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Abstract

The problem of novelty detection in fine-grained visual
classification (FGVC) is considered. An integrated un-
derstanding of the probabilistic and distance-based ap-
proaches to novelty detection is developed within the frame-
work of convolutional neural networks (CNNs). It is shown
that softmax CNN classifiers are inconsistent with novelty
detection, because their learned class-conditional distribu-
tions and associated distance metrics are unidentifiable. A
new regularization constraint, the class-conditional Gaus-
sianity loss, is then proposed to eliminate this unidentifia-
bility, and enforce Gaussian class-conditional distributions.
This enables training Novelty Detection Consistent Classi-
fiers (NDCCs) that are jointly optimal for classification and
novelty detection. Empirical evaluations show that NDCCs
achieve significant improvements over the state-of-the-art
on both small- and large-scale FGVC datasets.

1. Introduction

Deep convolutional neural networks (CNNs) enabled
significant breakthroughs in image classification [25, 49,

]. However, CNN classifiers are trained under the closed-
world assumption that test examples belong to one of the
classes on which the CNN was trained. These are referred
to as seen or known classes. This assumption is violated
in many practical settings, e.g. medical diagnosis [46] or
autonomous driving [3], where CNNs can be exposed to
images from both seen and unseen classes, i.e. classes that
do not appear in the training set. In this setting, CNNs are
well-known to assign examples from unseen classes to seen
classes with high confidence [6, 56]. In fact, an entire lit-
erature on adversarial attacks [51, 16] has grown out of this
observation. Novelty detection aims to thwart this problem,
by identifying and rejecting examples from unseen classes.

Novelty detection can be divided into the one-class and
multi-class settings depending on the number of known
classes. In one-class novelty detection [43, 36, 38], which
is also known as one-class classification (OCC), all train-

ing examples are assumed from the same class and have
no labels. When seen and unseen classes are from differ-
ent domains, novelty detection becomes out-of-distribution
(OOD) detection [20, 28, 52, 12, 27]. For instance, a clas-
sifier of handwritten digit images is confronted with natural
images. While OCC and OOD detection have gained signif-
icant attention, they are best suited when seen and unseen
classes are fundamentally different.

In this work, we address a different and more challenging
setting where both seen and unseen classes are sub-classes
(e.g., African hunting dog vs. Chesapeake Bay retriever)
of a common category (e.g., dog). This is of very practi-
cal value for intelligent systems. For example, there might
be cases in which it is necessary for surveillance systems
deployed at wildlife sanctuaries to detect unseen animal
species which might become alien-invasive species. More-
over, this is more frequent during the regular operation of
vision systems. In applications such as autonomous driv-
ing, it is impossible to train for all object sub-classes that
already exist, e.g. all road obstacles, or will be created af-
ter deployment of the classifier, e.g. new types of scooters
or construction signs. Hence, sooner or later, the classifier
will face unseen sub-classes. Since this type of novelty de-
tection requires fine distinctions between seen and unseen
classes, it is best addressed in the multi-class setting, where
seen classes are modeled individually.

The core of a novelty detection algorithm is a novelty
score or a measure of an example x not belonging to seen
classes [9, 39]. This score can be computed by projecting x
onto a feature space V), usually the embedding learned by a
CNN, and thresholded to produce a novelty detection deci-
sion. Two popular classes of novelty scores are probabilistic
and metric-based [41]. The former estimates the probability
of x under the distributions of seen classes. The latter es-
timates distances between x and seen class representatives.
It can be shown that these two approaches are intrinsically
connected for exponential family distributions [5], a family
of probability densities that includes most parametric mod-
els in common use. Exponential family distributions are de-
fined by a sufficient statistic, which can be seen as a feature
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transformation or embedding, a set of canonical parame-
ters, and a cumulant or log-partition function. The latter is
a convex function of the canonical parameters and defines
the geometry of the feature space: its derivatives are the mo-
ments of the distribution and its conjugate function defines
the Bregman divergence [10] that underlies the geometry of
V [4]. Hence, for exponential family features, probabilistic
and metric scores are two faces of the same coin.

