


the iterative interaction set-up of Figure 1. At each iteration,

the teacher selects new examples from a large dataset, to

complement a small set of examples, known as the teaching

set, which is used by the student to learn the target task. By

comparing the current student model and the optimal model

for the large dataset, the teacher seeks to select the examples

that most help the student learn. The central question in

this set-up is how to select the teaching set. Ideally, this set

should pack as much information for class discrimination as

possible into the smallest number of examples.

In the literature, there have been many attempts to design

optimal teaching algorithms [39, 26, 27, 30]. This usually

requires the assumption of certain student properties. Al-

though past works have proposed different student models,

these frequently rely on assumptions that are questionable

for the crowdsource annotation context. For example, a

popular assumption [39, 29, 7] is that the student only has

access to a countable set of hyperplane hypotheses. While

justified by the fact that human students have limited ability

and memory, this assumption overly underestimates their

learning ability. In fact, several machine teaching works

explicitly assume that students have limited capacity or are

otherwise sub-optimal learners [30, 18, 39, 50]. This is not

supported by studies with real students, which found that

humans have strong learning ability [13, 9, 15, 38].

In this work, we assume that the student is an optimal

learner. Optimality is defined in the standard machine learn-

ing sense, i.e. that the student learns a predictor of minimum

empirical risk in the teaching set. This always holds for ma-

chine learning students, which are defined in this way, and

is sensible for human students, who usually do not under-

perform machine learning students, especially on few-shot

learning scenery in practice. It does assume that students are

engaged in the learning task, i.e. giving their best effort. This

is sensible in the crowdsourcing scenario, where students are

free-willing participants rated by their task performance. We

show that, if allowed unbounded effort, the optimal student

will always learn the optimal predictor for the task. This

implies that the only role of the teacher is to optimize learn-

ing speed, i.e. select the teaching examples that enable the

student to learn with least effort.

We then formulate the search for the optimal teacher as a

problem of functional optimization where, at each teaching

iteration, the teacher aims to align the steepest descent direc-

tion of the teaching set risk with that of the empirical risk

over the entire example population. This is shown to have

as optimal solution the MaxGrad teacher, which maximizes

the gradient of the risk on the set of new examples selected

per iteration. MaxGrad teaching algorithms are finally pro-

vided for both binary and multiclass tasks, and shown to

have some similarities with boosting algorithms [33, 12, 34].

Experimental evaluations demonstrate the effectiveness of

MaxGrad, which outperforms previous algorithms on the

classification task, for both machine learning and human

students from MTurk.

2. Related work

Simulated studies: In the past two decades, a variety of

algorithms have been proposed to model the teacher-student

interaction and seek the optimal teaching sequence. [3] ex-

plored several heuristics for the selection of the teaching set,

based on insights derived from active learning, including a

preference for points closest to the boundary, a handcrafted

indicator of classification difficulty, curriculum learning, and

a coverage model. [31] explored the use of recurrent neu-

ral networks as models of student learning. [51] modeled

student learning as a Bayesian update process. [2, 32] used

reinforcement learning based models to develop teaching

policies for computer-based tutoring systems. All these

methods have been developed and evaluated with synthetic

data or handcrafted features, and did not explore the teach-

ing of human learners with natural images. Note that there

are some related algorithm families to machine teaching, in-

cluding active learning [37, 45], few-shot learning [42, 41],

curriculum learning [4, 14] and knowledge distillation [17].

For example, the main difference from active learning is that

in the latter the learner selects examples without knowing the

ground truth. In machine teaching, examples are selected by

the teacher, who knows all labels. We recommend [26, 52]

for extensive comparisons.

Human studies: Most of existing literature on human eval-

uations only work on simple binary classification prob-

lem [50, 39, 40]. A representative is STRICT [39]. It simu-

lates the student as a hyperplane in a finite hypothesis space.

The learning process is modeled as a Markov chain, assum-

ing that learners perform a random walk in hypothesis space,

according to the teacher’s feedback. Expected error rate

is the criterion for teaching set selection. Since its mini-

mization is NP-hard, a surrogate objective is optimized in

a greedy manner. Following STRICT, many extensions or

generalizations have been proposed [40, 29, 7]. For example,

beyond pure label feedback, methods have been proposed

to account for feature-based feedback, both for synthetic

data [40] and real images [29], using an attribution map [49].

[29] also extended STRICT to multiclass problems.

Alternatively to STRICT, [26, 27] modeled teaching as an

iterative process and the learner as a linear classifier, which

is updated at each iteration based uniquely on the example

seen at that iteration. Beyond [26], [27] treats the student

network as a black-box, which more closely resembles real

student learning. [18] approximates the student’s class con-

ditional distribution given the teaching set with a Gaussian

random field but it is designed for online learning, a different

setting from that studied in this paper. All these methods

assume that the learner is sub-optimal or has limited capac-

ity. However, there is little evidence to support this. On the



contrary, many studies have found that humans have strong

learning ability [13, 9, 15, 38], which is also intuitive. We

argue that assuming an optimal learner is more sensible in

very specialised domains, at least for image classification in

the crowdsourcing context.

