Session: Tools

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

Exploring Design Choices to Support Novices’ Example Use
During Creative Open-Ended Programming

Wengran Wang Audrey Le Meur Mahesh Bobbadi
North Carolina State University North Carolina State University North Carolina State University
Raleigh, USA Raleigh, USA Raleigh, USA
Bita Akram Tiffany Barnes Chris Martens

North Carolina State University
Raleigh, USA

North Carolina State University
Raleigh, USA

North Carolina State University
Raleigh, NC, USA

Thomas Price
North Carolina State University
Raleigh, USA

ABSTRACT

Open-ended programming engages students by connecting comput-
ing with their real-world experience and personal interest. However,
such open-ended programming tasks can be challenging, as they
require students to implement features that they may be unfamiliar
with. Code examples help students to generate ideas and implement
program features, but students also encounter many learning barri-
ers when using them. We explore how to design code examples to
support novices’ effective example use by presenting our experience
of building and deploying ExamPLE HELPER, a system that supports
students with a gallery of code examples during open-ended pro-
gramming. We deployed ExAMPLE HELPER in an undergraduate CS0O
classroom to investigate students’ example usage experience, find-
ing that students used different strategies to browse, understand,
experiment with, and integrate code examples, and that students
who make more sophisticated plans also used more examples in
their projects.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI); - Social and professional topics — Computing
education.

KEYWORDS

open-ended programming, code examples, novice programming

ACM Reference Format:

Wengran Wang, Audrey Le Meur, Mahesh Bobbadi, Bita Akram, Tiffany
Barnes, Chris Martens, and Thomas Price. 2022. Exploring Design Choices to
Support Novices’ Example Use During Creative Open-Ended Programming.
In Proceedings of the 53rd ACM Technical Symposium on Computer Science

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2022, March 3-5, 2022, Providence, RI, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9070-5/22/03...$15.00
https://doi.org/10.1145/3478431.3499374

619

Education V. 1 (SIGCSE 2022), March 3-5, 2022, Providence, RI, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3478431.3499374

1 INTRODUCTION

Open-ended programming projects, such as making apps, games,
and stories, encourage students to create projects that are aligned
with their own motivation and interests [7]. These projects are
widely used as activities and assignments in many introductory
programming curricula [5, 7, 18] and informal learning settings [23].
They engage students by allowing them to express ideas creatively
[12], and motivate students to keep pursuing CS [9] by tying their
authentic, real-world interest with their programming experience
[21]. However, open-ended programming can also be challenging
for novices [7], as implementing unique and authentic ideas may
require knowledge of programming concepts and APIs they are
unfamiliar with [7].

Code examples are often used by professional programmers to
learn and use APIs and code usage patterns [2, 22, 25]. However,
novice programmers lack skills such as program tracing [17] and
fundamental programming concepts such as variables [13], which
may prevent them from using those examples effectively during
open-ended programming. In our prior work, we conducted the
first known study to systematically analyze the types of barriers
students encounter when using code examples during open-ended
programming, using a basic example system (which we refer to as
ProToTYPE-EH in this paper). We found that students encountered
barriers such as not knowing when to use an example (decision
barrier); how to find an example they need (search barrier) and how
to test and experiment with the examples (testing barrier) [31].

How to design code examples to address students’ decision, search,
and testing barriers? In this work, we describe our experience de-
signing, building and deploying ExAMPLE HELPER, a fully remodeled
example support system based on PrRoToTYPE-EH. EXAMPLE HELPER
supports students’ open-ended programming with a gallery of code
examples. We explored design choices to encourage students’ ex-
ploration and experimentation with code examples. We deployed
ExAMPLE HELPER in an undergraduate CS0 course, with 46 novice
students working on an open-ended programming project in Snap!,
a block-based programming environment. We analyzed students’
programming log data, project plans, and project submissions. We

Session: Tools

found that students used many different strategies to browse, un-
derstand, experiment with, and integrate code examples into their
code. We also found a significant, positive correlation between the
complexity of a student’s project plans and the number of inte-
grated examples, showing that students who had more ambitious
project goals used more code examples. Finally, we discuss to what
extent ExaMPLE HELPER addressed the decision, search and testing
barriers, and suggest ways to better support students’ example use.
The contributions of this work are:

(1) A synthesis of design choices for building code example sys-
tems to address novices’ learning barriers, and for enabling
effective example use during open-ended programming.

(2) ExaMPLE HELPER, a system that instantiates the principles
for providing code examples to students.

