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Abstract—Non-Volatile Memories (NVMs) such as Resistive
RAM (RRAM) are used in neuromorphic systems to implement
high-density and low-power analog synaptic weights. Unfortu-
nately, an RRAM cell can switch its state after reading its content
a certain number of times. Such behavior challenges the integrity
and program-once-read-many-times philosophy of implementing
machine learning inference on neuromorphic systems, impacting
the Quality-of-Service (QoS). Elevated temperatures and frequent
usage can significantly shorten the number of times an RRAM
cell can be reliably read before it becomes absolutely necessary
to reprogram. We propose an architectural solution to extend
the read endurance of RRAM-based neuromorphic systems.
We make two key contributions. First, we formulate the read
endurance of an RRAM cell as a function of the programmed
synaptic weight and its activation within a machine learning
workload. Second, we propose an intelligent workload mapping
strategy incorporating the endurance formulation to place the
synapses of a machine learning model onto the RRAM cells of
the hardware. The objective is to extend the inference lifetime,
defined as the number of times the model can be used to
generate output (inference) before the trained weights need to be
reprogrammed on the RRAM cells of the system. We evaluate
our architectural solution with machine learning workloads on a
cycle-accurate simulator of an RRAM-based neuromorphic sys-
tem. Our results demonstrate a significant increase in inference
lifetime with only a minimal performance impact.

Index Terms—Neuromorphic Computing, Non-Volatile Mem-
ory (NVM), Endurance, RRAM, Spiking Neural Network (SNN)

I. INTRODUCTION

Neuromorphic systems are integrated circuits that mimic
the neuro-biological architecture of the central nervous sys-
tem [1]. They employ variants of integrate-and-fire (I&F)
neurons as computational units and analog weights as synaptic
storage. I&F neurons use spikes to encode information, where
each spike is a voltage or current pulse, typically of an
ms duration [2]. Due to its event (spike)-driven operations,
a neuromorphic system consumes less power and therefore,
well suited as the hardware for inference of trained machine
learning models deployed in power-constrained environments
such as Embedded Systems and Internet-of-Things (IoT).

Non-Volatile Memory (NVM) technologies such as Fila-
mentary Oxide-based Resistive RAM (RRAM), Phase-Change
Memory (PCM), and Spin-based Magnetic RAM (MRAM)
enable low-voltage multilevel operations, making them suit-
able for implementing analog synaptic weight storage in neu-
romorphic systems [3]–[5]. Of these emerging new memory
technologies, hafnia (HfO2)-based RRAM has shown a signif-
icant promise due to its CMOS compatibility at scaled nodes,

allowing the fabrication of high-density synaptic storage for
neuromorphic systems. The synaptic weights are programmed
on RRAM cells as conductance. An RRAM cell can be
programmed to a high-resistance state (HRS) or one of the
low-resistance states (LRS). Unfortunately, RRAM cells have
limited read endurance, i.e., an RRAM cell can switch its
state after performing a certain number of reads [6]. To
give an example, a single quasi-static read for 5000 ms
or 5000 reads with 1-ms read time can lead to an abrupt
change from HRS to LRS state in an RRAM cell [6]. To
put in the context of neuromorphic computing, an RRAM cell
can reliably propagate 5000 1-ms spikes before it becomes
absolutely necessary to reprogram the state of the cell.

We now extrapolate this RRAM device behavior to the
application level, describing such extrapolation with the run-
ning example of VGG, a deep learning model trained on
CIFAR-10 dataset and performing inference on an RRAM-
based neuromorphic system. Figure 1 shows the histogram of
average spikes per image propagating through the synapses
of VGG. We collected these statistics by analyzing CIFAR-
10 training and test datasets. We see that some synapses
propagate more spikes than others when inferring an image.
These are called the critical synapses and they decide how
many images can be reliably inferred using the VGG model
before it becomes necessary to reprogram the trained synaptic
weights on the RRAM cells of the hardware.
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Fig. 1. Spike distribution across the synapses of VGG.
To give an example, assume n to be the maximum number

of spikes per image on the critical synapses of VGG (n = 6.42

in Figure 1). Then, the RRAM cells need to be reprogrammed
once every 5000

n
≈ 778 images to ensure correctness. The time

to infer 778 images is called the inference lifetime. Formally,

Inference Lifetime =
Read Endurance
spikes per image

(1)

If the RRAM devices implementing VGG are not re-
programmed before the inference lifetime expires, then the
accuracy of VGG can drop significantly (accuracy in the low
20% is reported in [6]).

