

status updates sent over the path to keep age at the receiver

close to the minimum. (§ III)

3) We show that ACP+ provides significant improvements

for an end-to-end path that includes a multiaccess hop

shared by many status updating applications using ns3

simulations. (§ IV)

Related Work: The past five years have seen work on various

aspects of the age of information; recent surveys can be found

in [10], [16]. That said, there is limited systems research [7],

[12], [14], [15] on ageing of information and its optimization

in real-world networks. In [15], authors discuss the age of

information (AoI) in real-networks where a source is sending

updates to a monitor over different access networks. The key

takeaway from that work is the need for an AoI optimizer

that can adapt to changing network topologies and delays.

The Age Control Protocol (ACP) was proposed in [12], [14].

ACP is a transport-layer solution that works in an application-

independent and network-transparent manner. ACP attempts

to minimize the age of information of a source update at a

monitor connected over an end-to-end path on the Internet.

Very recently, in [7] the authors proposed under the name

of WiFresh a MAC-layer and an application-layer solution to

ageing of updates over a wireless network. While both [14]

and [7] look at ageing of updates on the Internet, they differ

in their approach and scope. ACP is a transport layer solution

that works by adapting the source generation rate without

any specific knowledge of the access network or any network

hop to the monitor, whereas, WiFresh is a scheduling solution

designed for WiFi networks.

II. THE ACP+ CONTROL ALGORITHM

ACP+ is an improved version of ACP [14]. Just like ACP,

it is a transport layer protocol that operates on the end-hosts.

It uses UDP as a substrate and benefits from its unreliability

feature to send updates from a source to a monitor over the

Internet. Since ACP+ is quite similar to ACP, we provide a

succinct summary of the algorithm and highlight the salient

differences between ACP+ and ACP1.

The ACP+ source appends a header to the update containing

a timestamp field that stores the time it was generated. ACP+

suggests to the source the generation rate of updates. For this,

it must estimate network conditions over the end-to-end path

to the monitor. This estimation is enabled by having the ACP+

monitor send back an ACK to the ACP+ source for every

received update. The ACK contains the timestamp of the update

it is acknowledging.

Consistent with AoI freshness metrics, ACP+ discards an

out-of-sequence packet at the monitor and an out-of-sequence

ACK at the source. Algorithm 1 details the ACP+ control

algorithm that is used to set the source’s update rate λk at

time tk. The control algorithm executing at time tk, uses an

estimate of the time average update age (∆k) at the monitor

and the time average of backlog (Bk) calculated over the

interval (tk−1, tk), where k indexes the current control epoch.

1The design principles and details about ACP can be found in [13], [14].

Algorithm 1 ACP+ Control Algorithm

1: INPUT: bk, �k, T , Bk

2: INIT: flag ← 0, � ← 0
3: while true do

4: if bk > 0 && �k > 0 then

5: if flag == 1 then

6: � = � + 1
7: MDEC(�): b∗

k+1
= −(1− 2−γ)Bk

8: else

9: DEC: b∗
k+1

= −1

10: flag ← 1
11: else if bk > 0 && �k < 0 then

12: INC: b∗
k+1

= 1
13: flag ← 0, � ← 0
14: else if bk < 0 && �k > 0 then

15: INC: b∗
k+1

= 1
16: flag ← 0, � ← 0
17: else if bk < 0 && �k < 0 then

18: if flag == 1 && � > 0 then

19: MDEC(�): b∗
k+1

= −(1− 2−γ)Bk

20: else

21: DEC: b∗
k+1

= −1
22: flag ← 0, � ← 0

23: UPDATELAMBDA(b∗
k+1

)

24: wait T

25: function UPDATELAMBDA(b∗
k+1

)

26: �k = 1

Z
+

b
∗

k+1

RT T
27: if �k < 0.75 ∗ �k−1 then

28: �k = 0.75 ∗ �k−1 . Minimum � threshold
29: else if �k > 1.25 ∗ �k−1 then

30: �k = 1.25 ∗ �k−1 . Maximum � threshold

31: return �k

ACP+ uses RTT(s) of updates for age estimation and main-

tains an exponentially weighted moving average (EWMA)

RTT of measured RTT(s). RTT is calculated for every update

whose ACK is received. It is the time between the generation

of the update and reception of the corresponding ACK. The

ACP+ source also keeps an estimate Z of the EWMA of the

time elapsed at the monitor between reception of consecutive

updates. This time between reception of consecutive updates

is approximated by the source as the time elapsed between

its reception of the corresponding ACK(s). As seen in line 26

of Algorithm 1, and explained later, RTT and Z are used to

calculate the source update rate λk.

The length T of a control epoch is set as T = 10/λk. This

ensures at least 10 packets are sent by the source using the

updated λk. The source updates RTT, Z and T every time an

ACK is received. At every control epoch k > 1, at time tk, the

ACP+ source calculates the differences δk = ∆k −∆k−1 and

bk = Bk −Bk−1.

At the source, ACP+ chooses an action uk at the kth epoch

that targets a change b∗
k+1

in average backlog over an interval

of length T with respect to the kth interval. The actions,

may be broadly classified into (i) additive increase (INC),

(ii) additive decrease (DEC) and (iii) multiplicative decrease

(MDEC). MDEC corresponds to a set of actions MDEC(γ),
where γ = {1, 2, . . .}.

