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Abstract—Neuromorphic computing systems are embracing memristors to implement high density and low power synaptic storage as
crossbar arrays in hardware. These systems are energy efficient in executing Spiking Neural Networks (SNNs). We observe that long
bitlines and wordlines in a memristive crossbar are a major source of parasitic voltage drops, which create current asymmetry. Through
circuit simulations, we show the significant endurance variation that results from this asymmetry. Therefore, if the critical memristors
(ones with lower endurance) are overutilized, they may lead to a reduction of the crossbar’s lifetime. We propose eSpine, a novel
technique to improve lifetime by incorporating the endurance variation within each crossbar in mapping machine learning workloads,
ensuring that synapses with higher activation are always implemented on memristors with higher endurance, and vice versa. eSpine
works in two steps. First, it uses the Kernighan-Lin Graph Partitioning algorithm to partition a workload into clusters of neurons and
synapses, where each cluster can fit in a crossbar. Second, it uses an instance of Particle Swarm Optimization (PSO) to map clusters
to tiles, where the placement of synapses of a cluster to memristors of a crossbar is performed by analyzing their activation within the

workload. We evaluate eSpine for a state-of-the-art neuromorphic hardware model with phase-change memory (PCM)-based
memristors. Using 10 SNN workloads, we demonstrate a significant improvement in the effective lifetime.

Index Terms—Neuromorphic Computing, Spiking Neural Networks (SNNs), Non-Volatile Memory (NVM), Memristor, Endurance.

1 INTRODUCTION

PIKING Neural Networks (SNNs) are machine learning
Sapproaches designed using spike-based computations
and bio-inspired learning algorithms [1]. Neurons in an
SNN communicate information by sending spikes to other
neurons, via synapses. SNN-based applications are typ-
ically executed on event-driven neuromorphic hardware
such as DYNAP-SE [2], TrueNorth [3], and Loihi [4]. These
hardware platforms are designed as tile-based architectures
with a shared interconnect for communication [5]-[7] (see
Fig. 1a). A tile consists of a crossbar for mapping neurons
and synapses of an application. Recently, memristors such
as Phase-Change Memory (PCM) and Oxide-based Resistive
RAM (OxRRAM) are used to implement high-density and
low-power synaptic storage in each crossbar [8]-[13].

As the complexity of machine learning models increases,
mapping an SNN to a neuromorphic hardware is becom-
ing increasingly challenging. Existing SNN-mapping ap-
proaches have mostly focused on improving performance
and energy [14]-[23], and reducing circuit aging [24]-[26].
Unfortunately, memristors have limited endurance, ranging
from 10° (for Flash) to 10'° (for OXRRAM), with PCM some-
where in between (~ 107). We focus on endurance issues
in a memristive crossbar of a neuromorphic hardware and
propose an intelligent solution to mitigate them.

We analyze the internal architecture of a memristive
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crossbar (see Fig. 3) and observe that parasitic components
on horizontal and vertical wires of a crossbar are a major
source of parasitic voltage drops in the crossbar. Using
detailed circuit simulations at different process (P), voltage
(V), and temperature (T) corners, we show that these voltage
drops create current variations in the crossbar. For the same
spike voltage, current on the shortest path is significantly
higher than the current on the longest path in the crossbar,
where the length of a current path is measured in terms of
its number of parasitic components. These current varia-
tions create asymmetry in the self-heating temperature of
memristive cells during their weight updates, e.g., during
model training and continuous online learning [27], which
directly influences their endurance.

The endurance variability in a memristive crossbar be-
comes more pronounced with technology scaling and at el-
evated temperature. If this is not incorporated when execut-
ing a machine learning workload, critical memristors, i.e.,
those with lower endurance may get overutilized, leading
to a reduction in the memristor lifetime.

In this work, we formulate the effective lifetime, a joint
metric incorporating the endurance of a memristor, and its
utilization within a workload (see Sec. 5). Our goal is to
maximize the minimum effective lifetime. We achieve this
goal by first exploiting technology and circuit-specific char-
acteristics of memristors, and then proposing an endurance-
aware intelligent mapping of neurons and synapses of a ma-
chine learning workload to crossbars of a hardware, ensur-
ing that synapses with higher activation are implemented
on memristors with higher endurance, and vice versa.

Endurance balancing (also called wear leveling) is previ-
ously proposed for classical computing systems with Flash
storage, where a virtual address is translated to differ-
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ent physical addresses to balance the wear-out of

cells [28]-[32]. Such techniques cannot be used for
romorphic hardware because once synapses are plac
crossbars they access the same memristors for the ¢
execution duration. Therefore, it is necessary to limit th
lization of critical memristors of a neuromorphic hard
during the initial mapping of neurons and synapses.

To the best of our knowledge, no prior work has stt
the endurance variability problem in neuromorphic hard-
ware with memristive crossbars. To this end, we make the
following novel contributions in this paper.

We study the parasitic voltage drops at different P, V,
& T corners through detailed circuit simulations with
different crossbar configurations.

We use these circuit simulation parameters within a
compact endurance model to estimate the endurance
of different memristors in a crossbar.

We integrate this endurance model within a design-
space exploration framework, which uses an instance of
Particle Swarm Optimization (PSO) to map SNN-based
workloads to crossbars of a neuromorphic hardware,
maximizing the effective lifetime of memristors.

The proposed endurance-aware technique, which we
call eSpine, operates in two steps. First, eSpine partitions
a machine learning workload into clusters of neurons and
synapses using the Kernighan-Lin Graph Partitioning algo-
rithm such that, each cluster can be mapped to an individual
crossbar of a hardware. The objective is to reduce inter-
cluster communication, which lowers the energy consump-
tion. Second, eSpine uses PSO to map clusters to tiles,
placing synapses of a cluster to memristors of a crossbar
in each PSO iteration by analyzing their utilization within
the workload. The objective is to maximize the effective
lifetime of the memristors in the hardware. We evaluate
eSpine using 10 SNN-based machine learning workloads on
a state-of-the-art neuromorphic hardware model using PCM
memristors. Our results demonstrate an average 3.5x im-
provement of the effective lifetime with 7.5% higher energy
consumption, compared to a state-of-the-art SNN mapping
technique that minimizes the energy consumption.