Periodic reprogramming of synaptic weights on a neuro-
morphic system challenges the program-once-read-many-times
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philosophy of machine learning inference hardware, which
can impose significant system overhead. To give an example,
imagine such systems are deployed at the edge nodes of an IoT
infrastructure. Frequent updates of these nodes with trained
weights will 1) increase communication between the edge
and cloud, and 2) reduce the Quality-of-Service (QoS) due to
offlining of the edge nodes every time they are reprogrammed.

We observe that inside a neuromorphic system, the RRAM
cells are organized into crossbars. The parasitic IR drops
in a crossbar create a difference in the voltage needed to
propagate spike through the RRAM cells in the crossbar [7].
Such voltage differences create a variation of read endurance
of the RRAM cells, i.e., some RRAM cells are stronger than
others, where the strength of an RRAM cell is measured in
terms of its read endurance, which is a function of the voltage.
Unfortunately, if the critical synapses (those that propagate
more spikes) are mapped on weaker RRAM cells (those
that have low read endurance), then the inference lifetime
can decrease significantly, lowering the QoS. We propose an
intelligent synapse allocation strategy, which analyzes spikes
propagating through each synapse of a machine learning model
during inference and uses such information to map the model’s
synaptic weights to the RRAM cells considering the variation
in their read endurance. The objective is to maximize the
inference lifetime of the hardware. Our architectural solution
is built on the following three key contributions.

• First, we investigate the internal architecture of an
RRAM-based neuromorphic system and estimate the en-
durance variation through detailed circuit-level simula-
tions at different process and temperature corners.

• Second, we analyze a trained machine learning model and
estimate the spikes propagating through its synapses.

• Finally, we use a Hill-Climbing approach that uses Binary
Non-Linear Programming (BNLP) to map the synapses
of a machine learning model to the RRAM cells such
that the critical synapses are always mapped to stronger
RRAM cells, thereby improving the inference lifetime.

We evaluate our architectural approach with different ma-
chine learning models on NeuroXplorer [8], a cycle-accurate
simulator of RRAM-based neuromorphic system. Results
show a significant improvement in inference lifetime with a
minimal impact on model performance.

II. BACKGROUND

A neuromorphic system is implemented as a tiled architec-
ture (see Fig. 2a), where the tiles are interconnected hierar-
chically using a shared interconnect such as Network-on-Chip
(Noc) [9] or Segmented Bus [10]. This is the representative
architecture of many recent systems such as TrueNorth [11],
Loihi [12], and DYNAPs [13]. In many recent systems, a
tile is implemented using a crossbar, which is illustrated
in Figure 2b. An MxM crossbar can accommodate M pre-
synaptic neurons, mapped along the rows and M post-synaptic
neurons, mapped along the columns. There are M2 synaptic
cells, which store the weights. Figure 2c shows a 2x2 crossbar
in three-dimension, with the top electrodes forming the rows

and bottom electrodes forming the columns. A synaptic cell
is placed at each intersection of top and bottom electrodes.
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(a) Tiled neuromorphic hardware.
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(b) Crossbar architecture.
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(d) Parasitics of a crossbar.

Fig. 2. Neuromorphic system architecture with crossbars.
Figure 2d shows the different parasitic components inside

a crossbar. Such components cause variable delays on the
current paths inside the crossbar. For simplicity, we have only
shown the current on the shortest and the longest paths in
the crossbar, where the length of a current path is measured
in terms of the number of parasitic elements on the path.
Therefore, spike propagation delay through synapses on longer
paths is higher than on shorter paths. Although optimizing
inference lifetime is our primary focus, we also evaluate the
impact of our architectural solution on spike propagation delay
(see Section V). Parasitic components in a crossbar also lead
to voltage variations, which impact read endurance of the
synaptic cells. We analyze such impact in Section III.

