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Abstract

In this paper, we investigate the existence of Sierpiński numbers and Riesel numbers

as binomial coefficients. We show that for any odd positive integer r, there exist

infinitely many Sierpiński numbers and Riesel numbers of the form
(
k
r

)
. Let S(x) be

the number of positive integers r satisfying 1 ≤ r ≤ x for which
(
k
r

)
is a Sierpiński

number for infinitely many k. We further show that the value S(x)/x gets arbitrarily

close to 1 as x tends to infinity. Generalizations to base a-Sierpiński numbers and

base a-Riesel numbers are also considered. In particular, we prove that there exist

infinitely many positive integers r such that
(
k
r

)
is simultaneously a base a-Sierpiński

and base a-Riesel number for infinitely many k.
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1. Introduction

In 1956, Riesel [11] showed that if k ≡ 509203 (mod 1184810), then for any natural

number n, the value k ·2n−1 is composite. Today we say that k is a Riesel number

if k is an odd positive integer such that k ·2n−1 is composite for all natural numbers

n. Using methods similar to Riesel, Sierpiński [12] showed in 1960 that there are

infinitely many odd positive integers k such that k · 2n + 1 is composite for all

natural numbers n; values of k satisfying this property are now known as Sierpiński

numbers.

In 2003, Chen [5] showed that if r 6≡ 0, 4, 6, 8 (mod 12), then there exist infinitely

many odd positive integers k such that kr is a Sierpiński number. Chen’s result was

later extended by Filaseta, Finch, and Kozek [7] for all positive integers r. In their

article, Filaseta, Finch, and Kozek asked the following question.

Question 1. Let f ∈ Z[x]. Does there exist an integer k such that f(k) is a

Sierpiński number?

This question has been studied by various authors. For example, Finch, Har-

rington, and Jones [8] studied this question for f(x) ∈ {xr + x + c, axr + c, xr +

1, xr + x + 1} and Emadian, Finch-Smith, and Kallus [6] studied this question for

f(x) = 384x3 + 432x2 + 112x − 5. Other authors considered Question 1 for poly-

nomials f ∈ Q[x]. Of particular note is the existence of infinitely many Sierpiński

numbers in the sequence of triangular numbers and other polygonal numbers. Recall

that for s ≥ 3, the x-th s-gonal number is given by

Ps(x) =
s− 2

2
x2 − s− 4

2
x.

Question 1 with respect to Ps(x) has been studied by Baczkowski et al. [2] and

Baczkowski and Eitner [3].

In this article, we study Question 1 with respect to the polynomial(
x

r

)
=
x(x− 1)(x− 2) · · · (x− (r − 1))

r!

where r is a fixed positive integer. Notice that the case
(
x
2

)
has been previously

studied since
(
x
2

)
= P3(x − 1). Of course,

(
x
r

)
is more commonly referred to as

the binomial coefficient function. We begin our investigation on the existence of

Sierpiński binomial coefficients for general r in Section 3, and extend some of these

results to base a-Sierpiński and a-Riesel binomial coefficients in Section 4.

2. Preliminary Results, Definitions, and Notation

Throughout this article, we use [a, b] to denote the set of integers x such that

a ≤ x ≤ b.
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For our investigation, we will make use of the following concept, originally intro-

duced by Erdős.

Definition 1. A covering system of the integers is a finite collection of congruences

such that every integer satisfies at least one congruence from the set.

In this article, we will primarily use covering systems of the form:

0 (mod 2τ ) where τ is a positive integer

2`−1 (mod 2`) for each 1 ≤ ` ≤ τ.
(1)

Many of the proofs in this article rely heavily on the following two theorems,

originally due to Zsigmondy [13] and Lucas [10], respectively.

Theorem 2 (Zsigmondy’s Theorem). Let a and b be relatively prime positive in-

tegers with a > b. Then for any integer n ≥ 2, there exists a prime p such that p

divides an − bn and p does not divide añ − bñ for any ñ < n, with the exceptions

• (a, b) = (2, 1) and n = 6; and

• a+ b is a power of 2 and n = 2.

Theorem 3 (Lucas’ Theorem). Let p be a prime, and let m and n be nonnegative

integers. Let the base p representations of m and n be m =
∑j
i=0mip

i and n =∑j
i=0 nip

i, respectively, where mi, ni ∈ [0, p− 1] for all i ∈ [0, j]. Then(
m

n

)
≡

j∏
i=0

(
mi

ni

)
(mod p).