In this work, we leverage the fact that a CNN trained for
classification induces exponential family class-conditional
distributions on its embedding v(x), whose geometry thus
follows the associated Bregman divergences. This enables
novelty detection by simply thresholding the latter. The
difficulty, however, is that the standard training by cross-
entropy minimization produces class-conditional distribu-
tions and corresponding Bregman divergences, that are un-
known. In fact, we show that both class-conditional dis-
tributions and Bregman divergences are unidentifiable from
the CNN parameters. While seen classes are exponentially
distributed, these parameters are compatible with many cu-
mulant functions and, consequently, Bregman divergences.
This is illustrated in Figure 1(a). Although novelty de-
tection can be performed by assuming divergences of spe-
cific forms, e.g. Euclidean distances, this creates an incon-
sistency between classification and novelty detection that
makes the latter suboptimal. It is thus important to consider
alternate forms of CNN training that produce classification
CNNs consistent with novelty detection. In this work, we
propose to regularize CNN training so as to eliminate the
unidentifiability of Figure 1(a). In particular, we seek regu-
larization constraints that guarantee a desired (distribution,
divergence) pair. While any pair could be chosen, we en-
force multivariate Gaussian distributions and the associated
Mahalanobis distances, for simplicity. However, given the
high-dimensional nature of modern CNN embeddings, even
covariances constraints are difficult to enforce. We show,
however, that it is possible to leverage insights gained from
the analysis of embedding geometry to derive a new Class-
Conditional Gaussianity (CCG) regularization loss.

As shown in Figure 1(b), the combination of the CCG
loss Lccg with the standard cross-entropy loss L¢cg can be
seen as a loss function that operates on the two sides of
softmax regression layer. On one hand, Lcg shapes the
class-posterior probabilities at the output of the layer, en-
suring optimal classification on seen classes. On the other,
Lccg shapes the class-conditional distributions at the layer
input, forcing them to be Gaussian. Finally, because the
output class-posterior probability distributions are compati-
ble with any exponential family distribution for the class-
conditionals, the addition of this regularization does not
hinder classification performance. Overall, the resulting
classifier is consistent with novelty detection, which can
be equally implemented by thresholding class-conditional
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Figure 1. 1(a): A CNN trained for classification with the cross-
entropy loss Lcg is inconsistent with novelty detection (ND). Be-
cause the class-conditional distributions learned by the CNN are
unidentifiable, multiple sets of distributions (visualized using con-
tour plots) are compatible with the CNN parameters. 1(b): Reg-
ularization with the proposed CCG loss Lccg makes the distribu-
tions identifiable, in fact Gaussian, without sacrificing classifica-
tion performance.

probabilities or Bregman divergences, with little loss of
classification performance on seen classes.

The paper makes four contributions to the study of nov-
elty detection. The first is a theoretical analysis of the soft-
max classifier, showing that although it learns exponential
family class-conditional distributions, these are not identi-
fiable. The second is the derivation of identifiability condi-
tions, that guarantee Gaussian distributions and associated
Mahalanobis distances. The third is the CCG regulariza-
tion loss that encourages these conditions to hold, produc-
ing classifiers that are consistent with novelty detection. Fi-
nally, evaluations on various fine-grained visual classifica-
tion datasets demonstrate that our proposed method signifi-
cantly advances the state-of-the-art for novelty detection.

2. Related Works

Novelty Detection: Novelty detection has long been in-
vestigated in the machine learning and signal processing
literature [32, 33, 41]. While many strategies have been
proposed, two are of particular relevance to this work:
probabilistic and distance-based novelty detection. Prob-
abilistic methods are based on estimating class-conditional
probabilities. However, most density estimation techniques
used in prior works, such as Gaussian mixtures [58] or
kernel density estimation [24], do not scale well to high-
dimensional data, e.g. high-resolution images. Distance-
based approaches rely on distance metrics in feature space
to compute distances (or similarity measures) between ex-
amples and known classes. As we will show in the next
section, these two philosophies can be unified in the frame-
work of CNN learning, but both the class-conditional distri-
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butions learned by CNNs and the distances that define the
geometry of CNN feature space are unidentifiable.