A. Machine Learning Inference on Neuromorphic Systems

Each crossbar in a neuromorphic system can accommodate
only a limited number of neurons and synapses. To map large
models, the model is first partitioned into clusters of neurons
and synapses, where each cluster can fit onto a crossbar of
the hardware [14]–[20]. Figure 3a shows the architecture of
VGG for CIFAR-10 classification. Figure 3b shows the first
10 clusters generated using SpiNeMap [14], a state-of-the-art
approach to map machine learning inference to neuromorphic
systems. The figure illustrates the connections between these
clusters, with the number on edge representing the average
number of spikes communicated between the source and des-
tination clusters when processing an image during inference.

When partitioning a machine learning model into clus-
ters, SpiNeMap aims to minimize the inter-cluster spikes,
which reduces the energy consumption on the interconnect
of the hardware. There are also other optimization objectives
proposed in literature. Examples include improving crossbar
utilization [19], reducing crossbar usage [15], reducing energy
consumption [7], [21]–[25], and reducing circuit aging [26]–
[30]. None of these approaches address mapping of the



synapses of a cluster to the synaptic cells of a crossbar for the
purpose of inference on neuromorphic systems. To understand
why such mapping matters, we now introduce the background
on filamentary oxide-based RRAM technology, which can be
used to design the synaptic cells of a crossbar.

(a) VGG Convolution Neural Network (CNN).
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Fig. 3. Trained VGG model and its clusters generated using SpiNeMap [14].

B. Oxide-based Resistive RAM (RRAM) Technology

The resistance switching random access memory (RRAM)
technology presents an attractive option for implementing the
synaptic cells of a crossbar due to its demonstrated poten-
tial for low-power multilevel operation and high integration
density [4]. An RRAM cell is composed of an insulating
film sandwiched between conducting electrodes forming a
metal-insulator-metal (MIM) structure (see Figure 4). Re-
cently, filament-based metal-oxide RRAM implemented with
transition-metal-oxides such as HfO2, ZrO2, and TiO2 has
received considerable attention due to their low-power and
CMOS-compatible scaling.

Synaptic weights are represented as conductance of the
insulating layer within each RRAM cell. To program an
RRAM cell, elevated voltages are applied at the top and
bottom electrodes, which re-arranges the atomic structure of
the insulating layer. Figure 4 shows the High-Resistance State
(HRS) and the Low-Resistance State (LRS) of an RRAM cell.
An RRAM cell can also be programmed into intermediate
low-resistance states, allowing its multilevel operations. In this
work, we consider each RRAM cell to be programmed to one
HRS and three LRS states, implementing two bits per synapse.

III. VARIATION OF READ ENDURANCE

Inside a neuromorphic system, the long bitlines and word-
lines of a crossbar are the major sources of parasitic (IR)

BE

TE

BE

TE

Fig. 4. Operation of an RRAM cell with the HfO2 layer sandwiched between
the metals Ti (top electrode) and TiN (bottom electrode). The left subfigure
shows the formation of LRS states with the formation of conducting filament
(CF). This represents logic states 01, 10, and 11. The right subfigure shows
the depletion of CF on application of a negative voltage on the TE. This
represents the HRS state or logic 00.

voltage drops, introducing asymmetry in the voltage applied
across the different RRAM cells in the hardware [31]–[33].
To study this behavior, we simulate a 128x128 RRAM-
based crossbar circuit using the predictive technology model
(PTM) [34] and RRAM-specific parameters [35].