3. Sierpiński Binomial Coefficients

Lemma 1. Let p be a prime, and let r be a nonnegative integer. Let j be the

smallest nonnegative integer such that r < pj+1. Then for all positive integers k

such that k ≡ r (mod pj+1), we have(
k

r

)
≡ 1 (mod p).

Proof. Let the base p representations of r and k be r =
∑j′

i=0 rip
i and k =∑j′

i=0 kip
i, respectively, where j ≤ j′, ki = ri ∈ [0, p− 1] for all i ∈ [0, j], ri = 0 for

all i ∈ [j + 1, j′], and ki ∈ [0, p− 1] for all i ∈ [j + 1, j′]. By Theorem 3,(
k

r

)
≡

(
j∏
i=0

(
ki
ri

)) j′∏
i=j+1

(
ki
ri

) ≡ ( j∏
i=0

(
ri
ri

)) j′∏
i=j+1

(
ki
0

) ≡ 1 (mod p).
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The following three lemmas are verified computationally by Mathematica. The

code for these lemmas is included in Appendix A, Appendix B, and Appendix C,

respectively.

Lemma 2. Let p = 641, and let

G = {γ ∈ [1, p− 1] : γ is odd} ∪ {2, 6, 8, 10, 12, 22, 24, 30, 32, 34, 44, 46, 48, 52, 56, 66,

70, 74, 80, 84, 86, 94, 100, 102, 104, 110, 118, 120, 134, 136, 140, 144, 146, 160,

162, 174, 176, 182, 184, 190, 194, 198, 200, 202, 208, 222, 224, 236, 248, 250,

252, 260, 270, 292, 294, 304, 312, 318, 334, 336, 338, 348, 366, 368, 374, 402,

414, 424, 426, 454, 474, 530, 546, 552, 578}.

Then there exists a function κ : G → [0, p− 1] such that for every r ∈ G,(
κ(r)

r

)
≡ −1 (mod p).

Lemma 3. Let p = 641. Recall G defined in Lemma 2. Then there exist a function

κ̃ = (κ̃′, κ̃′′) : [1, 515]2 → [0, p − 1]2 such that for every ordered pair (r′, r′′) ∈
[1, 515]2, (

κ̃′(r′, r′′)

r′

)(
κ̃′′(r′, r′′)

r′′

)
≡ −1 (mod p).

Lemma 4. Let P be the following set of primes p that divides 22
τ−1

+ 1 for some

τ ∈ N such that
(

22
τ−1

+ 1
)
/p is divisible by another prime distinct from p:

{641, 114689, 274177, 319489, 974849, 2424833,

6700417, 13631489, 26017793, 45592577, 63766529}.

Then for every r ∈ [1, 640], there exists p ∈ P and k ∈ N such that(
k

r

)
≡ −1 (mod p).

Lemma 5. Let p = 641. Recall G and κ defined in Lemma 2, and recall κ̃ = (κ̃′, κ̃′′)

defined in Lemma 3. Let r be a nonnegative integer with base p representation

r =
∑j
i=0 rip

i, where ri ∈ [0, p− 1] for all i ∈ [0, j].

(a) If there exists i0 ∈ [0, j] such that ri0 ∈ G, then for all positive integers k

such that k ≡ r + (κ(ri0)− ri0)pi0 (mod pj+1), we have(
k

r

)
≡ −1 (mod p).
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(b) If there exist i1, i2 ∈ [0, j] such that ri1 , ri2 ∈ [1, 515], then for all pos-

itive integers k such that k ≡ r + (κ̃′(ri1 , ri2) − ri1)pi1 + (κ̃′′(ri1 , ri2) −
ri2)pi2 (mod pj+1), we have(

k

r

)
≡ −1 (mod p).

Proof. (a) Let the base p representation of k be k =
∑j′

i=0 kip
i, where j ≤ j′,

ki = ri for all i ∈ [0, j] \ {i0}, ki0 = κ(ri0), and ki ∈ [0, p − 1] for all i ∈ [j + 1, j′].

Furthermore, define ri = 0 for all i ∈ [j + 1, j′]. By Theorem 3,

(
k

r

)
≡

(
j∏
i=0

(
ki
ri

)) j′∏
i=j+1

(
ki
ri

) ≡
 j∏
i=0
i6=i0

(
ri
ri

)(κ(ri0)

ri0

) j′∏
i=j+1

(
ki
0

)
≡ −1 (mod p).