2 BACKGROUND

Figure la illustrates a tile-based neuromorphic hardware
such as DYNAP-SE [2], where each tile consists of a crossbar
to map neurons and synapses of an SNN. A crossbar,
shown in Figure 1b, is an organization of row wires called
wordlines and column wires called bitlines. A synaptic cell
is connected at a crosspoint, i.e., at the intersection of a row
and a column. Pre-synaptic neurons are mapped along rows
and post-synaptic neurons along columns. A crossbar
has pre-synaptic neurons, post-synaptic neurons, and

synaptic cells at their intersections. Memristive devices such
as Phase-Change Memory (PCM) [9], Oxide-based Resis-
tive RAM (OxRRAM) [8], Ferroelectric RAM (FeRAM) [33],
Flash [34], and Spin-Transfer Torque Magnetic or Spin-
Orbit-Torque RAM (STT- and SoT-MRAM) [35] can be used
to implement a synaptic cell. ! This is illustrated in Figure 1c,

1. Beside neuromorphic computing, some of these memristor tech-
nologies are also used as main memory in conventional computers to
improve performance and energy efficiency [36]-[40].
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Fig. 1. Neuron and synapse mapping to a tile-based neuromorphic
hardware such as DYNAP-SE [2].
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We demonstrate eSpine for PCM-based memristive
crossbars. We start by reviewing the internals of a PCM
device. The proposed approach can be generalized to other
memristors such as OxRRAM and SOT-/STT-MRAM by
exploiting their specific structures (see Section 6.1).

Figure 2(a) illustrates how a chalcogenide semiconductor
alloy is used to build a PCM cell. The amorphous phase
(logic ‘0") in this alloy has higher resistance than its crys-
talline phase (logic ‘1’). When using only these two states,
each PCM cell can implement a binary synapse. However,
with precise control of the crystallization process, a PCM
cell can be placed in a partially-crystallized state, in which
case, it can implement a multi-bit synapse. Phase changes
in a PCM cell are induced by injecting current into resistor-
chalcogenide junction and heating the chalcogenide alloy.
Figure 2 (b) shows the different current profiles needed to
program and read in a PCM device.
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Fig. 2. (a) A phase change memory (PCM) cell and (b) current needed
to SET, RESET, and read a PCM cell.

3 ANALYZING TECHNOLOGY-SPECIFIC CURRENT
ASYMMETRY IN MEMRISTIVE CROSSBARS
Long bitlines and wordlines in a crossbar are a major source

of parasitic voltage drops, introducing asymmetry in cur-
rent propagating through its different memristors. Figure 3
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Fig. 3. Parasitcs of bitlines and wordlines in a memristive crossbar.
Observation 1: The current on the longest path from a pre-
to a post-synaptic neuron in a crossbar is lower than the current
on its shortest path for the same input spike voltage and the same
memristive cell conductance programmed along both these paths.

Access transistor

NVM cell
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Figure 4 shows the difference between currents on the
shortest and longest paths for 32x32, 64x64, 128x128, and
256x256 memristive crossbars at 65nm process node. The
input spike voltage of the pre-synaptic neurons is set to
generate 200uA on ther longest paths. This current value cor-
responds to the current needed to amorphize the crystalline
state of a PCM-based memristor.
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Fig. 4. Difference between current on the shortest and the longest path
for different crossbar sizes.

We observe that the current injected into the post
synaptic neuron on the longest path is lower than the
current on the shortest path by 13.3% for 32x32, 25.1% for
6dx6d, 39.2% for 128x128, and 55.8% for 256x256 crossbar.
This current difference is because of the higher voltage drop
on the longest path, which reduces the current on this path
compared to the shortest path for the same amount of spike
voltage applied on both these paths. The current difference
increases with crossbar size because of the increase in the
number of parasitic resistances on the longest current path,
which results in larger voltage drops, lowering the current
injected into its post-synaptic neuron. Therefore, to achieve
the minimum 200uA4 current on this path, the input spike
voltage must be increased, which increases the current on
the shortest path. This observation can be generalized to all
current paths in a memristive crossbar Current variation
in a crossbar may lead to difference in synaptic plasticity
behavior and access speed of memristors [19], [44}-[47]. A
circuit-level solution to address the current differences is to
add proportional series resistances to the current paths in
a crossbar. However, this circuit-level technique can signifi-
cantly increase the area of a crossbar (n? series resistances
are needed for a nxn crossbar). Additionally, adding se-
ries resistances can increase the power consumption of the
crossbar. Although current balancing in a crossbar can be
achieved by adjusting the biasing of the crossbar's cells, a
critical limitation is that this and other circuit-level solutions
do not incorporate the activation of the synaptic cells, which
is dependent on the workload being executed on the cross-
bar Therefore, some of its cells may get utilized more than
others, leading to endurance issues. We propose a system-
level solution to exploiting the current and activation differ-
ences via intelligent neuron and synapse mapping,.

Current imbalance may not be a critical consideration
for smaller crossbar sizes (e.g., for 32x32 or smaller) due to
comparable currents along different paths. However, a neu-
ron is several orders of magnitude larger than a memristor-
based synaptic cell [48]. To amortize this large neuron size,
neuromorphic engineers implement larger crossbars, subject
to a maximum allowable energy consumption. The usual
trade-off point is 128x128 crossbars for DYNAP-SE [2] and
256x256 crossbars for TrueMorth [3].

Observation 2: Current variation in a crossbar becomes
significant with technology scaling and at elevated temperatures.

Figure 5 plots the current on the shortest path in a
128x128 memristive crossbar for four process corners (65nm,
45nm, 32nm, and 16nm) and four temperature corners
(25°C, 50°C, 75°C, and 100°C) with all memristors config-

ured in their crystalline state with a resistance of 10K, The
input spike voltage of the crossbar is set to a value that
generates 200u4 on the longest path at each process and
temperature corners. We make two key conclusions.
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Fig. 5. Current obtained on the shortest path in a 128<128 memristive
crossbar at 65nm, 45nm, 32nm, and 16nm technology nodes for 4
ambient temperatures (25°C, 50°C, 75°C, and 100°C). The input spike
voltage is adjusted to obtain 200p.4 on the longest path.

