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High Resolution, Deep Imaging Using Confocal
Time-of-Flight Diffuse Optical Tomography
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Abstract—Light scattering by tissue severely limits how deep beneath the surface one can image, and the spatial resolution one can
obtain from these images. Diffuse optical tomography (DOT) is one of the most powerful techniques for imaging deep within tissue —
well beyond the conventional ~10-15 mean scattering lengths tolerated by ballistic imaging techniques such as confocal and two-
photon microscopy. Unfortunately, existing DOT systems are limited, achieving only centimeter-scale resolution. Furthermore, they
suffer from slow acquisition times and slow reconstruction speeds making real-time imaging infeasible. We show that time-of-flight
diffuse optical tomography (ToF-DOT) and its confocal variant (CToF-DOT), by exploiting the photon travel time information, allow us to
achieve millimeter spatial resolution in the highly scattered diffusion regime ( > 50 mean free paths). In addition, we demonstrate two
additional innovations: focusing on confocal measurements, and multiplexing the illumination sources allow us to significantly reduce
the measurement acquisition time. Finally, we rely on a novel convolutional approximation that allows us to develop a fast
reconstruction algorithm, achieving a 100x speedup in reconstruction time compared to traditional DOT reconstruction techniques.
Together, we believe that these technical advances serve as the first step towards real-time, millimeter resolution, deep tissue imaging

using DOT.

Index Terms—Time-of-flight imaging, diffuse optical tomography, confocal, time binning, fluorescence imaging

1 INTRODUCTION

LIGHT scattering by tissue is the primary challenge limit-
ing our ability to exploit non-ionizing, optical radiation
in the 400-1000 nm wavelength range, to perform high-reso-
lution structural or functional imaging, deep inside the
human body. Most existing techniques, including confocal
microscopy, two-photon (2P) microscopy, and optical
coherence tomography (OCT), exploit only the ballistic (or
single-scattered) photons and can only be used to image
within the ballistic regime (<15 mean scattering lengths
deep) [1], [2]. This limits imaging to approximately the top
1-2 millimeters of tissue surface (as mean scattering lengths
in tissue is ~ 50 — 150 um range [1], [3]) as seen in Fig. 1a.
Many applications (both clinical and scientific) require
imaging at much higher depths of penetration than can be
achieved by remaining within the ballistic regime.

Diffuse optical tomography (DOT) [4] has emerged as one of
the most promising techniques (another being photo-acoustic
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tomography [5]) for high-resolution imaging deep within tis-
sue, in the diffusion regime (i.e., > 50 mean scattering lengths).
The idea in DOT is that even in the diffusive regime, where
light paths are highly random, there are statistically predictable
structures in its distribution in space, and this regularity can be
exploited if sufficient diversity of measurements are obtained.
DOT uses an array of sources and detectors placed over the
imaging volume — and the light transport data acquired
between each source-detector pair provides the required mea-
surement diversity.

1.1 Challenges, Key Ideas, Impacts, and Limitations
Challenges. In spite of its promise, DOT systems today remain
severely limited. First, existing DOT systems provide low spa-
tial resolution. Most are limited to cm-scale spatial resolutions
because of a combination of factors including lack of sufficient
measurement diversity, modeling inaccuracies, and low SNR
measurements (Fig. 1b). Second, the sequential nature of DOT
measurement process introduces a trade-off between SNR
and capture time, further limiting resolution (and quality)
when it comes to imaging dynamics. Third, DOT reconstruc-
tion algorithms have to contend with solving large-scale opti-
mization problems with potentially millions of variables and
therefore tend to be quite slow, precluding real-time perfor-
mance. Our goal, in this paper, is to directly address these
limitations.

Key Ideas. Our approach leverages three key ideas.

Key Idea 1 - Increased measurement diversity provided by
transients. The primary cause of reduced spatial resolution
is understood to be the limited measurement diversity.
Increasing the number of source-detector pairs improves
spatial resolution but this tends to saturate beyond a point.
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Fig. 1. Imaging depth and spatial resolution of DOT techniques. (a)
Approximate imaging depth of optical imaging techniques. Ballistic imag-
ing techniques such as OCT, confocal microscopy, and 2P microscopy
cannot image past ~15 mean free paths (MFPs). DOT approaches can
achieve 10s-100s of MFPs (b) Approximate spatial resolution of different
DOT techniques. Our technique is the only method to demonstrate 1
mm spatial resolution.

It becomes essential to enhance the diversity of measure-
ments by adding additional dimensions. Time of travel
between source and detector may be a promising additional
dimension that is significantly beneficial since many of the
surface scattered background photons tend to have a signifi-
cantly shorter travel time than most of the deep penetrating
signal photons that interact with the tissue of interest [6].
We demonstrate that exploiting this additional transient
dimension (by capturing transient histograms between
every source-detector pair), provides a sufficient increase in
measurement diversity to obtain mm spatial resolution
even in the diffusive regime.

Key Idea 2 - Reduced capture time through multiplexed measure-
ments. DOT measurements are typically acquired sequentially
and this establishes a trade-off between capture time and
SNR. We propose that multiplexed acquisition, wherein mul-
tiple light sources are ‘on’ simultaneously, improves mea-
surement SNR. With a reconstruction algorithm that can
de-multiplex these measurements, we show that source mul-
tiplexing can provide a 4x-10x reduction in capture time
compared to traditional sequential DOT.

Key Idea 3 - Real-time reconstruction using a novel convolu-
tional approximation. Traditional DOT reconstruction algo-
rithms are already computationally intensive — and with the
~ 100x increase in measurement dimensionality imposed by
capturing transient information, this burden is severely exac-
erbated precluding any hope for near real-time reconstruction
performance. We propose a novel convolutional approxima-
tion for multiplexed (and non-multiplexed), confocal time-of-
flight diffuse optical tomography and utilize this approxima-
tion to develop a fast, real-time reconstruction algorithm
(which isa 100x-1000x speedup).

Outcomes and Potential Impacts. The primary outcome that
we are able to demonstrate is that we show millimeter spa-
tial resolution in the diffusive regime (>50 mean scattering
lengths). This, in itself, opens up a variety of new clinical
and scientific imaging applications. In particular, we believe
that non-invasive brain imaging (both structural and func-
tional) is a critical application domain. As skull severely
attenuates acoustic waves making through-skull photo-
acoustic tomography difficult [7], DOT already is the pre-
dominant technology for this application. Improving the
achievable spatial resolution will provide us better specific-
ity potentially allowing us to image columnar fields in the
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brain for the first time. The secondary outcome is the first
demonstration of a real-time reconstruction algorithm for
time-of-flight DOT. In addition, we also show that multi-
plexing can significantly reduce capture-time in DOT.
Finally, we develop two different versions of the algorithm
for both fluorescence and absorption imaging and demon-
strate real results for both modes - expanding the potential
scope of applications.