CNN-based methods: In recent years, many works have
used deep neural networks for visual novelty detection
[20, 28, 12, 30, 21, 39]. For example, [30] proposed to use
the Kernel Null Foley-Sammon transform (KNFST) [9] to
learn a mapping from CNN feature space to a kernel feature
space, where novelty detection is performed by threshold-
ing distances between test examples and seen classes. This
approach and its variants [9, 8, 30] suffer from the limitation
that the CNNs are not specifically trained to enable optimal
novelty detection. Several works instead propose to train
the CNN with an auxiliary dataset of examples from do-
mains different from that of the seen classes [21, 13, 39].
These strategies are successful for out-of-distribution de-
tection, where examples in the auxiliary dataset effectively
mimic unseen test examples, teaching the CNN to discrimi-
nate between them and known classes examples. However,
they lose effectiveness when known and novel examples are
from fine-grained classes within the same category.

Generative Models: Deep generative models, such as vari-
ational autoencoders and generative adversarial networks,
have also been proposed for novelty detection. For exam-
ple, [46, 57, 2, 38] use the image reconstruction error or the
latent vector reconstruction error produced by these models
as novelty score. Alternatively, [40, 1] propose to employ
generative models for modeling the probability distribution
of known classes. However, methods based on image gener-
ation are usually only successful in simple scenarios, with
low resolution (e.g., 28x28 or 32x32) images and small
numbers of classes [11].

Related Topics: Out-of-distribution (OOD) detection can
be viewed as a special case of novelty detection where novel
examples are from another problem domains or datasets.
However, as discussed above, most approaches to OOD de-
tection are not suitable for the more challenging task of
novelty detection within fine-grained classes. Multi-class
novelty detection also has close relationships with research
problems such as one-class classification (OCC) [36, 38]
and open-set recognition (OSR) [45, 6, 31]. OSR aims to
simultaneously identify unknown examples and classify ex-
amples from known classes. OCC approaches can be used
for multi-class novelty detection by treating the multiple
training classes as one super class. This, however, fails to
exploit the richness of label information in the training data
and tends to underperform in multi-class novelty detection.
In addition to the aforementioned topics, uncertainty esti-
mation and probabilistic neural networks [14, 18, 15, 26]
aim to address the overconfidence issue of deep CNNs and
may also be promising in novelty detection. The method of
deep ensemble [26], which achieves state-of-the-art perfor-
mance in uncertainty calibration [35], is evaluated for nov-
elty detection in this work.

3. Novelty Detection Consistent Classifier

In this section, our approach for novelty detection is pre-
sented in details. We start by briefly reviewing the training
of CNN classifiers and discussing the difficulties of identi-
fying either class-conditional distributions or distance met-
rics learned by CNNss.

3.1. Learning CNN classifiers

Consider a classification problem with observations and
labels drawn from random variables X €¢ X andY € Y =
{1,---,C}. A CNN performs classification in three stages.
The first is a feature extractor or embedding v : X — V C
R¢ which maps an image x € X into a d-dimensional fea-
ture space V. This is typically achieved through a sequence
of layers combining convolutional and non-linear transfor-
mations. The second is a softmax regression

e(wy V(%)) +by

» _ 1
yix (y[v(x)) S0 elwin G+ M

where w,, /b, is the classification weight/bias for class y and
(-, -) denotes the dot product . Finally, classification predic-
tions are made by the Bayes decision rule

y* = argmax Py x (y|v(x)). 2)
yey

CNNs are usually trained under the principle of maxi-
mum log-likelihood, i.e.,

maximize E

(X,y) € Dtrain

log Py x (y|v(x)) 3)

where D" denotes the training set. This is typically done
via stochastic optimization. Given a batch of training ex-
amples {(x;,y;)}",, the CNN parameters are optimized
by minimizing the cross-entropy loss:

1 m €<w7/i 7v(xi)>+b?/i
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Multi-class novelty detection [9, 39] addresses the detec-
tion of examples from new classes, on which the network
has not been trained. For example, when a dog classifier
trained on C' breeds is faced with an example of a dog of
an unseen breed. A simple solution is to threshold some
confidence score derived from the class-posterior distribu-
tion of (1), e.g. its maximum value [20]. A value below the
threshold signals that the CNN has little confidence on the
image class, suggesting that the image is likely to be from
an unseen class and should be rejected. However, the esti-
mation of class-posterior probabilities via (1) is unreliable
in the open-world case, where test examples can be from un-
known novel classes. In fact, its underlying assumption that
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> key Pyix(k[v(x)) = 1 does not hold anymore. Hence,
this approach tends to be suboptimal for novelty detection.