First, current on the shortest path is higher for smaller
process nodes. This is because, with technology scaling, the
value of parasitic resistances along the bitline and wordline
of a current path increases [44], [49], [50]. The unit wordline
(bitline) parasitic resistance ranges from approximately 2.50
(112) at 65nm node to 1002 (2.802) at 16nm node. The value of
these unit parasitic resistances are expected to scale further
reaching = 250 at 5nm node [44]. This increase in the value
of unit parasitic resistance increases the voltage drop on
the longest path, reducing the current injected into its post-
synaptic neuron. Therefore, to obtain a current of 200u4 on
the longest path, the input spike voltage must be increased,
which increases the current on the shortest path.

Second, current reduces at higher temperature. This is
because, the leakage current via the access transistor of each
memristor in a crossbar increases at higher temperature,
reducing the current injected into the post-synaptic neu-
rons. To increase the current to 200p4, the spike voltage is
increased, which increases the current on the shortest path.

Based on the two observations and the endurance for-
mulation in Section 4, we show that higher current through
memristors on shorter paths in a memristive crossbar leads
to their higher self-heating temperature and correspond-
ingly lower cell endurance, compared to those on the longer
current paths in a crossbar. Existing SNN mapping ap-
proaches such as SpiNeMap [16], PyCARL [51], DFSynthe-
sizer [15], and SNN Compiler [52] do not take endurance
variation into account when mapping neurons and synapses
to a crossbar. Therefore, synapses that are activated fre-
quently may get mapped on memristors with lower cell
endurance, lowering their lifetime.

Observation 3: Synapse activation in a crossbar is specific to
the machine learning workload as well as to mapping of newrons
and symapses of the workload to the crosshars.

Figure & plots the number of synaptic activation, ie,,
spikes propagating through the longest and the shortest
current paths in a crossbar as fractions of the total synaptic
activation. Results are reported for 10 machine learning
workloads (see Sec. 7) using SpiNeMap [16]. We observe
that the number of activation on the longest and shortest
current paths are on average 3% and 5% of the total number
of activation, respectively. Higher synaptic activation on
shorter current paths in a crossbar can lead to lowering of
the lifetime of memristors on those paths due to their lower
cell endurance (see observations 1 and 2, and the endurance
and lifetime formulations in Section 4).
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Fig. 6. Fraction of activation of memristor on the longest and shortest
current paths in a crossbar using SpiNeMap [16].

4 ENDURANCE MODELING

We use the phenomenological endurance model [53], which
computes endurance of a PCM cell as a function of its self-
heating temperature obtained during amorphization of its
crystalline state. Figure 7 shows the iterative approach to
compute this self-heating temperature () [54], [55].

At start of the amorphization process, the temperature of
a PCM cell is equal to the ambient temperature . Subse-
quently, the PCM temperature is computed iteratively as fol-
lows. For a given crystalline fraction  of the GST material
within the cell, the thermal conductivity is computed using
the TC Module, and PCM resistance using the PCMR
Module. The thermal conductivity is used to compute the
heat dissipation =~ using the HD Module, while the PCM
resistance is used to compute the Joule heating in the GST

for the programming current using the JH Module.
The self-heating temperature is computed inside the SH
Module using the Joule heating and the heat dissipation.
Finally, the self-heating temperature is used to compute
the crystallization fraction  using the CF Module. The
iterative process terminates when the GST is amorphized,
ie., . We now describe these steps.

Thermal & Heat Dissi-
Conductivity (TC) pation (HD)

Crystalline Module Module

E f){[ CF Ve Self-Heating | Tsu
raction (CF) prog (SH) Module
Module ]

PCM Resistance |[Rpcm Joule w;

Heating (JH)
(PCMR) Module Module

Fig. 7. Iterative approach to calculating the self-heating temperature of
a PCM cell during amorphization.

Crystallization Fraction (CF) Module: CF represents
the fraction of solid in a GST during the application of
areset current.  is computed using the Johnson-Mehl-
Avrami (JMA) equation as

)

exp

where is the time, is the melting tempera-
ture of the GST material [54], [55], is the ambient
temperature computed using [18], [56], and is
a fitting constant [54], [55].

Thermal Conductivity (TC) Module: TC of the GST is
computed as [57]

@

where for amorphous GST,
— for crystalline GST [54], [55].
PCM Resistance (PCMR) Module: The effective resis-

tance of the PCM cell is given by

®)

in the crystalline state of the GST
in the amorphous state.

where
and

NO. X, MONTH YEAR 4

Heat Dissipation (HD) Module: Assuming heat is
dispersed to the surrounding along the thickness of the
PCM cell, HD is computed as [58]

O]

where is the thickness and
is the volume of GST [54], [55].

Joule Heating (JH) Module: The heat generation in a
PCM cell due to the programming current is

®)

Self-Heating (SH) Module: The SH temperature of a
PCM cell is computed by solving an ordinary differen-
tial equation as [54]

©)

exp

where
GST [54], [55].

The endurance of a PCM cell is computed as [53]

— is the heat capacity of the

Endurance

@)

where and  are respectively, the failure time and the
switching time. In this model, to switch memory state of
a PCM cell, an ion (electron) must travel a distance
across insulating matrix (the gate oxide) upon application
of the programming current , which results in the write
voltage  across the cell. Assuming thermally activated
motion of an with activation energy and local self-
heating thermal temperature , the switching speed can
be approximated as

®

where , , , and [53].

The failure time is computed considering that the en-
durance failure mechanism is due to thermally activated
motion of ions (electrons) across the same distance but
with higher activation energy , so that the average time
to failure is

©)

where [53].
The endurance, which is the ratio of average failure time
and switching time, is given by

Endurance

exp

(10)

where is a fitting parameter [53].