(b) Let the base p representation of k be k =
∑j′

i=0 kip
i, where j ≤ j′, ki = ri for

all i ∈ [0, j] \ {i1, i2}, ki1 = κ̃′(ri1 , ri2), ki2 = κ̃′′(ri1 , ri2), and ki ∈ [0, p − 1] for all

i ∈ [j + 1, j′]. Furthermore, define ri = 0 for all i ∈ [j + 1, j′]. By Theorem 3,

(
k

r

)
≡

 j∏
i=0

i/∈{i1,i2}

(
ri
ri

)(κ̃′(ri1 , ri2)

ri1

)(
κ̃′′(ri1 , ri2)

ri2

) j′∏
i=j+1

(
ki
0

) ≡ −1 (mod p).

Theorem 4. Let p = 641, and recall G defined in Lemma 2. Let r be a nonnegative

integer with base p representation r =
∑j
i=0 rip

i, where ri ∈ [0, p−1] for all i ∈ [0, j],

such that at least one of the following conditions is satisfied:

(i) there exists i0 ∈ [0, j] such that ri0 ∈ G; or

(ii) there exists i1, i2 ∈ [0, j] such that ri1 , ri2 ∈ [1, 515].

Then there exist infinitely many positive integers k such that
(
k
r

)
is a Sierpiński

number.

Proof. Let p0 = 641, p1 = 3, p2 = 5, p3 = 17, p4 = 257, p5 = 65537, and

p6 = 6700417. Note that for each ` ∈ [1, 6],

p` | 22
` − 1 and p` - 22

˜̀
− 1 for any ˜̀< `,
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so we also have 22
`−1 ≡ −1 (mod p`).

Consider the covering system in Equation (1) with τ = 6. Suppose that n ≡
2`−1 (mod 2`) for some ` ∈ [1, 6]. Then

2n =
(

22
`
)t
· 22

`−1

≡ 1t · (−1) ≡ −1 (mod p`)

for some nonnegative integer t. Hence,(
k

r

)
· 2n + 1 ≡ −

(
k

r

)
+ 1 (mod p`).

Let j` be the smallest nonnegative integer such that r < pj`+1
` for each ` ∈ [1, 6].

By Lemma 1, if

k ≡ r (mod pj`+1
` ), (2)

then
(
k
r

)
· 2n + 1 ≡ 0 (mod p`).

Since Equation (1) is a covering system, if n 6≡ 2`−1 (mod 2`) for any ` ∈ [1, 6],

then n ≡ 0 (mod 26). Note that p0 | 22
6 − 1, so 2n ≡ 1 (mod p0) and(

k

r

)
· 2n + 1 ≡

(
k

r

)
+ 1 (mod p0).

Let j0 be the smallest nonnegative integer such that r < pj0+1
0 . Recall the function

κ defined in Lemma 2. By Lemma 5(a), if condition (i) of this theorem is satisfied

and

k ≡ r + (κ(ri0)− ri0)pi00 (mod pj0+1
0 ), (3)

then
(
k
r

)
· 2n + 1 ≡ 0 (mod p0).

Hence, for any natural number n, if the congruence in Equation (2) is satisfied

for each ` ∈ [1, 6] and the congruence in Equation (3) is satisfied, then
(
k
r

)
· 2n + 1

is divisible by some prime p` with 0 ≤ ` ≤ 6. Using Lemma 1, we ensure that
(
k
r

)
is odd by further requiring k ≡ r (mod 2j+1), where j is the smallest nonnegative

integer such that r < 2j+1. By the Chinese remainder theorem, there are infinitely

many such integers k. Choosing k so that
(
k
r

)
≥ p6 ensures that

(
k
r

)
is a Sierpiński

number.

If condition (ii) of this theorem is satisfied, then the same argument applies by

replacing Lemma 5(a) and Equation (3) with Lemma 5(b) and the congruence

k ≡ r + (κ̃′(ri1 , ri2)− ri1)pi10 + (κ̃′′(ri1 , ri2)− ri2)pi20 (mod pj0+1
0 ).

The following corollary follows from Theorem 4(i) since every odd positive integer

must have an odd digit in its base p representation.
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Corollary 1. Let r be an odd positive integer. Then there exist infinitely many

positive integers k such that
(
k
r

)
is a Sierpiński number.