Figure 5 shows the variation of RRAM voltages in a
128x128 crossbar during inference for four technology nodes
(65 nm, 45 nm, 32 nm, and 16 nm) and two temperature
settings (25◦C and 50◦C). We make the following three
key observations. First, RRAM voltages at the bottom left
corner of the crossbar are higher than those at the top right
corner. This is because the current paths via the RRAM cells
at the bottom left corner are shorter, i.e., they have lower
parasitic voltage drops than at the top right corner. Second,
with technology scaling, the voltage variation increases. The
highest RRAM voltage in the crossbar is 1.1 V at 16 nm
and 25◦C (Figure 5d) compared to 0.57 V at 65 nm and
25◦C (Figure 5a). This difference is because the unit parasitic
resistance of the electrodes increases from 1Ω at 65 nm to
3.8Ω at 16 nm [34]. The value of the parasitic resistance is
expected to increase with technology scaling, with a value
≈ 25Ω at 5 nm [36]. Third, RRAM voltage increases with
temperature (Figures 5e-5h vs. Figures 5a-5d). This is because
with increase in temperature, the leakage current through the
access transistor of each RRAM cell in the crossbar increases.
Therefore, to obtain a certain current margin at the readout unit
of the crossbar, the input voltage applied on the top electrodes
needs to increase, which increases the RRAM voltages.

A. Voltage-Dependant Read Endurance of RRAM cells

We now provide a formulation of the read endurance of
the RRAM cells in a crossbar as a function of the input
voltage.1 In RRAM technology, the transition from HRS state
is governed by a sudden decrease of the vertical filament gap
on application of stress voltage during spike propagation [6].
The rate of change of the filament gap of the RRAM cell at
the (i, j)th location in the crossbar is

dgi,j

dt
= −ϑ0·e−

Ea
kT sinh

(
γi,j · a0

L
·
qVi,j

kT

)
, where γi,j = γ0−β·

gi,j

g0

3

(2)

1Limited write endurance of RRAM cells has been studied before in the
context of neuromorphic computing [37], [38]. This is the first work that
studies the read endurance problem and proposes an intelligent solution.
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(d) 16nm, 25◦C.
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(g) 32nm, 50◦C.

0 32 64 96 128
Post-synaptic neurons

128

96

64

32

0

P
re

-s
yn

ap
ti

c
ne

ur
on

s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
R

A
M

vo
lt

ag
e

(V
)

(h) 16nm, 50◦C.

Fig. 5. Variation in RRAM voltages within an 128x128 crossbar for inference. Such variations are reported for four technology nodes (65nm, 45nm, 32nm,
and 16nm) and two temperature settings (25◦C and 50◦C).

In the above equation, t defines the state transition time, g0 is
the initial filament gap of the RRAM cell, Vi,j is the voltage
applied to the cell, γi,j is the local field enhancement factor
and is related to the gap gi,j , a0 is the atomic hoping distance,
and γ0 is a fitting constant.

The transition from one of the LRS states is governed by
the lateral filament growth [6]. The time for state transition in
the (i, j)th RRAM cell is given by

ti,j(LRS) = 10−14.7·Vi,j+6.7sec (3)

Using Equations 2 and 3, the read endurance of the (i, j)th

RRAM cell can be derived as

Ei,j(HRS/LRS) =
ti,j(HRS/LRS)

1 ms (spike duration)
(4)

Figure 6 shows the endurance variation of a 128x128
crossbar at 45 nm node and at 25◦C with each RRAM cell
programmed to 1) HRS state (Figure 6a) and 2) one of the
LRS states (Figure 6b). We observe that endurance of an
RRAM cell is higher if the cell is programmed to an LRS
state compared to when it is programmed to the HRS state.

From the machine learning workload perspective, synapses
can either be in the HRS state or in one of the LRS states.
Therefore, based on how the synapses of a model are mapped
inside a crossbar, the endurance map will assume intermediate
forms between Figures 6a and 6b. To simplify the problem
formulation, we define equivalence in terms of inference
lifetime as follows. Consider A and B to be two synaptic
weights in a machine learning model with spikes SA and
SB , respectively. Without loss of generality, consider A to
be in HRS state and B in LRS state. Let these weights are
programmed on the RRAM cells at the same (i, j)th location
in two different crossbars. Then, the inference lifetime due
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(a) Each RRAM cell in HRS state.
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(b) Each RRAM cell in LRS state.
Fig. 6. Variation in RRAM endurance within an 128x128 crossbar at
45 nm node and at 25◦C. Such variations are reported for the RRAM cells
programmed in (a) HRS and (b) one of the LRS states.

to A is Ei,j(HRS)

SA
and that due to B is Ei,j(LRS)

SB
. Synaptic

weights A and B are considered to be equivalent in terms of
the inference lifetime at the (i, j)th position in a crossbar if

Ei,j(HRS)

SA
=
Ei,j(LRS)

SB
(5)

We use Equation 5 for mapping and inference lifetime
computation purposes. Once the mapping is decided, RRAM
cells are programmed to their actual state.

