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Abstract

Electrical alternans, a beat-to-beat alternation in ac-
tion potential duration, sometimes precedes the formation
of dangerous cardiac arrhythmias. Controllability anal-
ysis answers questions about what types of interventions
can suppress alternans or other unwanted phenomena in
a dynamical model. Previously, we used a conventional
linearization approach to determine controllability prop-
erties of the Qu, Shiferaw, and Weiss nonlinear map model
of alternans dynamics. The model was of interest due to
its ability to represent different drivers of alternans, in-
cluding instabilities in voltage or calcium dynamics. Our
computational methods had the disadvantage of requiring
numerical evaluation of Jacobian matrices, a process that
becomes computationally intensive for higher-dimensional
systems. In the present study, we used a Jacobian-free
“empirical” method to compute a measure of controlla-
bility based on minimum singular values of Gramian ma-
trices and showed that empirical values matched closely
with conventional ones. We compared the singular value
measure with a modal controllability measure and demon-
strated that the former predicts energy usage for certain
scenarios, while the latter indicates strategies that lead to
smaller sizes of alternans-suppressing perturbations.

1. Introduction

Electrical alternans is sometimes a precursor to complex
abnormal heart rhythms, hence the search for alternans
suppression methods remains an active area of research.
To date, only a relatively small number of studies have in-
vestigated alternans from a control-theoretic perspective,
for example by studying controllability, which is a model
property that indicates whether a given suppression strat-
egy is likely to succeed. Controllability helps answer ques-
tions about feasibility of strategies before a specific control
algorithm, such as a formula that computes perturbations
to the timing of electrical stimuli, is developed. In our
recent work [1], we examined controllability of the Qu,
Shiferaw, and Weiss (QSW) map model [2]. Our study was
the first to evaluate effects of different drivers of alternans,

such as voltage or calcium-related instabilities, on control-
lability. We compared control strategies that involved per-
turbing different dynamical variables and found that per-
turbing action potential duration, as opposed to adjusting
calcium concentrations, appeared to be the best strategy
regardless of alternans mechanism, according to a modal
controllability measure. In the previous work, our con-
trollability measures relied on Jacobian matrices, which
are computationally cumbersome to estimate for higher-
dimensional systems, and we restricted our analysis to a
small number of control performance measures. To ad-
dress these shortcomings, the present study offers the fol-
lowing novel contributions: (1) We used “empirical” meth-
ods, which avoid direct computation of Jacobian matrices,
to estimate controllability Gramian matrices for the QSW
model; (2) We compared two controllability measures with
an extended set of performance indicators, which help ex-
plain cases in which the controllability measures favored
different strategies.

2. Methods

The QSW model [2] has the form Xk+1 = f(Xk). The
state vector is Xk = [ak bk lk]T ∈ Rn, where ak is cellu-
lar action potential duration (APD) (ms), bk is the total in-
tracellular calcium concentration CaTot (µM), lk is the sar-
coplasmic reticulum (SR) calcium load CaSR (µM), k is
the stimulus index, T is the stimulus period (ms), and n =
3. Two configurations of model parameters were consid-
ered, yielding alternans that was either (1) voltage-driven
and electromechanically discordant (EMD), where short
APDs coincided with large peak calcium, or (2) calcium-
driven and electromechanically concordant (EMC), where
short APDs coincided with small peak calcium. Choices of
parameters were explained previously [1]. All calculations
were performed using Matlab.

Fixed points (solutions to X∗ = f(X∗)) were esti-
mated with Matlab’s fsolve function (trust-region dog-
leg method) for periods in the range T = 80 to 600 ms.
State matrices Ad = ∂f/∂X|X∗ were determined us-
ing central-difference numerical approximations of Jaco-
bians. For deviational state vector xk = S(Xk − X∗),



a linearized dynamical equation xk+1 = Axk + Buk
was formed by adding control input u via input matrix B.
For each parameter configuration, we computed a diago-
nal nondimensionalizing matrix S, where the diagonal en-
tries were reciprocals of components of X∗ for T = 600
ms. State vectors and matrices were obtained from their
dimensional counterparts (subscripted d) via x = Sxd,
A = SAdS

