
Exploring Design Choices to Support Novices’ Example Use
During Creative Open-Ended Programming

Wengran Wang
North Carolina State University

Raleigh, USA

Audrey Le Meur
North Carolina State University

Raleigh, USA

Mahesh Bobbadi
North Carolina State University

Raleigh, USA

Bita Akram
North Carolina State University

Raleigh, USA

Tiffany Barnes
North Carolina State University

Raleigh, USA

Chris Martens
North Carolina State University

Raleigh, NC, USA

Thomas Price
North Carolina State University

Raleigh, USA

ABSTRACT

Open-ended programming engages students by connecting comput-

ing with their real-world experience and personal interest. However,

such open-ended programming tasks can be challenging, as they

require students to implement features that they may be unfamiliar

with. Code examples help students to generate ideas and implement

program features, but students also encounter many learning barri-

ers when using them. We explore how to design code examples to

support novices’ effective example use by presenting our experience

of building and deploying Example Helper, a system that supports

students with a gallery of code examples during open-ended pro-

gramming. We deployed Example Helper in an undergraduate CS0

classroom to investigate students’ example usage experience, find-

ing that students used different strategies to browse, understand,

experiment with, and integrate code examples, and that students

who make more sophisticated plans also used more examples in

their projects.

CCS CONCEPTS

• Human-centered computing→ Human computer interac-

tion (HCI); • Social and professional topics → Computing

education.

KEYWORDS

open-ended programming, code examples, novice programming

ACM Reference Format:

Wengran Wang, Audrey Le Meur, Mahesh Bobbadi, Bita Akram, Tiffany

Barnes, Chris Martens, and Thomas Price. 2022. Exploring Design Choices to

Support Novices’ Example Use During Creative Open-Ended Programming.

In Proceedings of the 53rd ACM Technical Symposium on Computer Science

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2022, March 3–5, 2022, Providence, RI, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9070-5/22/03. . . $15.00
https://doi.org/10.1145/3478431.3499374

Education V. 1 (SIGCSE 2022), March 3–5, 2022, Providence, RI, USA. ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3478431.3499374

1 INTRODUCTION

Open-ended programming projects, such as making apps, games,

and stories, encourage students to create projects that are aligned

with their own motivation and interests [7]. These projects are

widely used as activities and assignments in many introductory

programming curricula [5, 7, 18] and informal learning settings [23].

They engage students by allowing them to express ideas creatively

[12], and motivate students to keep pursuing CS [9] by tying their

authentic, real-world interest with their programming experience

[21]. However, open-ended programming can also be challenging

for novices [7], as implementing unique and authentic ideas may

require knowledge of programming concepts and APIs they are

unfamiliar with [7].

Code examples are often used by professional programmers to

learn and use APIs and code usage patterns [2, 22, 25]. However,

novice programmers lack skills such as program tracing [17] and

fundamental programming concepts such as variables [13], which

may prevent them from using those examples effectively during

open-ended programming. In our prior work, we conducted the

first known study to systematically analyze the types of barriers

students encounter when using code examples during open-ended

programming, using a basic example system (which we refer to as

Prototype-EH in this paper). We found that students encountered

barriers such as not knowing when to use an example (decision

barrier); how to find an example they need (search barrier) and how

to test and experiment with the examples (testing barrier) [31].

How to design code examples to address students’ decision, search,

and testing barriers? In this work, we describe our experience de-

signing, building and deploying Example Helper, a fully remodeled

example support system based on Prototype-EH. Example Helper

supports students’ open-ended programming with a gallery of code

examples. We explored design choices to encourage students’ ex-

ploration and experimentation with code examples. We deployed

Example Helper in an undergraduate CS0 course, with 46 novice

students working on an open-ended programming project in Snap! ,

a block-based programming environment. We analyzed students’

programming log data, project plans, and project submissions. We

Session: Tools SIGCSE ’22, March 3–5, 2022, Providence RI, USA

619

found that students used many different strategies to browse, un-

derstand, experiment with, and integrate code examples into their

code. We also found a significant, positive correlation between the

complexity of a student’s project plans and the number of inte-

grated examples, showing that students who had more ambitious

project goals used more code examples. Finally, we discuss to what

extent Example Helper addressed the decision, search and testing

barriers, and suggest ways to better support students’ example use.