Limitations. All our current demonstrations are in tissue
samples and phantoms (both fluorescence and absorption).
We are actively working towards demonstrating the feasi-
bility in real biological tissue, as we realize that there are
additional challenges such as reduced fluorescence/absorp-
tion contrast, increased biological noise, and motion (espe-
cially when imaging in vivo) that we might need to address
before the technology can reach its promised potential.

Our current prototype is sub-optimal in many respects.
While traditional DOT systems have a wearable form-factor,
our laboratory prototype uses benchtop optics, with a
scanned laser head and a single detector being scanned to
mimic a detector array. While compact systems with a similar
wearable form-factor to existing DOT systems are indeed pos-
sible, this requires fabrication of an array of SPAD detectors
and corresponding laser diodes, with a common shared clock
- something that is beyond the scope of this paper. Since our
benchtop prototype scans a single pixel to emulate a detector
array, the total scan time of our system is increased by a factor
that is proportional to the total number of detectors being
emulated (typically 100x-400x in our results). This along
with scanning inefficiencies mean that the scan time in all our
results is in the several seconds to minutes range, precluding
any ability to show real-world dynamics in our real results.
We are working towards realizing a compact, fabricated, pro-
totype for a wearable, brain imaging system and are hopeful
that we can demonstrate that system in action in about a year.

2 RELATED WORK

Imaging Within the Ballistic Regime. The fraction of photons that
enter a tissue and remains ballistic decreases exponentially
with the thickness of the tissue being imaged. Even after just 3
mean scattering lengths, the fraction of photons that are ballis-
tic become 1 in 20 according to the Beer-Lambert Law [8]. As a
consequence, even at these depths, techniques such as direct
imaging, brightfield imaging, or fluorescence imaging that do
not actively filter out the scattered photons get overwhelmed
by the background from these multiply-scattered photons
reducing the imaging contrast to below the sensor sensitivity
thresholds [1].

Beyond this depth active means of rejecting the multiply-
scattered photons are needed. Confocal microscopy uses a
set of matched pinholes to reject a large fraction of the scat-
tered light, and typically extends imaging to about 6 mean
scattering lengths (1 in 400 photons are ballistic) [9]. Multi-
photon microscopy techniques including 2P microscopy,
rely on the non-linear excitation process to confine fluores-
cent emission, and these techniques may allow imaging to
be performed as deep as 16 mean scattering lengths (1 in
~8.8 million photons are ballistic) [10].

Going beyond this ballistic regime of operation is inher-
ently challenging because of the low fraction of photons
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that remain ballistic. At 20 mean scattering lengths, 1 in
~480 million photons remains ballistic. Going beyond as
you encroach into the diffusive regime (~50 mean scattering
lengths and beyond), techniques that rely exclusively on
ballistic (or single-scattered) photons are completely infeasi-
ble as less than 1in 5.2 x 10*! photons are ballistic.

Beyond the Ballistic Regime. As you move beyond the bal-
listic regime, the fraction of ballistic photons is so small that
relying on them exclusively is insufficient. Therefore, it
becomes imperative, to find ways to model the localization
(even if it is only partial) of the scattered photons and
exploit these scattered photons as well.

Diffuse Optical Tomography (DOT). DOT originated in the
1990s as a way of detecting absorption changes in medical
imaging applications [6]. Traditional DOT systems utilize
an array of near-infrared, continuous-wave (CW) light sour-
ces illuminating the tissue, resulting in multiply scattered
photons that arrive at an array of detectors [4], [11]. Models
of photon propagation physics could then infer local
absorption and scattering properties within the tissue from
the measurements captured by the detectors. Early applica-
tions of DOT included imaging tumors for breast cancer
and monitoring brain bleeds for infants [4], [6]. Transmit-
tance measurements of these geometries provided absorp-
tion information on the whole volume of interest. However,
the adult brain and internal organs must be imaged in
reflection mode due to the strong scattering and absorption
properties, or limited access to the tissue of interest [6]. In
the rest of the paper, we will refer to continuous-wave DOT
as DOT for simplicity.

Recent advances in DOT have been focused on algorith-
mic improvements resulting in higher spatial resolution
[11] and development of wearable devices [12], [13], [14].
The most significant drawback of DOT is depth sensitivity.
For deeper penetration in reflection mode, source and detec-
tor separations must be farther apart, reducing the SNR of
the measurements [11]. Frequency- and time-domain DOT
have been developed to counteract these problems. While
both frequency- and time-domain can capture the same
information, time-domain DOT (TD-DOT) can make meas-
urements faster, albeit with more expensive hardware [15].

ToF-DOT. ToF-DOT (or TD-DOT) uses a high-power,
narrow pulse-width laser and a fast-gated detector to cap-
ture transient light transport data[16], [17]. These transients
contain photon arrival time information for each source-
detector pair, providing an additional dimension of infor-
mation to improve depth sensitivity [16]. The emergence of
single-photon avalanche diodes (SPADs) in recent years
coupled with on-chip time-correlated single photon count-
ing (TCSPC) electronics has allowed for fast-gated, large
dynamic range, ps resolution transient measurements in
reasonable acquisition times, making ToF-DOT a promising
technology to explore [6]. In addition, hardware improve-
ments are making wearable ToF-DOT systems feasible, and
there is some early work towards that direction [18], [19].

Comparison With Confocal Diffuse Tomography [20]. Recently,
Lindell ef al. proposed a confocal diffuse tomography system,
which is a very similar system to CToF-DOT [20]. While the
predominant application of DOT and ToF-DOT has been
deep-tissue imaging (especially breast cancer and through-
skull imaging), their technology focuses on other applications
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such as imaging through thick scatterers, and imaging around
a corner. Similar to CToF-DOT, their work also demonstrated
that a 3D image can be acquired through thick scattering
media. Additionally, both [20] and CToF-DOT apply a linear
forward model. However, there are also several notable dif-
ferences. First, the CToF-DOT forward model assumes the tar-
get features are embedded within a scattering media, while
the forward model in [20] assumes the targets are at some
standoff distance from the scattering media. Second, CToF-
DOT must contend with greater background noise due to the
physical proximity between the target features and the tissue
phantom surface. Third, CToF-DOT can handle multiple
imaging modalities, including absorption or fluorescence tar-
gets, and can be extended to scattering. These differences are
based on the separate application spaces: CToF-DOT for non-
invasive neuroimaging and [20] for LiDAR and NLOS
imaging.

The principal limitation of DOT and ToF-DOT remains
the limited spatial resolution provided by this approach.
Existing DOT and ToF-DOT systems [4], [21], have only
been able to demonstrate cm-scale spatial resolution.

Reconstruction Algorithms. DOT reconstruction approaches
have traditionally focused on iteratively solving approxima-
tions of the Radiative Transfer Equation. Analytical solutions
to the radiative transfer equation only exist for the most sim-
ple examples, and for any scenario approaching real-world
complexity, numerical techniques are the only alternative.
This numerical process for solving the radiative transfer equa-
tion is computationally challenging, resulting in reconstruc-
tion algorithms that take hours to converge [22]. Fortunately,
photon propagation can be reformulated as a linear system
using the Born approximation. Then solving for the optical
properties can just be a linear inverse problem, thereby speed-
ing up reconstruction algorithms [23], [24]. However, these
algorithms still require the storage of an extremely large sensi-
tivity matrix and therefore suffer from increases in the
dimensionality of the measurements. In summary, even the
fast reconstruction techniques such as [25], [26] typically end
up taking several 10s of seconds to minutes per iteration.