−1, and B = SBd. We examined three con-
trol strategies for suppressing alternans, represented by
Bj = BAPD = S[1 0 0]T , BCaTot = S[0 1 0]T , or
BCaSR = S[0 0 1]T , where the j-th control strategy per-
turbed the j-th state variable directly. Fixed point X∗ rep-
resents a normal or period-1 rhythm, but for sufficiently
short periods, X∗ becomes unstable and alternans is the
predominant behavior, which manifests as one or more al-
ternans eigenvalues of A exiting the unit circle in the com-
plex plane as T is lowered. “Alternans eigenvalue” refers
to any eigenvalue ofAwith negative real part, and dynami-
cal modes associated with alternans eigenvalues contribute
a beat-to-beat alternation to system state trajectories. A
typical goal of many alternans control methods is to re-
store stability of X∗.

Controllability measures were used to predict which
strategies would be able to suppress alternans more effec-
tively. A system is controllable if for any arbitrary ini-
tial state and arbitrary final state there exists a finite se-
quence of inputs that will transfer initial to final state.
A linear system is controllable if controllability matrix
P = [B AB A2B · · · An−1B] (or controllability
Gramian W = PPT ) is nonsingular. If σmin(W ), min-
imum singular value of W , is nonzero, then the system
is controllable and strategy B can suppress alternans or
other unwanted behavior [3,4]. To avoid computingAma-
trices, which becomes cumbersome for high-dimensional
systems, others (e.g., [5, 6]) have suggested computing
“empirical” Gramians: Ŵ = XpX T

p /ρ
2. Columns of

Xp = [x0 x1 . . . xq−1] are sequential deviational states
arising from simulating Xk+1 = f(Xk) from a perturbed
initial state X0 up to cycle index q − 1. We chose X0 =
X∗ + ρBd with perturbation size ρ, where Bd is a col-
umn of the identity matrix indicating the control strategy.
Next, σ̂min, the minimum singular value of Ŵ , was de-
termined for a range of values of ρ, using q = 3 steps,
then compared with σmin for different control strategies,
period lengths, and alternans drivers. Mean absolute rela-
tive errors, averaged over all NT = 53 periods, then over
all n = 3 control strategies, were defined as:

σerr =
1

nNT

n∑
j=1

NT∑
m=1

σmin(m, j)− σ̂min(m, j)

σmin(m, j)


We compared σmin values to a modal controllability

measure [7] defined as | cos θij | = |w∗i · Bj |/‖w∗i ‖‖Bj‖,
where θ is the controllability angle and wi is the ith left

eigenvector of A. Larger | cos θij | indicates that the i-th
eigenvalue of A is more strongly controllable through the
j-th strategy. | cos θalt,j | refers to controllability of the
largest alternans eigenvalue, which is a measure of how
well the j-th strategy can suppress alternans. In general,
a strategy that yields stronger controllability (i.e., larger
σmin or | cos θ|) values is expected to produce smaller per-
formance measures.

To aid in interpreting σmin values, we examined
max ‖umin‖, which is an estimate of the worst-case
minimum control energy over all initial condition direc-
tions. First, we computed umin,l = PTW−1(xf −
Anx0,l) [3], which is the minimum-energy control input
sequence (in the sense of minimizing Σ

kf−1
k=0 u

2
k = ‖u‖22)

needed to transfer x0,l to xf in kf steps [4]. Larger
σmin(W ) is expected to lead to smaller energy expen-
ditures. Here, it was assumed that xf = 0 and initial
conditions x0,l = Sel were generated by drawing unit
vectors el, l ∈ {1, 2, . . . , 40}, from a zero-mean, unit-
variance pseudorandom normal distribution. Performance
measure max ‖umin‖ = maxl ‖umin,l‖ was calculated,
with max ‖Bumin‖ defined similarly. Although umin can
be computed over a larger number of periods, kf = n = 3
was used here for simplicity.