The thermal and endurance models are used in our SNN
mapping framework to improve endurance of neuromor-
phic hardware platforms (see Section 8). Although we have
demonstrated our proposed SNN mapping approach using
these models (see Section 5), the mapping approach can be
trivially extended to incorporate other published models.
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4.1 Model Prediction

The thermal and endurance models in Equations 6 and
10, respectively are integrated as follows. The self-heating
temperature of Equation 6 is first computed using the PCM's
programming current. This self-heating temperature is then
used to compute the endurance using Equation 10.

Figure 8 shows the simulation of the proposed model
with programming currents of 2004 and 329u4, which
correspond to the longest and shortest current paths in a
65nm 128x128 PCM crossbar at 298K. Figures 8a, 8b, and
8c plot respectively, the crystallization fraction, the PCM
resistance, and the temperature for these two current values.
We make the following two key observations.
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Fig. 8. Validation of the proposed model.

First, the speed of amorphization depends on the cur-
rent, ie., with higher programming current, the G5T mate-
rial amorphizes faster. This means that the PCM cells on
shorter current paths are faster to program. Second, the
self-heating temperature is higher for higher programming
current. This means that PCM cells on shorter current paths
have lower endurance.

Figure 8 is consistent with the change in crystallization
volume, resistance, and self-heating temperature in PCM
cells as reported in [54], [55]. Figure 9 plots the temperature
and endurance maps of a 128x128 crossbar at 65nm process
node with Tyme = 208K. The PCM cells at the bottom-left
corner have higher self-heating temperature than at the top-
right corner. This asymmetry in the self-heating temperature
creates a wide distribution of endurance, ranging from
105 cycles for PCM cells at the bottom-left corner to 10'°
cycles at the top-right corner. These endurance values are
consistent with the values reported for recent PCM chips
from IBM [59].

QOur goal is to assign synapses with higher activation
towards the top-right corner using an intelligent SNN map-
ping technique, which we describe next.

5 ENDURANCE-AWARE INTELLIGENT MAPPING

We present eSpine, our novel endurance-aware technique to
map SNNs to neuromorphic hardware. To this end, we first

" RESETtampantam [K)

1] ko L

Prost-mynapic raurzr Past-ayap narmm

(a) Thermal map for PCM RESET
operations in a 128x128 crossbar.

(b) Endurance map of the PCM
cells in a 128x128 crossbar.

Fig. 9. Temperature and endurance map of a 128«128 crosshar at 65nm
process node with T, = 298K .

formulate a joint metric effective lifetime (£, ), defined for
the memristor connecting the i pre-synaptic neuron with
i post-synaptic neuron in a memristive crossbar as

Lig ==& /04, (11)

where a, ; is the number of synaptic activations of the mem-
ristor in a given SNN workload and &, ; is its endurance.
Equation 11 combines the effect of software (SNN mapping)
on hardware (endurance and temperature). eSpine aims to
maximize the minimum normalized lifetime, ie.,

Fopt = maximize{min L. ;) (12)
In most earlier works on wear-leveling in the context of
non-volatile main memory (e.g., Flash), lifetime is computed
in terms of utilization of NVM cells, ignoring the variability
of endurance within the device. Instead, we formulate the
effective lifetime by considering a memristor’s endurance
and its utilization in a workload. This is to allow cells with
higher endurance to have higher utilization in a workload.

5.1 High-level Overview

Figure 10 shows a high-level overview of eSpine, consisting
of three abstraction layers — the application layer, system
software layer, and hardware layer. A machine learning
application is first simulated using PyCARL [51], which
uses CARLsim [60] for training and testing of SNNs. Py-
CARL estimates spike times and synaptic strength on every
connection in an SNN. This constitutes the workload of
the machine learning application. eSpine maps and places
neurons and synapses of a workload to crossbars of a
neuromorphic hardware, improving the effective lifetime.
To this end, a machine learning workload is first analyzed
to generate clusters of neurons and synapses, where each
cluster can fit on a crossbar. eSpine uses the Kernighan-Lin
Graph Partitioning algorithm of SpiNeMap [16] to parti-
tion an SNN workload, minimizing the inter-cluster spike
communication (see Table 1 for comparison of eSpine with
SpiNeMap). By reducing the inter-cluster communication,
eSpine reduces the energy consumption and latency on
the shared interconnect (see Sec. 8.2). Next, eSpine uses an
instance of the Particle Swarm Optimization (P50) [61] to
map the clusters to the tiles of a hardware, maximizing the
minimum effective lifetime of memristors (Equation 11) in
each tile's crossbar. Synapses of a cluster are implemented
on memristors using the synapse-to-memristor mapping,
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ensuring that those with higher activation are mapped to
memristors with higher endurance, and vice versa.

ML PyCARL ML workload

application
1}

L[ Clustering H

memristor model—| Circuit

crossbar architecture -
[ [ Endurance } [neuromorphlc}
P.V. & T comer Simulation Modeling hardware

Application

System Software
cluster-to-tile

synapse-to-memristor
mapping mapping ML mapping

T ¥ to hardware
Hardware

Fig. 10. High-level overview of eSpine.

To perform the optimization using PSO, eSpine uses
crossbar specification, including its dimensions, architec-
ture, and memristor technology, and performs circuit sim-
ulations at a target P, V, and T corner. Extracted currents in
the crossbar are used in the endurance model (see Sec. 4)
to generate the endurance map, which is then used in the
cluster-to-tile and synapse-to-memristor mapping, optimiz-
ing the effective lifetime.

Table 1 reports the differences between the objective
function of SpiNeMap and eSpine. In addition to the com-
parison between SpiNeMap and eSpine, we also show
the performance of a hybrid approach SpiNeMap++ (see
Fig. 14), which uses the synapse-to-memristor mapping of
eSpine with SpiNeMap. See our results in Section 8.

TABLE 1
eSpine vs. SpiNeMap [16].

SpiNeMap [16] eSpine (proposed)
_ Algorithm Kernig%—nilm-?‘ir\ Graph Kernighf\n—?in Graph
Clustering Partitioning [62] Partitioning [62]
Objective Energy Energy
Cluster-to-Tile Alg-orlt.hm Fso ,PSO_ .

