


requires no labels, and then fine-tune a classifier at the top

of it on a small set of labeled target data. However, these

approaches usually underperform scalable supervised learn-

ing. For example, state-of-the-art self-supervised learn-

ing with SimCLR [3] underperforms a supervised baseline

when only a subset of the samples are labeled, especially on

fine-grained domains [43].

Unlike all these approaches, we pursue the alternative so-

lution of scaling up the process of data annotation. While

this was a pie in the sky idea in the past, two recent develop-

ments now make it promising. First, several crowdsourcing

platforms, like Amazon Mechanical Turk, Sama [15], mi-

croWorkers [13], or Clickworker [12], have appeared in re-

cent years, making it easier to recruit large numbers of im-

age annotators online. Second, research has been steadily

increasing in the area of machine teaching [48, 47, 28],

showing potential to develop algorithms capable of teaching

these annotators the domain-specific knowledge needed to

label expert data. While these developments are promising,

there have been so far no efforts to study how they can be

combined into a complete framework for scalable learning.

Typically, machine teaching papers only evaluate the accu-

racy of the labeling produced by the annotators taught by

their algorithms. While this is informative, it does not fully

address the scalable learning problem, which also includes

the design of deep learning systems using those annotations.

This raises an additional set of questions, such as what qual-

ity must the labels have to guarantee effective deep learn-

ing performance, how can the machine teaching algorithms

achieve that quality, and whether noisy label learning algo-

rithms [22, 9] have a role in the process.

In this work, we address these questions in the context

of scalable learning of recognition systems, which we de-

note as scalable recognition. We propose a new Machine

tEaching fraMewORk for scAlaBLe rEcognition (MEMO-

RABLE) in fine-grained expert domains, illustrated in Fig-

ure 1. A large raw dataset (D) is first collected for a target

fine-grained task, e.g. by deploying cameras in the wild or

crawling archived medical images in a hospital database.

A small subset Dl ⊂ D and |Dl| ≪ |D| is then labeled

by experts. Machine teaching is next used to teach non-

experts, e.g. Amazon MTurk workers, how to label for the

target categories. The unlabeled data Du = D/Dl is finally

labeled by these humans and the complete dataset used to

train an image recognition system. To identify critical areas

of this framework, we perform an initial study with simu-

lated noisy annotations. This shows that the accuracy of the

machine teaching plays a significant role in the accuracy of

the final recognition system. We then hypothesize that bet-

ter machine teaching performance can be achieved by in-

troducing explanations in the machine teaching algorithm.

State-of-the-art machine teaching algorithms [25, 26, 18]

tend not to use explanations. Although there is literature do-

ing [28], it tends to rely on attributive explanations [33, 46]

that do not take into account the student predictions. To

address this problem, we propose the addition of counter-

factual explanations to machine teaching.

Counterfactual explanations [41, 8] take into account

both ground-truth labels and student predictions, highlight-

ing image regions that are most discriminant of student mis-

takes. They are thus most instructive for humans to learn

from their errors. Furthermore, because the explanatory

feedback varies according to the student’s prediction, they

naturally adjust to the level of competence of the student.

We seek to leverage all these benefits by introducing a gen-

eralization of the recent MaxGrad machine teaching algo-

rithm [40], denoted Counterfactual MaxGrad (CMaxGrad),

which is endowed with counterfactual explanations. Exper-

iments show that this algorithm both achieves state-of-the-

art machine teaching performance and enables significant

scalable recognition gains for the MEMORABLE frame-

work. The latter is itself shown to outperform other scal-

able recognition strategies, such as semi-supervised learn-

ing. It is also shown that deep learning systems trained with

MEMORABLE can leverage noisy label training schemes

with surprising effectiveness.

The contributions of the paper are summarized as 1) a

study of the importance of labeling accuracy for the accu-

racy of scalable recognition; 2) the MEMORABLE frame-

work to solve the fine-grained scalable recognition problem,

by leveraging crowdsourcing platforms and machine teach-

ing algorithms; 3) the new CMaxGrad machine teaching

algorithm that introduces counterfactual explanations into

machine teaching; and 4) new benchmarks, based on two

challenging datasets, for the evaluation of scalable recogni-

tion.

