
Real-Time Interactive Simulations of Complex Ionic Cardiac Cell Models in 2D
and 3D Heart Structures with GPUs on Personal Computers

Abouzar Kaboudian1, Elizabeth M Cherry2, Flavio H Fenton1

1 School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
2 School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA,

USA

Abstract

Cardiac modeling in heart structures to study arrhyth-
mia mechanisms has required running software on super-
computers, limiting such studies to groups with cluster ac-
cess and skilled personnel. We present WebGL programs
to run and visualize simulations of complex ionic models
in 2D and 3D cardiac geometries, in real time, interac-
tively using the multi-core GPU of a single computer. We
use Abubu.js, a library we developed for solving par-
tial differential equations such as those describing crystal
growth and fluid flow to simulate complex ionic cell mod-
els. By combining this library with JavaScript, we allow
direct real-time interactions with simulations. We imple-
mented: 1) modification of model parameters and equa-
tions at any time, with direct access to the code while it
runs; 2) electrode stimulation by mouse click anywhere in
the 2D/3D tissue; 3) saving the system state at any time
to re-initiate dynamics from a saved state; and 4) rota-
tion/visualization of 3D structures at any angle. As ex-
amples of this modeling platform, we implemented phe-
nomenological and human ventricular cell models (OVVR,
41 variables). In 2D we illustrate dynamics in an annu-
lus, disk, and square tissue; in 2D and 3D porcine ventri-
cles, we show functional/anatomical reentry, spiral wave
dynamics in different regimes, early afterdepolarizations
(EADs) and real-time model parameter variation effects.

Keywords—Interactive 2D 3D, simulations cardiac tissue.

1. Introduction

The first theoretical study of the complex electrical im-
pulse transmission in cardiac tissue in 1946 [1], followed
by the first numerical simulation of cardiac arrhythmias
in 1964 [2], clearly illustrated the emergent behavior and
possibly irregular dynamics of cells when connected in tis-
sue. Whereas single cells have only limited oscillatory or
excitable dynamics, when connected in 1D, 2D and 3D
tissue, new behavior emerges, such as propagating plane

waves, reentrant (spiral) waves, discordant alternans and
scroll waves that can create deadly arrhythmias. Investi-
gation of arrhythmias with computer simulations has be-
come increasingly important, with the continuous growth
in computer power and new methods allowing simulations
of the highly computationally demanding problem of solv-
ing the voltage dynamics in cardiac tissue.

Over the years, multiple groups have developed soft-
ware to perform numerical simulations of cardiac arrhyth-
mias using complex models in 2D and 3D structures in-
cluding CARP [3], Chaste [4], Beatbox [5] and Car-
dioid [6]. While these programs are robust, all require
downloading/installation and access to parallel supercom-
puters and multiple CPUs. Less complex but interactive
codes have been developed for simulations ranging from
single-cell dynamics, such as Labheart [7] for ion channels
and Ca transport in rabbit ventricular cells and Myokit [8]
for a variety of cells, to Xspiral [9] (originally created
under Unix X-windows, then translated to Java applets),
which includes a suite of various cell models from single
cell, 1D and 2D, to ezspiral/ezscroll [10] codes in openGL
to simulate the Barkley model in 2D and 3D.

While complex software can simulate physiologically
detailed cardiac cell models in anatomically realistic struc-
tures, they require access to supercomputers and a strong
knowledge of programming and modeling, and they do not
have interactivity capabilities. Results are obtained after
the simulation has finished and the data are processed for
analysis and visualization. In contrast, interactive software
can visualize the simulation as it occurs and interactivity
with the parameters and the system is possible. However,
the models used are relatively simple and far less detailed.

We present a new type of interactive code for simula-
tions of simple and complex ionic cell models in 2D and
3D anatomically accurate structures. The codes are devel-
oped using WebGL, a shader language that allows access
to the GPU of a computer to render interactive 2D and 3D
graphics from a web browser. As the simulation structures
are accessible by the many GPU processors, it is possi-

Computing in Cardiology 2021; Vol 48 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2021.302

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 23,2022 at 19:33:03 UTC from IEEE Xplore. Restrictions apply.

ble to solve the many ODEs/PDEs of cardiac models in
parallel. Our approach [11] represents the first real-time
simulation of complex models in physiologically accurate
structures with direct interaction with the system and
the code itself while running on a single desktop com-
puter. There is no need to download any packages or plug-
ins or for any knowledge of coding or modeling. The mod-
els run independent of operating system and device and on
the GPU of the computer that opens the link to the codes,
with faster GPUs running the codes more quickly.