Objective Energy Effective Lifetime

S to-Memrist Algorithm Sorting heuristic
ynapse-to-¥emistor Objective Effective Lifetime

Although PSO is previously proposed in SpiNeMap, our
novelty is in the use of the proposed synapse-to-memristor
mapping step, which is integrated inside each PSO iteration
to find the minimum effective lifetime.

5.2 Heuristic-based Synapse-to-Memristor Mapping

Figure 11 illustrates the synapse-to-memristor mapping of
eSpine and how it differs from SpiNeMap. Figure 1la il-
lustrates the implementation of four pre-synaptic and three
post-synaptic neurons on a 4x4 crossbar. The letter and
number on a connection indicate the synaptic weight and
number of activation, respectively. Existing technique such
as SpiNeMap maps synapses arbitrarily on memristors. As
a result, a synapse with higher activation may get placed
at the bottom-left corner of a crossbar where memristors
have lower endurance (see Fig. 11b). eSpine, on the other
hand, incorporates the endurance variability in its synapse-
to-memristor mapping process. It first sorts pre-synaptic
neurons based on their activation, and then allocates them
such that those with higher activation are placed at the top-
right corners, where memristors have higher endurance (see
Fig. 11c). Once the pre-synaptic neurons are placed along
the rows, the post-synpatic neurons are placed along the
columns, considering their connection to the pre-synaptic
neurons, and their activation. In other words, post-synaptic

neurons with higher activation are placed towards the right
corner of a crossbar. This is shown in Fig. 11c, where the
post-synaptic neuron 7 (with 5 activation) is mapped to the
left of the post-synaptic neuron 3 (with 18 activation), both
of which receives input from the same pre-synaptic neuron
1. This is done to incorporate the online weight update
mechanism in SNNs, which depend on both the pre- and
post-synaptic activation (see Section 7.1). This synapse-to-
memristor mapping is part of Alg. 1 (lines 9-10).

d
@

C
0,00 ®T b ©
4.0 ' @g @ @
° ©|1u @<$ 5 @

e
g 9 O%
(a)

(b) SpiNeMap

(c) eSpine (synapse-to-memristor)

Fig. 11. Synapse-to-memristor mapping of eSpine.

5.3 PSO-based Cluster-to-Tile Mapping

To formulate the PSO-based optimization problem, let

be a machine learning workload with a set  of
clusters and a set of connections between the clusters.
The workload is to be executed on a hardware with
a set  of tiles (each tile has one crossbar) and a set of

links between the tiles. Mapping of the application to the
hardware , is defined as
if cluster is mapped to tile
. (13)
otherwise

Algorithm 1 computes the minimum effective lifetime of
all memristors in the hardware for a given mapping

Algorithm 1: MinE£fLife(): Compute minimum ef-
fective lifetime of crossbars for mapping

Input:
Output:
1 for /* iterate for each tile in the
hardware */
2 do
3 /+ clusters mapped to */
4 /+ Initialize the
effective lifetime on tile . x/
5 for /* iterate for each cluster */
6 do
7 /* pre-synaptic neurons of */
8 /* number of activations of */
9 sort /x sort the pre-synaptic neurons in
descending order of their
activations. x/
10 map to the crossbar using sorted ~ /* place the
pre-synaptic neurons sorted by their
activations starting from the
farthest input in the crossbar. */
1 repeat lines 7-10 for post-synaptic neurons;
12 /* using Equation 11 «/
13 end
14 min /+ minimum effective lifetime
*/
15 end

16 return min /* return minimum effective
lifetime of all crossbars x/

For each tile, the algorithm first records all clusters
mapped to the tile in the set (line 3), and initializes
the effective lifetime of the crossbar on the tile (line 4).
For each cluster mapped to the tile, the algorithm records
all its pre-synaptic neurons in the set  (line 7) and their
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activation, i.e., the number of spikes in the set (line 8).
The two sets are sorted in descending order of (line 9).
Next, the cluster (i.e, pre-synaptic neurons, post-synaptic
neurons, and their synaptic connections) is placed on the
crossbar (line 10-11). To do so, pre-synaptic neurons with
higher activation are mapped farther from the origin (see
Fig. 11) to ensure they are on longer current paths. This is to
incorporate the endurance variability within each crossbar.
The post-synaptic neurons are mapped along the columns
by sorting their activation. With this mapping, the effective
lifetime is computed (line 12). The minimum effective life-
time is retained (line 14). The algorithm is repeated for all
tiles of the hardware. Finally, the minimum effective lifetime
of all crossbars in the hardware is returned (line 16).
The fitness function of eSpine is

MinEffLife (14)
The optimization objective of eSpine is
min a where MinEffLife (15)

The constraint to this optimization problem is that a
cluster can map to exactly 1 tile, i.e.,

(16)

To solve Equation 15 using PSO, we instantiate =~ swarm
particles. The position of these particles are solutions to the
fitness functions, and they represent cluster mappings, i.e.,

’s in Equation 15. Each particle also has a velocity with
which it moves in the search space to find the optimum
solution. During the movement, a particle updates its posi-
tion and velocity according to its own experience (closeness
to the optimum) and also experience of its neighbors. We
introduce the following notations.

dimensions of the search space 17)

positions of particles in the swarm

velocity of particles in the swarm
Position and velocity of swarm particles are updated, and
the fitness function is computed as

(18)
best best
MinEffLife
where is the iteration number, are constants and
best (@Nd  pest) is the particle’s own (and neighbors) expe-
rience. Finally, local and global bests are updated as
best if best
best best (19)

Due to the binary formulation of the mapping problem
(see Equation 13), we need to binarize the velocity and
position of Equation 17, which we illustrate below.

sigmoid

if rand ()

otherwise 0
Figure 12 illustrates the PSO algorithm. The algorithm

first initializes positions of the PSO particles (13). Next, the

algorithm runs for pso iterations. At each iteration, the PSO
algorithm evaluates the fitness function ( ) and updates
its position based on the local and global best positions
(Equation 18), binarizing these updates using Equation 20.