The ACP+ source targets a reduction in average backlog

over the next control interval in case either {bk > 0, δk > 0}

IEEE INFOCOM WKSHPS: AoI 2021: IEEE INFOCOM Age of Information Workshop

Authorized licensed use limited to: Rutgers University. Downloaded on February 24,2022 at 16:51:14 UTC from IEEE Xplore. Restrictions apply.

5 10 15 20 25 30 35 40

Segment Length (KB)

110

112

114

116

D
e
la

y
 (

m
s
)

BBR-d1m1

BBR-d1m3

BBR-d5m5

CUBIC

RENO

VEGAS

YEAH

Figure 5: TCP segment length vs. delay obtained for the runs of the
different algorithms.

110 111 112 113 114 115 116

Delay (ms)

120

140

160

180

A
g

e
 (

m
s
)

BBR-d1m1

BBR-d1m3

BBR-d5m5

CUBIC

RENO

VEGAS

YEAH

ACP+

Figure 6: Delay vs. age for the different runs of the chosen
algorithms.

slightly smaller age than ACP+.

In fact, the age and delay achieved by BBR-d1m1, averaged

over all runs, are 114.5 ms and 112.33 ms, respectively. The

corresponding values for ACP+ are 115.5 ms and 110.79 ms.

The next smallest age is achieved by CUBIC and is ≈ 121 ms.

Reno, Vegas and BBR-d1m3 achieve higher ages than CUBIC,

with YeAH achieving the highest age of about 125 ms among

them. BBR-d1m4, BBR-d1m5 and BBR-d5m5 achieve ages

larger than 140 ms. Only BBR-d5m5 is shown.

ACP+ vs. BBR-d1m1: Before we delve further into the

relative performances of ACP+ and BBR-d1m1, let’s consider

Figure 7 in which we show the (throughput, age) values

achieved by the different algorithms. We omit BBR-d5m5

from the figure as it resulted in high age values (average

larger than 140 ms) and also did not yield very good through-

put. BBR-d1m3 achieves the highest throughput. In fact, its

throughput of about 200 Mbps is twice the next highest value

of about 110 Mbps achieved by BBR-d1m1. The average age

when using BBR-d1m3 is 123.5 ms in contrast to the 114.5
ms obtained when using BBR-d1m1.

Interestingly, the throughput obtained by ACP+ is a low

of 0.77 Mbps in contrast to 110 Mbps obtained using BBR-

d1m1 (≈ 141× the ACP+ throughput). This stark difference is

partly explained by the segment2 sizes used by BBR-d1m1, on

an average about 14 KB, in comparison to the constant 1024
byte payload of an ACP+ packet. This difference still leaves

an unexplained factor of about 10. This is explained by an

average inter-ACK time of 10.4 ms for ACP+ in comparison

2Recall our assumption that every new segment contains a fresh update.

10
0

10
1

10
2

Throughput (Mbps)

115

120

125

130

135

A
g

e
 (

m
s
)

BBR-d1m1

BBR-d1m3

CUBIC

RENO

VEGAS

YEAH

ACP+

Figure 7: Throughput vs. age for the different runs of the chosen
algorithms.

to a much smaller 1.16 ms for BBR-d1m1 that results from

BBR-d1m1 attempting to achieve high throughputs.

To summarize, ACP+ results in an average age of 115.5 ms,

an average delay of 110.79 ms, an average throughput of 0.77
Mbps and an inter-ACK time of 10.4 ms. The corresponding

values for BBR-d1m1 are 114.5 ms, 112.33 ms, 110 Mbps and

1.16 ms. ACP+ achieves an almost similar age as BBR-d1m1,

however, at a significantly lower throughput. The similar age

at a much larger inter-ACK time is explained by the fact

(observed in our experiments) that while a very low or high

rate of updates results in high age, age stays relatively flat in

response to a large range of update rates in between. It turns

out that ACP+ tends to settle in the flat region closer to where

increasing the rate of updates stops reducing age. This much

reduced throughput of ACP+ is especially significant in the

context of shared access, allowing a larger number of end-

to-end ACP+ flows to share an access without it becoming a

bottleneck.

The BBR Puzzle: What could explain the low age achieved

by BBR-d1m1? We observe that the average delay of 112.33
ms when using BBR-d1m1 is the same as that obtained by

a Lazy (introduced in [14]) status updating protocol we ran

alongside the others, which sends an update once every round-

trip time. One would expect Lazy to achieve a round-trip

time of RTTbase (see Figure 2a). This tells us that BBR-

d1m1’s flow on an average saw an RTT of RTTbase. While it

obtained a low throughput of 100 Mbps, it seems to have kept

the pipe full enough. This low throughput was an accidental

consequence of the receiver buffer size settings of BBR-d1m1,

which disallowed the congestion control algorithm to push

bytes into the network at a larger rate. The higher throughput

achieved by BBR-d1m3, as observed earlier, came with a

higher age, however.

IV. SIMULATIONS SETUP AND RESULTS

We used the network simulator ns33 together with the

YansWiFiPhyHelper4. The base network topology used in our

simulations is shown in Figure 8. We show results for when

source nodes are spread uniformly and randomly over an area

of 20× 20 m2. We chose the number of sources from the set

3https://www.nsnam.org/
4https://www.nsnam.org/doxygen/classns3 1 1 yans wifi phy.html

IEEE INFOCOM WKSHPS: AoI 2021: IEEE INFOCOM Age of Information Workshop

Authorized licensed use limited to: Rutgers University. Downloaded on February 24,2022 at 16:51:14 UTC from IEEE Xplore. Restrictions apply.