The contributions of this work are:

(1) A synthesis of design choices for building code example sys-

tems to address novices’ learning barriers, and for enabling

effective example use during open-ended programming.

(2) Example Helper, a system that instantiates the principles

for providing code examples to students.

(3) An in-depth analysis of students’ example-usage experience,

as well as the factors that influenced students’ example use,

in an authentic, classroom study.

2 RELATEDWORK

Exploratory Programming Behaviors. The first step towards

learner-centric designs for building tools is to understand students’

own needs and practices [8]. Novices’ open-ended programming

practice is a type of exploratory programming, which is defined as

practices, of which the goal is “open-ended”, and “evolves through

the process of programming”[15]. Different from programming

tasks with a fixed goal or specification, exploratory programming

typically includes many exploration/ experimentation-based activi-

ties, such as bricolage, tinkering, sketching, and hacking [1, 15]. In

a systematic literature review across various types of exploratory

programming practices, Kery and Myers summarized that, differ-

ent from non-explorative, specification-based programming, in ex-

ploratory programming, programmers engage in the following

three key types of distinguishing activities [15]: 1) Opportunistic

programming, where programmers rely heavily on code examples

found from online resources, and often use functionalities such

as copy-and-paste to patch together example code into their pro-

gram [2]. 2) Debugging into existence: After directly copying code

found from online resources, programmers debug those code until

they work correctly in their program [27]; and 3) Rapid prototyping,

where programmers iteratively create, test, and experiment with

a prototype at an early stage of the programming process [11, 16].

Based on these key distinguishing activities, Kery and Myers sug-

gested building tools to support exploration and experimentation

among exploratory programmers [15].

Code Examples. Code example systems for novices mostly sup-

port closed-ended programming tasks [6, 30, 32], such as by giving

students a correct student’s solution when students request help

[32], or by separating program completion into different individual

steps [30]. By using such tools during the completion of closed-

ended tasks, novices were shown to be able to complete tasks faster

[32]. However, few prior works have built tools to specifically tar-

get students’ exploration and experimentation during open-ended

programming.

As a first step, in our prior work, we conducted a pilot study

to explore students’ learning barriers when using a basic example

support system (Prototype-EH). Prototype-EH offers a gallery of

code examples, where students can search and browse through gif

animations of examples in a gallery. By clicking on a gif, the student

can view a non-editable example code window, and can drag to

copy the example code into their code, or to move it aside and

use it as a reference to build their own code [31]. We investigated

students’ learning barriers, and found that students can feel a lack of

motivation to use an example even when they needed help (decision

barrier); they may not know how to explain a needed example, and

instead type in text that returns no found results (search barrier).

Students may also need, but be unable to, test or experiment with an

example immediately when opening it (testing barrier) [31]. These

insights led to the design of Example Helper, which is built to

address these barriers.

3 THE EXAMPLE HELPER SYSTEM

3.1 Interface Design

Figure 1 shows the interface of Example Helper. When a student

needs a new idea, or is stuck on implementing an existing idea,

they can click on a show example button on the top-center of the

screen to open a gallery of code examples (Figure 1-a). Inside the

gallery, they can use the search box or the tags to find an example,

or click through the left-right arrows to browse through the gif-

animations of the output of each code example. When a student

clicks on a code example, it opens up a preview window, which

shows editable code with its output shown on the right side of the

example code. The student can modify the example code, and click

on the button “Run Example Code” or the green flag on the top

right of the example to run and test the example code. If the student

wants to use the example in their own code, they can click on the

“try it” button on the bottom-left of the interface. After clicking on

the “try it” button, the student is prompted with a new “playground”

window (Figure 1-b), where they can continue to edit and test the

example, or use the example code as a reference to implement their

own code. They can also click on the “Copy to my code” button on

the bottom-left of the example, which prompts them to copy the

example code to their own code. The design of Example Helper

is informed by the following two design choices, to address the 3

learning barriers from prior work (Table 1) [31].

1) Incentivise ideation. A key activity exploratory program-

mers engage in is exploring and discovering new ideas in the middle

of programming [15]. In addition to the support for browsing and

viewing gif animations, Example Helper added two more features

to support ideation and exploration of examples: 1) Autocompletion

suggestions when searching for an example. The search mechanism

matches students’ search with words in the name of an example,

and instantly provides autocomplete suggestions, showing poten-

tial items a student needs; 2) Preview window. Whenever a student

clicks on an example, they can view edit, test, and run the example

in the preview window (shown in Figure 1 left). The goal of this

feature is to address decision barriers, as we hypothesized that with

easier access to the preview, students would become more willing

to view and test an example they need.