Initialize Polulation

e >
-

Calculate Fitness
F(or)
Yes , Update Ppeee

Update Gpest

F(60) <F(P'heqt)

(F(P'yes)) < F(Goes) >TES

=0hng1

multiple Invocations

Update Velocity (V)

Update Position (8)

Convergence’
criteria
met?

Fig. 12. Flow chart of our PSO algorithm.

The PSO algorithm of eSpine can be used to explore
the energy and lifetime landscape of different neuron map-
ping solutions to the hardware. Section 8.3 illustrates such
exploration for a representative application. eSpine gives
designers the flexibility to combine energy and lifetime
metrics beyond simply obtaining the minimum energy and
maximum lifetime mappings (for instance, minimizing en-
ergy for a given lifetime target, and vice versa).

6 EXTENDED SCOPE OF ESPINE
6.1 Other Memristor Technologies

Temperature-related endurance issues are also critical for
other memristor technologies such as FeRAM and STT-
/SOT-MRAM. A thermal model for Magnetic Tunnel Junc-
tion (MT]J), the basic storage element in STT-MRAM based
memoristor, is proposed in [63]. According to this model,
the self-heating temperature is due to the spin polarization
percentages of the free layer and the pinned layer in the
MT]J structure, which are dependent on the programming
current. Similarly, a thermal model for FeRAM-based mem-
ristor is proposed in [64]. These models can be incorporated
directly into our SPICE-level crossbar model to generate the
thermal and endurance maps, similar to those presented in
Figure 9 for PCM. The proposed cluster-to-tile mapping and
the synapse-to-crossbar mapping (see Section 5) can then
use these maps to optimize the placement of synapses for
a target memristor technology, improving its endurance.
Although the exact numerical benefit may differ, eSpine can
improve endurance for different memristor technologies.

6.2 Other Reliability Issues

There are other thermal-related reliability issues in mem-
ristors, for instance retention-time [65]-[68] and transistor
circuit aging [24]-[26], [69]-[74]. Retention time is defined as
the time for which a memristor can retain its programmed
state. Recent studies show that retention time reduces sig-
nificantly with increase in temperature [65]. Retention time
issues are relevant for supervised machine learning, where
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the synaptic weights are programmed on memristors once,
during inference. For online learning (which is the focus
of this work), synaptic weight update frequency is usually
much smaller than the retention time. Therefore, a reduction
in retention time is less of a concern. Nevertheless, by
lowering the average temperature of crossbars, eSpine also
addresses the retention time-related reliability concerns.

7 EVALUATION METHODOLOGY
7.1 Use-Case of eSpine

Figure 13 illustrates the use-case of eSpine applied for on-
line machine learning. We use Spike-Timing Dependent
Plasticity (STDP) [75], which is an unsupervised learning
algorithm for SNNs, where the synaptic weight between a
pre- and a post-synaptic neuron is updated based on the
timing of pre-synaptic spikes relative to the post-synaptic
spikes.? STDP is typically used in online settings to improve
accuracy of machine learning tasks.

Offline current Run-time
. ) H data T
untrained machlne\ run-time
learning model N\ (weight updates)
representative PyCARL . -
data (weight updates) eSpine -—Cluster-to-tile
isynapse-to-crossbar
thermal and / 3 ynap

endurance model [ Hardware ]

Fig. 13. Use-Case of eSpine.

A machine learning model is first analyzed offline using
PyCARL with representative workload and data set. This is
to estimate the relative activation frequency of the neurons
in the model when it is trained at run-time using current
data. Although neuron activation can deviate at run-time,
our more detailed analysis shows that using representative
workload and data set, such deviations can be limited to
only a few neurons in the model.> We have validated this
observation for the evaluated applications that use ECG and
image data (see Section 7).

The activation information obtained offline is processed
using eSpine (see Figure 10 for the details of eSpine) to
generate cluster-to-tile and synapse-to-crossbar mappings.
The offline trained weight updates are discarded to facil-
itate relearning of the model from current (in-field) data.
The untrained machine learning model is placed onto the
hardware using the mappings generated from eSpine.

Although online learning is the main focus, eSpine is
also relevant for supervised machine learning, where no
weight updates happen at run-time. By mapping the most
active neurons to the farthest corner of a crossbar (i.e., on
longest current paths), eSpine minimizes crossbar tempera-
ture, which reduces 1) leakage current and 2) circuit aging.

7.2 Evaluated Applications

We evaluate 10 SNN-based machine learning applications
that are representative of three most commonly-used neural
network classes — convolutional neural network (CNN),

2. Apart from STDP, many other online learning algorithms depend
on the activation of both the pre- and post-synaptic neurons.

3. In the worst-case, the lifetime obtained using eSpine for these few
neurons will be similar to SpiNeMap. However, for most neurons in
the model, eSpine significantly outperforms SpiNeMap. Therefore, the
lifetime obtained using eSpine is higher (see Section 8.1).

multi-layer perceptron (MLP), and recurrent neural network
(RNN). These applications are 1) LeNet based handwrit-
ten digit recognition with images of handwritten
digits from the MNIST dataset; 2) AlexNet for ImageNet
classification; 3) VGGL16, also for ImageNet classification; 4)
ECG-based heart-beat classification (HeartClass) [76], [77]
using electrocardiogram (ECG) data; 5) multi-layer per-
ceptron (MLP)-based handwritten digit recognition (MLP-
MNIST) [78] using the MNIST database; 6) edge detec-
tion (EdgeDet) [60] on images using difference-
of-Gaussian; 7) image smoothing (ImgSmooth) [60] on
images; 8) heart-rate estimation (HeartEstm) [79]
using ECG data; 9) RNN-based predictive visual pursuit
(VisualPursuit) [80]; and 10) recurrent digit recognition (R-
DigitRecog) [78]. Table 2 summarizes the topology, the num-
ber of neurons and synapses of these applications, and their
baseline accuracy on DYNAP-SE using SpiNeMap [16].