IV. PROBLEM FORMULATION

The mapping of a machine learning model to hardware is
formulated in the following three steps.

1) Formulating inference lifetime of model clusters.
2) Cluster mapping with unlimited hardware resources.
3) Cluster mapping with limited hardware resources.

We now elaborate on these mapping steps.



A. Formulating Inference Lifetime of Model Clusters
We consider the mapping of a cluster C = (Pre, Post, Syn)

of a machine learning model onto a crossbar of the hardware.
Here Pre is the set of pre-synaptic neuron, Post is the set of
post-synaptic neuron, and Syn is the set of synapses between
the pre- and post-synaptic neurons of the cluster. Each neuron
ni ∈ Pre is characterized by a number spk(ni), indicating the
average number of spikes generated by this neuron per image
during inference. Each synapse si,j ∈ Syn connecting the pre-
synaptic neuron ni ∈ Pre and post-synaptic neuron nj ∈ Post
is associated with a number wt(si,j) representing its synaptic
weight. The number of spikes on the synapse si,j is the same
as the number of spikes generated by its pre-synaptic neuron
ni, i.e., spk(si,j) = spk(ni).

Consider the mapping of this cluster C to a MxM crossbar
H = (In,Out) with a set In of input ports to map pre-synaptic
neurons and a set Out of output ports to map post-synaptic
neurons. Here |In| = |Out| = M .

Let Xi,k be a binary variable representing the mapping of
pre-synaptic neuron ni ∈ Pre to the input port ik ∈ In and Yj,l

be a binary variable representing the mapping of post synaptic
neuron nj ∈ Post to the output port ol ∈ Out.

The problem we are aiming to solve is this: find the binary
variables Xi,j and Yj,l such that the inference lifetime is
maximized when mapping the cluster to a crossbar. Therefore,
the objective function is the inference lifetime. To maximize
the objective function, we define the following constraints.

• Each pre-synaptic neuron can be mapped to exactly one
input port of the hardware, i.e., ∑M

k=1Xi,k = 1 ∀i.
• Each post-synaptic neuron can be mapped to exactly one

output port of the hardware, i.e., ∑M
l=1 Yj,l = 1 ∀j

To formulate the objective function itself, we consider the
synapse si,j ∈ Syn, which connects the pre-synaptic neuron
ni with the post-synaptic neuron nj . In terms of the variables
Xi,k and Yj,l, the synapse si,j is mapped to the RRAM cell at
(k, l)th position in the crossbar. The inference lifetime of the
synapse can be computed by first considering the equivalence
to HRS state using Equation 5, and then dividing the HRS
endurance of the RRAM cell with the number of spikes on
the synapse using Equation 1. This is given by

f(i, j) = Inference Lifetime(i, j) =
M∑
k=1

M∑
l=1

Xi,k ·Yj,l ·
Ek,l(HRS)

spkeq(si,j)
(6)

The maximization problem is
max

1≤i≤|Pre|
1≤j≤|Post|

f(i, j) (7)

The use of binary (discrete) variables makes the optimiza-
tion problem of Equation 7 non-convex, while the product
term in Equation 6 makes this non-linear (NL). Therefore, the
optimization problem we are aiming to solve is a Non-Convex
Binary Non-Linear Programming (BNLP) problem and there
is no guarantee of optimality [39]. We use the smoothing
method proposed in the Ph.D. dissertation [40] to solve this
BNLP problem. The optimized inference lifetime obtained
from mapping the cluster C to the crossbar H is

Inference Lifetime(C,H) = fopt (8)

In this study, we have ignored process variations across
the crossbars of a hardware. So, the inference lifetime of a
cluster is the same, irrespective of which crossbar this cluster
is mapped to in the hardware. This allows us to decouple
the crossbar term from Equation 8. We use the variable Li to
represent the inference lifetime of the cluster Ci.