Feature space: The practical implementation of machine

teaching requires a feature extractor to implement the sim-

ulated student. Since several prior works were introduced

before the popularization of deep learning, they rely on hand-

crafted features [39, 7]. These are unlikely to be close to

human perception and tend to produce low-accuracy classi-

fiers. More recently, it has become standard practice to use

features extracted by a deep convolutional network, which

is a better model of human perception [36, 10, 48] and pro-

duces better classifiers. This is a practice that we also adopt.

However, previous works have used networks fine-tuned on

a dataset from the target domain [29]. This vastly simplifies

the teaching problem, as it is equivalent to assuming that

the student already is an expert in the target domain before

the teaching starts. We instead rely on a model pretrained

on ImageNet. This reflects the assumption that the student

is competent in generic image classification tasks, but has

no experience in the target domain. This assumption usu-

ally holds for the crowdsource setting, whenever the target

domain requires specific expertise.

Other approaches: Recently, several works have investi-

gated the use of explanations during the teaching phase,

to improve teaching performance. The results are so

far inconclusive, as these works show limited improve-

ments [29, 7, 40], particularly in light of the noise inher-

ent to human evaluations, or even a negative impact [29, 7].

While MaxGrad could in principle be combined with visual

explanations, we leave this for future work. There have also

been proposals for interactive online machine teaching [18],

where the selection of teaching examples is not based on a

simulated student, but derived from the responses of human

users in real-time. However, online updates are costly and

difficult to scale to large numbers of simultaneous users. The

extension of the ideas used to derive MaxGrad to this setting

is a topic that we intend to investigate in the future.

3. Gradient-Based Machine Teaching

In this section, we introduce the MaxGrad algorithm.

3.1. Machine Teaching

In machine teaching for classification, the goal of the

teacher is to assemble a teaching set L = {(xli, y
l
i)}

K
i=1 of

examples xli and class labels yli, which a student uses to learn

a classifier. In this paper, we adopt the pool-based teaching

setting [52]. This assumes that the teacher has access to a

much larger example dataset D = {(x1, y1), . . . , (xN , yN )}
from which it selects a subset to assemble L. This is dif-

ferent from synthesis teaching where the teaching examples

are synthetically generated. Pool-based teaching is more

realistic for image labeling applications, because artificial

images may appear nonsensical to a (human) student. The

goal of machine teaching is to enable the student to learn the

optimal predictor f∗(x) for the entire example population D,

from the smallest teaching set L, i.e. the smallest possible

number of teaching examples K.

As usual in machine learning, the optimal predictor f∗

is defined as the predictor that minimizes the risk RD[f ]
associated with a loss function on D. The details of the

loss function depend on the task. For simplicity, we discuss

binary classification firstly and extend all ideas to the multi-

class setting in section 3.5. For binary classification, y ∈
Y = {−1,+1}, f(x) maps x ∈ X to R and the optimal

predictor is

f∗ = argmin
f

RD[f ] = argmin
f

∑

(xi,yi)∈D

φ(yif(xi)),

(1)

where φ(.) is a margin loss function. This predictor is as-

sumed known to the teacher.

The end-goal of the teacher is to assemble the teaching

set L ⊂ D that achieves the best trade-off between two

conflicting requirements: the student learns the optimal pre-

dictor f∗ while spending the least effort. This reflects the

fact that longer teaching sequences lead to better student

performance, but the student has a limited set of learning

resources, e.g. a limited attention span. For example, image

annotators on crowd-sourcing platforms are well known to

drop tasks that are too tedious to master. In this work, we

assume that student effort is proportional to the cardinality

of the teaching set |L|. This leads to the formulation of the

optimal teacher as the one which minimizes some distance

d(f∗, fs) between the predictor fs learned by the student

from L and the optimal predictor f∗, under a constraint on

student effort |L| ≤ ζ.

3.2. The optimal student assumption

In this work, we rely on the assumption that the student

is an optimal learner.

Definition 1 The student is an optimal learner with respect

to loss φ if and only if, given a teaching set L, it learns the

predictor that minimizes the risk defined by φ and L,

RL[f ] =
∑

(xi,yi)∈L

φ(yif(xi)). (2)

Note that the risk of (2) is defined over L, the teaching

set that the student has access to, not the entire population

D. The optimal student assumption holds trivially when

the student is a machine learning algorithm, because learn-

ing algorithms are designed to minimize (2). Since human

learners tend to perform at least as well as machine learning

algorithms for most tasks, it is a sensible assumption for



human students as well. Under this definition of student,

the machine teaching problem can then be formalized as a

bilevel optimization problem.