This problem can be avoided by performing the novelty
detection before the softmax layer, i.e. by acting directly on
the output of the feature extractor v(-). Two alternatives
are possible. The first is to threshold the class-conditional
probability distributions Px |y (x|y) or Px |y (v(x)[y) [41].
While these model the generative distribution of examples
from the known classes, they are valid models to measure
the probability of x under class y, even when x is from an
unseen class. The second is to measure distances between
x and some representative of the distributions of the known
classes in the feature space V), e.g. the class mean. The intu-
ition is that, in V, examples from class y cluster around the
class mean. Novelty detection should thus be possible by
either thresholding probability distributions or distances in
V. The main difficulty is that both the distributions learned
by the CNN and the distances that define the geometry of V
are usually unknown. In fact, as we show next, they are not
even identifiable from the learned CNN.

3.2. Unidentifiability of Class-conditional Distribu-
tions

Using Bayes’ rule, the class-posterior distribution can be
written as
Pxy (v(x)|y) Py (y)
Pyix(ylv(x) = 5 L6
> k=1 Px)y (v(x)[k) Py (k)
It follows from (1) and (5) that the class-posterior distri-
butions learned by a CNN are compatible with any set of
class-conditional distributions of the form

Px)y (v(x)|y) Py (y) ocx ef¥ov G+ (6)

where o5 denotes a proportional relationship whose pro-
portionality constant is determined by x. This holds when

Py (VOOly) = g™ V0 @)
e (wy)+by

P =
Y(y) ZkC:1 ed’(wk)‘f’bk )

®)

where ¢(-) is a non-negative function and ¥(w,) is a
constant such that (7) integrates to 1. In this case,
Px|y(v(x)|y) is an exponential family distribution of
canonical parameter w,, sufficient statistic v(x), and cu-
mulant function ¢(-) [5]. However, the learned CNN only
provides us with v(x) and w,. We cannot determine
Px |y (v(x)|y) for any x without knowledge of 1(w,) or
¢(x). In other words, there are multiple exponential family
distributions compatible with v(x) and w, learned by the
CNN. A toy example is provided in Supplementary Material
to illustrate this. In conclusion, the class-conditional distri-
butions Px|y (v(x)|y) are not identifiable from the leaned
CNN, as shown in Figure 1(a).

3.3. Unidentifiability of Bregman Divergence

The cumulant function (+) of an exponential family dis-
tribution Px|y (v(x)|y) possesses several important prop-
erties [34, 4, 5]. First, it is a convex function. Second, its
first and second order derivatives satisfy Vi (wy) =
and V?¢(w,) = X,, where p, = Ex|y[v(x)|y] and
%, = Expy[(v(x) = ,)(v(x) = pz,)" |y arc the mean
and covariance of v(x) under class y. Third, it has a conju-
gate function defined as

Ohy) = sup{{w, ) — (W)}, ©)

and it is the canonical parameter w, associated with v and
py that achieves the supremum, i.e.

¢(U’y) = <Wyv ,u’y> - w(wy) (10)

From this, it follows that

(Wy, v(x)) — P(wy)

(Wy, py) — h(Wy) + (Wy, V(X) — py)
D(Hy) + (Wy, V(%) — py)

O(py) + (Vopy), v(X) — py)

= —dy(v(x), py) + o(v(x)) (11)

where

dg(a,b) = ¢(a) — ¢(b) — (Vé(b),a—b)  (12)

is the Bregman divergence [ | 0] between a and b associated
with ¢. Using (11), (7) can be rewritten as

Pxpy (v(x)]y) = q(x)e?VEN=devEOm) - (13)
Xy e~ do(v(x),ny) (14)

Hence, learning a CNN under the cross-entropy loss en-
dows V with a geometry defined by the Bregman diver-
gence dg(v(x), tby). In fact, it can be shown that the cor-
respondence between Px|y (v(x)|y) and dg(v(x), py) is
bijective, i.e. there is a unique Bregman divergence for ev-
ery exponential family distribution [4]. Since, as discussed
in the last subsection, multiple exponential family distribu-
tions are compatible with the learned CNN, there are mul-
tiple Bregman divergences corresponding to them. Hence,
like the class-conditional distributions, the distances defin-
ing the geometry of V are not identifiable, either.