TABLE 2
Applications used to evaluate eSpine.

Class  Applications | Synapses Neurons Topology Accuracy
LeNet 282,936 20,602 CNN 85.1%
AlexNet 38,730,222 230,443 CNN 90.7%
CNN VGG16 99,080,704 554,059 CNN 69.8 %
HeartClass [76] | 1,049,249 153,730 CNN 63.7%
DigitRecogMLP 79,400 884  FeedForward (784, 100, 10) 91.6%
MLP EdgeDet [60] 114,057 6,120  FeedForward (4096, 1024, 1024, 1024) | 100%
ImgSmooth [60] 9,025 4,096 FeedForward (4096, 1024) 100%
HeartEstm [79] 66,406 166 Recurrent Reservoir 100%
RNN VisualPursuit [80] | 163,880 205 Recurrent Reservoir 47.3%
R-DigitRecog [78] | 11,442 567 Recurrent Reservoir 83.6%

7.3 Hardware Models

We model the DYNAP-SE neuromorphic hardware [2] with
the following configurations.
A tiled array of 4 tiles, each with a 128x128 crossbar.
There are 65,536 memristors per crossbar.
Spikes are digitized and communicated between cores
through a mesh routing network using the Address
Event Representation (AER) protocol.
Each synaptic element is a PCM-based memristor.
To test the scalability of eSpine, we also evaluate DYNAP-SE
with 16 and 32 tiles.
Table 3 reports the hardware parameters of DYNAP-SE.

TABLE 3
Major simulation parameters extracted from [2].

Neuron technology 65nm CMOS
Synapse technology ~ PCM
Supply voltage 1.2V

Energy per spike 50p] at 30Hz spike frequency
147p]

1.8G. Events/s

Energy per routing
Switch bandwidth

7.4 Evaluated Techniques

We evaluate the following techniques (see Fig. 14).
SpiNeMap: This is the baseline technique to map
SNNs to crossbars of a hardware. SpiNeMap gener-
ates clusters from an SNN workload, minimizing the
inter-cluster communication. Clusters are mapped to
tiles minimizing the energy consumption. Synapses of
a cluster are implemented on memristors arbitrarily,
without incorporating their endurance.

SpiNeMap++: This is an extension of SpiNeMap,
where the cluster-to-tile mapping is performed using
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SpiNeMap, minimizing energy consumption, and the
synapse-to-memristor mapping is performed using e5
pine, maximizing effective lifetime.

» eSpine: This is another extension of SpiNeMap. &5
pine uses only the clustering technique of SpiNeMap,
thereby minimizing the inter-cluster communication,
which also improves energy consumption and latency.
The cluster-to-tile and synapse-to-memristor mappings
are performed using P50, maximizing the effective life-
time. Furthermore, eSpine allows to explore the entire
Pareto space of energy and lifetime.

mchire leaming
workoad

Clusiering
[energy)

cluster-o-te

clustes-So-tile
miapping (iletime)

mapning (enengy)

SpibieMap
Spitaeiaps+

eSpine

Fig. 14. Evaluated technigues.

7.5 Evaluated Metric
We evaluate the following metrics.

« Effective lifetime: This is the minimum effective life-
time of all memristors in the hardware.

» Energy consumption: This is the total energy con-
sumed on the hardware. We evaluate the static and
dynamic energy as formulated in [81]-[83].

» Compilation time: This is the time it takes for the PSO
to find a solution.

8 REsuLTs AND DiscussIONS
8.1 Normalized Lifetime

Figure 15 compares the effective lifetime obtained using
each technique for each evaluated application on DYNAP-
SE. We make the following two key observations.

.
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Fig. 15. Effective lifetime for the evaluated applications.

Firstt between GSpiNeMap and SpiNeMap++,
SpiNeMap++ has an average 2.7x higher effective
lifetime than SpiNeMap. Although both SpiNeMap
and SpiNeMap++ have the same cluster-to-tile mapping,
SpiNeMap++ maps synapses of a cluster intelligently on
memristors of a crossbar, incorporating 1) the endurance
variability of memristors in a crossbar and 2) the activation
of synapses in a workload. Therefore, SpiNeMap++ has
higher effective lifetime than SpiNeMap, which maps
synapses arbitrarily to memristors of a crossbar. Second,
eSpine has the highest effective lifetime than all evaluated
techniques. The effective lifetime of eSpine is higher than

SpiNeMap and SpiNeMap++ by average 3.5x and 1.30x,
respectively. Although both eSpine and SpiNeMap++ uses
the same synapse-to-memristor mapping strategy, ie., they
both implement synapses with higher activation using
memristors with higher endurance, the improvement of
eSpine is due to the P50-based cluster-to-tile mapping,
which maximizes the effective lifetime. Third, for some
applications such as MLP-MNIST and R-DigitRecog,
the effective lifetime using eSpine is comparable to
SpiNeMap++. For these applications, the cduster-to-tile
mapping of SpiNeMap is already optimal in terms of the
effective lifetime. For other applications, eSpine is able to
find a better mapping, which improves the effective lifetime
{(by average 38% compared to SpiNeMap++).

8.2 Energy Consumption

Figure 16 reports the energy consumption of SpiNeMap
and eSpine on DYMNAP-SE, distributed into 1) dynamic
energy, which is consumed in crossbars to generate spikes
(dynamic), 2) communication energy, which is consumed
on the shared interconnect to communicate spikes between
crossbars (comm), and 3) static energy, which is consumed
in crossbars due to the leakage current through the access
transistor of each memristor cell (static). We make the
following four key observations.

P T T p————
IO cymamic (sSpina)

O comm [Spisa)

Enmigy cormumpion [%)

Fig. 16. Energy distribution for the evaluated applications.