There are 245 integers r ∈ [1, 2563] that do not satisfy the conditions in Theo-

rem 4. Nonetheless, we can tackle these values of r in the following theorem.

Theorem 5. Let r ∈ [1, 2563]. Then there exist infinitely many positive integers k

such that
(
k
r

)
is a Sierpiński number.

Proof. If r ∈ [641, 2563], then the conclusion follows from Theorem 4(i) since the

base p representation of r contains the digits 1, 2, or 3, which are in G defined in

Lemma 2.

Suppose that r ∈ [1, 640]. Let P be the set of primes defined in Lemma 4. By

Lemma 4, there exist p0 ∈ P and k′ ∈ N such that
(
k′

r

)
≡ −1 (mod p0). By the

definition of P, there is some integer τ ≥ 5 and some prime pτ 6= p0 such that p0
and pτ both divide 22

τ−1

+ 1. Consequently, p0 and pτ are both prime factors of

22
τ − 1. By Theorem 2, for each ` ∈ [1, τ − 1], let p` be a prime such that

p` | 22
` − 1 and p` - 22

˜̀
− 1 for any ˜̀< `,

so we also have 22
`−1 ≡ −1 (mod p`). Note that p0 and pτ are distinct from p` for all

` ∈ [1, τ − 1]. This is because 22` ≡ 1 (mod p`), implying that 22τ−1 ≡ 1 (mod p`),

while 22
τ−1 ≡ −1 (mod p0) and 22

τ−1 ≡ −1 (mod pτ ).

Consider the covering system in Equation (1). Suppose that n ≡ 2`−1 (mod 2`)

for some ` ∈ [1, τ ]. Let j` be the smallest nonnegative integer such that r < pj`+1.

Similar to the argument presented in proof of Theorem 4, by Lemma 1, if

k ≡ r (mod pj`+1
` ), (4)

then
(
k
r

)
· 2n + 1 ≡ 0 (mod p`).

Since Equation (1) is a covering system, if n 6≡ 2`−1 (mod 2`) for any ` ∈ [1, τ ],

then n ≡ 0 (mod 2τ ). Note that r < p0, so by the definition of k′, for all k ∈ N
such that

k ≡ k′ (mod p0), (5)

we have
(
k
r

)
≡ −1 (mod p0), which implies that

(
k
r

)
· 2n + 1 ≡ 0 (mod p0).

The result follows by letting k ≥ max{p0, p1, . . . , pτ} satisfy the congruence re-

lations in Equation (4) for all ` ∈ [1, τ ], Equation (5), and k ≡ r (mod 2j+1), where

j is the smallest nonnegative integer such that r < 2j+1.

There are 6412 − 1 = 410880 one-digit or two-digit positive integers r′r′′ in base

641, and from the code given in Appendix B, only 3771− 1 = 3770 of them do not

have any solution (x′, x′′) ∈ [0, 640]2 for the equation(
x′

r′

)(
x′′

r′′

)
≡ −1 (mod 641).
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For a positive integer x, let S(x) be the number of r ∈ [1, x] such that
(
k
r

)
is a

Sierpiński number for infinitely many positive integers k. Then S(410880)/410880 >

99%, and the next theorem addresses S(x)/x as x tends to infinity.

Theorem 6. The density S(x)/x gets arbitrarily close to 1 as x tends to infinity.

Proof. Let p = 641. Note that the cardinality of G, which is defined in Lemma 2,

is 395. Hence, the number of integers less than pj+1 such that no digit comes from

G when expressed in base p is

1− S(pj+1 − 1)

pj+1 − 1
≤ (p− 395)j+1 − 1

pj+1 − 1
,

which tends to 0 as j tends to infinity.

4. Generalizations of Sierpiński and Riesel Binomial Coefficients

In 2009, Brunner et al. [1] generalized the concept of a Sierpiński number in the

following way.

Definition 2. For a positive integer a, we call a positive integer k an a-Sierpiński

number if gcd(k + 1, a − 1) = 1, k is not a power of a, and k · an + 1 is composite

for all natural numbers n.

The following is an analogous definition for an a-Riesel number.

Definition 3. For a positive integer a, we call a positive integer k an a-Riesel

number if gcd(k − 1, a − 1) = 1, k is not a power of a, and k · an − 1 is composite

for all natural numbers n.