2. Methods

We solve a simplified ionic model [12] and a com-
plex human ventricular model [13] in 2D and a 3D
porcine ventricle structure using uniform Cartesian grids
with the same discretization of 0.02‘cm. Grid points are
marked as domain points or empty space using binary val-
ues. The WebGL numerical implementations rely on the
Abubu.js library [11, 14], which is available along with
training resources for implementing WebGL programs us-
ing it at https://www.abubujs.org/

Numerical methods. The simulations are carried out
by solving the cable equation [3, 5, 6, 9]:

∂tV = D∇2V −
∑

Ii/Cm, (1)

where V represents the membrane potential, D is the dif-
fusion coefficient, Iion are ionic currents described by ei-
ther the 3-variable model [12] or the 41-variable OVVR
model [13] and Cm is the membrane capacitance. The
small discretization steps required in both space and time
impose high computational costs, which are traditionally
addressed using parallel clusters. Modern GPUs provide
an affordable alternative to clusters. While there are multi-
ple languages and approaches to achieve GPU paralleliza-
tion, we chose WebGL, which provides superior perfor-
mance[15] as well as portability and interactivity [11, 14].

We use 2D texture memory to store the domain infor-
mation both for 2D and 3D. In 3D, the third dimension
is implemented using a sub-grid implementation where
each sub-grid is a slice in the third dimension. Each tex-
ture can store four color channels and each channel is as-
signed to a physical variable. The textures are manipu-
lated using Abubu.js solvers, which are JavaScript ob-
jects that run the shader code to color one or multiple
textures at a time. Sequential runs of the solvers cre-
ate the time-stepping algorithm while each solver carries
out solutions of the ODE gating variables using a semi-
implicit method. Solvers use the fragment and shader
codes to receive their instructions for texture manipula-
tions and use a single-instruction, multiple-data approach
to achieve parallelization. More details can be found at
https://www.abubujs.org/learning.

Zero-flux boundary conditions. The Laplacian term in
eq. (1) is discretized using a second-order centered differ-
ence scheme. Zero-flux boundary conditions are handled
with a phase-field approach [11] for large domains, and
the ghost/fictitious method widely used in fluid flow [16]
and solid media wave propagation is applied in the normal
direction for thin boundaries.

Interactivity. Combining WebGL with Abubu.js en-
ables us to utilize the power of the JavaScript language
for event-handling and interacting with the WebGL part of
the program. User interactions can be carried out through
the graphical user interface (GUI) menus or by mouse and
screen touch interactions.

Altering parameters. Parameters whose values can be
changed during the simulation can be defined as uniforms
in the shaders and solvers. Abubu.js facilitates updat-
ing the values of these uniforms during the simulation.
We have added a number of these parameters to the GUI.
When a value is changed in the GUI, a change event is
triggered. Callback functions are designed in each pro-
gram to update the corresponding uniforms in the solvers
when the change event is triggered. The changes can be
applied in the middle of time-stepping; where the time-
stepping is interrupted, the uniform value is updated and
then time-stepping is resumed using the updated values.

Excitation/obstacle addition/removal. To excite the
tissue, a stimulating current is injected into the target re-
gion using the mouse; the size and intensity can be varied
in the menu. Interactions are connected to a special solver
that creates the desired manipulations to the membrane po-
tential or the texture defining the tissue (domain) points. If
the domain boundaries are changed, the texel (texture ele-
ment) indices are updated with the ghost method.

Visualizing the 3D structure. The geometry is created
on the fly by visualizing voxels (3D pixels) of informa-
tion. Each voxel is displayed as a cube. To avoid sending a
huge number of coordinates and connectivity information
for generating all voxels, the GPU program uses the ap-
propriate number of triangles required to visualize all the
voxels without directly sending node data. Instead, the co-
ordinates of a unit cube are saved in the vertex shader. The
voxel center coordinates can be obtained from their indices
in the uniform Cartesian 3D grid. Subsequently, the coor-
dinates of the voxel center are used to translate the cube
that is already scaled to the appropriate size. Coloring is
decided based on the membrane potential and the light. A
Lambertian model is used for lighting, which requires cal-
culation of the direction of light an the surface’s normal.

Mouse interactions in 3D space. 3D interactions with
the mouse fall into two categories: manipulating the view-
point and creating excitation regions in 3D space. The
viewpoint is set by manipulating the camera matrix and
updating the visualizer solvers with the new matrix values.

Page 2

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 23,2022 at 19:33:03 UTC from IEEE Xplore. Restrictions apply.