(3) An in-depth analysis of students’ example-usage experience,
as well as the factors that influenced students’ example use,
in an authentic, classroom study.

2 RELATED WORK

Exploratory Programming Behaviors. The first step towards
learner-centric designs for building tools is to understand students’
own needs and practices [8]. Novices” open-ended programming
practice is a type of exploratory programming, which is defined as
practices, of which the goal is “open-ended”, and “evolves through
the process of programming”[15]. Different from programming
tasks with a fixed goal or specification, exploratory programming
typically includes many exploration/ experimentation-based activi-
ties, such as bricolage, tinkering, sketching, and hacking [1, 15]. In
a systematic literature review across various types of exploratory
programming practices, Kery and Myers summarized that, differ-
ent from non-explorative, specification-based programming, in ex-
ploratory programming, programmers engage in the following
three key types of distinguishing activities [15]: 1) Opportunistic
programming, where programmers rely heavily on code examples
found from online resources, and often use functionalities such
as copy-and-paste to patch together example code into their pro-
gram [2]. 2) Debugging into existence: After directly copying code
found from online resources, programmers debug those code until
they work correctly in their program [27]; and 3) Rapid prototyping,
where programmers iteratively create, test, and experiment with
a prototype at an early stage of the programming process [11, 16].
Based on these key distinguishing activities, Kery and Myers sug-
gested building tools to support exploration and experimentation
among exploratory programmers [15].

Code Examples. Code example systems for novices mostly sup-
port closed-ended programming tasks [6, 30, 32], such as by giving
students a correct student’s solution when students request help
[32], or by separating program completion into different individual
steps [30]. By using such tools during the completion of closed-
ended tasks, novices were shown to be able to complete tasks faster
[32]. However, few prior works have built tools to specifically tar-
get students’ exploration and experimentation during open-ended
programming.

As a first step, in our prior work, we conducted a pilot study
to explore students’ learning barriers when using a basic example
support system (PrRoToTYPE-EH). PROTOTYPE-EH offers a gallery of

620

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

code examples, where students can search and browse through gif
animations of examples in a gallery. By clicking on a gif, the student
can view a non-editable example code window, and can drag to
copy the example code into their code, or to move it aside and
use it as a reference to build their own code [31]. We investigated
students’ learning barriers, and found that students can feel a lack of
motivation to use an example even when they needed help (decision
barrier); they may not know how to explain a needed example, and
instead type in text that returns no found results (search barrier).
Students may also need, but be unable to, test or experiment with an
example immediately when opening it (testing barrier) [31]. These
insights led to the design of ExampLE HELPER, which is built to
address these barriers.

3 THE EXAMPLE HELPER SYSTEM

3.1 Interface Design

Figure 1 shows the interface of ExampLE HELPER. When a student
needs a new idea, or is stuck on implementing an existing idea,
they can click on a show example button on the top-center of the
screen to open a gallery of code examples (Figure 1-a). Inside the
gallery, they can use the search box or the tags to find an example,
or click through the left-right arrows to browse through the gif-
animations of the output of each code example. When a student
clicks on a code example, it opens up a preview window, which
shows editable code with its output shown on the right side of the
example code. The student can modify the example code, and click
on the button “Run Example Code” or the green flag on the top
right of the example to run and test the example code. If the student
wants to use the example in their own code, they can click on the
“try it” button on the bottom-left of the interface. After clicking on
the “try it” button, the student is prompted with a new “playground”
window (Figure 1-b), where they can continue to edit and test the
example, or use the example code as a reference to implement their
own code. They can also click on the “Copy to my code” button on
the bottom-left of the example, which prompts them to copy the
example code to their own code. The design of ExampPLE HELPER
is informed by the following two design choices, to address the 3
learning barriers from prior work (Table 1) [31].

1) Incentivise ideation. A key activity exploratory program-
mers engage in is exploring and discovering new ideas in the middle
of programming [15]. In addition to the support for browsing and
viewing gif animations, ExamMpPLE HELPER added two more features
to support ideation and exploration of examples: 1) Autocompletion
suggestions when searching for an example. The search mechanism
matches students’ search with words in the name of an example,
and instantly provides autocomplete suggestions, showing poten-
tial items a student needs; 2) Preview window. Whenever a student
clicks on an example, they can view edit, test, and run the example
in the preview window (shown in Figure 1 left). The goal of this
feature is to address decision barriers, as we hypothesized that with
easier access to the preview, students would become more willing
to view and test an example they need.