2) Encourage prototyping. Prior work shows that exploratory

programmers experiment with the code to implement and test new

ideas [11, 15, 16]. Our prior work showed that students needed

immediate, straightforward ways to experiment with the example,

Session: Tools SIGCSE ’22, March 3–5, 2022, Providence RI, USA

620

(a) gallery (b) playground

Figure 1: The Example Helper interface, which includes a selection-based gallery (a) and a playground view (b).

and need multiple modifications and test cycles to use examples

effectively in their code, but was unable to do so efficiently in

Prototype-EH [31]. Example Helper encourages prototyping by

allowing students to experiment and modify the example and view

its immediate output on the right output stage, as a single, stan-

dalone prototype.

3.2 Example Content Design

While the Snap! website [20] offers galleries of complete projects

for students to browse, prior work has shown that novices [14]

and experienced programmers [25] preferred using “snippet-sized”

examples that teach an API usage pattern – how code can be orga-

nized to produce a certain behavior[26, 28]. We designed example

content through a manual process of decomposing steps towards

completing multiple large programming projects.

To do that, we first collected 27 pieces of CS0 students’ project

submissions, where students did open-ended programming in Snap! .

We systematically coded all submissions on dimensions such as

game mechanics, code quality, and project aesthetics, and listed

features that each submission included. We found a total of 37

code usage patterns in student programs, such as moving with the

keyboard, displaying and initializing a variable, and initializing

actor positions. In addition, we found that students’ projects also

avoided using advanced code blocks (e.g., lists and clones) that

may have been helpful for them to create clean and concise code

and their code sometimes included logic errors. Leveraging the

collection of code usage patterns we found from this formative

analysis, we built 18 sample programs to cover all behaviors (one

program can include multiple behaviors), with known game themes

that students may be familiar with (e.g., a quiz app, or an arcade

game).

We next decomposed sample programs into code examples that

represent distinct program behaviors, which should be meaningful

semantically, and can be described in short human language [29].

For example, a space invader game can be decomposed into the

following 6 examples: 1) actor moves with key; 2) creating a spawn

of enemies; 3) enemy moves intermittently; 4) shoot actors; 5) an

enemy explode when hitting bullet; 6) increases score when a bullet

hits an enemy. After constructing those examples, we did multiple

passes to break down long examples into smaller sub-components,

merged examples that are of similar functionalities, and filtered

out examples that include a large number of code blocks and could

not break down into sub-components. This creates a total of 31

examples.

4 METHODS

We conducted a student study to understand how students used

the Example Helper in a real-world classroom environment. To

generate a comprehensive, in-depth understanding of students’

experience, we used the following three research questions, each

with increasing specificity, to guide our study and analysis.

• RQ1: How did students use examples? We aim to identify

the types of behaviors and strategies students engaged with

when using code examples.

• RQ2: What types of students used examples? We aim to

look at student-specific factors that may influence students’

example use.

• RQ3: To what extent did the new features introduced by

Example Helper address students’ learning barriers? We

used data collected from the study to qualitatively evaluate

whether the specific features we added are useful in helping

students overcome barriers.

4.1 Participants & Procedure

We conducted our study in an undergraduate CS0 classroom, among

46 non-CS-major novice students, in a research university in South-

east US. The course was held remotely during the COVID-19 pan-

demic. We did not collect students’ demographic information. The

study happened during the second month of the students’ program-

ming course, and includes the following procedure:

Session: Tools SIGCSE ’22, March 3–5, 2022, Providence RI, USA

621

Barrier Definition Prototype-EH Example Helper Design choice

Search

Barrier

Students’ typed queries some-

times did not return search results.

No query recommendations. Provides immediate search results

and autocomplete suggestions.

Incentivise

Ideation

Decision

Barrier

Students are reluctant to open

an example even when stuck and

need help.

No preview window. Allows previewing and testing the

example in the browsing interface.

Testing

Barrier

Students need quick, iterative ex-

perimentations with the example.

No interactive output. Does not

support testing/experimentation

inside the example window.

Allows running, modifying, and

viewing immediate output inside

the example window.

Encourage

Prototyping

Table 1: Example Helper design targets to address the search, decision, testing, and modification barriers students encounter

when using code examples during open-ended programming.