The next theorem is a generalization of Corollary 1.

Theorem 7. Let a and r be positive integers such that a + 1 is not a power of 2

and r is odd. Further assume that there exists a positive integer τ such that a2
τ − 1

is divisible by distinct primes p0 and pτ , where neither p0 nor pτ divides a2
˜̀
− 1 for

any ˜̀∈ [0, τ − 1]. Then each of the following holds:

(a) there exist infinitely many positive integers k such that
(
k
r

)
is an a-Sierpiński

number;

(b) there exist infinitely many positive integers k such that
(
k
r

)
is an a-Riesel

number.

Proof. For each ` ∈ [1, τ ], let p` be a prime such that

p` | a2
` − 1 and p` - a2

˜̀
− 1 for any ˜̀∈ [0, `− 1],
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so we also have a2
`−1 ≡ −1 (mod p`). Note that such primes exist by Theorem 2.

Let pτ+1, pτ+2, . . . , pσ be all the prime factors of a− 1. Further let pσ+1 be a prime

factor of a. Note that p` are all distinct for ` ∈ [0, σ+ 1] since gcd(a, a
˜̀− 1) = 1 for

all positive integers ˜̀. For each ` ∈ [0, σ + 1], let j` be the smallest positive integer

satisfying r < pj`+1
` .

Using the Chinese remainder theorem, let k satisfy the following congruences:

k ≡ 0 (mod pj`` ) for each ` ∈ [τ + 1, σ] and

k ≡ r (mod p
jσ+1+1
σ+1 ).

(6)

It follows from Theorem 3 that
(
k
r

)
≡ 0 (mod p`) for each ` ∈ [τ + 1, σ] and

(
k
r

)
≡ 1

(mod pσ+1). Consequently, gcd
((
k
r

)
− 1, a− 1

)
= gcd

((
k
r

)
+ 1, a− 1

)
= 1 and

(
k
r

)
is not a power of a.

For each ` ∈ [0, τ ], if

k ≡ r (mod pj`+1
` ), (7)

then
(
k
r

)
≡ 1 (mod p`) by Lemma 1. Let

∑j`
i=0 r`ip

i
` be the base p` representation

of r. Since r is an odd integer, there exists an i0 ∈ [0, j`] such that r`i0 is odd. By

Theorem 3, if

k ≡ r + (p` − 1− r`i0)pi0` (mod pj`+1
` ), (8)

then
(
k
r

)
≡
(
p`−1
r`i0

)
≡ −1 (mod p`).

Consider the covering system in Equation (1). If n ≡ 2`−1 (mod 2`) for some

` ∈ [1, τ ], then an ≡ −1 (mod p`), and if n ≡ 0 (mod p0), then an ≡ 1 (mod p0).

Thus, using the Chinese remainder theorem to choose k so that

•
(
k
r

)
≥ max{p0, p1, . . . , pτ};

• k satisfies Equation (7) for each ` ∈ [1, τ ]; and

• k satisfies Equation (8) when ` = 0,

we ensure that for any natural number n,
(
k
r

)
an + 1 is composite and divisible by

p` for some ` ∈ [0, τ ]. Similarly, using the Chinese remainder theorem to choose k

so that

•
(
k
r

)
≥ max{p0, p1, . . . , pτ};

• k satisfies Equation (7) when ` = 0; and

• k satisfies Equation (8) for each ` ∈ [1, τ ],

we ensure that for any natural number n,
(
k
r

)
an − 1 is composite and divisible by

p` for some ` ∈ [0, τ ]. Thus, the proof is finished by recalling that k satisfies the

congruences in Equation (6).
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For a positive integer x, let R(x) be the number of r ∈ [1, x] such that
(
k
r

)
is a

Riesel number for infinitely many positive integers k. The following theorem follows

similarly to Theorem 6.

Theorem 8. The density R(x)/x gets arbitrarily close to 1 as x tends to infinity.

In 2001, Chen [4] introduced the concept of a (2, 1)-primitive m-covering. This

concept was extended to the following definition by Harrington [9] in 2015.

Definition 4. A covering system C = {q` (mod m`)}τ`=1 is called an (a, b)-primitive

m-covering if every integer satisfies at least m congruences of C and there exist

distinct primes p1, p2, . . . , pτ such that for each ` ∈ [1, τ ],

p` | am` − bm` and p` - a
˜̀− b˜̀ for any ˜̀< m`.