This computational challenge is further exacerbated in
ToF-DOT where the inclusion of transient information adds
an additional dimension to the problem. As a result, naive
attempts at high-resolution reconstruction for such ToF-
DOT systems, by directly incorporating time of travel infor-
mation within the existing DOT algorithms, can lead to far
greater reconstruction times as a result of dimensionality.
As a result, there exist no real-time (or near real-time) recon-
struction algorithms for ToF-DOT systems.

Efficiently and accurately estimating optical properties
also persists in inverse rendering in the Computer Vision/
Graphics discipline. [27], [28] developed efficient inverse
scattering methods for inverting the radiative transfer prob-
lem while [29], [30], [31] used differentiable rendering
approaches to resulting in faster light transport simulations.
[32] replaced the forward operator with a trained neural
network for fast and accurate renderings. Inverse rendering
approaches have shown success in atmospheric tomogra-
phy [33], [34] and imaging through fog [35], the latter of
which takes advantage of time-of-flight information to
reconstruct object and object depths. Ultimately, in CToF-
DOT, we took an alternative approach of reducing the size
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Fig. 2. ToF-DOT concept. (a) Photon trajectories for 2 source-detector
pairs. A and B are sources, « and 8 are detectors, and P, Q, R, and S
are voxels of interest. Source-detector pair A-« is more sensitive to P
and Q and source-detector pair B-g is more sensitive to R and S. (b)
Photon arrival times passing through specific voxels associated with
source-detector pair A-a and B-B. Photons passing through voxels
closer to the surface (P and R) tend to arrive earlier than photons pass-
ing through voxels deeper inside (Q and S).

of the Jacobian and applying a convolutional approximation
and found that it allowed us to achieve reasonable memory
and computational efficiency in our application.

3 ToF-DOT

A traditional DOT system consists of an array of light sour-
ces and an array of detectors placed on top of the imaging
volume. Shown in Fig. 2a is a statistical distribution of light
transport paths between two different source-detector pairs.
Intuitively, each of these intensity light transport measure-
ments can be thought of containing weighted information
about the attenuation (absorption) or emission (fluores-
cence) from the voxels in the imaging volume. The weights
themselves can be intuitively thought of as being approxi-
mately proportional to the likelihood that light paths for
that source-detector pair traverse through that particular
voxel. In the example shown in Fig. 2a, intensity light trans-
port measurement between source A and detector « con-
tains more information about voxels P and (), while
intensity light transport measurement between source B
and detector B contains more information about voxels R
and S.

In ToF-DOT, the light sources are typically ultra-short
pulsed sources, and the detectors measure transient (or
time of travel) information in addition to the intensity.
Thus, for each source-detector pair, the transient light
transport information is recorded. Shown in Fig. 2b, is a
statistical distribution of light transport paths between a
source-detector pair, where the time of travel of these
paths are also color-coded. Clearly, the original intuition
behind DOT holds true. But in addition to that, we notice
that photons with different travel times pass through very
different locations within the imaging volume, providing
us additional information about spatial localization. In the
example shown in Fig. 2b, transient light transport mea-
surement with a travel time of ~ 11, contains more infor-
mation about voxel R, while transient light transport
measurement with a travel time of =~ 13, contains more
information about voxel S.

The primary advantage of ToF-DOT is that this addi-
tional transient information has the potential to significantly
improve spatial resolution in the reconstructions.

2209

Jacobian: Measurements (m)
am, "
Photon Count Jpg = F) Spatial Map of e —~
Timebin k Hq absorbers (p) Photon Count
Time {ps) —
Source i Detector j J IM l - "
-

o i t Time (ps)

ﬁ 5D Light

Scattering media Transpnrt

Transients

Fig. 3. Overview of DOT forward model. In the linear forward model, the
target scene (1) is mapped to a set of measurements (m) by the Jaco-
bian matrix (.J).

3.1 Transient Light Transport: Forward Model
The propagation of light though a scattering media is well-
modeled using the radiative transfer equation (RTE) [8]

8L(T7 > t)/C =-5- VL(F: 37 t) - :utL(Fv <§7 t)+
at )
. / L7 &, ) P(8 - 8)dQ + S(7, 5,1).
JAr

Where L(7,3§,t) is the radiance at a particular position 7,
solid angle §, and time ¢; P(-) is the phase function, which
describes the scattering angle; S(-) is the source term; and
1, is the extinction coefficient.

To create a more computationally tractable problem, we
wish to linearize the RTE. This linearization assumes that
the absorbers affect the path of only a few photons, creating
a negligible change in the photon distribution outside of the
absorber region. This superposition assumption, which is
essential to the linearization, only breaks down in the pres-
ence of large absorbers altering the photon path distribu-
tion. A more rigorous derivation of this can be found in
references [36], [37]. As a result, the RTE can be reformu-
lated as a linear equation by considering the differential
measurements [37]

m=Ju, (2

where 1 represents the spatially varying material properties
within the imaging volume, m is the transient light trans-
port measurements acquired by ToF-DOT, and J is the Jaco-
bian or sensitivity matrix. Going back to our intuition, the
Jacobian, J, nominally represents the weights of each voxel
in the volume to each measurement. An overview of this
linear model is shown in Fig. 3.

Human tissue and most other biological tissues (includ-
ing the skull for example) are predominately scattering and
have little absorption. So it is reasonable to assume that
native tissue absorption can be ignored. In addition, tissue
optical properties are fairly uniform, with some significant
heterogeneities that correspond to physiologically impor-
tant variations. So, these properties are modeled as the sum-
mation of a spatially homogeneous background material
coefficient (1) and a foreground, spatially varying material
coefficient that is typically the imaging property of interest
(). In Equation (2), u represents the spatial distribution of
these heterogeneities in the scattering media. These hetero-
geneities can be fluorophores (emission signal) or optical
absorbers (absorption). In a biological context, they can
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represent features of interest such as tumors, vasculature, or
regions of biological activity.

If the imaging volume is discretized into Nyzes =
L x W x H voxels, then u is a vector of length N5, that
represents the tissue heterogeneities. Let us assume a ToF-
DOT system consists of N, sources of light, /N; detectors,
wherein each detector measures a transient that is then
binned into one of N, time bins. In this case, the set of all
measurements can be represented as a vector m of length
Nieas = Ny X Ng x Ny. The two quantities © and m are
related by the Jacobian, J, which is a matrix of dimension
Nineas % Nyogels, Where J,, = %;"—L;’ Each entry of the Jacobian,
Jp, defines the sensitivity of measurement m, to a corre-
sponding heterogeneity s,

3.2 Computation of the Sensitivity Matrix

In order to leverage the linear approximation in Equa-
tion (2), one needs to first obtain an accurate estimate of the
sensitivity matrix J. In practice, there are two potential
ways to estimate the sensitivity matrix: (a) fast analytical
approximation, or (b) accurate but slow Monte-Carlo simu-
lation. Note that in either case, the computation of the sensi-
tivity matrix is a one-time process for any application and
need not be real-time.