B. Cluster Mapping with Unlimited Hardware Resources

If the hardware contains unlimited number of crossbars,
then each crossbar can map at most one cluster of a machine
learning model. Therefore, the inference lifetime for the model
when it is mapped to the hardware is the minimum inference
lifetime of all the clusters of the hardware, i.e,

Inference Lifetime = minimum{Li, ∀i ∈ 1, 2, · · · , NC}, (9)

where NC is the number of clusters of the model.

C. Cluster Mapping with Limited Hardware Resources

If the number of crossbars in the hardware is limited, then
each crossbar may need to be shared across multiple clusters
of a machine learning model. We now formulate the cluster
mapping problem as follows. Let the binary variable Zi,j

indicate the mapping of cluster Ci to crossbar Hj , i.e.,

Zi,j =

{
1 if cluster Ci is mapped to crossbar Hj

0 otherwise
(10)

The problem we are aiming to solve is this: find the binary
variables Zi,j such the inference lifetime of the machine
learning model on the hardware is improved. We define the
following constraint: each cluster must be mapped to only one
crossbar, i.e., ∑NH

j=1 Zi,j = 1 ∀i, where NH is the number of
crossbars of the hardware with NH ≤ NC .

To explore the cluster-to-crossbar mapping search space for
the maximum inference lifetime, we use a Hill-Climbing-based
local search [41]. Each mapping solution is represented by Z ∈
RNC×NH . Figure 7 shows the working of the search algorithm.
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Fig. 7. Flowchart for Hill-Climbing-based search.

For each solution Z generated by the algorithm, it computes
the inference lifetime of each crossbar as follows. If a crossbar
has only one cluster, the inference lifetime is computed by
solving the proposed BNLP problem formulation (Equation 7).
If more than one cluster is mapped to the crossbar, the
clusters on this crossbar are merged. Merging a cluster in-
volves combining the clusters to form a larger cluster and



is described mathematically as follows. Merging of clusters
Ca = (Prea, Posta, Syna) and Cb = (Preb, Postb, Synb) is

merge(Ca,Cb) = Ca+b = (Prea+b, Posta+b, Syna+b), (11)

where Prea+b = Prea ∪ Preb, Posta+b = Posta ∪ Postb, and
Syna+b = Syna ∪Synb. Once the clusters mapped to a crossbar
are merged, the inference lifetime of the merged cluster
is computed using the proposed BNLP formulation. Then
the algorithm computes the overall inference lifetime as the
minimum of the inference lifetime of all crossbars of the
hardware. If this value is higher than the best solution obtained
thus far, the mapping is retained and the algorithm proceeds
to find a better mapping solution. Otherwise, the algorithm
continues to explore for a few more iterations to see if a better
mapping solution can be generated. This general formulation
can be applied to the case where NH > NC , i.e., the number
of hardware crossbars is greater than model clusters.

D. Performance Impact

We now formally quantify the performance degradation
due to our mapping exploration (Sections IV-A, IV-B, and
IV-B) using the previously-introduced notations. Let Zopt ∈
{0, 1}NC×NH be the optimum mapping (one with the highest
inference lifetime obtained using the Hill-Climbing approach
of Figure 7) of the clusters of a machine learning model to
the crossbars of a neuromorphic hardware.

Within the optimum mapping, let Moptp = [Xoptp | Yoptp ] ∀p ∈
1, 2, · · · , NC be the optimum mapping (one with the highest in-
ference lifetime obtained by solving the BNLP of Equation 7)
of pre- and post-synaptic neurons of the pth cluster to a cross-
bar. Here Xoptp ∈ {0, 1}

|Prep|×|In| and Yoptp ∈ {0, 1}
|Postp|×|Out|.