Pre-test. Before the study, students completed a pre-test, which

tested students’ knowledge on concepts they learned in the first

month before the study: variables, lists, loops, and Snap! APIs.

Project pitch.To guide students towards designing a free-choice,

open-ended project, the instructor introduced students to the en-

gineering design process [10]. They were asked to design their

projects to solve a real-world problem with creative ideas, and to

publish a project pitch in the online class discussion platform, which

allows for follow-up discussions of each pitch.

Pair planning and programming. After the project pitches

and follow-up discussions, students had the choice to form a two-

person team on a project idea that theywere both interested in. They

could also choose to work independently. This led to 36 student

groups, among which, 10 were pairs and 26 were students who

worked independently1. After forming groups, students started

with a week of planning in the PlanIT digital planning system

[19], where they listed the features they wanted to complete in

their project (e.g., “once the snake crashes into itself the game is

over”), as well as a project description, and then worked on their

projects for two weeks. To allow collaborative programming, we

instrumented the Snap! interface with a “save/load” button, on

which students could click to save/load their/their pair’s project.

We encouraged pair programming, as prior work has shown that

students achieved significantly higher performance in pair projects

when creating open-ended projects [7].

4.2 Data & Analysis

We conducted the following three types of data collection & analysis

to investigate our research questions:

Interaction with code examples. Example Helper logs all

students’ interaction data with the system, as well as their code

snapshots at every individual timestamp. To investigate RQ1 and

RQ3 on students’ experience using Example Helper, we conducted

a qualitative coding of the log data to generate patterns of interac-

tion behaviors students engaged in when using examples [4]. To

begin with, three researchers manually inspected students’ logs

from 16 example requests2 on one randomly-selected student group,

to describe actions students take while using the example, creating

3 note documents on example-related activities, such as running the

example code or modifying the code in the playground. Next, one

1We use the term “group” to refer to single-student or pairs, who worked on a single
project
2An example request includes all log data when a student opened, tested, closed or
used an example.

researcher developed an initial code book, which includes a list of

example interaction events that took place, with definitions. Based

on the code book, two researchers coded all students’ log data to

confirm and collect counts on those events. They first each did inde-

pendent coding on 10% of the data based on the initial list of events,

achieving an inter-rater agreement of 82.8%. They next discussed

to resolve conflicts and refined the code book, achieving a final

inter-rater agreement of 100%. Based on the new refined definition,

the second researcher conducted the rest of the log analysis. At

the end of the log analysis, the two researchers then inspected the

events, merged events that describe similar usage behaviors (e.g.,

running example in the preview and running in the playground),

and grouping codes into themes. This produced 3 high-level themes

and 8 example-usage events. We present them in Section 5.1.

Pretest, planned & completed features. To investigate RQ2,

we hypothesized that students’ programming knowledge, or the

complexity of their plans may be related to students’ example use.

Therefore, we collected students’ pre-test scores as an indicator

of students’ programming prior knowledge. We also collected stu-

dents’ planning data by collecting the list of features they planned

in the digital planning system [19]. Some students included ex-

tra features in the project description text field. For those student

groups, we added from the project description each sentence that

describes an extra planned feature into the planned feature list. We

used the number of features students included in their plans to

indicate the complexity of their plans, and rated students’ project

submissions based on the number of planned features students

ended up completing in their projects. If a student slightly changed

a feature’s implementation (e.g., by changing variable names), we

also marked those features as completed.

Example integration. To understand the outcome of using

examples, for each example a group has requested, we also inspected

the corresponding log data to check whether the example was

successfully integrated to a student’s code. We define “integration”

as when a student used an example in their projects and kept it in

their projects for submissions. To inspect how students modified the

examples during integration, two researchers collectively rated the

level of modifications students used when integrating an example

to their project, based on the following three different levels of

adaptations: 1) full copy, where students copied the entire example

with no modifications; 2) slight modification, where students only

modified the examples slightly, such as changing variable names

and initialization logic. 3) structural modification, where students

made bigger changes to the events, either deleting many blocks

Session: Tools SIGCSE ’22, March 3–5, 2022, Providence RI, USA

622

they did not need, or modifying many blocks to use them in their

projects. We next rated students’ integrated examples according to

the level of modifications, and present the result in Section 5.3.