2. Related Work

Crowdsourcing platforms There are two types of crowd

sourcing platforms. They provide expert and non-expert

annotation services. Amazon Mechanical Turk [14] is a

widely known and representative one. It has been making it

easy to require simple annotation tasks of significantly huge

size to a large pool of workers. Although Amazon Turk has

been broadly used, most of the workers are non-expert for

a specific target expertise task like fine-grained annotation.

For example, they can help annotate “dog” and “cat”, but

hard to do “California Gull” and “Western gull”. The lack

of prior knowledge of a specific domain makes it hard to

satisfy the requirement of fine-grained expert domain label-

ing. The similar platforms include Sama [15], microWork-

ers [13], Clickworker [12], etc. They all provide similar

services just with slight differences. A comprehensive dis-

cussion of them can be found in [32].

Another type of crowdsourcing platform can give ex-

pertise annotation service. Citizen scientist is a typical
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one [37]. It is non-profit and people in this platform are

nonprofessional scientists or enthusiasts in a particular do-

main. They contribute annotations with the understanding

that their expertise, experience and passion in a domain of

interest. Although it makes it feasible to do expert labeling,

there are some problems. Because of non-profits, it is hard

to guarantee the quality of their results and guarantee that

they are all responsible. This is different from Amazon Turk

where if the annotation results are assessed badly by the re-

quester, the worker would not get the payment. The second

problem is that the active user number is small, especially

on some minor domains. So it is hard to meet the large-scale

annotation requirement. In this work, we use Amazon Turk,

but unlike the common usage, a short course is introduced

preceding the annotation. The worker is trained first and

then annotates. This alleviates the problems of both types.

Semi-supervised and self-supervised learning Semi-

supervised learning describes a class of algorithms that seek

to learn from both unlabeled and labeled samples, typically

assumed to be sampled from the same or similar distribu-

tions. Limited to the space, we refer to [44] for an extensive

survey and [45] for up-to-date development.

Self-supervised learning (SSL) refers to learning meth-

ods in which the model is explicitly trained with supervisory

signals that are generated from the data itself by leverag-

ing some pretext tasks. The pretext tasks can be predictive

tasks, generative tasks, contrasting tasks, or a combination

of them. SSL can benefit almost all types of downstream

tasks, e.g. semi-supervised learning, that can also be used

to evaluate the quality of features learned by self-supervised

learning [3, 4, 2]. Literature [17, 27, 16] is recommended

for an extensive overview.

Counterfactual explanations Given an image of class A
and a user-specified counterfactual class B, counterfactual

explanations produce an explanation to answer “why the

prediction is A but not B” [39, 24, 49, 1, 10]. In computer

vision, the explanations are usually given by visualizations.

Two main approaches to these explanations have emerged.

The first group is based on an image transformation that

elicits the classification as B [39, 24, 49]. The simplest

example is adversarial attack [7, 39], which optimize per-

turbations to map an image of class A into class B. How-

ever, adversarial perturbations usually push the perturbed

image outside the boundaries of the space of natural im-

ages. A more plausible alternative is to exhaustively search

the space of features extracted from a large collection of im-

ages, to find replacement features that map the image from

class A to B [8]. However, exhaustive search is too complex

for interactive applications. Another form is optimization-

free but produces a pair of segments on two images from

ground truth class and counterfactual class [41]. These seg-

ments cover the class-discriminant regions. Its generation

is much faster and we use it in our work.

Machine teaching Machine teaching is a broad area. The

goal is to select a small number of data from a large set

so that this small set can efficiently teach a student. The

student can be either a network model or a real human.