Let dk,l represents the delay in spike propagation through
the RRAM cell at the (k, l)th location in a crossbar. Therefore,
the spike propagation delay through the synapse si,j is

synapse delayi,j =
M∑
k=1

M∑
l=1

Xi,k · Yj,l · dk,l (12)

Therefore, the average spike propagation delay of the cluster
when mapped to a crossbar is

cluster delay =

∑Pre
i=1

∑Post
j=1 spk(si,j) · synapse delayi,j∑Pre

i=1

∑Post
j=1 spk(si,j)

(13)

Equation 13 can be extrapolated to compute the spike propaga-
tion delay of the entire machine learning model when mapped
to the neuromorphic hardware as

hardware delay =

∑NC
p=1

∑Prep
i=1

∑Postp
j=1 spk(spi,j) · cluster delayp∑NC

p=1

∑Prep
i=1

∑Postp
j=1 spk(spi,j)

(14)

V. RESULTS AND DISCUSSION

We evaluate the proposed approach using NeuroXplorer [8],
a cycle-accurate neuromorphic system simulator that uses
tile-based architecture (see Fig. 8). We model the DYNAPs
neuromorphic hardware [13] with hierarchical NoC-based in-
terconnect. Each tile has one 128×128 crossbar. Table I reports
the relevant hardware parameters.

TABLE I
MAJOR SIMULATION PARAMETERS EXTRACTED FROM [13].

Neuron technology 45nm

Synapse technology HfO2-based RRAM

Supply voltage 1.0V

Model 
Training

cycle-accurate 
neuromorphic simulator

Clustering

proposed Hill-Climbing 
based mapping

Circuit Characteristics 
RRAM model

Fig. 8. Evaluation framework based on NeuroXplorer [8].

We evaluate 10 machine learning programs which are repre-
sentative of three most commonly-used neural network classes:
convolutional neural network (CNN), multi-layer perceptron
(MLP), and recurrent neural network (RNN). Table II sum-
marizes the topology, the number of neurons and synapses of
these applications, and their baseline accuracy on the DYNAPs
neuromorphic hardware using the SpiNeMap [14].

TABLE II
APPLICATIONS USED TO EVALUATE THE PROPOSED APPROACH.

Class Applications Dataset Synapses Neurons Topology Accuracy

CNN

LeNet MNIST 282,936 20,602 CNN 85.1%
AlexNet ImageNet 38,730,222 230,443 CNN 69.8%

VGG CIFAR-10 99,080,704 554,059 CNN 90.7 %
HeartClass [42], [43] Physionet 1,049,249 153,730 CNN 63.7%

MLP
MLPDigit MNIST 79,400 884 FeedForward 91.6%
EdgeDet CARLsim 114,057 6,120 FeedForward 100%

ImgSmooth CARLsim 9,025 4,096 FeedForward 100%

RNN
HeartEstm [44] Physionet 66,406 166 Recurrent Reservoir 100%

VisualPursuit [45] [45] 163,880 205 Recurrent Reservoir 47.3%
RNNDigit MNIST 11,442 567 Recurrent Reservoir 83.6%

A. Inference Lifetime on Unlimited Hardware Resources

Figure 9 reports the inference lifetime for each application
for the proposed approach normalized to SpiNeMap. For
reference, we have reported the absolute inference lifetime in
frames for each application using the proposed approach. For
image-based applications (LeNet, AlexNet, VGG, MLPDigit,
EdgeDet, ImgSmooth, and RNNDigit), a frame corresponds to
an individual image. For other time-series applications (Heart-
Class, HeartEstm, and VisualPursuit), a frame corresponds to
a window of 500ms. We make the following two observations.
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Fig. 9. Inference lifetime normalized to SpiNeMap.

First, the inference lifetime obtained using the proposed
approach is on average 3.4x higher than SpiNeMap. This
improvement is because the proposed approach uses the novel
BNLP formulation to decide how the synaptic weights of a
cluster need to be mapped to the RRAM cells of a crossbar to
maximize the inference lifetime. To do so, the proposed ap-
proach incorporates both RRAM device and machine learning



workload characteristics. The proposed formulation ensures
that critical synapses (those that propagate more spikes) are
never mapped to the weaker cells (those that have low read
endurance). SpiNeMap on the other hand, maps the synaptic
weight of a cluster arbitrarily to the RRAM cells of a crossbar.

Second, the inference lifetime improvement of the proposed
approach is, in general, lower for smaller applications such
as MLPDigit, EdgeDet, and ImgSmooth (average 1.9x), com-
pared to larger applications such as LeNet, AlexNet, and VGG
(average 4x). This is because with larger applications (ones
with more clusters), the proposed approach has greater scope
to improve the inference lifetime by intelligently mapping the
synaptic weights in all the clusters.
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Fig. 10. Average RRAM voltage normalized to SpiNeMap.