Detecting the excitation coordinates in the tissue struc-
ture by the mouse in 3D, referred to as picking, is more in-
volved. To pick the appropriate coordinate given a click lo-
cation, the coordinates of the visible points of the structure
are projected using the same view and projection matrices
used for visualization to a texture off screen. The aspect
ratio of this texture must match that of the canvas used for
visualization. The click point on the canvas is used to read
the projected coordinate texture to find the coordinates of
the target point for stimulation. These coordinates then can
be used to create the excitation region.

Figure 1. Examples of simulations with the 2D codes.
(A) Narrow annulus with 3 propagating waves. (B) Annu-
lus and anatomical spiral wave with alternans. (C) annulus
and spiral-wave breakup. (D) Adding obstacles and new
connections. (E) OVVR model with decreased INa cur-
rent. (F) Spiral wave with EADs along the wave back.

Editing source code during simulations. While the
main parameters of a model, such as conductances, can be
included in a menu to be changed easily during a simu-
lation, complex models have hundreds of parameters and
dozens of equations that it may be useful to modify. With
WebGL, the ACE editor can be used to open the shader’s
source code in the same web page that is running the code,
allowing the code to be modified while running! Whenever
the source code changes, the source code for the appropri-
ate solvers is updated and the Abubu.js library automat-
ically re-compiles the new code and immediately uses it.
Therefore, any parameter or equation in the model can be
modified at any time during a simulation.

Saving and reloading data using JSON. The JSON
format is an easy and efficient process to save data in
JavaScript. Texture data can be saved by passing the
.value attribute of the object to a JSON object to be
saved. Once a JSON file is loaded, the same data can
be assigned to the .value attribute of the texture. The
Abubu.js library automatically uploads the value to the
GPU to be used by the application. Modeling parameters

can be passed to the JSON object in the same way to be
saved. Once reloaded, the corresponding solvers and the
GUI are updated with the imported values.

Figure 2. Charge conservation at irregular domain bound-
aries. The CinC structure is simulated with parameter set 6
of Ref. [12].

3. 2D Results

Example of simulations possible with the 2D codes (see
link to codes following Conclusions) are shown in Fig. 1.
Codes will start as soon as the link to the page is open;
to initiate a simulation, click on the start/pause button
near the bottom of the menu interactions options. The
mouse-click settings allow the user to stimulate the tissue;
add/draw obstacles, walls and channels of any size; or add
new tissue with the mouse (Fig. 1A-F, Fig. 2). Stimula-
tion can initiate waves in the tissue and model parameters
can be changed by the “model parameters” menu of the
GUI (or by using the edit source code option and making
changes directly to the code as it runs). Fig. 1B-C show
dynamics of the 3V model for parameter sets 3 and 5 of
Ref. [12]. Fig. 1E-F use the OVVR model [13] with dou-
bled capacitance gIto and the time constant τd multiplied
by five, resulting in meandering dynamics and EADs ema-
nating from the wave back. Any initial condition or struc-
ture can be saved or loaded with the save/reload menu.

4. 3D Results

Fig. 3A-B shows a 3D porcine ventricular structure [11]
with the 3-variable [12] and the 41-variable OVVR [13]
models. Multiple-spiral and single-spiral cases initiated
by the S1-S2 protocol using the mouse are shown. The
structure can be rotated and visualized at any angle, and
all parameters of the models can be modified in real time
to investigate the dynamics of the waves. Periodic stimu-
lation can be induced at any point with any frequency and
size using the menu options. Additionally, the voltage sig-
nal (or any current or gate variable) from any point in the
tissue can be displayed as a function of time in a mov-
ing window next to the 3D simulation (Fig. 3C). Simula-
tion with the 3V model on the porcine structure using an
NVIDIA-2080TI GPU card ran faster than real time, while

Page 3

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 23,2022 at 19:33:03 UTC from IEEE Xplore. Restrictions apply.

Figure 3. 3D simulations in porcine ventricles. (A) Mul-
tiple spiral waves (3V model [12]). (B) Single spiral wave
with the OVVR model [13]. (C) Screen shot of voltage
signal in time from one point in the domain.

with the OVVR model it runs 3 times slower than real time
at maximum output.