In cases for which the Jacobian becomes too large or com-
putationally expensive to compute, certain inverse render-
ing applications rely on gradient computations and skip the
computation of the Jacobian [28], [30], [33], [34]. One exam-
ple of this adjoint radiative transfer methods. However, in
our approach, we opted to compute the Jacobian as we are
not limited in Jacobian compute time.

Analytical Approximation. Using the diffusion approxima-
tion, we can derive a closed-form approximation to the RTE
[8], [11], [38]. According to [11], we can derive this equation
using the Born Approximation

miini) = [ (cbo(ﬁ, R)R( —a,)>u<mda,. @

Where 7, 7'y, 7, are the positions of source s, detector d, and
voxel v respectively; m(7y, 7s) is the measurement as a func-
tion of source-detector position; (7,) is the spatial distribu-
tion of optical properties, ie., the image of interest;
(7, — 75) and R(7; — 7,) are the fluence rate and diffuse

reflectance terms. This product is the Jacobian
J (P, Tg, 7y) = ©o(7y — ) R(Tq — ). 4)

Equation (4) can be adapted to time of flight measurements
by calculating the time-domain convolution of the Green’s
function and reflectance rather than the direct product as
shown by Hyde et al. [38]

J(Fsy Fda F’U» t) = (I)O(Fu - 7_"57 t)tR(T_"d - 7_"'1«" t)‘ (5)

In the time-domain, Equation (3) becomes

m(f’d,f;,t):/J(Fs,FmFl,,t)u(ﬁ.)dﬁ,. (6)

v

Because this expression only requires a 1D convolution,
it can be used to quickly calculate the Jacobian matrix.
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However, this expression can only be applied to simple
scene geometries, such as a single homogeneous slab, and
assumes that the scene is highly scattering [8]. As a conse-
quence, the approximation is not appropriate in many situa-
tions such as (a) near the surface, where we are not yet in
the diffuse regime, (b) inhomogeneous tissue, or (c) layered
tissue that contain low-scattering regions (such as skull,
cerebrospinal fluid, and brain) [39].

Monte Carlo (MC) Simulations of the Forward Model. While
the closed-form expressions can be calculated efficiently,
they can be limited by the prior assumptions of a highly
scattering media and slab geometry. Since our long-term
goal is to tackle brain imaging, we primarily use MC simu-
lations for determining the sensitivity matrix. This tech-
nique is widely regarded as the “gold standard” for
simulating light propagation [37], [40]. We apply MC to
obtain the Jacobian matrix by estimating solutions to the
RTE. In MC, simulated photons are propagated through the
imaging volume. Each photon follows a random walk,
which is sampled from a distribution that is parameterized
by the optical parameters of the scene [40]. Finally, the
aggregate information from many photon samples can be
used to estimate the sensitivity matrix. More details on this
procedure can be found in Yao et al. [37].

3.3 Reconstruction Algorithm

The goal of DOT imaging systems is to produce an image
reconstruction of the spatial distribution of optical parame-
ters, typically the absorption coefficient, represented by ,.
This image reconstruction is done using the following opti-
mization setup:

ming|lm — f(r)| + A(w). )

Where, u is the spatial distribution of optical parameters; m
is the set of collected measurements, which describes the
intensity of light incident on the detectors; f(-) is the for-
ward model, which calculates the measured intensity as a
function of the optical parameters of the scene and A(u) is
an appropriately chosen regularization term.

Using the linear model, the image reconstruction prob-
lem can be formulated as a linear inverse problem

i :nbin||m—J,u,||2+)\||l/«||17 ®)

where ||m — Jul|, is the data fidelity term, and || ||; is a reg-
ularization term that enforces sparsity in the heterogeneity
of the optical properties within the imaging volume, and A
is a hyperparameter to tune the sparsity level. This optimi-
zation problem is known to be convex and there are a host
of well-understood algorithms that can be used to solve it.
We use the fast iterative shrinkage thresholding algorithm
(FISTA) [41] to solve this optimization since it is fast, has
reasonable memory complexity, and has been shown to be
accurate (and reaches the global optimal solution).

Even with the use of a fast, iterative algorithm and an
implementation on a multi-CPU, multi-core computational
system, the algorithm remains too slow to enable real-time
applications. As an example, if we consider the reconstruc-
tion of a 30mm x 30mm x 20mm volume at 1 mm voxel
size, using a ToF-DOT system that consists of 100 sources
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and 100 detectors and each transient being binned into 50
different time bins, then the corresponding sensitivity
matrix J is of size 500k x 18k and each FISTA iteration on
an Intel Xeon machine, with 6 cores takes about 6.3 seconds.
Accurate reconstruction may require hundreds of iterations
for convergence, meaning that total reconstruction time
could be on the order of an hour.

4 CONFOCALITY AND MULTIPLEXING IN TOF-DOT

The computational complexity of current generation ToF-
DOT reconstruction algorithms precludes near real-time
operation. A careful study of the computational complexity
provides two potential avenues that might facilitate signifi-
cant improvements in computational speed.

Measurement Selection. The computational complexity of
solving large-scale linear inverse problems scales between
quadratic and cubic in the problem size, based on the kind
of algorithms used. This means that, in practice, while the
10x-100x increased measurements afforded by ToF-DOT
significantly improve the spatial resolution of the recon-
struction, it also slows down the reconstruction time by sev-
eral orders of magnitude compared to traditional DOT
algorithms. One way to combat this is measurement selec-
tion, wherein only a select subset of measurements is used
in the reconstruction. To maintain the resolution advantages
provided by ToF-DOT, one has to carefully select the meas-
urements so as to ensure that the maximally useful (high
SNR, high information gain) measurements are retained.

Faster Forward Models. The key computational step in
almost all iterative algorithms (including FISTA) that are
intended to solve the optimization problem in Equation (7) is
the repeated application of the forward operator (or its conju-
gate or transpose). In the case of ToF-DOT, this amounts to a
matrix multiplication with the corresponding sensitivity
matrix (or its transpose) and this matrix multiplication has lin-
ear complexity in the number of elements in the matrix (or
quadratic in the number of rows/columns). One key idea that
has been in many other applications is if under some
restricted regimes of operation, the general linear model can
be reduced to a convolutional form, then one could leverage
fast implementations of convolutions (that rely on FFTs) to
significantly reduce the computational burden.

Here we argue that focusing on confocal ToF-DOT meas-
urements allows us to leverage both these advantages
simultaneously, allowing us to achieve, real-time ToF-DOT
reconstruction performance. This would correspond to
retaining all the measurements wherein the source and the
detector location are the same (or close enough to be mod-
eled as confocal in a real system).