3.4. Identifiability Regularization Constraints

In this work, we propose to add regularization con-
straints to CNN training so as to enable the identification
of both the class-conditional probability distributions and
the distance functions that define the geometry of V. We
note that these constraints do not affect the optimality of the

1667



classifier, whose posterior distribution remains of the form
of (1) and whose class-conditionals remain of the form of
(6). The only difference is that we eliminate the extra de-
grees of freedom that make the learned CNN compatible
with multiple distributions in the exponential family. This
is accomplished by enforcing one particular distribution.

While, in principle, any member of the exponential fam-
ily could be used, a natural choice is to require the distribu-
tions to be Gaussians with different means, i.e.

Pxy (v(x)ly) =G(v(x); uy, X) (15)

where

1

s ) TR (x )
(27r)d/2|2|1/26 2 . (16)

Q(x; H, 2) -

Two immediate consequences are that, from (15) and (14),
the associated Bregman divergence is the Mahalanobis dis-
tance

1
dy(v(x), y) = 5(v(x) ~ 1y) TSN (V(x) = py) -
1
= 5Iveo = my 3
and that
Pxjy (v(x)[y) = Ke™ % V09#0) (18)

where K is a constant. This enables novelty detection by
thresholding Mahalanobis distances, which are intuitive and
easy to compute. In fact, this simplicity has led many pre-
vious works to use Mahalanobis distances in )V for tasks
such as image retrieval [22, 29], out-of-distribution detec-
tion [27], person re-identification [42], etc.

The difficulty, ignored by most of these works, is that the
Mahalanobis distance only reflects the geometry of VV when
(15) holds. This must be enforced during CNN training, as
a regularization constraint. However, this constraint is not
trivial to implement. A possibility would be to add one reg-
ularizer across classes, forcing the sample covariance of the
feature vectors to be the desired 3. This has three problems.
First, it is difficult to estimate a d-by-d covariance 3 when
d is large (e.g. d = 4096 for our experiments in Section 4).
Second, even if this were possible, it is not clear what the
target covariance X should be. Third, and most important,
forcing a distribution to have a certain covariance 3 is in-
sufficient to guarantee that the distribution is Gaussian. In
summary, this regularization would 1) require the specifica-
tion of the target covariance ¥ and 2) would not guarantee
the desired Gaussianity. Both of these are undesirable prop-
erties. The following lemma provides a more effective and
efficient path towards the regularization.

Lemma 1. Consider an exponential family distribution
Px|y (v(x)|y) of sufficient statistic v(x) and canonical pa-
rameter wy. Then (15) holds if and only if

My = Xwy (19)

where p,, and X are the mean and covariance of v(x) un-
der class y.

3.5. The Class-Conditional Gaussianity Loss

The lemma shows that there is a simple way to guaran-
tee Gaussian class-conditionals. It suffices to enforce the
constraint of (19) during CNN training. Even this, however,
is not trivial to implement. One possibility is to estimate
py and X by the sample mean and sample covariance of
the training examples and then minimize the norm of differ-
ence between the two sides of (19). This, however, is not
well suited for the mini-batch style of optimization com-
monly used for CNN training.

In this work, we propose a better alternative. This con-
sists of parameterizing ¥ by learnable parameters 6 and
then forcing v(x) under class y to have mean p,(6) =
3(0)w, and covariance 3(6). We tackle this from two
aspects.

First, {p1.(0)}$_, and X(8) should fit the data distri-
bution in V. This can be done efficiently by minimizing
the negative log-likelihood (NLL) of the Gaussian mod-
els {G(v(x); ui(0),%(0))}_, with respect to the train-
ing data. From (16), up to constants independent on
{p1(6)}$_, and (), the NLL for mini-batch training ex-
amples {(x;,y;)}™, is given by

log\E
+ o Z ||V xL l’l’!/z )H;(g)

(20)

Ly =

Since this NLL minimization is just in order to update our
estimation of { } %, and X, we only optimize the param-
eters of {p(0)}$_, and £(0) for minimizing Lnyp. In
other words, we detach {v(x;)}7, in (20) from the com-
putational graph for backpropagation.