Definition 2 Under the assumption of an optimal learner

with respect to loss φ, a teacher is optimal if and only if it

produces the teaching set

L∗ = argmin
L
d(f∗, fs(L)) (3)

fs(L) = argmin
f

∑

(xi,yi)∈L

φ(yif(xi)). (4)

|L| ≤ ζ (5)

where f∗ is given by (1), d(., .) is a distance function, and ζ
a bound on student effort to process the examples in L.

In what follows, the teaching process is assumed to be itera-

tive.

Definition 3 An iterative machine teaching procedure iter-

ates between a step of example selection, by the teacher, and

a learning step by the student. At iteration t, the teacher

produces a teaching set Lt, which the student uses to learn a

predictor f t(x). The teacher then selects from Dt = D−Lt

the examples to add to Lt in order to produce Lt+1. The

student starts the process with an initial predictor f0(x).
This can be derived from prior experience or f0(x) = 0.

The following result is an immediate consequence of

these definitions.

Corollary 1 Consider the iterative machine teaching proce-

dure of Definition 3 and assume that the teacher selects at

least one new example per learning iteration. If ζ is large

enough, the optimal student of Definition 1 is guaranteed to

learn the optimal predictor f∗ of (1) after a finite number of

iterations.

Proof See Appendix A.1.

In summary, for an optimal student and a sufficient level

of effort, the distance d(f∗, fs) of (3) always converges to

zero. It follows that the only role of the teacher is to optimize

learning speed, i.e. select the set of examples that enable the

student to learn with the least effort. We next define an opti-

mal teacher from this point of view. This, however, requires

a brief review of basic concepts in functional optimization.

3.3. Functional optimization

Given two vector spaces X , Y and a differentiable func-

tion R : X → Y , the differential dR(u, ψ) of R at u ∈ X in

the direction ψ ∈ X is given by

dR(u, ψ) =
d

dτ
R(u+ τψ)

∣

∣

∣

∣

τ=0

. (6)

For example, the margin loss function M(f) =
φ(y(x)f(x)) has differential dM(f, ψ) = y φ′(yf)ψ.

Given a set of directions Ψ = {ψ1, . . . , ψn} such that

ψi ∈ X , ∀i, the gradient of R with respect to Ψ at u is

the vector

∇ΨR(u) = (〈dR(u, ψ1), ψ1〉 , . . . , 〈dR(u, ψn), ψn〉)
T
. (7)

Let Sp(Ψ) be the span of Ψ and γ a direction in Sp(Ψ), i.e.

γ =
∑

i αiψi for some vector α. The derivative of R at u
along direction γ ∈ Sp(Ψ) is

∂γR(u) = 〈∇ΨR,α〉 , (8)

where < α, β >=
∫

α(x)β(x)dx when α and β are func-

tions and < α, β >=
∑

i αiβi when they are finite dimen-

sional vectors.

A dataset D = {(xi, yi)}
n
i=1, defines a set of canonical

directions Ψ(D) = {δ(x− xi)}
n
i=1, where δ(x) is the Dirac

delta function. The differentials of the margin loss along

these directions are dM(f, ψk) = y φ′(yf) δ(x − xk) and

the empirical risk

RD(f) =
∑

(xi,yi)∈D

φ(yif(xi)) =
∑

(xi,yi)∈D

M(f(xi)) (9)

has gradient

∇Ψ(D)RD(f) = (w1, . . . , wn)
T , wi = yiφ

′(yif(xi)) (10)

where φ′ is the derivative of φ. For any function g in the

span of Ψ(D), i.e.

g(x) =
∑

i

g(xi)δ(x− xi), (11)

the derivative of the risk at f along the direction of g is

∂gRD(f) =
∑

(xi,yi)∈D

wig(xi). (12)

The risk RD(f) is minimized at f∗ if ∂gRD(f
∗) = 0, ∀g ∈

Sp(Ψ(D)), which holds if

∇Ψ(D)RD(f
∗) = 0. (13)

3.4. The optimal teacher

With these results we are ready to introduce a criterion

for teacher optimality, under the iterative teaching procedure

of Definition 3. We start by introducing the set of permissi-

ble choices for the teaching set, i.e the set of teaching sets

that the teacher is allowed to choose from at iteration t. Un-

der the iterative teaching procedure, Lt = Lt−1 ∪ N t, i.e.

the teacher augments Lt−1 with a set of examples N t not

contained in it, which we denote as the novel examples of





Algorithm 1 MaxGrad

Input Data D = {(xi, yi)}
N
i=1, codewords Y , max iter.

T , effort τ .

1: Initialization: L0 ← ∅, f1, D0 ← D.

2: for t = {1, . . . , T} do

3: compute ξi for all examples in Dt−1.

4: order examples by decreasing ξi and select top τ

to createN t.