Because this paper mainly talks about the latter, we rec-

ommend [48, 47] for the reader about the network-oriented

machine teaching. For real-human machine teaching, a typ-

ical strategy is to first model humans as a network model

and then select a teaching sequence universally used for

human teaching. In this process, most of the previous lit-

erature simulates human students based on the assump-

tion that they have limited capacity or are otherwise sub-

optimal learners [34, 18, 30]. This is intuitive but not op-

timal in the crowdsourcing context, which has been dis-

cussed in [40]. The latter is subject to an optimal student

assumption that the students will try their best to complete

the assigned tasks. Another direction of real-human ma-

chine teaching is to think about how to incorporate the ex-

planation into the teaching process because it is straightfor-

ward that explanations are helpful for digesting the knowl-

edge easily [28, 5, 36]. A representative work [28] merges

the attribution map into the example selection and feedback

stage of teaching. When the learner makes a mistake, a

heatmap [46] that highlights the regions that contribute to

the correct class is shown. This, to a certain extent, pro-

vides some explanations but can not adapt to the learner’s

choice. Counterfactual explanations were simply associ-

ated with random selected images to evaluate their qualities

in [41, 8], but there is no special machine teaching algo-

rithm involved and the evaluation is only on simple binary

classification tasks. Tropel [31] lets workers identify posi-

tive/negative images with respect to a given query image, to

train a detector. This is unlike a counterfactual explanation

for teaching, where the counter class is an incorrect label

chosen by the worker. The latter more directly provides

the worker with feedback regarding mistakes. Also, there

is no image-based explanation in Tropel. In this paper, we

attempt to include the counterfactual explanation into the

machine teaching, an explanation that explicitly indicates

the class-discriminant between correct class and mis-chosen

class. The experiments show that this is more helpful.

3. The MEMORABLE Framework

In this section we introduce the MEMORABLE frame-

work.

3.1. Machine Teaching

We consider the problem of C-class classification on

expert domains where data collection is easy but annota-

tion is difficult. For example, while biologists routinely

deploy camera traps in the wild [29] or underwater [11],

the labeling of the resulting images by professional tax-

onomists is quite expensive. The goal is to train classifiers
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diag-80 approximates MaxGrad. The final model is a per-

fect annotator with a diagonal matrix M of entries 1.

Figure 3 summarizes the result of this experiment, en-

abling several interesting observations. First, the labeling

accuracies of diag-60 and diag-80 do match those of RAN-

DOM and MaxGrad, respectively. However, the same does

not hold for the associated classification accuracies. In fact,

one of the most interesting observations of the figure is how

the hand-crafted matrices have much weaker classification

accuracy than those learned from MTurker data. In partic-

ular, the classification accuracy is always higher than the

labeling accuracy for the MTurk matrices, but the reverse

holds for their models.

A closer inspection of the confusion matrices shows that

those estimated from human annotators do not have a uni-

form distribution for the annotation errors. While the diago-

nal value may not be 1, there is usually a dominant class for

mistakes, i.e. the second probability tends to be larger than

the remaining. This is likely to simplify the learning of the

classifier, since it is mostly faced with label noise between

pairs of classes, rather than all. The ensuing insight is that,

beyond errors, it also matters what type of errors are made

by the annotators. Informative labeling errors, between a

few classes, lead to much better classifiers than uninforma-

tive, uniformly distributed, ones. Note that the differences

in classification accuracy are substantial, with the MTurk-

trained classifiers outperforming the model-trained classi-

fiers by 5− 10%.

Having said this, a second observation is that the accu-

racy of the machine teaching algorithm does matter. For

example, both MaxGrad and diag-80 produced better clas-

sifiers than RANDOM and all methods produced very large

gains over the chance annotator. Comparing machine teach-

ing algorithms, it is clear that recognition accuracy in-

creases with labeling accuracy. Finally, it can be observed

that there is an upper bound on the required annotator accu-

racy. In fact, the perfect annotator produces classifiers that

are only marginally better than those of MaxGrad. This is

quite interesting, suggesting that current machine teaching

algorithms already are a viable solution for classifier train-

ing. We note, however, that this is an experiment based on

five classes. For large C, the differences are likely to be

more significant. This is left for future research.