To produce another performance measure, we simulated
the response of xk+1 = Axk+Buk to state feedback algo-
rithm u = −Kx, where linear quadratic regulator (LQR)
control gain matrices K = KLQR were designed using
Matlab’s dlqr function, which yields gains K that min-
imize quadratic cost J(K) =

∑∞
k=0 x

T
kQxk + uTkRuk.

Here, diagonal penalty matrix Q and scalar R were cho-
sen so that R/‖Q‖ = 0.125, with remaining design details
provided elsewhere [1]. A goal of LQR when X∗ is unsta-
ble is to move eigenvalues back inside the unit circle in the
complex plane; maximum moduli of (A−BKLQR) eigen-
values resulting from our gain designs were 0.95 and 0.92
for the respective voltage- and calcium-driven cases. For
each initial condition x0,l, the system xk+1 = Axk +Buk
was simulated with control input uLQR = −KLQR x
for 20 periods, and nondimensional performance measure
〈‖BuLQR‖〉 was computed, where the average was taken
over the 40 initial condition directions.

3. Results and Discussion

Examples of σmin (solid lines) and σ̂min (symbols ×,
◦, +) are displayed in the lower plots of Figures 1–2, for
both the voltage- and calcium-driven cases. Larger σmin

indicates strategies that yield stronger controllability. APD
bifurcation plots are included in the top panels to show
the intervals of T over which alternans was the dominant
long-term behavior. Plots were confined to T ≥ 150 ms
to exclude parts of the ranges over which 2:1 block occurs.



From the σmin plots, it can be seen that for the three pertur-
bation sizes included, empirical singular values matched
closely with conventional values, though some discrepan-
cies are visible for ρ = 0.0001 (marked with×) in Figure 1
and for ρ = 1 (marked with +) in Figure 2.

Figure 1: Top: APD vs. T bifurcation plot (showing alter-
nans) arising from iterating QSW model for 1000 cycles
at each period and plotting APDs from the final 10 peri-
ods. Alternating beats are shown with filled and open cir-
cles (graph adapted from [1]). Bottom: Minimum singular
values of conventional Gramians W (solid lines) and em-
pirical Gramians Ŵ (×,◦,+) for 3 different perturbation
sizes (ρ), for voltage-driven EMD alternans. Color indi-
cates control strategy.

Figure 2: Top: APD bifurcation plot for calcium-driven
EMC alternans. Bottom: Minimum singular values of con-
ventional (solid lines) and empirical (×,◦,+) Gramians.

To quantify the accuracy of the minimum singular value
estimates, mean absolute relative errors (σerr) for several
decades of ρ values are shown in Table 1. The ρ values that

minimized σerr differed depending on the parameter set.
Nonetheless, there were various ρ values (such as 1×10−2)
that produced small errors for either alternans mechanism.

Examples of controllability measures σmin(P ), σ̂min(Ŵ ),
and | cos θalt| are shown for three control strategies along
with performance measures max‖umin‖, max‖Bumin‖,
‖BKLQR‖, and 〈‖BuLQR‖〉 for voltage- and calcium-
driven alternans in Table 2. Periods of 230 and 150 ms
were chosen since they approximately maximize APD al-
ternans amplitudes while avoiding 2:1 block. Most quanti-
ties reported in the table were not shown previously, except
for σmin(P ), | cos θalt|, and ‖BKLQR‖, which were given
in [1] but are included here for comparison.

The table indicates that σ2
min(P ) = σ̂min(Ŵ ), which

was expected due to properties of singular values; hence,
the empirical σ̂ values yield the same judgments about best
control strategies as their conventional counterparts. From
the perspective of the minimum singular values, the rank-
ings of strategies from best to worst are BCaTot, BCaSR,
andBAPD for the voltage-driven case andBAPD,BCaSR,
and BCaTot for calcium-driven alternans. Modal control-
lability (| cos θalt|) rankings of strategies match those of
σ̂min for calcium-driven alternans but not for the voltage-
driven case. Specifically, modal controllability strongly fa-
vors suppressing alternans by adjusting the APD variable
regardless of alternans mechanism, with a secondary pref-
erence for BCaSR in the calcium-driven case.