First, the dynamic energy, communication energy, and
static energy constitute respectively, 52.6%, 39.4%, and 8%
of the total energy consumption. Second, eSpine does not
alter spike generation, and therefore, the dynamic energy
consumption of eSpine is similar to SpiNeMap. Third, e5-
pirne’s cluster-to-tile mapping strategy is to optimize the
effective lifetime, while SpiNeMap allocates clusters to tiles
minimizing the energy consumption on the shared intercon-
nect. Therefore, the communication energy of SpiNeMap
is lower than eSpine by an average of 21.4%. Finally, e5-
pire reduces the average temperature of each crossbar by
implementing synapses with higher activation on longer
current paths where memristors have lower self-heating
temperature. Therefore, the leakage power consumption of
eSpine is on average 52% lower than SpiNeMap.

8.3 Energy Tradeoffs

Figure 17 shows the normalized effective lifetime and the
normalized energy of the mappings explored using the P50
algorithm for LeMet. The figure shows the mappings that
are Pareto optimal with respect to lifetime and energy.
Figure 18 reports the energy consumption of SpiNeMap,
SpiNeMap++, and e5Spine on DYNAP-SE for each evaluated
application. We make the following two key observations.
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the current through all memristors in a crossbar are the
same. Second, current imbalance can lead to a difference be-
tween the expected and actual synaptic plasticity based on
the specific memristor being accessed. Therefore, we see an
average 3% reduction in accuracy using eSpine. However,
the current imbalance-aware synapse update strategy, when
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combined with eSpine can solve this problem. In fact, we
estimate that the accuracy of machine learning applications
using this synaptic update strategy is on average 2% higher
than eSpine and only 1% lower than the Baseline.

8.5 Average Temperature

Figure 19 plots the average self-heating temperature of
the PCM cells in four crossbars in DYNAP-SE executing
LeNet workload using SpiNeMap and eSpine. We make the
following two observations.

First, eSpine maps active memristive synapses towards
the top right corner of a crossbar. However, such mapping
does not lead to a significant change in the ambient temper-
ature. This is because of the the chalcogenide alloy (e.g.,
Ge Sb Te [84]) used to build a PCM cell, which keeps
the self-heating temperature of the cell concentrated at the
interface between the heating element and the amorphous
dome (see Figure 2), with only a negligible spatial heat flow
to the surrounding [85].

Second, the average self-heating temperature of eSpine
is lower than SpiNeMap. This is because of the synapse-
to-memristor mapping technique of eSpine, which places
synapses with higher activation on longer current paths,
where the self-heating temperature of a memristor is lower.
By reducing the average temperature, eSpine lowers the
leakage current through the access transistor of a memristor,
which we discussed in Section 8.2.

8.6 Resource Scaling

Figure 20 compares the lifetime normalized to SpiNeMap
for each evaluated application on DYNAP-SE with 4-tile (4
crossbars), 16-tile (16 crossbars), and 32-tile (32 crossbars).
We observe that with 4, 16, and 32 tiles in the system,
eSpine provides an average 3.5x, 5.3x, and 6.4x lifetime
improvement, respectively for the evaluated applications
compared to SpiNeMap. This is because with more tiles in
the system, the workload gets distributed across the avail-
able crossbars of the hardware, resulting in lower average
utilization of memristors, improving their lifetime.

8.7 Compilation Time

Table 5 reports eSpine’s compilation time and the effective
lifetime normalized to SpiNeMap for three different settings
of PSO iterations. We observe that as the number of PSO
iterations is increased, the effective lifetime increases for all
applications. This is because with increase in the number
of iterations, the PSO is able to find a better solution.
However, the compilation time also increases. We observe
that the compilation time is significantly large for larger
applications like VGG16 with 100 PSO iterations. However,
we note that the PSO-based optimization is performed once
at design-time. Furthermore, the PSO-iterations is a user-
defined parameter, and therefore, it can be set to a lower
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Fig. 20. Lifetime normalized to SpiMeMap for the evaluated applications
on DYNAP-SE with 4, 16, and 32 tiles.

value to generate a faster mapping solution, albeit a lower
lifetime improvement. Finally, we observe that increasing
the P50 iterations beyond 100 leads to a significant increase
in the compilation time for all applications with minimal
improvement of their effective lifetime.

TABLE &
Compilation time and solution quality tradeoff.

PS0) Iterations = 1 PS0 Iterations = 10 | PSO Iterations = 100

Applicati Comipilation| Nnnf. Comipilation| Nncuf. Comipilation| Nncuf.

Time Effective, Time Effective, Time Effective,

(=ec) Lifetime (=ec) Lifetime (ac) Lifetime
LMt ek} 25 16506 a4 233114 a7
AlexMet a7 21 24318 al 45617.4 40
VGGE1S EE&E 29 81550 42 110, 1x3.6 53
HeartClass 73158 12 77969 12 7O5579 13
MLP-MNIST 34 40 vz 4l 73 4l
Edgelet 7 a2 nsg a8 3,0092 47
ImgSmoath x2 46 oLl 46 13274 52
HeartEstm 190 14 8051 14 7,303.6 15
VisualPursuit 1128 L& 11397 18 17,1837 18
F-Digitfecog XS A6 1277 A6 21556 A6

9 CONCLUSION

In this work, we present eSpine, a simple, yet powerful
technique to improve the effective lifetime of memristor-
based neuromorphic hardware in executing SNN-based ma-
chine learning workloads. e5pine is based on detailed circuit
simulations at different process, voltage, and temperature
corners to estimate parasitic voltage drops on different
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Fig. 19. Average temperature of the four crossbars in DYNAP-SE axecuting LeMet workload using SpiNeMap and eSpine.

(k) Crossbar 4 (eSpine).

current paths in a memristive crossbar. The circuit param-
eters are used in a compact endurance model to estimate
the endurance variability in a crossbar This endurance
variability is then used within a design-space exploration
framework for mapping neurons and synapses of a work-
load to crossbars of a hardware, ensuring that synapses
with higher activation are implemented on memristors with
higher endurance, and vice versa. The mapping is explored
using an instance of the Particle Swarm Optimization (P50).
We evaluate eSpine using 10 SNN workloads representing
commonly-used machine learning approaches. Cur results
for DYNAP-SE, a state-of-the-art neuromorphic hardware
demonstrate the significant improvement of effective life-
time of memristors in a neuromorphic hardware.
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