5 RESULTS & DISCUSSION

5.1 RQ1: How did students use examples?

Our analysis revealed 3 high-level themes of students’ example

interaction behaviors: experimentation, integration, and other gen-

eral example usage behaviors. General example usage behaviors

described generic example usage events, including opening an ex-

ample (14 students), clicking on the “try it” button to open play-

ground (7 students), and opening documentation to learn unfamiliar

code blocks in an example (4 students). This shows that some stu-

dents could not understand code blocks in the example, but used

the documentations to learn instead. We next present students’

experimentation and integration behaviors when using examples:

5.1.1 Experimentation behaviors. Experimentation described how

students test, tinker, or modify the example inside the preview

or playground window. We found that among the 14 groups who

opened an example, most groups (85%, 12/14) tested the example

code in the example window, and over half of the groups (57%,

8/14) modified the example inside the preview or playground win-

dow to test. This shows that many students made use of from the

“immediate test and experimentation” features.

5.1.2 Integration behaviors. Integration behavior describes how

students applied and used the example in their workspace. Our log

analysis found three key integration behaviors: using the example

as a reference and building code themselves (reference; 14%, 2/14);

clicking on the “copy to my code” button to copy code directly

(copy; 50%, 7/14); or closing the example and then implementing

the example code on their own (re-implement; 64%, 9/14).

5.1.3 Use cases. We illustrate below how students used the ex-

perimentation and integration strategies to understand and reuse

an example. We demonstrate how three different students used

the “Move when the key is pressed” (keymove) example. Keymove

demonstrates how tomove actors in response to a user’s key presses.

The example code uses a forever loop to listen to user inputs (i.e.,

left and right keys) and move the actor position accordingly.

Copy-run-modify. After failing to implement the example

themselves, Bo 3 copied the example directly to their code by click-

ing on the “copy to my code” button. They then ran the example

code 4 times and modified the example by adding up and down

movement on their respective keys. The student ran their code four

more times to test the added behavior.

Run-understand-reference. Mo already had incomplete code

for a keymove behavior before looking for examples. They browsed

several examples and then opened keymove. After running the ex-

ample several times in the gallery, they then opened the playground.

Instead of copying the code directly, they used the example code

as a reference and built the example one block at a time in their

workspace.

Run-close-reimplement. Jo requested the keymove example,

ran it once, then closed the example. They then re-implemented a

3A group’s pseudonym

modified version of the example which allowed users to use either

the up arrow or the w key and controlled the sprite’s direction

rather than position.

5.1.4 Discussion. Our use case shows three different types of oppor-

tunistic programming strategies, summarized by prior work [2, 15].

Among them, Copy-run-modify is similar to the debugging into ex-

istence behavior [15, 27], where students engaged in iterative test

and modification to update an existing program. This shows the

potential for the Example Helper to address the testing barriers

encountered by students from our prior work [31].

5.2 RQ2: Who used examples?

We found that only 22% (8/36) students integrated at least one

example into their project. Many (61.1%, 22/36) did not view any

examples. Therefore, we investigate what types of students were

more likely to use Example Helper to integrate examples into their

projects. We hypothesized that students’ programming knowledge,

or the complexity of their plans would affect their example use,

and conducted a Spearman’s rank correlation test to investigate the

relationship between students’ pretest scores, their planned events,

and their example use.

Is programming knowledge predictive of successful exam-

ple use? We found no observable correlation between students’

pretest scores and their number of integrated examples (𝑟 = −0.07,
𝑝 = 0.71). This indicates that both low and high-performing stu-

dents integrated examples into their project, and that a student’s

previous programming knowledge does not predict whether a student

will successfully integrate examples or not.

Is project planning predictive of successful example use?

We found a significant, moderate correlation between students’

number of planned features and their number of integrated exam-

ples (𝑟 = 0.40, 𝑝 = 0.02). This shows that students who make more

ambitious plans integrated more examples into their projects.

In addition, we also found a significant, moderate correlation

between the number of completed planned events with the number

of integrated examples (𝑟 = 0.44, 𝑝 = 0.01). The number of com-

pleted events, on the other hand, is also strongly correlated with

the number of planned features (𝑟 = 0.65, 𝑝 < 0.001). Because all
three numbers (number of planned features, number of integrated

examples, and number of completed features) were significantly

correlated, we are unable to infer causal relationships, but can only

hypothesize that the students who made more ambitious plans in-

tegrated more examples, and (perhaps as a result) also completed

more complex projects. None of these three variables, on the other

hand, had a significant correlation with students’ pre-test scores,

showing that pre-test scores likely didn’t affect how well students

make plans and build their projects.