Related Work. The scanning-time and reconstruction-time
challenge in ToF-DOT is not unique to DOT, but rather com-
mon across a variety of emerging applications that attempt to
utilize the extra temporal dimension offered by transient
detectors such as SPADs. These applications include imaging
around corners [42], non-line-of-sight imaging[43], and imag-
ing through thick diffusers [20] and in all of these examples,
the imaging geometry is somewhat similar to ToF-DOT. There
is an array of sources and detectors that are scanned and tran-
sient light-transport measurements are obtained. The princi-
pal difference between these applications and ToF-DOT is
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that in these applications, the scattering surface or the thick
diffuser acts as an obscurant and the goal is to image objects
beyond that obscurant. In contrast, in ToF-DOT, the goal is to
obtain a volumetric image of the optical properties (scattering,
absorption, or fluorescence) of the tissue itself. Thus the
computational model for light propagation in these different
applications is quite different. That said, the symmetry in
imaging geometry, between these applications and ToF-DOT,
is quite striking.

In all of these applications that use transients, reconstruc-
tion algorithms tended to be slow precluding any real-time
operation. Over the last few years, confocality has emerged as
a key idea enabling real-time reconstruction in these applica-
tions. First, within non-line-of-sight reconstruction, it was
shown that restricting the measurements to confocal measure-
ments allows both a reduction in the number of measure-
ments and also enabled a convolutional approximation to the
forward model resulting in real-time reconstruction algo-
rithms [44], [45]. More recently, similar insight was used to
demonstrate near-real-time reconstruction performance for
imaging through thick obscurants [20]. We are motivated by
the success of these techniques and show that this idea, when
translated to ToF-DOT, allows us to obtain real-time ToF-
DOT reconstructions for estimating 2/3D optical properties
of thick tissues.

4.1 Confocal ToF-DOT

Collocated source-detector pair contains the most informa-
tion as it pertains to deep features; while we provide some
intuition for this idea, the following references provide
additional detail [16], [46], [47]. This can be derived based
on the idea that the sensitivity matrix represents the likeli-
hood that photons will pass through a particular voxel
before reaching the detector. With a closer source-detector
separation, this likelihood increases. While this confocality
is difficult to implement in DOT due to the increased sensi-
tivity to superficial layers, it can be applied to ToF-DOT
because time-domain information mitigates this challenge
by rejecting early-arriving photons that are scattered from
superficial layers [46], [47]. This idea is also reinforced by
our results in Fig. 6. We see that selecting only the measure-
ments from the collocated source-detector pair leads to a
more well-conditioned Jacobian matrix than selecting meas-
urements from source-detector pairs of arbitrary separation
distance.

Convolutional Approximation. From Equation (2) we see
that the forward model for ToF-DOT can be modeled as a
linear system. Fortunately, when restricting our attention to
confocal measurements, the linear operator is shift-invari-
ant. This shift-invariance allows us to develop a convolu-
tional approximation for the confocal ToF-DOT system.

To empirically demonstrate the shift-invariance of the
sensitivity matrix (i.e., the matrix is doubly circulant), we
use the Monte Carlo simulator to generate different rows of
the sensitivity matrix that correspond to point targets at dif-
ferent locations within the volume. In this simulation, we
assume a confocal geometry with features fixed to a specific
depth. Fig. 4a shows a visualization of 4 rows of the Jaco-
bian. Additionally, from Fig. 4b we see that each blur kernel
has the same profile. As the feature location is shifted, there
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Fig. 4. Validity of convolutional approximation. Visualization of (a) rows
of Jacobian for different source-detector pair locations, and their corre-

sponding (b) 1D profiles along X and Y directions (colored lines). Note:
1D profiles have been aligned for visualization.
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is a corresponding shift in the measured output. This indi-
cates that the Jacobian is a doubly circulant matrix. There-
fore, when performing image reconstruction using confocal
measurements, we can apply the forward model using a
convolutional approximation rather than a matrix-vector
product. Equation (2) can be substituted with

m(z,y,t) = p(z,y,t)u(z,y). 9

Here m(z,y,t) is the measurement, which is now a function
of the collocated source-detector (z,y) and time ¢; u(z,y) is
the spatially varying material properties, which is now a
function of just the lateral positions (z,y); and finally
p(z,y,t) is the blur kernel. The blur kernel p(z,y,t) can be
determined using either the Monte Carlo simulator or the
analytical expressions by calculating (or estimating in the
case of Monte Carlo) the measurement for a single feature,
i.e., a spatial delta function.

Extension to 3-Dimensional Reconstruction. The image recon-
struction algorithm can also be extended to 3-dimensional
(3D) outputs. In this case, the Jacobian matrix is a linear map-
ping from the 3D set of optical parameters to the collocated
measurements. J : w(zy, Yo, 20) — M(Tsd, Ysa)- Where (o, Yo, 2y)
and (zs,ysq) are the position coordinates of the optical
parameters and the collocated source-detector pair, respec-
tively. The same forward model and inverse solver can be
applied for solving the image reconstruction problem. To
determine each row of the Jacobian, the MC algorithm calcu-
lates the sensitivity for every point in the discretized 3D space.
After calculating the Jacobian using MC, we apply a linear
solver (FISTA) to estimate . In our algorithm, we apply a

Galvos

source-detector scan

Fig. 5. Experimental setup to test CToF-DOT. (a) Rendering of our
experimental setup showing a scanning laser beam and single pixel
detector. (b) An image of the physical setup, with the SPAD (white),
galvo mirrors (red), E-ink display (orange) and tissue phantom (blue).
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Fig. 6. Jacobian matrix conditioning. The singular values of the Jacobian
matrix are plotted to determine the matrix conditioning. We compare tra-
ditional DOT (blue), ToF-DOT (red), and our CToF-DOT (yellow). We
see that the introduction of time binning (ToF-DOT) and confocal geom-
etry (CToF-DOT) provides improvements to our matrix conditioning.

separate regularization parameter for each z-depth. This can
be expressed as

(x,y,2) = min [m = Ju(z,y, 2)ll, + A2 (2,9, 2)lls-
(10)

This layer-wise regularization A(z) is used to counteract the
reduced sensitivity at increasing depths. Without it, the out-
put possesses relatively small values for greater depths.
Therefore, if the same sparsity regularization is applied to
all depths, the values at greater depths would be cast to
zero, while reducing the effects of regularization at shallow
depths.

Convolutional Approximation for 3D Reconstruction. We can
also apply a convolutional approximation for reconstructing
3D scenes. Recall that for confocal measurements, the for-
ward model can be rewritten into a convolutional form.
From Equation (9), if the scene is a single plane at depth z,
we have the following equation:

m(z,y,t) = p.(z,y,t)n.(2,y).

Where p.(z,y) and p,(z,y,t) are associated with a fixed
depth z. Because we are using a linear model, then for a 3-
dimensional scene, the forward model becomes:

m(z,y,t) =Y p.(2,y, )i.(x,y). an

Where p,(z,y,t) is now a depth-dependent PSF. Thus,
when the scene is 3D, the measurement equation can be
written as a summation of 2-dimensional convolutions for
each depth.

