed.

Proposition 6 (Necessary Condition for Intermediate Attribute). Consider a DINA-based
HLAM with a fived Q-matriz whose row vectors respect the hierarchy €. Denote the (j, k)th

entry of S¢(Q) by ¢ - The following statements hold for an intermediate attribute k.

(a) Z‘j]:l ¢ > 1 is necessary for the identifiability of (£, 07,07 ,p).

(b) There exist scenarios where the equality in part (a) is achieved with Z;.’zl qjﬁfrse =1

and the identifiability of (01,07, [€], [p]) is guaranteed.

Propositions 4-6 together characterize the different identifiability phenomena caused
by different types of attributes in the attribute hierarchy graph. An intuitive explanation
behind these conclusions is as follows. For a singleton attribute £ that is not connected to
any other attribute in the attribute hierarchy graph, no additional information is provided
by the other attributes. Therefore the requirement of k being measured by > 3 items in
the Q-matrix is necessary. This aligns well with the conclusion for a latent attribute model

without any hierarchy established in Xu and Zhang (2016) and Gu and Xu (2019b), where
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4.2 Bridging the Necessity and Sufficiency of the Identifiability Conditions

all the attributes are singletons and each needs to be measured by > 3 items. However, this
requirement can be relaxed for any other type of attribute which is somewhat connected in
the attribute hierarchy graph. In particular, fewer measurements are needed for k in the
Q-matrix as more information is available for this attribute in the attribute hierarchy graph.
For a root attribute k with some “child” or a leaf attribute with some “parent” as one-sided
information, the requirement is relaxed to k being measured by > 2 items in S¢(Q); while for
an intermediate attribute & with both some child and some parent as two-sided information,
the requirement is further relaxed to k being measured by > 1 items in S¢(Q).

We next discuss the necessity of Condition C. Given a Q, we denote by Qi.x. the
submatrix consisting of its first K rows and by Qx1).s: the submatrix consisting of its last
J — K rows. For a QQ with rows respecting the attribute hierarchy, Condition C requires

Qx+1):0,k 7 Qi+1):0,¢ for any k # £ when Qi.x. = E. We have the following result.

Proposition 7 (Discussing Necessity of Condition C). Consider a DINA-based HLAM with a
fized Q whose row vectors respect the hierarchy £. The condition that Qkx11y.5,k 7 Q(ik+1):7,¢

(when Qu.i. = E) is necessary for identifiability if both oy, and oy are singleton attributes.

4.2 Bridging the Necessity and Sufficiency of the Identifiability Conditions

Still under a fixed and known Q-matrix as in Section 4.1, we next investigate how the
sufficient identifiability conditions for (8%,07, p) can meet the necessary identifiability con-
ditions proposed earlier in Propositions 5-7. In the next theorem, we establish that the
individual necessary conditions established in Section 4.1 combined are actually sufficient
to guarantee the identifiability in fully general scenarios. This result therefore establishes

the general necessary and sufficient condition on the Q-matrix for identifiability under an
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4.2 Bridging the Necessity and Sufficiency of the Identifiability Conditions

arbitrary attribute structure.

Theorem 2 (Necessary and Sufficient Conditions under a Fully General &). Consider a
DINA-based HLAM with a fized Q-matriz whose row vectors respect the hierarchy €. Then
Condition A and the following Condition B* and C* are mecessary and sufficient for the

identifiability of (67,07 ,[£], [p]).

B*. In 8¢(Q), any intermediate attribute is each measured by > 1 items, any root attribute
and any leaf attribute is each measured by > 2 items, and any singleton attribute is

each measured by > 3 items.

C*. For any two singleton attributes ay, and oy, there is Q1) k 7 Q(r+1):0,0- (Assume

Q1.x: = E under Condition A.)

Theorem 2 covers any type of attribute structure and allows for any type of attributes
in the attribute hierarchy graph. In the special case where there are no singleton attributes
in the attribute hierarchy graph, the necessary and sufficient identifiability conditions in
Theorem 2 can be simplified. We term such a family of hierarchies without any singleton

attributes the connected-graph hierarchy.

Corollary 1 (Necessary and Sufficient Condition under a Connected Graph Hierarchy).
Consider a DINA-based HLAM with fized Q-matriz whose row vectors respect the hierarchy
E. Suppose the K attributes form a connected graph. Then Condition A and the following

Condition D are necessary and sufficient for the identifiability of (£,0%,07,[p]).