Second, the embedding v(-) should adapt so that
Exy[v(x)|ly] = X(0)w,. We encourage this by mini-
mizing the Mahalanobis distances from {v(x;)}, to the
corresponding means { ., (8) = 3(0)w,, }I", i.e.,

levxL — 1, (0) |59 @D

Lvp =

Noting that it is easy for the minimization of Mahalanobis
distances to get away with simply increasing the magni-
tude of (@), we only optimize the parameters of v(-) and
{11 (0)}$_, for minimizing Lyp.
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By combining (20) and (21), we have the identifiability
regularization loss

Lceg = 7L + Lvp (22)

where v > 0 is a multiplier that balances the contribu-
tions of the two terms. This proposed regularization has
two advantages. First, there is no need to specify the tar-
get covariance X, which is simply learned as a byprod-
uct of the optimization. Second, the minimization of (22)
also encourages the distribution of v(x) under class y to
have mean 3(0)w, and covariance X(8), it follows from
Lemma 1 that it forces the class-conditional distributions
Px|y (v(x)]y) to be Gaussian. For this reason, we refer to
(22) as the Class-Conditional Gaussianity (CCG) loss.

The cross-entropy loss of (4) and the CCG loss can be
naturally combined into an overall objective

L = Lcg + ALccg (23)

where A > 0. As shown in Figure 1(b), this can be seen as a
loss function that operates on the two sides of softmax layer.
On one hand, Lcg shapes the class-posterior probabilities at
the output of the layer, ensuring optimal classification on
seen classes. On the other hand, Lccg shapes the distribu-
tions at the layer input, forcing them to be Gaussian. Both
losses constrain the classifier parameters {wy, }¢_; that con-
nect the input to the output. This enforces the condition
of (19), which guarantees consistency between the input
and output distributions, removing the ambiguity at the in-
put, where the class-conditional distributions are forced to
be Gaussian. Finally, because the output class-posterior
distributions are compatible with any exponential family
distribution for the class-conditionals, the addition of this
regularization does not hinder classification performance.
Furthermore, the fact that the seen classes have identifiable
class-conditional distributions simplifies novelty detection,
since there is no need to explicitly learn the distance metric
that defines the geometry of V. This distances simply “fall
out” of the optimization of (23), enabling improved novelty
detection performance. These observations are validated by
our empirical evaluation in Section 4.

3.6. Summary

The proposed Novelty Detection Consistent Classifiers
(NDCC) is implemented as follows. First, a CNN is trained
with known classes examples and the joint loss £ of (23).
This produces a pair of parameters (w,, 3(6)) per class
y, and encourages the class-conditional distributions to be
Gaussians of mean 1, = X(0)w, and covariance ¥ =
33(6). Given a test example x, its novelty score is computed
as the smallest Bregman divergence of (17), between x and
the known classes

Novelt = mi — A, 24
ovelty(x) gleglIIV(X) Byl5 (24)

Dogs  FounderType CUB-200  Caltech
fine-grained v v v X
# classes 120 200 200 256
# images 20580 1352600 6033 30607

Table 1. Statistics of the datasets used for evaluation.

A novelty detection decision is finally made by thresholding
Novelty(x). For practical applications, the threshold can be
chosen by different strategies. A simple one is to choose a
percentile of the distribution of novelty scores for examples
from known classes (for instance, we can choose the 90th
percentile if the acceptable false negative rate is 10%). In
literature, the novelty score is usually used for performance
evaluations of novelty detection methods.

4. Experiments

Datasets. NDCC was evaluated on three fine-grained
datasets, Stanford Dogs [23], FounderType-200 [30] and
CUB-200-2010 [53]. To show that NDCC is not limited to
the fine-grained setting, we also conducted evaluations on
the coarse-grained Caltech-256 [17] dataset. Some statistics
and sample images from these datasets are given in Table 1
and Figure 2.

Test Protocol. For fair comparison, we followed the proto-
col (seen/novel and train/test splits, etc) used in the litera-
ture [30, 39]. All methods are evaluated with two backbone
CNNs, AlexNet [25] and VGG-16 [49]. ImageNet pre-
trained models are used for initialization of NDCC. Nov-
elty detection performance is evaluated with the area under
the receiver operating characteristic curve (AUROC). This
is a measure of average performance across all thresholds
of (24), which captures the ability of a statistic (e.g., nov-
elty score) to distinguish two groups (e.g., novel and seen
classes) and is widely used in the novelty detection litera-
ture [9, 8, 30, 40, 38, 1, 30, 7].