Discussion. Unlike prior work, which found that students with

lower prior knowledge may request more code examples during

closed-ended programming [30], our results on students’ open-

ended programming shows that students’ prior knowledge was

unrelated to whether they can successfully integrate examples.

However, the complexity of students’ plans – which shows how

invested students are in their projects – does have a positive as-

sociation with how many examples students end up integrating

Session: Tools SIGCSE ’22, March 3–5, 2022, Providence RI, USA

623

into their projects. This suggests that in future work, we may help

students ideate more features for their project in the planning phase

(e.g., through detailed instructions or adaptive support during plan-

ning), whichmay lead to more example use, and potentially towards

making better projects.

5.3 RQ3: To what extent did our design choices
address students’ learning barriers?

We next investigate whether the new features we included in Ex-

ample Helper were able to address students’ decision, search, and

testing barriers, found in our prior work [31]. To better interpret

results, we use our prior work [31] as a baseline for reference. Al-

though this work and our prior work happened in the same CS0

course with the same curriculum, the two studies happened in dif-

ferent semesters with different instructors. Our analysis, therefore,

does not aim to provide strong claims on the benefits of the system

(i.e., as in a quasi-experimental comparison), but rather to inform

hypotheses on how our design choices may have addressed the

learning barriers.

Search barrier. We found a total of 34 search queries across

students. 85.2% (29/34) returned results, as auto-complete sugges-

tions showed students search findings when typing, and prompted

students to use queries that returned results. This is about twice

the percentage of student search queries that returned results from

Prototype-EH [31], showing that providing students with auto-

complete suggestions during searching has the potential to address

students’ search barriers.

Decision barrier. The Example Helper used a preview window

for students to browse and test the interface. With this feature, we

found that students who used Example Helper opened the gallery

an average of 16.8 (286/17) times4, which is two times higher than

the average of 5.67 times from Prototype-EH. However, about half

of the students also did not click on the “show example” button

at all, a barrier Example Helper did not directly address. This

shows that the preview window only addressed to some extent the

decision barriers among those students who opened the example

gallery at least once.

Testing barrier. Section 5.1 shows that students actively inter-

leave experimentation behaviors such as running the example, and

modifying to test different aspects of the example when reading

and integrating code examples into their code. While none of these

experimentation behaviors were supported by Prototype-EH, the

high percentage of students who ran (85%) and modified (57%) ex-

amples suggests that the editable example windows in Example

Helper addressed students’ testing barriers to some extent.

Outcomes. We also inspected students’ integrated examples

(Section 4.2) to check whether students blindly copied examples. We

found that among the 27 examples that are integrated by 8 student

groups, only 7.4% (2/27) were completely copied with no modifica-

tions (full copy); in about half (55.6%, 15/27) of the copied examples,

students only modified slightly; for the rest (37%, 8/27), students

did structural modifications (defined in Section 4.2), making big-

ger changes to the example. This shows that Example Helper

encouraged students to meaningfully integrate examples into their

4Among the 36 student groups, 17 have clicked on the “show example” button to open
the gallery and use the Example Helper.

own code by making necessary modifications – not copying them

blindly.

Discussion. Our results show the autocomplete searches, as well

as the accessible, editable preview and playground features lead

to relatively low incidents of search, decision, and testing barriers.

This shows that the design choices we made have the potential

to be successful in addressing students’ learning barriers and lead

to effective example use. Since Example Helper is built as an ex-

tension in Snap! , instructors can directly use Example Helper in

introductory programming classrooms, as support features that

students can use to request examples.

6 LIMITATIONS & CONCLUSION

Limitation: Students may still encounter search barriers. In

our prior work, when students did not receive query recommenda-

tions from Prototype-EH, we found that about half of the searched

queries were theme/asset-based, such as “people”, “airplane” and

“dining room” using Prototype-EH [31]. However, because Ex-

ample Helper directed students to complete phrases that would

only return results, students did not end up making search queries

that were theme/asset-based. This shows that auto-complete sug-

gestions may have limited students’ choices to express ideas. In

addition, the total amount of 31 examples limited the students’ abil-

ity to find their own, personalized examples. For future work, we

should support more diverse ways of searching, such as inferring

the possible behavior or interactions students may need through

their descriptions of game themes and assets.