Larger controllability values are expected to correlate
with smaller performance measures, and the performance
measures help to explain the sense in which any strat-
egy is considered to be better or worse. Table 2 shows
that σmin predicted the ordering of max ‖umin‖ values as
expected, while | cos θ| predicted the ordering of overall
perturbation sizes added to the system dynamics, specif-
ically the ‖BK‖, max ‖Bumin‖, and 〈‖BuLQR‖〉 mea-
sures. Hence, largest σmin identifies the control strategy
that yields the smallest of the worst-case minimum energy
norms max ‖umin‖.

In the table, max ‖Bumin‖ exceeds 〈‖BuLQR‖〉 be-
cause the former is an aggressive control sequence that re-

Table 1: Mean absolute error (σerr) of σ̂min relative to
σmin for different alternans drivers and perturbation sizes,
ρ. Smallest errors that were found are highlighted in blue.

ρ Voltage-driven alt. Calcium-driven alt.
1× 10−5 0.5262 0.0190
1× 10−4 0.1030 0.0018
1× 10−3 0.0133 0.0007
1× 10−2 0.0016 0.0062
1× 10−1 0.0015 0.0758
1× 100 0.0144 2.1026
1× 101 0.1657 45.7828



Table 2: Controllability values (σmin, σ̂min, and | cos θ|) and performance measures for three control strategies (BAPD,
BCaTot, BCaSR) for electromechanically discordant voltage-driven (mechanism: V) alternans at a period of 230 ms (rows
2–4) and electromechanically concordant calcium-driven (mechanism: Ca) alternans at a period of 150 ms (rows 5–7).

Mech. Strategy (B) σmin(P ) σ̂min(Ŵ ) max‖umin‖ max‖Bumin‖ | cos θalt| ‖BKLQR‖ 〈‖BuLQR‖〉
V BAPD 0.0005 2.12×10−7 27.4201 0.1201 0.9997 9.81×10−1 0.0030

BCaTot 0.0009 8.13×10−7 19.6495 0.2819 0.0219 4.48×10+1 0.1229
BCaSR 0.0007 5.58×10−7 22.4201 0.6570 0.0094 1.04×10+2 0.2907

Ca BAPD 0.0013 1.71×10−6 7.2572 0.0317 0.8522 4.30×10−1 0.0023
BCaTot 0.0003 9.65×10−8 20.2061 0.1766 0.1238 2.96×10+0 0.0202
BCaSR 0.0006 4.00×10−7 10.2019 0.1294 0.5084 7.22×10−1 0.0053

turns the state to the origin in 3 periods, compared with
LQR, which moves xk toward the origin more gradually.
Since LQR and other state feedback input sequences can
be calculated independently of any knowledge of initial
and final states, they are typically considered a more prac-
tical method of controlling a system compared with the
umin approach. Furthermore, unlike LQR, umin does not
necessarily stabilize fixed points.

We chose to examine multiple controllability measures
since it is not yet certain which aspects of control perfor-
mance should receive highest priority, though many other
measures could have been considered besides those shown.
Considering the greater practicality of LQR and the nondi-
mensionality of quantities like ‖BK‖, it appears that rank-
ings of strategies based on | cos θ| should be favored over
those of σmin in cases of disagreement, but the latter is still
a well-known measure that can offer insights into possibil-
ities for energy usage. A limitation is that other choices of
nondimensionalizing transformations could yield different
orderings of either set of controllability rankings, though
re-orderings are more likely for strategies that are already
close in value in the table.

4. Conclusions

In this study, we computed controllability Gramians
for the QSW alternans model using an “empirical” or
Jacobian-free method and showed that the resulting min-
imum singular values were similar to conventional values.
We compared the singular value controllability measure
with a modal measure to determine best control strate-
gies for suppressing alternans. The modal measure favored
perturbing APD, as opposed to calcium-related variables,
as the best strategy for both the voltage- and calcium-
driven alternans cases. Modal controllability aligned with
measures of control perturbation size, though the singular
value measure gave information on energy usage in a type
of worst-of-the-best case scenario. Our work is part of a
broader effort to provide computationally efficient tools for
assessing alternans controllability, which could facilitate

decisions about control strategies and electrode placements
when applied to spatially distributed models of tissue.
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