3.3. The Role of Explanations

A machine teaching algorithm aims to select the teach-

ing set L from Dl that maximizes student labeling accu-

racy. Traditional algorithms [34, 25] present the images in

L to the student, displaying the ground truth label as feed-

back when the latter makes a mistake. While this can suffice

for coarse-grained classification, it is not ideal for most ex-

pert domains, where classification tends to be fine-grained.

In this case, the differences between categories can be im-

Figure 4: Interface. When the teaching image is “Viceroy” but the

worker selected “Monarch”, the shown feedback will be given.

perceptible to the untrained eye. Without further hints, it

can be quite hard for non-experts to learn the target con-

cepts. [28] addressed the problem with the EXPLAIN al-

gorithm, which introduced attributive explanations into ma-

chine teaching. These are explanations based on a saliency

map that highlights regions contributing to the classifier pre-

diction [33, 46]. By directing student attention to features

important for the classification, these explanations can en-

hance teaching. However, more recent methods, such as

bbIMT [26], imiIMT [25], or MaxGrad [40] achieve better

results than EXPLAIN without explanations.

In this work, we seek to add explanations to the state-of-

the-art MaxGrad algorithm [40]. We note, however, that a

limitation of attributive explanations, such as those of EX-

PLAIN, is the lack of user-specific interaction. At each

teaching iteration, the feedback provided by these expla-

nations is always the correct label and the corresponding

attribution map. Since the class predicted by the student is

not considered in the explanation, the latter does not nec-

essarily address the student’s difficulties. Better feedback

should take the student prediction into account. This is the

definition of counterfactual explanations [41, 8], which ad-

dress the question: “why is the class predicted by the stu-

dent incorrect?” We next introduce an enhanced version of

MaxGrad that leverages counterfactual explanations.

3.4. Counterfactual MaxGrad (CMaxGrad)

MaxGrad uses the iterative teaching strategy popular in

the literature [25, 26, 40]. A network (f1) initialized with

an ImageNet pre-trained model is used to model the stu-

dent. The MaxGrad teacher builds the teaching set itera-

tively, by extracting from Dl the images most informative

for the student. In particular, at iteration t, the teacher se-

lects an image xt from Dl−Lt−1, where Lt−1 is the teach-

ing set assembled at iteration t− 1. The teaching set is then

augmented into Lt = Lt−1 ∪ {xt} and used to retrain the

student into f t = f∗(Lt), where f∗ denotes optimal classi-

fier. The complete algorithm is given in Algorithm 1.

Counterfactual explanations can provide detailed student

feedback during the retraining step when, given the query

image x
t of ground-truth label yt, the student predicts a

counterfactual class yc ̸= yt. An example is shown in Fig-
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Algorithm 1 MaxGrad

Input Data D = {(xi, yi)}
M
i=1, max iter.

T .

1: Initialization: L0 ← ∅, f1, D0 ← D
2: for t = {1, . . . , T} do

3: compute ξ(xi) for all examples in

Dt−1

4: select xt = argmax
xi∈Dt−1 ξ(xi)

5: teaching set update: Lt ← Lt−1 ∪
{xt}

6: student update: f t+1 = f∗(Lt)
7: Dt ← Dt−1 \ {xt}
8: end for

Output Lt

Algorithm 2 CMaxGrad

Input Data Dl = {(xi, yi)}
M
i=1, max iter. T , α and β, E = {cy

c

(xi)|y
c ̸=

yi}
M,C
i=1,c=1.

1: Initialization: L0 ← ∅, C0 ← ∅, f1, D0 ← Dl, E0 ← E
2: for t = {1, . . . , T} do

3: compute ξ(xi) for all examples in Dt−1 and ξ(cf
t(xi)(xi)) for all examples in

Et−1

4: select xt = argmax{xi∈Dl−Lt−1} ξc(xi, c
ft(xi)(xi);α)

5: select xt,c = argmax{xi∈Dl−Lt−1|yi=ft(xt)} ξc(xi, c
yt

(xi);β)