D. In 8¢(Q), any root attribute and any leaf attribute is each measured by > 2 items, and

any ntermediate attribute is each measured by > 1 items.
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Remark 4. In the first extreme case, if £ = & without any true hierarchy among attributes,
then Conditions A, B*, and C* in Theorem 2 exactly become Conditions A, B, C in Theorem
1 in Section 3. In the second extreme case, if there does not exist any singleton attribute
in the attribute hierarchy graph, then Condition B* in Theorem 2 reduces to Condition D
in the above Corollary 1; and Condition C* in Theorem 2 should be understood as always
satisfied and hence can be omitted. Namely, under a connected-graph hierarchy without any
singleton attributes, the Conditions A, B*, and C* in Theorem 2 exactly reduce to Conditions
A and D in Corollary 1. Therefore, Theorem 2 covers Corollary 1 as a special case and is
indeed fully general. We state these two results separately to highlight both the most general
form of the result, and also how the necessary and sufficient conditions simplify under the

popular family of connected-graph hierarchy as depicted in Corollary 1.

The following example illustrates the minimal requirements on Q under those attribute

hierarchies considered in Leighton et al. (2004).

Example 5. Under the linear hierarchy & = £'"" in Fig 4(b), the 8 x 6 matrix Qi shown
in Fig 4(a) encodes the minimal requirement for identifiability. Fig 4(b) visualizes the spar-
sified version of Q%" as the directed solid edges from the latent attributes to the observed
item responses. Under the so-called convergent hierarchy and divergent hierarchy presented
earlier in Fig 3, the minimal requirement on Q for model identifiability are presented in
parts (c)-(d) and parts (e)-(f) of Figure 4, repectively. For the divergent hierarchy & = £4v

in Fig 4(f), the Q¥ ¢ in Fig 4(c) gives an identifiable model under minimal conditions.

5. Identifiability of other HLAMs different from the DINA-based HLAMs

We also study identifiability of some other HLAMSs in addition to the DINA-based HLAMs.
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5.1 DINO-based HLAMs
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Figure 4: Minimally sufficient requirements on Q for identifiability under the linear hierarchy,
convergent hierarchy, and divergent hierarchy proposed in Leighton et al. (2004), respectively.

5.1 DINO-based HLAMs

As introduced earlier in Section 2, the DINO model is also a popular type of latent attribute

model often used for psychiatric and clinical measurement of mental disorders (Templin
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5.1 DINO-based HLAMs

and Henson, 2006; de la Torre et al., 2018). A careful examination of the definitions of

ideal responses I'*NP and TOR in (2.1) and (2.5) reveals the following relationship T Sﬁa =

1 _TAND

g Lk —av where 1x—a = (1—ay, ..., 1—ag) " also denotes an attribute pattern. Building

upon such duality between DINA and DINO, the following proposition characterizes how
the identifiability results obtained under a DINA-based HLAM can be translated into those

under a DINO-based HLAM.

Proposition 8. Consider a DINO-based HLAM with a fixed Q-matriz and an unknown

greverse

attribute hierarchy €. Define the reversed attribute hierarchy as

greverse = {0 — k: if k — € under the original hierarchy E}. (5.11)

(a) For any a € {0,1}, a € A(E) if and only if 1x — o € A(E™™°). That is, any
attribute pattern o that is allowable under the original hierarchy & if and only if another

attribute pattern o’ = 1 — av is allowable under the reversed hierarchy E*¢Vese.

(b) The attribute hierarchy € and model parameters under the DINO-based HLAM are
wdentifiable if and only if the reversed attribute hierarchy E*V°™° and model parame-

ters are identifiable under a DINA-based HLAM with the same Q-matriz.

For any attribute hierarchy graph &, the reversed hierarchy £"V™¢ in (5.11) is another
directed graph among attributes, where the direction of each arrow in £ is reversed. There-
fore, for the same set of K attributes, any root attribute in £ becomes a leaf attribute in
greverse and any leaf in £ in turn becomes a root in £™V¢™°¢,  Any intermediate attribute

greverse - Proposition

or singleton attribute remain the same type when & is reversed to be
8 provides guidelines on how to check identifiability for a DINO-based HLAM using the

identifiability results established earlier for DINA-based HLAMs. In particular, we have
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5.2  Main-effect-based HLAMs

the following necessary and sufficient conditions for identifiability of (£,0%,07,p) under a

DINO-based HLAM with a fixed Q-matrix.

Corollary 2 (Necessary and Sufficient Conditions under a General £ for a DINO-based
HLAM). Consider a DINO-based HLAM with an attribute hierarchy € and a fived Q-matriz

whose rows respect the reversed hierarchy E*V°™°. Consider the following condition.

A*. The E*v*_densified matriz D" (Q) contains a submatriz which is the reachability

matriz under the reversed hierarchy E™Vese.