Parametrization of 3. A generic covariance matrix X €
Sff_ 4 has d(d;l) degrees of freedom. For large d, this is a
very large number. For example, using a 4096-dimentional
feature space V results in a number of degrees of freedom
larger than the number of parameters of a 152-layer ResNet
[19]. To overcome this difficulty, we restrict 3 to be di-
agonal and consider two parametrization strategies. From

simple to complex, they are

1. ¥ =diag(c?,---,0?),
2. ¥ = diag((a(l))27 ) (U(d))Z)a

where 01/} = ¢ + 6U) and o, {6)}9_, are learnable pa-
rameters. Under these two strategies, the resulting Gaus-
sians are respectively spherical and elliptical. For both of
them, 3 is initialized as an identity matrix. Under strat-
egy 1, it is true that Lyp of (21) bears certain resemblance
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Figure 2. Sample images from the datasets used for evaluation. Images in each column are from the same class.

Method Stanford Dogs FounderType-200 CUB-200-2010 Caltech-256
AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16
Finetune [39] 0.702 0.766 0.650 0.841 0.638 0.684 0.785 0.827
OCSVM [47] 0.520 0.542 0.612 0.627 0.548 0.569 0.561 0.576
KNFST [9] 0.602 0.633 0.678 0.870 0.624 0.647 0.688 0.743
KNFST pre [9] 0.619 0.649 0.655 0.590 0.567 0.602 0.672 0.727
Local KNFST [§] 0.600 0.626 0.633 0.683 0.609 0.625 0.628 0.712
Local KNFST pre [8] 0.589 0.652 0.523 0.549 0.573 0.619 0.600 0.657
OpenMax [6] 0.711 0.776 0.667 0.852 0.664 0.708 0.787 0.831
MND [7] 0.762 0.904 - - - - 0.751 0.882
TLN [39] 0.748 0.825 0.741 0.893 0.673 0.738 0.807 0.869
Deep Ensemble [26] 0.666 0.790 0.830 0.866 0.677 0.749 0.795 0.848
NDCC(o) 0.814 0.913 0.922 0.952 0.702 0.752 0.791 0.886
NDCC(c ) 0.823 0.923 0.940 0.964 0.709 0.775 0.813 0.895

Table 2. Multi-class novelty detection performance (AUROC) of different methods. The best results are highlighted in bold, and the second

best underlined. The suffix “pre” in a method name indicates that CNNs pre-trained on ILSVRCI12 [

to the center loss [54, 55], but the latter focus on enhancing
the discriminative power of CNNss for face recognition. The
NDCCs implemented with the two strategies are denoted as
“NDCC(c)” and “NDCC(c1))”, respectively.
Implementation Details. We adopted PyTorch [37] to train
NDCC:s by stochastic gradient descent (SGD) with momen-
tum of 0.9. Weight decay of 0.0005 was applied to the pa-
rameters of CNN embedding v(-). The SGD batch size was
set to be 256 for all datasets. In practice, we found that the
training of NDCCs can be significantly sped up if the em-
bedding is La-normalized, i.e., |v(x)|| = r,Vx. This can
be easily implemented with a Lo-normalization layer and
a predefined multiplier » > 0. To minimize the discrepan-
cies between training and test distributions, we disabled all
dropout [50] layers in NDCCs. For all the datasets, we set
the multiplier v of (22) as v = ﬁ and determined the
multiplier A of (23) by hold-out validation on the training
set. More implementation details (hyperparameters such as
learning rate, input size, etc) are included in Supplementary
Material.

Comparison to the State-of-the-art. The NDCC variants
are compared to several baseline methods including One-
Class SVM (OCSVM) [47, 48], KNFST [9], Local KNFST
[8], Transfer Learning Novelty (TLN) [39], Mixing Nov-

] are used for feature extraction.

elty Detection (MND) [7] and Deep Ensemble [26]. Among
these, TLN and MND have state-of-the-art performance for
multi-class novelty detection. A simple baseline “Finetune”
is also used in the comparisons. This is to finetune the CNN
with a cross-entropy loss and use the negative of the maxi-
mum activation in the last fully-connected layer as novelty
score. For deep ensemble, the ensemble size is set as 5 and
the maximum class-posterior probability (averaged over en-
semble members’ predictions) is used for novelty score, i.e.,
Novelty(x) = — maxyey Pyx (y[v(x)).