2) Encourage prototyping. Prior work shows that exploratory
programmers experiment with the code to implement and test new
ideas [11, 15, 16]. Our prior work showed that students needed
immediate, straightforward ways to experiment with the example,

Session: Tools

Disappear When Hit

go to x: @ v: GED

point in direction €D

if on edge, bounce
move € steps
UX touching bick |2

point in direction (GE = dir|

TRYIT RUN EXAMPLE CODE

(a) gallery

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

% untitied - Project 1 CODE EXAMPLES

move @D steps
turn & @D dearees
turn & @D degrees

point in direction €5

Disappear When Hit
point towards mouse-pol

go to x: @ v: @
90 to rand

glide @B secs to x: @

go to x: @ y:
point in direction
change x by €[
set x to @
change y by €D
sety to @

if on edge, bounce

move @ steps
L& touching brick |2
: | -

iffonjedge bounce point in direction (EED = direction
B (x position
M (y position

COPY TO MY CODE RUN EXAMPLE CODE

(b) playground

Figure 1: The ExamMPLE HELPER interface, which includes a selection-based gallery (a) and a playground view (b).

and need multiple modifications and test cycles to use examples
effectively in their code, but was unable to do so efficiently in
ProToTYPE-EH [31]. EXAMPLE HELPER encourages prototyping by
allowing students to experiment and modify the example and view
its immediate output on the right output stage, as a single, stan-
dalone prototype.

3.2 Example Content Design

While the Snap! website [20] offers galleries of complete projects
for students to browse, prior work has shown that novices [14]
and experienced programmers [25] preferred using “snippet-sized”
examples that teach an API usage pattern — how code can be orga-
nized to produce a certain behavior[26, 28]. We designed example
content through a manual process of decomposing steps towards
completing multiple large programming projects.

To do that, we first collected 27 pieces of CSO students’ project
submissions, where students did open-ended programming in Snap!.
We systematically coded all submissions on dimensions such as
game mechanics, code quality, and project aesthetics, and listed
features that each submission included. We found a total of 37
code usage patterns in student programs, such as moving with the
keyboard, displaying and initializing a variable, and initializing
actor positions. In addition, we found that students’ projects also
avoided using advanced code blocks (e.g., lists and clones) that
may have been helpful for them to create clean and concise code
and their code sometimes included logic errors. Leveraging the
collection of code usage patterns we found from this formative
analysis, we built 18 sample programs to cover all behaviors (one
program can include multiple behaviors), with known game themes
that students may be familiar with (e.g., a quiz app, or an arcade
game).

We next decomposed sample programs into code examples that
represent distinct program behaviors, which should be meaningful
semantically, and can be described in short human language [29].
For example, a space invader game can be decomposed into the

621

following 6 examples: 1) actor moves with key; 2) creating a spawn
of enemies; 3) enemy moves intermittently; 4) shoot actors; 5) an
enemy explode when hitting bullet; 6) increases score when a bullet
hits an enemy. After constructing those examples, we did multiple
passes to break down long examples into smaller sub-components,
merged examples that are of similar functionalities, and filtered
out examples that include a large number of code blocks and could
not break down into sub-components. This creates a total of 31
examples.

4 METHODS

We conducted a student study to understand how students used
the ExaAMPLE HELPER in a real-world classroom environment. To
generate a comprehensive, in-depth understanding of students’
experience, we used the following three research questions, each
with increasing specificity, to guide our study and analysis.

e RQ1: How did students use examples? We aim to identify
the types of behaviors and strategies students engaged with
when using code examples.

e RQ2: What types of students used examples? We aim to
look at student-specific factors that may influence students’
example use.

e RQ3: To what extent did the new features introduced by
ExampLE HELPER address students’ learning barriers? We
used data collected from the study to qualitatively evaluate
whether the specific features we added are useful in helping
students overcome barriers.

4.1

We conducted our study in an undergraduate CS0 classroom, among
46 non-CS-major novice students, in a research university in South-
east US. The course was held remotely during the COVID-19 pan-
demic. We did not collect students’ demographic information. The
study happened during the second month of the students’ program-
ming course, and includes the following procedure:

Participants & Procedure

Session: Tools

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

Barrier Definition ProToTYPE-EH ExamMpLE HELPER Design choice
Search Students’ typed queries some- | No query recommendations. Provides immediate search results | Incentivise
Barrier times did not return search results. and autocomplete suggestions. Ideation
Decision | Students are reluctant to open | No preview window. Allows previewing and testing the
Barrier an example even when stuck and example in the browsing interface.

need help.
Testing Students need quick, iterative ex- | No interactive output. Does not | Allows running, modifying, and | Encourage
Barrier perimentations with the example. | support testing/experimentation | viewing immediate output inside | Prototyping

inside the example window. the example window.