Computational Complexity Analysis. Using the standard
forward model, the main bottleneck in solving the inverse
problem is the matrix-vector product: Ju. This operation
scales linearly with the number of sources (/N;), number of
detectors (IV,), time bins(V;), and number of voxels (Nyozeis)-
The runtime complexity is O(NsNygN;Nyozeis). The bottle-
neck for memory usage is the storage of the Jacobian, which
is of complexity equal to the matrix size.
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Fig. 7. Algorithm runtime characterization. The algorithm runtime was
characterized as a function of source-detector array size (a), and the
voxel grid size (b). We see almost two orders of magnitude decrease in
runtime using our methods as compared to traditional DOT [8] and ToF-
DOT [38].

This complexity can be significantly reduced in the con-
focal mode, using a convolutional model. Convolution with
a size K x K blur kernel can be efficiently implemented
using the fast Fourier transform (FFT). Thus, the computa-
tional complexity is O(N;K*?log (K)). The first improvement
is the reduction in the number of measurements from
N,N,N; to N,N; (in confocal measurements N, = N; and
only 1 transient measurement is obtained per source loca-
tion). The second improvement arises because of the convo-
lutional approximation.

Fig. 7 shows the significant reduction in computational
complexity that is achieved due to the convolutional model
imposed on the confocal ToF-DOT measurements. There is
a two-orders-of-magnitude speed-up in runtime compared
to existing ToF-DOT algorithms [38]. Even more remarkable
is the resultant confocal ToF-DOT algorithm is over an order
of magnitude more efficient than even conventional DOT
algorithms [8] that do not utilize any transient information
at all (and result in worse spatial resolution).

4.2 Multiplexed Confocal ToF-DOT

Traditional DOT systems use point-scanning to capture
measurements, which can result in long measurement cap-
ture durations precluding the capture of dynamics. This
challenge is compounded by the fact that DOT systems
often require a long exposure duration (even for a single
source location), due to the fact that only a minuscule frac-
tion of the incident photons are sensed at the detector —
meaning that the detectors are operating at extremely low
photons levels. We demonstrate that source multiplexing
can be used to potentially address both these challenges
simultaneously.

Multiplexing Sources Far Away. Typical DOT and ToF-DOT
systems have a field of view of the order of 5 — 10 cm on a
side to image through the skull. Detectors and sources are
typically placed on an array (anywhere from 10 x 10 to 25 x
25 arrays) with a spacing of a few mm to a cm between array
elements. When a source is “on’, all detectors are measuring
the corresponding light transport transients, but the detec-
tors that are far away typically (i.e., with safe illumination
power and within reasonable exposure durations) get little
to no photons making their measurements useless. In prac-
tice, the photon signal dies exponentially with separation
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distance and after about a 2 — 3 cm separation there are typi-
cally very few photons measured.

This means that one can safely assume that there is no
cross-talk between measurements even if multiple sources
are kept ‘on” simultaneously, as long as we can ensure suffi-
cient separation between the sources. For each detector mea-
surement, we can allocate the entire transient measurement to
the closest source (note that this is only possible when we can
ensure that sources that are simultaneously ‘on’ are suffi-
ciently far away). In our prototype system with a FOV of
about 5 cm, this means that we can multiplex up to 4 sources
simultaneously without any cross-talk. This allows us to get a
4x improvement in total capture time, while it does not affect
the SNR of the individual measurements.

Multiplexing Sources With Cross-Talk. Even in the presence
of measurement cross-talk, one can obtain multiplexing
gains [48], [49], [50], [51]. In this case, the benefits of multi-
plexing are primarily derived from reducing the effects of
signal-independent noise. While SPADs do not suffer from
read noise, they are impacted by dark count noise. In simu-
lation, we can decouple the benefits of multiplexing sources
far away from multiplexing sources with cross-talk. This is
achieved by simulating the effects of background noise, and
dark counts, separately. The results of this are shown in
supplementary Fig. 1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2021.3075366.

Composite Reconstruction Algorithm. In the presence of
source multiplexing the new measurements y become multi-
plexed versions of the old measurements m — wherein y and
m are related by the multiplexing matrix S asy = Sm = SJpu.
The combined optimization problem to be solved becomes

IL:H}LinH?J_SJMHz"'”/LHh (12)

where Ju can be further efficiently implemented within
each iteration using the convolutional approximation. As
before, we use the fast iterative shrinkage thresholding algo-
rithm (FISTA) [41] to solve this optimization problem.

5 MATERIALS AND METHODS

Simulation Setup. We use an in-house Monte Carlo simulator
for generating measurements and the Jacobian matrices
needed for both simulated and experimental results. In
these simulations, we assume a homogeneous scattering
slab. The slab possesses a thickness of 6.5 mm and spans an
area of a few centimeters squared. For 2D image reconstruc-
tions, we assume the features are restricted to a 2-dimen-
sional plane on the backside of the homogeneous slab;
while for 3D reconstruction, we assume a 3-dimensional
voxel array. Our implementation is based on the standard
Monte Carlo for scattering samples and closely follows the
details in [37], [40]. The Monte Carlo simulations are run on
GPUs (Nvidia RTX 2080 Ti). Obtaining the Jacobian through
analytical expressions was performed on CPU (Intel Xeon
3.30 GHz). Finally, our simulator can operate in both fluo-
rescence and absorption imaging modes. The details of
extending absorption-based Monte Carlo to fluorescence
mode are described by Liebert ef al. and Chen et al. [52], [53]
and we follow these to adapt our implementations as well.
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Fig. 8. Simulated spatial resolution of CTOF-DoT. Our technique is able
to resolve two 0.5 mm thick lines separated by 0.5 mm (shown in ground
truth image on top right).

In general, to model fluorescence, it is necessary to incorpo-
rate the different optical properties between the excitation
and emission wavelengths, account for fluorescence lifetime
by convolving the simulated TPSF with an exponential
parameterized by the fluorescence lifetime, and factor in
attenuation of the background signal if an emission filter is
present.

Experimental Setup. To perform real-world data collection,
we constructed an experimental prototype as shown in
Fig. 5. Two galvo mirrors raster scan the source and detector
separately, emulating measurements that could be obtained
with an array of light sources and detectors. A NKT Photon-
ics SuperK EXTREME supercontinuum laser produces
either 680 nm or 480 nm, 80 MHZz light pulses for absorption
and fluorescence experiments, respectively. Photon arrival
times are detected using an MPD FastGatedSPAD single-
pixel detector with a temporal jitter of <50 ps connected to
a PicoQuant HydraHarp 400. An MPD Picosecond Delayer
provides a delay to the synchronization signal from the
laser to ensure the SPAD’s 5 ns gate encompasses the entire
transient from the scene. To avoid pile-up in the SPAD, we
generally operate at low-light conditions, around 1 million
counts/sec (~ 1% of the laser repetition rate).