Furthermore, a covering system C is called an (a, b)-primitive disjoint m-covering

if C is an (a, b)-primitive m-covering that can be partitioned into m disjoint (a, b)-

primitive 1-covering systems.

Harrington [9] showed that if a and b are relatively prime integers such that a+b

is not a power of 2, then there exists an (a, b)-primitive disjoint 3-covering. Thus,

the following theorem provides immediate results when m = 3.

Theorem 9. Let a be a positive integer for which there exists an (a, 1)-primitive

m-covering C. Then there exist infinitely many positive integers r for which each of

the following holds:

(a) there exist infinitely many positive integers k such that gcd
((
k
r

)
+ 1, a− 1

)
=

1,
(
k
r

)
is not a power of a, and

(
k
r

)
·an+1 has at least m distinct prime divisors

for all natural numbers n;

(b) there exist infinitely many positive integers k such that gcd
((
k
r

)
− 1, a− 1

)
=

1,
(
k
r

)
is not a power of a, and

(
k
r

)
·an−1 has at least m distinct prime divisors

for all natural numbers n; and

(c) if C is an (a, 1)-primitive disjoint m-covering, then there exist infinitely many

positive integers k such that gcd
((
k
r

)
+ 1, a− 1

)
= gcd

((
k
r

)
− 1, a− 1

)
= 1,(

k
r

)
is not a power of a,

(
k
r

)
· an + 1 and

(
k
r

)
· an − 1 are composite, and each

of
(
k
r

)
· an + 1 and

(
k
r

)
· an − 1 has at least bm/2c distinct prime divisors for

all natural numbers n.

Proof. Let C = {q` (mod m`)}τ`=1 be an (a, 1)-primitive m covering with distinct

primes p1, p2, . . . , pτ given by Definition 4. Let pτ+1, pτ+2, . . . , pσ be all the prime

factors of a − 1. Further let pσ+1 be a prime factor of a. Note that p` are all
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distinct for ` ∈ [1, σ + 1] due to Definition 4 and that gcd(a, a
˜̀− 1) = 1 for all

positive integers ˜̀.
(a) By the Chinese remainder theorem, there exists a positive integer R such

that

R ≡


a−q` (mod p`) for all ` ∈ [1, τ ];

0 (mod p`) for all ` ∈ [τ + 1, σ];

1 (mod pσ+1).

(9)

Let J1 be the smallest nonnegative integer such that R < pJ1+1
` for all ` ∈ [1, σ +

1]. Again by the Chinese remainder theorem, there exist infinitely many positive

integers r > R such that r ≡ 1 (mod pJ1+1
` ) for all ` ∈ [1, σ+1]. For each such r, let

J2 be the smallest nonnegative integer such that r < pJ2+1
` for all ` ∈ [1, σ+1]. Once

again by the Chinese remainder theorem, there exist infinitely many positive integers

k > r such that k ≡ r+R−1 (mod pJ2+1
` ) for all ` ∈ [1, σ+1]. For each such k, let J3

be the smallest nonnegative integer such that k < pJ3+1
` for all ` ∈ [1, σ+1]. For each

` ∈ [1, σ+ 1], let the base p` representations of R, r, and k be R =
∑J1
i=0R`ip

i
`, r =

1+
∑J2
i=J1+1 r`ip

i
`, and k =

∑J1
i=0R`ip

i
`+
∑J2
i=J1+1 r`ip

i
`+
∑J3
i=J2+1 k`ip

i
`, respectively.

By Theorem 3,(
k

r

)
≡
(
R`0
1

)( J1∏
i=1

(
R`i
0

))( J2∏
i=J1+1

(
r`i
r`i

))( J3∏
i=J2+1

(
k`i
0

))
≡ R`0 ≡ R (mod p`).

Therefore, gcd
((
k
r

)
+ 1, a− 1

)
= 1 since

(
k
r

)
+ 1 ≡ 1 (mod p`) for all ` ∈ [τ + 1, σ],

and
(
k
r

)
is not a power of a since

(
k
r

)
≡ 1 (mod pσ+1). Lastly, since C is an (a, 1)-

primitive m covering, for each natural number n, there exist distinct `1, `2, . . . , `m ∈
[1, τ ] such that n ≡ q`ι (mod m`ι) for all ι ∈ [1,m]. Thus, for each ι ∈ [1,m],(

k

r

)
· an − 1 ≡ R

(
(am`ι )taq`ι

)
− 1 ≡ a−q`ιaq`ι − 1 ≡ 0 (mod p`ι)

for some nonnegative integer t.