Table 1: ExaAMPLE HELPER design targets to address the search, decision, testing, and modification barriers students encounter
when using code examples during open-ended programming.

Pre-test. Before the study, students completed a pre-test, which
tested students’ knowledge on concepts they learned in the first
month before the study: variables, lists, loops, and Snap! APIs.

Project pitch. To guide students towards designing a free-choice,
open-ended project, the instructor introduced students to the en-
gineering design process [10]. They were asked to design their
projects to solve a real-world problem with creative ideas, and to
publish a project pitch in the online class discussion platform, which
allows for follow-up discussions of each pitch.

Pair planning and programming. After the project pitches
and follow-up discussions, students had the choice to form a two-
person team on a project idea that they were both interested in. They
could also choose to work independently. This led to 36 student
groups, among which, 10 were pairs and 26 were students who
worked independently!. After forming groups, students started
with a week of planning in the PlanIT digital planning system
[19], where they listed the features they wanted to complete in
their project (e.g., “once the snake crashes into itself the game is
over”), as well as a project description, and then worked on their
projects for two weeks. To allow collaborative programming, we
instrumented the Snap! interface with a “save/load” button, on
which students could click to save/load their/their pair’s project.
We encouraged pair programming, as prior work has shown that
students achieved significantly higher performance in pair projects
when creating open-ended projects [7].

4.2 Data & Analysis

We conducted the following three types of data collection & analysis
to investigate our research questions:

Interaction with code examples. ExaMpLE HELPER logs all
students’ interaction data with the system, as well as their code
snapshots at every individual timestamp. To investigate RQ1 and
RQ3 on students’ experience using ExamPLE HELPER, we conducted
a qualitative coding of the log data to generate patterns of interac-
tion behaviors students engaged in when using examples [4]. To
begin with, three researchers manually inspected students’ logs
from 16 example requests? on one randomly-selected student group,
to describe actions students take while using the example, creating
3 note documents on example-related activities, such as running the
example code or modifying the code in the playground. Next, one

!We use the term “group” to refer to single-student or pairs, who worked on a single
project

2 An example request includes all log data when a student opened, tested, closed or
used an example.

622

researcher developed an initial code book, which includes a list of
example interaction events that took place, with definitions. Based
on the code book, two researchers coded all students’ log data to
confirm and collect counts on those events. They first each did inde-
pendent coding on 10% of the data based on the initial list of events,
achieving an inter-rater agreement of 82.8%. They next discussed
to resolve conflicts and refined the code book, achieving a final
inter-rater agreement of 100%. Based on the new refined definition,
the second researcher conducted the rest of the log analysis. At
the end of the log analysis, the two researchers then inspected the
events, merged events that describe similar usage behaviors (e.g.,
running example in the preview and running in the playground),
and grouping codes into themes. This produced 3 high-level themes
and 8 example-usage events. We present them in Section 5.1.

Pretest, planned & completed features. To investigate RQ2,
we hypothesized that students’ programming knowledge, or the
complexity of their plans may be related to students’ example use.
Therefore, we collected students’ pre-test scores as an indicator
of students’ programming prior knowledge. We also collected stu-
dents’ planning data by collecting the list of features they planned
in the digital planning system [19]. Some students included ex-
tra features in the project description text field. For those student
groups, we added from the project description each sentence that
describes an extra planned feature into the planned feature list. We
used the number of features students included in their plans to
indicate the complexity of their plans, and rated students’ project
submissions based on the number of planned features students
ended up completing in their projects. If a student slightly changed
a feature’s implementation (e.g., by changing variable names), we
also marked those features as completed.

Example integration. To understand the outcome of using
examples, for each example a group has requested, we also inspected
the corresponding log data to check whether the example was
successfully integrated to a student’s code. We define “integration”
as when a student used an example in their projects and kept it in
their projects for submissions. To inspect how students modified the
examples during integration, two researchers collectively rated the
level of modifications students used when integrating an example
to their project, based on the following three different levels of
adaptations: 1) full copy, where students copied the entire example
with no modifications; 2) slight modification, where students only
modified the examples slightly, such as changing variable names
and initialization logic. 3) structural modification, where students
made bigger changes to the events, either deleting many blocks

Session: Tools

they did not need, or modifying many blocks to use them in their
projects. We next rated students’ integrated examples according to
the level of modifications, and present the result in Section 5.3.