Scattering Tissue Phantoms. We use a 3D printer (Formlabs
Form 3) to synthesize the optical tissue phantoms used in our
experiments. Our goal is to emulate a skull phantom and we
closely mimic the known properties of the human skull
including its thickness and mean scattering length. The scat-
tering slab is 50 mm x 50 mm x 6.5 mm with a scattering coef-
ficient u, = 9mm 1, corresponding to ~60 mean free paths
(MFPs). Mean free paths is equivalent to mean scattering
lengths when absorption is negligible. For multiplexing
experiments, a thickness of 5 mm (corresponding to 45 MFPs)
is used. Both the thickness and scattering coefficient of this
skull phantom were set to be within the accepted range for
human skull [3], [54]. We adapt the procedure used by Demp-
sey et al. and synthesize our own resin for optical phantoms
[55]. The scattering parameters of the phantom are set by con-
trolling the volume ratio of the “white” and ‘clear’ Form resins.
The scattering coefficient of the phantom can be determined
by measuring the temporal broadening of the transients [56].
Additional information regarding the simulation can be
found in our supplementary material, Section 2, available
online. In Fig. 9, we see that our experimentally measured
transient matches with the output of the Monte Carlo simula-
tion. The surface curvature of the human skull is something
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Fig. 9. Resolution test with experimental data. (Left) Eink target covered
by the skull phantom. Inset image shows the matching calibration
between Monte Carlo and experimental data, thus verifying the scatter-
ing coefficient. (Right) 1D image reconstruction showing our system can
resolve two lines separated by 0.5 mm spacing.

our skull phantom does not emulate, but we do not believe
this has a significant effect on the resolution or performance
characteristics predicted by our phantoms. The results shown
in Figs. 9, 10, 11, and 12 use this skull phantom as the scatter-
ing layer between the target and the imaging system.
Absorptive and Fluorescent Targets. To emulate an absorp-
tive target such as a tumor, we use a E-ink display behind
the scattering tissue sample. An E-ink display is a 2-dimen-
sional monitor, which allows us to programmatically con-
trol the spatially varying absorption at a fine spatial
resolution. This is achieved by controlling the position of
white and black microbeads [57]. The results shown in
Figs. 9, 10, and 12 use the E-ink display-based target behind
the skull phantom. In order to emulate fluorescent targets,
we embed fluorescent beads (Fluoresbrite YG 1 um beads)
in PDMS. The spatial patterning of the fluorescent target is
achieved using a 3D-printed mold. The results shown in
Fig. 11 use the fluorescent target behind the skull phantom.

6 RESULTS

We perform an extensive array of experiments, and perfor-
mance characterizations both in simulation and experimen-
tally using a benchtop prototype ToF-DOT system.

6.1 Conditioning Analysis of CToF-DOT

Inverting the Jacobian matrix is critical to our image recon-
struction procedure. A well-conditioned Jacobian will allow
us to improve our image reconstruction quality. As shown
in Fig. 6 we demonstrate that the additional information
provided by time-binning results in a more well-condi-
tioned matrix. Each Jacobian was obtained through Monte
Carlo simulations. We compare three cases: 1) Traditional
DOT in which all measurements are a scalar intensity value;
2) ToF-DOT, which uses all time bins; and 3) CToF-DOT. 625
total scan points and 65 time bins were used for each Jaco-
bian. The simulated scene was a 25 x 25 x 8 grid of 1 mm?
cubes. All singular value plots were normalized to 1. Below
a threshold 1072, the singular values are considered to be
below the noise floor. We see that the introduction of time-
domain information improves the matrix conditioning,
increasing the minimum singular value from 67 to 82. In
addition, for the confocal geometry, because all 625 meas-
urements were collocated, the minimum singular value was
further increased to 1276. This provides additional support
that collocated source-detector pairs provide more informa-
tion than an arbitrary set of source-detector pairs.
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Fig. 10. Simulated and Experimental Multiplexing Results. Multiplexing allows comparable performance with reduced integration time compared with
single point scanning for CToF-DOT imaging. (Left) Plots shows PSNR versus integration time for simulated and experimental results. The images
correspond to the image reconstructions performed at different integration times with/without multiplexing. With multiplexing, the image reconstruc-
tion is more robust to noise at lower integration times. Measurements were captured through a 5 mm phantom with 1z, = 9mm~! (~45 MFPs).

6.2 Reconstruction Speed

Additionally, we test the algorithm runtime. These
experiments were conducted on an Intel Xeon 3.30 GHz
CPU. We test how the image reconstruction speed is
affected by 2 system parameters: the voxel size (for a
fixed total area), and the number of sources and detec-
tors. We compared CToF-DOT to the algorithms for tra-
ditional DOT and ToF-DOT, which were constructed in-
house (described by Wang et al. and Hyde et al., respec-
tively [8], [38]). In Fig. 7, we see that the confocal geome-
try achieves almost 2 orders of magnitude improvements
in speed primarily attributed to a reduction in Jacobian
matrix size. Here, we see that CToF-DOT is even faster
than traditional DOT. This is because the increase in run-
time due to using additional time bins in CToF-DOT is
outweighed by the speed-ups from considering only col-
located source-detector pairs.

6.3 Spatial Resolution Tests

Simulation Resolution Test. We test the spatial resolution that
can be achieved by traditional DOT and our method
(Fig. 8). The simulated scene consists of two fluorescent
lines, with 0.5 mm line width and separation. The target

Raw Measurement CToF-DOT {ours) Oval hm, wnhout time b].ns

Fig. 11. Fluorescence imaging with CToF-DOT. (a) Image reconstruction
of fluorescence targets (2 4 mm lines separated by 4 mm and oval-line
scene) using CToF-DOT. (b) For the oval-line image reconstruction, we
show that the image cannot be recovered without time binning.
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scene corresponds to a 2-dimensional voxel grid of 128 x
128 voxels spanning a total volume of 32 x 32mm, embed-
ded 6.5 mm deep in a homogeneous scattering media with a
background scattering coefficient set to s, =9.0mm™.
With a 128 x 128 confocal scan and 0 mm separation
between the source and detector, we see that we are able to
clearly resolve the two lines, which indicates our system
can resolve mm-scale features. For comparison, we simu-
lated a set of DOT measurements with 4mm separation
between the source and detector, still using only adjacent
source-detector pairs, and no temporal data, a total of 1282
values in the measurement. We see that time-domain data
allows us to achieve higher resolution reconstructions. This
is primarily because, by using time-gating, CToF-DOT is
more effective in removing excitation light, which primarily

Ground truth ToF-DOT  CToF-DOT (ours)
IU mm ﬂ n
10 mm |
—-—

Recon Time: ~1 sec 0.008 sec |
Fig. 12. Experimental image reconstruction of absorptive targets: Com-
parison of ToF-DOT and CToF-DOT reconstruction of 2D absorption tar-
gets through a 6.5 mm phantom with &, = 9mm~! (~60 MFPs). We
maintain comparable image reconstruction quality while reducing the
computation time for the inverse solver by approximately two orders of
magnitude, and reducing the number of scan points by almost an order
of magnitude.
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Fig. 13. Simulated 3D Image Reconstruction: 3D Image reconstruction on simulated data. We show both the volumetric rendering as well as z-slices
at multiple depths. The corresponding optical depth for each z-slice is listed to the right of each image. For each z-slice, we show the ground truth
image, the image reconstruction using FISTA, and the reconstructed image with a layer-wise threshold.

acts as a source of noise. For both DOT and CToF-DOT, the
total measurements, which are a sum of the excitation and
emission light are normalized to the same value, based on
the exposure duration. By using time-gating, CToF-DOT
rejects more of the excitation light, while passing the emis-
sion light, which is stronger at later time bins due to the
fluorescence lifetime.