Then this Condition A*, and the earlier Conditions B*—C* given in Theorem 2 are necessary

and sufficient for the identifiability of (£,07,07,p).

5.2 Main-effect-based HLAMs

Another family of HLAMs in the literature (e.g., DiBello et al., 1995; von Davier, 2008;
Henson et al., 2009) incorporate the main effects of latent attributes into the model. We
next review these main-effect-based HLAMs in the following Example 6 and then provide

the identifiability result for them.

Example 6 (HLAMs which Model the Main Effects of Attributes). The main-effect HLAMs
assume the main effects of the attributes measured by each item indicated by g, play a role
in distinguishing the item parameters. Under a main-effect HLAM the Bernoulli parameter

0.« can be written as

. K
prar-el — f(ﬁj,o + Zkzlﬁj,k%,kak>a (5.12)

where f(-) is a link function. Note not all the S-coefficients in the above display are needed in

the model specification; instead, only when ¢; ; = 1 will 3} be needed and truly incorporated
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5.2  Main-effect-based HLAMs

in the model. Different link functions f(-) in (5.12) lead to different models, including the
Linear Logistic Model (LLM; Maris, 1999) with f(-) being the sigmoid function, and the
Additive Cognitive Diagnosis Model (ACDM; de la Torre, 2011) with f(-) being the identity.
When f(+) is a monotonically increasing function, it is usually assumed in practice that each
Bjr > 0 wherever g;, = 1 for interpretability.

There are also all-effect HLAMs that model not only the main effects but also all the

interaction effects of attributes. The Bernoulli parameter 6, o of an all-effect model is

eiltl;eff (ﬁ] ot Z 5] k q] kak’ + Zl<k1<k2<Kﬁj’k1k2 (qj,’ﬁ akl)(qj7k2ak2)+ (513)

-+ B2 KH (g kou )

Similarly as in (5.12), not all the S-coefficients above are needed in the model specification.
When f() in (5.13) is the identity function, (5.13) gives the Generalized DINA (GDINA)
model in de la Torre (2011); and when f(-) is the sigmoid function, (5.13) gives the Log-
linear Cognitive Diagnosis Models (LCDMs) in Henson et al. (2009); see also the General
Diagnostic Models (GDMs) in von Davier (2008). We generally call the main-effect HLAMs
in (5.12) and the all-effect HLAMSs in (5.13) the main-effect-based HLAMs, because they

both incorporate the main effects of the latent attributes in to the model.

Under the main-effect-based HLAMs, the probability mass function of the J-dimensional

random response vector R can be generally written as

PR=7]QE07.6 .p)= > paHQ” X (1=8;a)7",

acA(€) Jj=1

where r € {0,1}7 is an arbitrary response pattern. Notably, these main-effect-based HLAMs
generally have quite different algebraic structures from the family of two-parameter HLAMs,

the DINA and the DINO models. The key structure of any two-parameter HLAM is captured
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5.2  Main-effect-based HLAMs

by the ideal response I'q o in (2.1) or (2.4), under the “AND” or “OR” operations, respec-
tively. Intuitively, the two-parameter HLAMs are characterized by a probabilistic version of
the Boolean product of two groups of binary vectors, the group of g;’s and the group of a’s;
however, this is not the case for any HLAM in Example 6 due to the incorporation of the
main effects of attributes. Indeed, incorporating main effects in the form of Zleﬁjykqjykak
in (5.12) or (5.13) is taking a inner product of vectors q;, a and an additional S-coefficient
vector, rather than the Boolean product. Because of such distinction, the necessary and suf-
ficient identifiability conditions derived carefully for the two-parameter HLAMs in Sections
3-4 are not applicable to main-effect-based HLAMs.

Next we give a set of sufficient conditions for the identifiability of main-effect-based
HLAMs. The technical concept of I'(Q, &) (specifically, with T' = T'ANP defined in (2.1))
introduced earlier in Section 3 is still useful here. Denote the collection of all the per-item

Bernoulli parameters by © = (6, ). We have the following theorem.

Theorem 3 (Identifiability of HLAMs which Model the Main Effects of Attributes). Con-
sider an HLAM that incorporates the main effects of the attributes with Q and £ both un-
known. Suppose © satisfies a natural inequality constraint 0;q # 0o if | PPN # Ly o If
['(Q, &) satisfies the following conditions with the number of columns known, then the (O, p)

and I'(Q, &) are identifiable.

E. There exist two disjoint sets of items Sy, Sy C [J], such thatT'(Qg, ., £€) andI'(Qs,.., &)
each has distinct column vectors.