5 RESULTS & DISCUSSION
5.1 RQ1: How did students use examples?

Our analysis revealed 3 high-level themes of students’ example
interaction behaviors: experimentation, integration, and other gen-
eral example usage behaviors. General example usage behaviors
described generic example usage events, including opening an ex-
ample (14 students), clicking on the “try it” button to open play-
ground (7 students), and opening documentation to learn unfamiliar
code blocks in an example (4 students). This shows that some stu-
dents could not understand code blocks in the example, but used
the documentations to learn instead. We next present students’
experimentation and integration behaviors when using examples:

5.1.1 Experimentation behaviors. Experimentation described how
students test, tinker, or modify the example inside the preview
or playground window. We found that among the 14 groups who
opened an example, most groups (85%, 12/14) tested the example
code in the example window, and over half of the groups (57%,
8/14) modified the example inside the preview or playground win-
dow to test. This shows that many students made use of from the
“immediate test and experimentation” features.

5.1.2 Integration behaviors. Integration behavior describes how
students applied and used the example in their workspace. Our log
analysis found three key integration behaviors: using the example
as a reference and building code themselves (reference; 14%, 2/14);
clicking on the “copy to my code” button to copy code directly
(copy; 50%, 7/14); or closing the example and then implementing
the example code on their own (re-implement; 64%, 9/14).

5.1.3 Use cases. We illustrate below how students used the ex-
perimentation and integration strategies to understand and reuse
an example. We demonstrate how three different students used
the “Move when the key is pressed” (keymove) example. Keymove
demonstrates how to move actors in response to a user’s key presses.
The example code uses a forever loop to listen to user inputs (i.e.,
left and right keys) and move the actor position accordingly.

Copy-run-modify. After failing to implement the example
themselves, Bo 3 copied the example directly to their code by click-
ing on the “copy to my code” button. They then ran the example
code 4 times and modified the example by adding up and down
movement on their respective keys. The student ran their code four
more times to test the added behavior.

Run-understand-reference. Mo already had incomplete code
for a keymove behavior before looking for examples. They browsed
several examples and then opened keymove. After running the ex-
ample several times in the gallery, they then opened the playground.
Instead of copying the code directly, they used the example code
as a reference and built the example one block at a time in their
workspace.

Run-close-reimplement. Jo requested the keymove example,
ran it once, then closed the example. They then re-implemented a

3A group’s pseudonym

623

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

modified version of the example which allowed users to use either
the up arrow or the w key and controlled the sprite’s direction
rather than position.

5.1.4 Discussion. Our use case shows three different types of oppor-
tunistic programming strategies, summarized by prior work [2, 15].
Among them, Copy-run-modify is similar to the debugging into ex-
istence behavior [15, 27], where students engaged in iterative test
and modification to update an existing program. This shows the
potential for the ExamMpLE HELPER to address the testing barriers
encountered by students from our prior work [31].

5.2 RQ2: Who used examples?

We found that only 22% (8/36) students integrated at least one
example into their project. Many (61.1%, 22/36) did not view any
examples. Therefore, we investigate what types of students were
more likely to use ExAMPLE HELPER to integrate examples into their
projects. We hypothesized that students’ programming knowledge,
or the complexity of their plans would affect their example use,
and conducted a Spearman’s rank correlation test to investigate the
relationship between students’ pretest scores, their planned events,
and their example use.

Is programming knowledge predictive of successful exam-
ple use? We found no observable correlation between students’
pretest scores and their number of integrated examples (r = —0.07,
p = 0.71). This indicates that both low and high-performing stu-
dents integrated examples into their project, and that a student’s
previous programming knowledge does not predict whether a student
will successfully integrate examples or not.

Is project planning predictive of successful example use?
We found a significant, moderate correlation between students’
number of planned features and their number of integrated exam-
ples (r = 0.40, p = 0.02). This shows that students who make more
ambitious plans integrated more examples into their projects.