5. Conclusions

In this paper we greatly extend our previous work [11,
14] by creating a set of four programs, two for 2D and
two for 3D simulations, for two cardiac cell models, a
phenomenological 3-ODE model [12] and the 41-ODE
OVVR model [13], which is currently considered the stan-
dard to study arrhythmias by the FDA and CiPA initiative.
Because these codes do not require a computer cluster,
programming knowledge, or any downloads and compi-
lation, they can be accessed and used by a large commu-
nity of students and researchers. Along with their speed
from GPU acceleration, they provide the ability to inter-
act with the simulation in real time and to change any
model parameter using a menu or by directly by modi-
fying the code while it runs. Extensions of these codes
to other heart structures and models is relatively sim-
ple, so we expect that more codes will be developed by
us and others in the near future and that this framework
will be valuable for future studies of arrhythmia mecha-
nisms and control. The WebGL codes can be accessed and
run by visiting https://kaboudian.github.io/
CinC-2021-Competition/.

Acknowledgments

We acknowledge support from: NIH 1R01HL143450-
01, NSF-FDA-2037894, NSF CNS-2028677, CNS-
1446675 and 1762553.

References

[1] Wiener N, Rosenblueth A. A conduction of impulses in
cardiac muscle. Arch Inst Cardiol Mex 1946;16:205–265.

[2] Moe GK, Rheinboldt WC, Abildskov J. A computer
model of atrial fibrillation. American Heart Journal 1964;
67(2):200–220.

[3] Vigmond EJ, Hughes M, Plank G, Leon LJ. Computational
tools for modeling electrical activity in cardiac tissue. Jour-
nal of Electrocardiology 2003;36:69–74.

[4] Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper
J, Corrias A, Davit Y, Dunn SJ, Fletcher AG, Harvey
DG, Marsh ME, Osborne JM, Pathmanathan P, Pitt-Francis
J, Southern J, Zemzemi N, Gavaghan DJ. Chaste: An
open source C++ library for computational physiology
and biology. PLOS Computational Biology March 2013;
9(3):e1002970.

[5] Antonioletti M, Biktashev VN, Jackson A, Kharche SR,
Stary T, Biktasheva IV. Beatbox—hpc simulation environ-
ment for biophysically and anatomically realistic cardiac
electrophysiology. PloS One 2017;12(5):e0172292.

[6] Richards DF, Glosli JN, Draeger EW, Mirin AA, Chan ea.
Towards real-time simulation of cardiac electrophysiology
in a human heart at high resolution. Comp Meth in Biomech
and Biomed Eng 2013;16(7):802–805.

[7] Puglisi JL, Bers DM. Labheart: an interactive computer
model of rabbit ventricular myocyte ion channels and ca
transport. AJP Cell Phys 2001;281(6):C2049–C2060.

[8] Clerx M, Collins P, de Lange E, Volders PG. Myokit: a
simple interface to cardiac cellular electrophysiology. Prog
in Biophy and Mol Bio 2016;120(1-3):100–114.

[9] Fenton FH, Cherry EM, Hastings HM, Evans SJ. Real-time
computer simulations of excitable media. Biosystems 2002;
64(1-3):73–96.

[10] Dowle M, Martin Mantel R, Barkley D. Fast simulations of
waves in three-dimensional excitable media. International
Journal of Bifurcation and Chaos 1997;7(11):2529–2545.

[11] Kaboudian A, Cherry EM, Fenton FH. Real-time interac-
tive simulations of large-scale systems on personal comput-
ers and cell phones. Sci Adv 2019;5(3):eaav6019.

[12] Fenton FH, Cherry EM, Hastings HM, Evans SJ. Multiple
mechanisms of spiral wave breakup in a model of cardiac
electrical activity. Chaos An Interdisciplinary Journal of
Nonlinear Science 2002;12(3):852–892.

[13] O’Hara T, Virág L, Varró A, Rudy Y. Simulation of
the undiseased human cardiac ventricular action poten-
tial: model formulation and experimental validation. PLoS
Comput Biol 2011;7(5):e1002061.

[14] Kaboudian A, Cherry EM, Fenton FH. Large-scale inter-
active numerical experiments of chaos, solitons and fractals
in real time via gpu in a web browser. Chaos Solitons and
Fractals 2019;121:6–29.

[15] Kaboudian A, Velasco-Perez HA, Iravanian S, Shiferaw
Y, Cherry EM, Fenton FH. A comprehensive comparison
of gpu implementations of cardiac electrophysiology mod-
els. In From Reactive Systems to Cyber-Physical Systems.
Springer, 2019; 9–34.

[16] Fedkiw RP, Aslam T, Merriman B, Osher S. A non-
oscillatory eulerian approach to interfaces in multimaterial
flows. J Comp Phys 1999;152(2):457–492.

Address for correspondence:

Flavio H. Fenton
flavio.fenton@physics.gatech.edu
School of Physics, Georgia Institute of Technology

Page 4

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 23,2022 at 19:33:03 UTC from IEEE Xplore. Restrictions apply.