Limitation: Some students still encountered decision bar-

riers. Our work found that about half of students did not use the

Example Helper system at all, showing that they may still encoun-

tered decision barriers. Prior work suggests that students may avoid

seeking help for many reasons, such as viewing requesting help

as a threat to their independence and competence [3], or forget-

ting about the choice to ask for help [24]. The design choices we

made for Example Helper assumed that students would open the

interface at least once to use and benefit from its features, but none

supported those who never used the system at all. In future work,

to encourage first-time usage, we may remind students to read or

learn relevant examples earlier in the programming process (e.g.,

before or just when they started programming).

Conclusion. In this work, we presented our design process for

building Example Helper, a system that supports students with

gallery-based code examples during open-ended programming in

Snap! . We found that Example Helper supports a variety of explo-

ration and integration strategies, and that students’ engagement

with the planning process significantly affected students’ use of

code examples.We found suggestive evidence that Example Helper

addressed search, decision, and testing barriers students encounter

when using code examples in open-ended programming, pointing

to insights that designers can take to build code examples to support

effective example use.

7 ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 1917885.

Session: Tools SIGCSE ’22, March 3–5, 2022, Providence RI, USA

624

REFERENCES
[1] Ilias Bergström and Alan F Blackwell. The practices of programming. In 2016

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
pages 190–198. IEEE, 2016.

[2] Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer.
Two studies of opportunistic programming: interleaving web foraging, learning,
and writing code. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1589–1598, 2009.

[3] Ruth Butler. Determinants of help seeking: Relations between perceived reasons
for classroom help-avoidance and help-seeking behaviors in an experimental
context. Journal of Educational Psychology, 90(4):630, 1998.

[4] Gao Gao, Finn Voichick, Michelle Ichinco, and Caitlin Kelleher. Exploring pro-
grammers’ API learning processes: Collecting web resources as external memory.
In Michael Homer, Felienne Hermans, Steven L. Tanimoto, and Craig Anslow,
editors, IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2020, Dunedin, New Zealand, August 10-14, 2020, pages 1–10. IEEE,
2020. doi: 10.1109/VL/HCC50065.2020.9127274. URL https://doi.org/10.1109/
VL/HCC50065.2020.9127274.

[5] Dan Garcia, Brian Harvey, and Tiffany Barnes. The Beauty and Joy of Computing.
ACM Inroads, 6(4):71–79, 2015.

[6] Sebastian Gross, Bassam Mokbel, Benjamin Paassen, Barbara Hammer, and Niels
Pinkwart. Example-based feedback provision using structured solution spaces.
International Journal of Learning Technology 10, 9(3):248–280, 2014.

[7] Shuchi Grover, Satabdi Basu, and Patricia Schank. What we can learn about stu-
dent learning from open-ended programming projects in middle school computer
science. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, SIGCSE ’18, page 999–1004, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450351034. doi: 10.1145/3159450.3159522. URL
https://doi.org/10.1145/3159450.3159522.

[8] Mark Guzdial. Learner-centered design of computing education: Research on
computing for everyone. Synthesis Lectures on Human-Centered Informatics, 8(6):
1–165, 2015.

[9] Mark Guzdial and Andrea Forte. Design process for a non-majors computing
course. ACM SIGCSE Bulletin, 37(1):361–365, 2005.

[10] Yousef Haik, Sangarappillai Sivaloganathan, and Tamer Shahin. Engineering
design process. Nelson Education, 2018.

[11] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer.
Design as exploration: creating interface alternatives through parallel authoring
and runtime tuning. In Proceedings of the 21st annual ACM symposium on User
interface software and technology, pages 91–100, 2008.

[12] Carol Hulls, Chris Rennick, Sanjeev Bedi, Mary Robinson, and William Melek.
The use of an open-ended project to improve the student experience in first year
programming. Proceedings of the Canadian Engineering Education Association
(CEEA), 2015.

[13] Michelle Ichinco and Caitlin Kelleher. Exploring novice programmer example
use. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 63–71. IEEE, 2015.

[14] Michelle Ichinco, Wint Yee Hnin, and Caitlin L Kelleher. Suggesting api usage
to novice programmers with the example guru. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, pages 1105–1117, 2017.

[15] Mary Beth Kery and Brad A Myers. Exploring exploratory programming. In 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
pages 25–29. IEEE, 2017.