In addition, we also found a significant, moderate correlation
between the number of completed planned events with the number
of integrated examples (r = 0.44, p = 0.01). The number of com-
pleted events, on the other hand, is also strongly correlated with
the number of planned features (r = 0.65, p < 0.001). Because all
three numbers (number of planned features, number of integrated
examples, and number of completed features) were significantly
correlated, we are unable to infer causal relationships, but can only
hypothesize that the students who made more ambitious plans in-
tegrated more examples, and (perhaps as a result) also completed
more complex projects. None of these three variables, on the other
hand, had a significant correlation with students’ pre-test scores,
showing that pre-test scores likely didn’t affect how well students
make plans and build their projects.

Discussion. Unlike prior work, which found that students with
lower prior knowledge may request more code examples during
closed-ended programming [30], our results on students’ open-
ended programming shows that students’ prior knowledge was
unrelated to whether they can successfully integrate examples.
However, the complexity of students’ plans — which shows how
invested students are in their projects — does have a positive as-
sociation with how many examples students end up integrating

Session: Tools

into their projects. This suggests that in future work, we may help
students ideate more features for their project in the planning phase
(e.g., through detailed instructions or adaptive support during plan-
ning), which may lead to more example use, and potentially towards
making better projects.

5.3 RQ3: To what extent did our design choices
address students’ learning barriers?

We next investigate whether the new features we included in Ex-
AMPLE HELPER were able to address students’ decision, search, and
testing barriers, found in our prior work [31]. To better interpret
results, we use our prior work [31] as a baseline for reference. Al-
though this work and our prior work happened in the same CS0
course with the same curriculum, the two studies happened in dif-
ferent semesters with different instructors. Our analysis, therefore,
does not aim to provide strong claims on the benefits of the system
(i.e., as in a quasi-experimental comparison), but rather to inform
hypotheses on how our design choices may have addressed the
learning barriers.

Search barrier. We found a total of 34 search queries across
students. 85.2% (29/34) returned results, as auto-complete sugges-
tions showed students search findings when typing, and prompted
students to use queries that returned results. This is about twice
the percentage of student search queries that returned results from
ProToTYPE-EH [31], showing that providing students with auto-
complete suggestions during searching has the potential to address
students’ search barriers.

Decision barrier. The ExaAmPLE HELPER used a preview window
for students to browse and test the interface. With this feature, we
found that students who used ExamPLE HELPER opened the gallery
an average of 16.8 (286/17) times?, which is two times higher than
the average of 5.67 times from PrRoToTYPE-EH. However, about half
of the students also did not click on the “show example” button
at all, a barrier ExamPLE HELPER did not directly address. This
shows that the preview window only addressed to some extent the
decision barriers among those students who opened the example
gallery at least once.

Testing barrier. Section 5.1 shows that students actively inter-
leave experimentation behaviors such as running the example, and
modifying to test different aspects of the example when reading
and integrating code examples into their code. While none of these
experimentation behaviors were supported by PrRoToTYPE-EH, the
high percentage of students who ran (85%) and modified (57%) ex-
amples suggests that the editable example windows in EXxAMPLE
HELPER addressed students’ testing barriers to some extent.

Outcomes. We also inspected students’ integrated examples
(Section 4.2) to check whether students blindly copied examples. We
found that among the 27 examples that are integrated by 8 student
groups, only 7.4% (2/27) were completely copied with no modifica-
tions (full copy); in about half (55.6%, 15/27) of the copied examples,
students only modified slightly; for the rest (37%, 8/27), students
did structural modifications (defined in Section 4.2), making big-
ger changes to the example. This shows that ExaAMPLE HELPER
encouraged students to meaningfully integrate examples into their

4 Among the 36 student groups, 17 have clicked on the “show example” button to open
the gallery and use the ExAMPLE HELPER.

624

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

own code by making necessary modifications — not copying them
blindly.

Discussion. Our results show the autocomplete searches, as well
as the accessible, editable preview and playground features lead
to relatively low incidents of search, decision, and testing barriers.
This shows that the design choices we made have the potential
to be successful in addressing students’ learning barriers and lead
to effective example use. Since ExAMPLE HELPER is built as an ex-
tension in Snap!, instructors can directly use ExaAMPLE HELPER in
introductory programming classrooms, as support features that
students can use to request examples.

6 LIMITATIONS & CONCLUSION

Limitation: Students may still encounter search barriers. In
our prior work, when students did not receive query recommenda-
tions from ProToTYPE-EH, we found that about half of the searched
queries were theme/asset-based, such as “people”, “airplane” and
“dining room” using PrRoToTYPE-EH [31]. However, because Ex-
AMPLE HELPER directed students to complete phrases that would
only return results, students did not end up making search queries
that were theme/asset-based. This shows that auto-complete sug-
gestions may have limited students’ choices to express ideas. In
addition, the total amount of 31 examples limited the students’ abil-
ity to find their own, personalized examples. For future work, we
should support more diverse ways of searching, such as inferring
the possible behavior or interactions students may need through
their descriptions of game themes and assets.