5: teaching set update: Lt ← Lt−1 ∪N t

6: student update: f t+1 = f∗(Lt).
7: Dt ← Dt−1 \ N t

8: end for

Output Lt

binary

Y {−1,+1}
ξi (φ′(yif

t(xi)))
2

f∗(Lt) argminf

∑

(xi,yi)∈Lt φ(yif(xi))

multi-class

Y {y1, ..., yC}, yi ∈ Rd

ξi w2
i ||y

ci −
∑

k 6=ci
ykǫk(xi, ci)||

2

wi

∑

k 6=ci
φ′

[

1
2

〈

f t(xi), y
ci − yk

〉]

ǫk(x, c)
φ′[ 1

2
〈ft(x),yc−yk〉]

∑
k 6=c

φ′[ 1
2
〈ft(x),yc−yk〉]

φ(v) e−v

f∗(Lt) argminf

∑

(xi,yi)∈Lt

∑C

l=1,l 6=yi
φ
(

1
2

〈

yyi − yl, f(xi)
〉)

of negative margin, i.e. which are incorrectly classified by

the current student predictor f t. Hence, wi is a measure

of how difficult each example is, under the current state

of student knowledge. Similarly H(N ) =
∑

(xi,yi)∈N w2
i

measures the difficulty, for the student, of the novel examples

in N . It follows from (21) that the MaxGrad teacher always

selects the hardest set of novel examples in Pt. Furthermore,

since H(N ) is a sum of non-negative terms, it is an increas-

ing function of |N |. This implies that the teacher has a pref-

erence for larger sets of novel examples. As long as there are

examples that the student has not mastered (wi > 0), it will

choose a set of τ examples per iteration. Hence, |N t| = τ
for all t < T and the overall learning complexity is Tτ . This

implies that the number of iterations is upper bounded by

ζ/τ , which makes it equivalent to specifying a maximum

level of effort ζ or a maximum number of iterations T for

the teaching process. Finally, because the set of permissible

choices includes all novel sets of cardinality τ , the solution

of (21) is trivial: it suffices to compute wi for all examples in

Dt−1 and select the τ examples of largest w2
i . The resulting

machine teaching procedure is summarized by Algorithm 1.

3.5. Multi­class extension

We have discussed binary classification tasks, were

f(x) ∈ R, class labels y ∈ {−1, 1}, the margin of example

(x, y) is defined as yf(x) and a margin loss is a function

φ(yf(x)) for some decreasing φ ∈ R
+. All ideas can be

generalized for the C-class case, by extending these defini-

tions. A common generalization is to use a d-dimensional

predictor, f(x) ∈ R
d, a set of C class label codewords

yc ∈ Y = {y1, ..., yC}, where yc ∈ R
d, and define the

margin of example x with respect to class yk as

M(yk, f(x)) = min
l 6=k

1

2

〈

yk − yl, f(x)
〉

. (22)

A family of margin losses is then defined as [33]

L[yk, f(x)] =

C
∑

l=1,l 6=k

φ

(

1

2

〈

yk − yl, f(x)
〉

)

, (23)

where φ : R → R+ are strictly positive. A theoretical

discussion of the properties of these losses can be found in

[33]. The empirical risk then becomes

RD(f) =
∑

(xi,yi)∈D

L[yyi , f(xi)]. (24)

and, given a dataset D = {(xi, ci)} and a corresponding

set of directions Ψ(D) = {ψ1, . . . , ψn} such that ψi =
δ(x−xi) the gradient ofRD(f) evaluated at f t with respect

to Ψ(D) has entries

[

∇Ψ(D)RD(f
t)
]

i
= wi



yci −
∑

k 6=ci

ykǫk(xi, ci)



 ,

(25)

with

wi =
∑

k 6=ci

φ′
[

1

2

〈

f t(xi), y
ci − yk

〉

]

(26)

ǫk(x, c) =
φ′

[

1
2

〈

f t(x), yc − yk
〉]

∑

k 6=c φ
′
[

1
2 〈f

t(x), yc − yk〉
] . (27)

Note that
[

∇Ψ(D)RD(f
t)
]

i
is a d-dimensional vector. The

gradient norm of (21) is then

||∇T
Ψ(N )RN (f t)||2=

∑

(xi,ci)∈N

||
[

∇Ψ(D)RD(f
t)
]

i
||2(28)

=
∑

(xi,ci)∈N

ξi (29)

where ξi = w2
i ||y

ci −
∑

k 6=ci
ykǫk(xi, ci)||

2. In this work,

we adopt the exponential loss by setting φ(v) = e−v , leading

to the multi-class version of Algorithm 1 for the implemen-

tation of the optimal multi-class teacher.

4. Connections to boosting

The algorithm above has certain similarities with boost-

ing. Note that the weights of (10) are the weights of boosting
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