(b) This proof resembles the proof of part (a) after replacing Equation (9) by

R ≡


−a−q` (mod p`) for all ` ∈ [1, τ ];

0 (mod p`) for all ` ∈ [τ + 1, σ];

1 (mod pσ+1).

(c) Let C be partitioned into C1, C2, . . . , Cm, where Cλ = {qλ` (mod mλ`)}τλ`=1 for

each λ ∈ [1,m], and τ1 + τ2 + · · · + τλ = τ . Let {pλ1, pλ2, . . . , pλτλ : λ ∈ [1,m]}
be given by Definition 4. A similar proof as from part (a) applies after replacing
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Equation (9) by

R ≡


a−qλ` (mod pλ`) for all ` ∈ [1, τλ], where λ ∈ [1, bm/2c];
−a−qλ` (mod pλ`) for all ` ∈ [1, τλ], where λ ∈ [dm/2e+ 1,m];

0 (mod p`) for all ` ∈ [τ + 1, σ];

1 (mod pσ+1).

5. Concluding Remarks

Theorem 7 shows that for any integer a ≥ 2 and any odd positive integer r, there

are infinitely many a-Sierpiński numbers and infinitely many a-Riesel numbers of

the form
(
k
r

)
. Theorems 4 and 5 show that there are infinitely many Sierpiński

numbers of the form
(
k
r

)
for most even positive integers r; however, it is unknown if

there are Sierpiński numbers of the form
(
k
r

)
for an arbitrary even positive integer

r. Thus, we present the following conjecture.

Conjecture 1. For any positive integer r, there exist infinitely many positive in-

tegers k for which
(
k
r

)
is simultaneously a Sierpiński number and a Riesel number.

We end this section with the following question regarding Catalan numbers.

Recall that the k-th Catalan number is 1
k+1

(
2k
k

)
.

Question 10. Are there infinitely many Catalan numbers that are either Sierpiński

numbers or Riesel numbers?

The constructions in this paper rely on fixing a positive integer r prior to finding

k values for which
(
k
r

)
is either Sierpiński or Riesel. Hence, a new technique might

be required in order to tackle the existence of Sierpiński or Riesel Catalan numbers.
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A. Appendix: Mathematica Code for Lemma 2

p = 641;

good = Complement[ Table[

If[ Or @@ Table[ Mod[Binomial[k, r], p] == p - 1, {k, p - 1}], r],

{r, 0, p - 1}], {Null}]

The output good is our desired set G.

B. Appendix: Mathematica Code for Lemma 3

The variables p and good are defined in the code given in Appendix A.

bad = Complement[ Table[r, {r, 0, p - 1}], good];

badbad = {};
Do[ If[ Not[ Or @@ Flatten[

Table[ Mod[Binomial[k1, bad[[r1]]] * Binomial[k2, bad[[r2]]], p] == p - 1,

{k1, p - 1}, {k2, p - 1}]]],
badbad = Append[badbad, {bad[[r1]], bad[[r2]]}]],
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{r1, Length[bad]}, {r2, Length[bad]}];
Or @@ Table[ 1 <= badbad[[i, 1]] <= 515 && 1 <= badbad[[i, 2]] <= 515,

{i, Length[badbad]}]

The variable badbad contains all ordered pairs of (r′, r′′) ∈ [0, 640]2 that fail to
satisfy our desired equation. If we want to further investigate by using
Length[badbad], the number of ordered pairs of (r′, r′′) ∈ [0, 640]2 that fail to
satisfy our desired equation is 3771. However, the final output is False, showing
that there are no unordered pairs {r′, r′′} ⊆ [1, 515] that fails to satisfy our desired
equation.

C. Appendix: Mathematica Code for Lemma 4

plist = {641, 114689, 274177, 319489, 974849, 2424833, 6700417, 13631489,

26017793, 45592577, 63766529};
And @@ Table[Or @@ Table[

Solve[Product[k - j, {j, 0, r - 1}]/r! == p - 1, k, Modulus -> p] != {},
{p, plist}], {r, 640}]

The output is True, showing that every r ∈ [1, 640] satisfies our desired equation.