[16] Mary Beth Kery, Amber Horvath, and Brad A Myers. Variolite: Supporting
exploratory programming by data scientists. In CHI, volume 10, pages 3025453–
3025626, 2017.

[17] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto

Seppälä, et al. A multi-national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin, 36(4):119–150, 2004.

[18] Steven McGee, Randi McGee-Tekula, Jennifer Duck, Catherine McGee, Lucia
Dettori, Ronald I. Greenberg, Eric Snow, Daisy Rutstein, Dale Reed, Brenda Wilk-
erson, Don Yanek, Andrew M. Rasmussen, and Dennis Brylow. Equal outcomes
4 all: A study of student learning in ecs. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, SIGCSE ’18, page 50–55, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 9781450351034. doi:
10.1145/3159450.3159529. URL https://doi.org/10.1145/3159450.3159529.

[19] Alexandra Milliken, Wengran Wang, Veronica Cateté, Sarah Martin, Neeloy
Gomes, Yihuan Dong, Rachel Harred, Amy Isvik, Tiffany Barnes, Thomas Price,
and Chris Martens. Planit! a new integrated tool to help novices design for
open-ended projects. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education, SIGCSE ’21, page 232–238, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450380621. doi: 10.1145/
3408877.3432552. URL https://doi.org/10.1145/3408877.3432552.

[20] JMoenig and BHarvey. Byob build your own blocks (a/k/a snap!). URL: http://byob.
berkeley. edu/, accessed Aug, 2012.

[21] Seymour Papert. Mindstorms: Computers, children, and powerful ideas. NY:
Basic Books, page 255, 1980.

[22] Chris Parnin and Christoph Treude. Measuring api documentation on the web. In
Proceedings of the 2nd international workshop on Web 2.0 for software engineering,
pages 25–30, 2011.

[23] Kylie A Peppler and Yasmin B Kafai. From supergoo to scratch: Exploring creative
digital media production in informal learning. Learning, media and technology,
32(2):149–166, 2007.

[24] Thomas W Price, Zhongxiu Liu, Veronica Cateté, and Tiffany Barnes. Factors
influencing students’ help-seeking behavior while programming with human
and computer tutors. In Proceedings of the 2017 ACM Conference on International
Computing Education Research, pages 127–135. ACM, 2017.

[25] Martin P Robillard. What makes apis hard to learn? answers from developers.
IEEE software, 26(6):27–34, 2009.

[26] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. Automated api property inference techniques. IEEE Transactions on
Software Engineering, 39(5):613–637, 2012.

[27] Mary Beth Rosson and John M Carroll. Active programming strategies in reuse.
In European Conference on Object-Oriented Programming, pages 4–20. Springer,
1993.

[28] Kyle Thayer, Sarah E Chasins, and Amy J Ko. A theory of robust api knowledge.
ACM Transactions on Computing Education (TOCE), 21(1):1–32, 2021.

[29] Wengran Wang, Yudong Rao, Yang Shi, Alexandra Milliken, Chris Martens,
Tiffany Barnes, and ThomasW. Price. Comparing feature engineering approaches
to predict complex programming behaviors. Educational DataMining in Computer
Science Education (CSEDM) Workshop @ EDM’20, 2020.

[30] Wengran Wang, Yudong Rao, Rui Zhi, Samiha Marwan, Ge Gao, and Thomas
Price. The step tutor: Supporting students through step-by-step example-based
feedback. ITiCSE’20 - Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education, To be published, pages 391–397, 2020.

[31] Wengran Wang, Archit Kwatra, James Skripchuk, Neeloy Gomes, Alexandra
Milliken, Chris Martens, Tiffany Barnes, and Thomas Price. Novices’ learning
barriers when using code examples in open-ended programming. In Proceedings
of the 26th ACM Conference on Innovation and Technology in Computer Science
Education V. 1, ITiCSE ’21, pages 394–400, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450382144. doi: 10.1145/3430665.3456370.
URL https://doi.org/10.1145/3430665.3456370.

[32] Rui Zhi, Thomas W Price, Samiha Marwan, Alexandra Milliken, Tiffany Barnes,
and Min Chi. Exploring the impact of worked examples in a novice programming
environment. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, pages 98–104. ACM, 2019.

Session: Tools SIGCSE ’22, March 3–5, 2022, Providence RI, USA

625