F. For any o # o € A(E), there exists some j & S1 U Sy such that Uy o # Tq, o

G. Foranyo € A(E), o' € {0,1}\A(E), there exists some j € [J] such thatTg, o # T'q, o
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In addition to the above three conditions, if Q is known in part to contain an identity sub-

matriz I, then the attribute hierarchy £ is identifiable from T'(Q,E).

For the main-effect-based HLAMs, the ideal response matrix I'(Q, £) may not sharply
characterize the entire latent structure due to the incorporation of the main effects, which is
in contrary to the DINA-based HLAMs. To see this, considering two latent patterns a and
o/ with 'y o =I'q, o = 0, then the specification in (5.12) or (5.13) implies it is possible that
0« # 0. Therefore it is hard, if at all possible, to explicitly characterize the necessary
identifiability conditions in terms of I'(Q, £) for main-effect-based HLAMs. However, the
['(Q, &) is still useful to derive sufficient conditions for identifiability, as revealed in the
above Theorem 3. This is because if I'q, o = I'q, s = 1, the two attribute patterns o and
o' both satisfy a = g; and ' = q; by the definition in (2.1). This implies both patterns
a and o' possess all the attributes measured by the vector g;. As a result, the definition
of main-effect-based models in (5.12) or in (5.13) shows that there must be ;o = ;o for
these two patterns. This intuitively explains why I'(Q, ) can be used to describe a set of
sufficient identifiability conditions for the main-effect-based HLAMs.

We make a remark on the relationship between the main-effect-based HLAMs and the
DINA-based HLAMs studied in the previous Sections 3—4. On the one hand, the main-effect-
based HLAMs are more general than DINA-based HLAMs in the sense that the formulation
of graine in (5.12) or #2%°" in (5.13) can generally allow for more than two Bernoulli pa-
rameters for each j, while DINA-based HLAMs always have two parameters 0;7 and 0} for
each j. On the other hand, however, we would like to point out that in this work we still
put the main focus on the DINA-based two-parameter HLAMSs, which are widely used in the

motivating applications of cognitive diagnosis in educational settings. Indeed, these educa-

35



tional settings are where the attribute hierarchy receives the most attention in modeling the
sequential acquisition of skill attributes (e.g., Leighton et al., 2004; Gierl et al., 2007; Wang
and Lu, 2020). On the practical side, assuming the conjunctive relationship among the at-
tributes as in DINA is often believed to be suitable for modeling the response mechanism of
diagnostic test items in such settings (e.g., Junker and Sijtsma, 2001; de la Torre and Dou-
glas, 2004). On the theoretical side, the identifiability of two-parameter DINA-based HLAMs
is also more intriguing to study because of the Boolean product involved. The rich combi-
natorial nature of such models gives the opportunity to close the gap between the necessity
and sufficiency of identifiability requirements; interestingly, these minimal requirements are
explicit conditions on the discrete structure: the Q-matrix and attribute types, as depicted
in Section 4. Therefore, we believe that closely examining the DINA-based two-parameter
HLAMSs and establishing the minimal identifiability conditions for them (as done in Sections

3-4) are highly desirable, due to their theoretical interest and practical relevance.

6. Discussion

In this paper, we provide a first study on identifiability of the hierarchical latent attribute
model, a complex-structured latent variable model popular in modeling modern assessment
data. We propose sufficient identifiability conditions that explicitly depend on the attribute
hierarchy graph and the structural Q-matrix. We also discuss the necessity of the identi-
fiability conditions and sharply characterize the different impacts on identifiability cast by
different types of attributes in the attribute hierarchy graph. In this paper we mainly focus
on the basic and popular HLAMs, the DINA-based HLAMs, where each item is modeled

using two parameters. We also extend the theory to other types of HLAMs in Section 5.
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One nice implication of identifiability is the estimability of both the latent structure
and the parameters that define the probabilistic model. When the proposed conditions are
satisfied, all the components of the HLAM can be uniquely and consistently estimated from
data based on maximum likelihood. In practical data analysis under the HLAM framework,
if the Q and & are specified by domain experts or applied researchers, then before seeing
any data, one can check whether Q and & satisfy our proposed conditions to assess model
identifiability. On the other hand, if Q and £ are not known and one hopes to estimate them
exploratorily from data, our identifiability results can also be useful. In such scenarios, one
can check whether the estimated Q and & satisfy necessary identifiability conditions; if not,
then more careful investigation of the diagnostic test design may be needed. Therefore, this
study provides useful insights into designing valid diagnostic tests and drawing valid scientific
conclusions from assessment data under a potentially complicated attribute hierarchy.

Acknowledgements. This research was partially supported by NSF CAREER SES-1846747,
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