Experimental Resolution Test. In Fig. 9, we performed a
1-dimensional resolution test through a 6.5 mm thick skull
phantom (1, = 9mm ') by scanning 32 points in a confocal
geometry. To obtain the Jacobian experimentally, a black
line was projected on the E-ink display at 32 locations with
0.5 mm separation. For each line position, a 32-point scan
was captured, which becomes a column of the Jacobian
matrix. After obtaining the Jacobian, we projected the target
image onto the E-ink display: two lines of thickness and
separation distance 0.5 mm. Though there is a slight offset
due to calibration, we are able to resolve the two lines and
demonstrate mm-scale spatial resolution (Fig. 9). Addition-
ally, in our supplementary material, available online, we
show the results for resolving 0.5 mm, 1.0 mm, 2.0 mm thick
lines.
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Fig. 14. 3D Image reconstruction on experimental data Our 3D image

reconstruction is applied to experimental data. The ground truth imaging
target consists of three pillars with varying depths and diameters.

Reconstruction

6.4 Advantages of Multiplexing

Simulations on Multiplexing. We tested source multiplexing
with an 8 x 8 array of sources, which leads to multiplexing
with a 64 x 64 Hadamard matrix. The simulated measure-
ments and Jacobian were generated using the analytical
expressions. Poisson noise was applied, assuming a count
rate of 5 million counts per second, the approximate intensity
level before our SPAD experiences the pile-up effect. In addi-
tion, dark count noise was added to our measurements, with
a rate parameter of 200 counts/sec corresponding to the dark
count rate of the FastGatedSPAD. Image reconstruction of the
letter 'R” is performed for a range of integration times. In
Fig. 10, we see that with multiplexing, the image reconstruc-
tion still maintains a reasonable PSNR at short exposure dura-
tions. This demonstrates that the image reconstruction with
multiplexing is more robust to increased noise at lower inte-
gration times. The panels on the right of Fig. 10 show the
reconstruction results, again showing increased robustness to
noise with multiplexing.

Multiplexing With Experimental Data. In addition to simula-
tions, we also captured experimental data to test the benefits
of source multiplexing. The plots on Fig. 10 show the PSNR as
a function of the integration time. We show that the multi-
plexed measurements are more robust to higher noise levels
at lower integration times. Therefore, multiplexing can
improve the temporal resolution by reducing the integration
time needed to maintain a threshold image reconstruction
quality. From the experimental results, we see an order of
magnitude improvement since the image reconstruction qual-
ity at 10 ms is approximately comparable to 100 ms integra-
tion time without multiplexing (Fig. 10). We must also
account for a factor of § since multiplexing doubles the total
number of measurements, resulting in an overall ~5 times
reduction in measurement capture time.

6.5 Additional Image Reconstructions

In the image reconstruction experiments with real-world
data, the scattering slab is placed on top of either the E-ink
display or the fluorescent target to emulate scattering by
biological tissue. In Fig. 11a. we see that the signal from the
fluorescent targets is significantly enhanced by removing
early-arriving photons using time-gating, albeit still blurred
due to the effects of scattering. The target images can be
recovered by our image reconstruction algorithm. Fig. 11b
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shows measurements and a reconstruction of the oval-line
scene without time-binning. The measurements are domi-
nated by background noise from the excitation light leading
to an image reconstruction that contains virtually no infor-
mation about the underlying scene. The oval line scene
experiment was conducted with the standard 6.5 mm phan-
tom with p, = 9Imm™!, without an emission filter. However,
for imaging the two lines image reconstruction, a filter was
used as well as an un-calibrated skull phantom with scatter-
ing coefficient in the range 5 — 10mm™".

We show the benefits of using a confocal geometry in
Fig. 12a. Here, we image absorber targets displayed with
the E-ink display. In the standard TD-DOT setup, we cap-
ture a measurement for all pairs of sources and detectors.
For this experiment, we use a 10 x 10 array of sources and
detectors, which correspond to 10,000 total scan points.
Additionally, we capture measurements for the same scene
using a 32 x 32 array in the confocal geometry, correspond-
ing to 1024 scan points. As shown in Fig. 12a, even though
the number of scan points is reduced by almost an order of
magnitude, we are able to maintain comparable image
reconstruction quality using confocal ToF-DOT compared
to ToF-DOT. Additionally, with the confocal geometry, the
algorithm runtime is reduced by approximately two orders
of magnitude from ~1 sec to ~8 ms.

3D Image Reconstruction. In addition to 2D image recon-
struction with an Eink display, we also performed 3D image
reconstruction on simulated and real-world data. Each
scene occupies a total area of 32mm x 32mm. In Fig. 13a, the
imaging target is an artificial vasculature at multiple depths.
The optical absorption is assumed to be homogeneous for
this scene. In Figs. 13b and 13c the imaging target is a set of
discs and lines at multiple depths, with absorption coeffi-
cient increasing by 0.0lmm ' per layer from p, = 0.0lmm '
at the shallowest layer to 1z, = 0.06mm™". We also compare
the Jacobian forward model (panel b.) with the convolu-
tional forward model (panel c). Both algorithms used the
same number of iterations of FISTA and achieve compara-
ble resulting image quality; however, the convolutional
model performs almost an order of magnitude faster.

Our experimental scene consists of a 3D printed black
mold containing circular pillars of diameters 6 mm, 10 mm,
and 14mm, embedded at depths of 2 mm, 4mm, and 6mm,
respectively (Fig. 14). A liquid skull phantom, with the
same optical properties as described in Section 5, was
poured over these features to emulate biological features
embedded in a scattering background. To capture the meas-
urements, we scanned 32x32 collocated source-detector
pairs uniformly distributed over an area of 40mm x 40mm.
For reconstructing experimental data, we used a timing res-
olution of 200 ps. As shown in Fig. 14, using our CToF-DOT
algorithm, we are able to distinguish the three cylinders
and correctly localize their depth.

7 CONCLUSION

We demonstrate that confocal and multiplexed versions of
ToF-DOT have the potential to achieve millimeter resolu-
tion, real-time imaging through thick scattering tissue. With
future developments in terms of on-chip SPAD hardware
and integrated source-detector arrays, these results can lead
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to wearable imaging devices paving the way for high reso-
lution structural and functional imaging of the brain.
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