The evaluation results are summarized in Table 2. Re-
sults of all baseline methods except deep ensemble on
Standford Dogs, FounderType-200, and Caltech-256 are
quoted from [39, 7]. All other results are produced by our
experiments. A clarification on this is provided in Supple-
mentary Material. The table shows that NDCC beats the
state-of-the-art on all the four datasets. In fact, all vari-
ants of NDCC achieve state-of-the-art results for most net-
works and datasets. The only exception is NDCC(o) which
underperforms the state-of-the-art for the combination of
AlexNet and Caltech-256. Among NDCCs, best perfor-
mance is usually achieved with strategy 2, i.e. NDCC(c(?)).
For AlexNet/VGG-16, NDCC(c%)) outperforms the cur-
rent state-of-the-art by a margin of 6.1%/1.9% on Stan-
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Figure 3. AUROC and closed-world classification accuracy (CA) versus A.

Model Stanford Dogs FounderType-200 CUB-200-2010 Caltech-256
AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16
Finetune+G, 0.632 0.849 0.759 0.811 0.547 0.577 0.557 0.612
Finetune+Ga 0.591 0.841 0.732 0.823 0.542 0.570 0.571 0.626

Table 3. Multi-class novelty detection performance (AUROC).

ford Dogs, 11.0%/7.1% on FounderType-200, 3.2%/2.6%
on CUB-200-2010, and 0.6%/1.3% on Caltech-256.

Comparing datasets, the gains of NDCC are larger for
Stanford Dogs, FounderType-200, and CUB-200-2010 than
for Caltech-256. This can be explained by the fact that the
formers are fine-grained datasets, while the latter is not. As
shown in Figure 2, differences between fine-grained classes
are subtler, requiring more sophisticated novelty detection
algorithms. It is, in fact, worth noting that all NDCC vari-
ants significantly outperform TLN on all three fine-grained
datasets, despite the fact that TLN uses extra auxiliary data
(e.g. ILSVRCI12 dataset) for training. This is unsurprising,
since images from a completely different problem domain
offer limited guidance on how to reject images from an un-
seen class within the same category of seen classes. Overall,
while the methods in the literature have noticeably weaker
performance for fine- than coarse-grained data, this is much
less the case for NDCC.

Ablation Study. To further demonstrate the necessity of
the proposed regularization, we evaluated the performance
of simply modeling the class-conditional distributions in
V of the “Finetune” method. Specifically, we modeled
Px )y (v(x)|y) using two Gaussian models:

1. Gy (V(X); My, diag(az, e 702))’
2. Go(v(x); py, diag((aM)?, -, (0(D)?)).

The parameters {p;}$_,, o, and {a(j)}?zl were learned
by maximum likelihood estimation on the training set and
the corresponding Bregman divergences were used to ob-
tain the novelty score of (24). The resulting novelty de-
tection performance is shown in Table 3. Comparing with
the NDCC results of Table 2, shows that the proposed reg-
ularization is critical for the strong NDCC performance.
Another observation is that the model with more covari-
ance freedom (Finetune+G,) fails to guarantee better perfor-

mance. This might be because there are not enough training
examples to constrain the covariance estimation.

Closed-world Classification. To investigate the impact of
the CCG regularization on the ability of CNNs to clas-
sify known classes, we evaluated the closed-world classi-
fication accuracy and the novelty detection performance of
NDCC(o) with an AlexNet backbone, as a function of A
in (23). The results are presented in Figure 3. While the
novelty detection performance improves dramatically as A
increases, the classification accuracy on known classes re-
mains nearly constant. This is consistent with our analysis
in Section 3.5.

In addition, some qualitative results are presented in the
Supplemental Material to visualize the efficacy of NDCC.

5. Conclusion

We considered the problem of novelty detection in fine-
grained visual classification. We first showed that unidenti-
fiability of both class-conditional distributions and distance
metrics is a significant hurdle to learning CNNss jointly op-
timal for classification and novelty detection. To address
this problem, we proposed a new regularization, the CCG
loss, that enforces Gaussianity of class-conditional distri-
butions. This was shown to enable state-of-the-art novelty
detection results on both small- and large-scale fine-grained
visual classification datasets.
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