6: teaching and explanation sets update: Lt ← Lt−1 ∪ {xt}, Ct ← Ct−1 ∪

{xt,c, cf
t(xt)(xt), cy

t

(xt,c)}
7: student update: f t+1 = f∗(Lt ∪ Ct)

8: Dt ← Dt−1 \ {xt,xt,c}, Et ← Et−1 \ {cf
t(xt)(xt), cy

t

(xt,c)}
9: end for

Output Lt

ure 4 for the Butterflies dataset, where yt = ‘Viceroy’ and

yc = ‘Monarch’. The explanation first samples an image

x
c from yc, and then produces a visualization of the form:

“The correct label is yt. If the correct label were yc, the cir-

cled region of xt should look like the circled region of xc.”

Mathematically, this reduces to a function

C(xt, yt, yc,xc) = (cc(xt), ct(xc)), (2)

where c
c(xt) and c

t(xc) are counterfactual heatmaps or

segments for images xt and x
c respectively. They highlight

image regions of features discriminant for the two classes.

In Figure 4, these are the presence/absence of a line that

crosses the radial wing lines of the two butterflies, and the

different configurations of white spots. This explanation al-

lows the student to quickly learn what to look for in order to

distinguish the two classes. Since the counterfactual class

was selected by the student, the process quickly provides

the student with precise feedback on how to differentiate

between the classes that most confuse them.

To include counterfactual explanations on MaxGrad, we

propose the following generalization.

1. counterfactual maps are generated for all pairs of

queries and counterfactual examples in the labeled

dataset Dl. This results in the explanation set E =
{cy

c

(xi)|y
c ̸= yi}

M,C
i=1,c=1. This is a pre-processing

step, performed before machine teaching takes place.

2. teaching set Lt is augmented with a counterfactual set

Ct that includes counterfactual images and heatmaps.

3. during training, at iteration t the teacher selects an im-

age x
t from Dl − Lt−1. The student then makes a

prediction y = f t(xt). For the reasons discussed

below, this is always incorrect i.e. y = yc ̸= yt,
A counterfactual image x

t,c is selected from class yc

and the counterfactual maps (cc(xt), ct(xt,c)) are re-

trieved from E . The teaching set is then augmented

into Lt = Lt−1 ∪ {xt} and the counterfactual set into

Ct = Ct−1 ∪ {xt,c, cc(xt), ct(xt,c)}. The student is

finally updated with f t+1 = f∗(Lt ∪ Ct).

In MaxGrad, the image xt selected by the teacher is the one

that maximizes a score ξ(x) representative of the classifi-

cation difficulty posed by image x to the student model f t.

Since this score is the negative classification margin ξ(x)
of the image x under f t, there is always at least one im-

age that the student cannot classify correctly in Dl − Lt−1

(otherwise the training would be complete). Hence, the re-

sulting student prediction is incorrect, i.e. a counterfactual

class yt,c.

However, in the counterfactual setting, image selec-

tion must also account for the counterfactual heatmaps

(cc(xt), ct(xt,c)). For this, we propose a counterfactual

margin score

ξc(x, c
y(x);α) = αξ(x) + (1− α)ξ(cy(x)), (3)

where α ∈ [0, 1] is a hyperparameter that weighs the con-

tribution of images and counterfactual regions. Note that

this supports scores based on the margin of the whole im-

age (α = 1), the counterfactual region (α = 0) or both.

This leads to the following procedure for the selection of

the image x
t to augment the teaching set. For each image

xi ∈ Dl − Lt−1, the counterfactual class is identified as

f t(xi) and the heatmap c
ft(xi)(xi) retrieved from E . The

teacher then selects the image of largest score, i.e.

x
t = argmax

{xi∈Dl−Lt−1}

ξc(xi, c
ft(xi)(xi);α), (4)

to add to the teaching set Lt−1.

The image x
t,c of the counterfactual class yt,c is then

chosen with the same criterion among the images in the

counterfactual class, i.e.

x
t,c = argmax

{xi∈Dl−Lt−1|yi=ft(xt)}

ξc(xi, c
yt

(xi);β), (5)
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