Limitation: Some students still encountered decision bar-
riers. Our work found that about half of students did not use the
ExAMPLE HELPER system at all, showing that they may still encoun-
tered decision barriers. Prior work suggests that students may avoid
seeking help for many reasons, such as viewing requesting help
as a threat to their independence and competence [3], or forget-
ting about the choice to ask for help [24]. The design choices we
made for ExampLE HELPER assumed that students would open the
interface at least once to use and benefit from its features, but none
supported those who never used the system at all. In future work,
to encourage first-time usage, we may remind students to read or
learn relevant examples earlier in the programming process (e.g.,
before or just when they started programming).

Conclusion. In this work, we presented our design process for
building ExamMpLE HELPER, a system that supports students with
gallery-based code examples during open-ended programming in
Snap!. We found that ExamPLE HELPER supports a variety of explo-
ration and integration strategies, and that students’ engagement
with the planning process significantly affected students’ use of
code examples. We found suggestive evidence that ExAMPLE HELPER
addressed search, decision, and testing barriers students encounter
when using code examples in open-ended programming, pointing
to insights that designers can take to build code examples to support
effective example use.

7 ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1917885.

Session: Tools

REFERENCES

(1]

[2

=

3

=

(5]

=

[7

[

[o

=

[10

[11]

[12

=
&

[14]

[15

[16]

[17]

Tlias Bergstrom and Alan F Blackwell. The practices of programming. In 2016
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
pages 190-198. IEEE, 2016.

Joel Brandt, Philip] Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer.
Two studies of opportunistic programming: interleaving web foraging, learning,
and writing code. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1589-1598, 2009.

Ruth Butler. Determinants of help seeking: Relations between perceived reasons
for classroom help-avoidance and help-seeking behaviors in an experimental
context. Journal of Educational Psychology, 90(4):630, 1998.

Gao Gao, Finn Voichick, Michelle Ichinco, and Caitlin Kelleher. Exploring pro-
grammers’ API learning processes: Collecting web resources as external memory.
In Michael Homer, Felienne Hermans, Steven L. Tanimoto, and Craig Anslow,
editors, IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2020, Dunedin, New Zealand, August 10-14, 2020, pages 1-10. IEEE,
2020. doi: 10.1109/VL/HCC50065.2020.9127274. URL https://doi.org/10.1109/
VL/HCC50065.2020.9127274.

Dan Garcia, Brian Harvey, and Tiffany Barnes. The Beauty and Joy of Computing.
ACM Inroads, 6(4):71-79, 2015.

Sebastian Gross, Bassam Mokbel, Benjamin Paassen, Barbara Hammer, and Niels
Pinkwart. Example-based feedback provision using structured solution spaces.
International Journal of Learning Technology 10, 9(3):248-280, 2014.

Shuchi Grover, Satabdi Basu, and Patricia Schank. What we can learn about stu-
dent learning from open-ended programming projects in middle school computer
science. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, SIGCSE 18, page 999-1004, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450351034. doi: 10.1145/3159450.3159522. URL
https://doi.org/10.1145/3159450.3159522.

Mark Guzdial. Learner-centered design of computing education: Research on
computing for everyone. Synthesis Lectures on Human-Centered Informatics, 8(6):
1-165, 2015.

Mark Guzdial and Andrea Forte. Design process for a non-majors computing
course. ACM SIGCSE Bulletin, 37(1):361-365, 2005.

Yousef Haik, Sangarappillai Sivaloganathan, and Tamer Shahin. Engineering
design process. Nelson Education, 2018.

Bj6rn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer.
Design as exploration: creating interface alternatives through parallel authoring
and runtime tuning. In Proceedings of the 21st annual ACM symposium on User
interface software and technology, pages 91-100, 2008.

Carol Hulls, Chris Rennick, Sanjeev Bedi, Mary Robinson, and William Melek.
The use of an open-ended project to improve the student experience in first year
programming. Proceedings of the Canadian Engineering Education Association
(CEEA), 2015.

Michelle Ichinco and Caitlin Kelleher. Exploring novice programmer example
use. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 63-71. IEEE, 2015.

Michelle Ichinco, Wint Yee Hnin, and Caitlin L Kelleher. Suggesting api usage
to novice programmers with the example guru. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, pages 1105-1117, 2017.
Mary Beth Kery and Brad A Myers. Exploring exploratory programming. In 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
pages 25-29. IEEE, 2017.

Mary Beth Kery, Amber Horvath, and Brad A Myers. Variolite: Supporting
exploratory programming by data scientists. In CHI, volume 10, pages 3025453~
3025626, 2017.

Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Mostrom, Kate Sanders, Otto

SIGCSE ’22, March 3-5, 2022, Providence RI, USA

Seppild, et al. A multi-national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin, 36(4):119-150, 2004.

Steven McGee, Randi McGee-Tekula, Jennifer Duck, Catherine McGee, Lucia
Dettori, Ronald I. Greenberg, Eric Snow, Daisy Rutstein, Dale Reed, Brenda Wilk-
erson, Don Yanek, Andrew M. Rasmussen, and Dennis Brylow. Equal outcomes
4 all: A study of student learning in ecs. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, SIGCSE ’18, page 50-55, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 9781450351034. doi:
10.1145/3159450.3159529. URL https://doi.org/10.1145/3159450.3159529.
Alexandra Milliken, Wengran Wang, Veronica Cateté, Sarah Martin, Neeloy
Gomes, Yihuan Dong, Rachel Harred, Amy Isvik, Tiffany Barnes, Thomas Price,
and Chris Martens. Planit! a new integrated tool to help novices design for
open-ended projects. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education, SIGCSE ’21, page 232-238, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450380621. doi: 10.1145/
3408877.3432552. URL https://doi.org/10.1145/3408877.3432552.

J Moenig and B Harvey. Byob build your own blocks (a/k/a snap!). URL: http://byob.

berkeley. edu/, accessed Aug, 2012.
Seymour Papert. Mindstorms: Computers, children, and powerful ideas. NY:

Basic Books, page 255, 1980.

Chris Parnin and Christoph Treude. Measuring api documentation on the web. In
Proceedings of the 2nd international workshop on Web 2.0 for software engineering,
pages 25-30, 2011.

Kylie A Peppler and Yasmin B Kafai. From supergoo to scratch: Exploring creative
digital media production in informal learning. Learning, media and technology,
32(2):149-166, 2007.

Thomas W Price, Zhongxiu Liu, Veronica Cateté, and Tiffany Barnes. Factors
influencing students’ help-seeking behavior while programming with human
and computer tutors. In Proceedings of the 2017 ACM Conference on International
Computing Education Research, pages 127-135. ACM, 2017.

Martin P Robillard. What makes apis hard to learn? answers from developers.
IEEE software, 26(6):27-34, 2009.

Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. Automated api property inference techniques. IEEE Transactions on
Software Engineering, 39(5):613-637, 2012.

Mary Beth Rosson and John M Carroll. Active programming strategies in reuse.
In European Conference on Object-Oriented Programming, pages 4-20. Springer,
1993.

Kyle Thayer, Sarah E Chasins, and Amy J Ko. A theory of robust api knowledge.
ACM Transactions on Computing Education (TOCE), 21(1):1-32, 2021.

Wengran Wang, Yudong Rao, Yang Shi, Alexandra Milliken, Chris Martens,
Tiffany Barnes, and Thomas W. Price. Comparing feature engineering approaches
to predict complex programming behaviors. Educational Data Mining in Computer
Science Education (CSEDM) Workshop @ EDM 20, 2020.

Wengran Wang, Yudong Rao, Rui Zhi, Samiha Marwan, Ge Gao, and Thomas
Price. The step tutor: Supporting students through step-by-step example-based
feedback. ITiCSE’20 - Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education, To be published, pages 391-397, 2020.
Wengran Wang, Archit Kwatra, James Skripchuk, Neeloy Gomes, Alexandra
Milliken, Chris Martens, Tiffany Barnes, and Thomas Price. Novices’ learning
barriers when using code examples in open-ended programming. In Proceedings
of the 26th ACM Conference on Innovation and Technology in Computer Science
Education V. 1, ITiCSE ’21, pages 394-400, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450382144 doi: 10.1145/3430665.3456370.
URL https://doi.org/10.1145/3430665.3456370.

Rui Zhi, Thomas W Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,
and Min Chi. Exploring the impact of worked examples in a novice programming
environment. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, pages 98-104. ACM, 2019.