To give further insight, Figure 10 plots the average voltage
on the RRAM cells within a crossbar when the clusters of
each evaluated application are mapped to them. For reference,
we have reported the absolute voltage in V for the proposed
approach. We observe that the average voltage on the RRAM
cells in the proposed approach is 9% lower than SpiNeMap.
This is because the proposed approach uses the top right
corners of a crossbar (see Figure 2d) to place the synaptic
weights. This is where the parasitic voltage drops are higher,
resulting in a lower voltage across the RRAM cells.

B. Spike Delay

Unfortunately, the RRAM cells at the top right corner
of each crossbar introduce longer spike propagation delay
than those at the bottom left corner. To estimate the average
increase in spike delay, Figure 11 plots the spike propagation
delay through the crossbar for each application, normalized
to SpiNeMap. For reference, we have reported the absolute
delay in ms using the proposed approach. We observe that the
spike propagation delay using the proposed approach is only
an average 6% higher than SpiNeMap.
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Fig. 11. Crossbar spike propagation delay normalized to SpiNeMap.

C. Inference Lifetime with Limited Hardware Resources

Figure 12 plots the inference lifetime obtained using the
proposed approach normalized to SpiNeMap as we increase
the hardware size from 256 crossbars to 1024 crossbars. We
make the following two observations.
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Fig. 12. Inference lifetime for three different hardware configurations.

First, the inference lifetime of the proposed approach in-
creases with an increase in the size of the hardware. With
256, 512, and 1024 crossbars in the hardware, the inference
lifetime of the proposed approach is higher than SpiNeMap by
an average of 1.64x, 2.45x, and 3.16x. With fewer crossbars
in the hardware, the number of clusters mapped to each hard-
ware increases, increasing the crossbar utilization. Therefore,
the proposed approach has limited scope to reorganize the
synapses onto the RRAM cells, resulting in lower improve-
ment than the case where there are more crossbars in the
hardware. Second, the improvement of inference lifetime in
smaller applications like MLPDigit, EdgeDet, and ImgSmooth
is not significant compared to larger applications like LeNet,
AlexNet, and VGG. From these results, we conclude that the
proposed approach has a greater opportunity to increase the
inference lifetime for crossbars with lower utilization.

D. Exploration Time

Table III reports the exploration time of the proposed Hill-
Climbing-based mapping exploration for each of the evaluated
applications. Column 2 reports the number of clusters of
these applications generated using SpiNeMap [14]. For these
clusters, Columns 3, 4, and 5 report the exploration time for
three hardware configurations – 256 crossbars, 512 crossbars,
and 1024 crossbars, respectively. We make the following
two observations. First, the exploration time increases with
increase in the number of crossbars due to the increase in
the size of the search space. Second, for applications such
as ImgSmooth and RNNDigit, there is no significant increase
in the exploration time because the number of clusters for
these applications is less than the number of crossbars in
the hardware. Therefore, the application mapping time is
essentially the time in solving the BNLP problem.

TABLE III
EXPLORATION TIME OF THE PROPOSED APPROACH.

Applications Clusters 256 crossbars 512 crossbars 1024 crossbars
LeNet 2,066 2,189 sec 2,702 sec 3, 183 sec

AlexNet 30,105 40,667 sec 61,434 sec 101,924 sec
VGG 95,452 70,180 sec 144,090 sec 389, 644 sec

HeartClass 7,871 5,111 sec 8,110 sec 12, 145 sec
MLPDigit 520 594 sec 784 sec 1,010 sec
EdgeDet 437 405 sec 612 sec 824 sec

ImgSmooth 41 52 sec 52 sec 52 sec
HeartEstm 325 321 sec 486 sec 611 sec

VisualPursuit 1,001 1,138 sec 1,520 sec 1,921 sec
RNNDigit 90 114 sec 114 sec 114 sec

E. Technology Scaling

Figure 13 plots the inference lifetime of the proposed
approach normalized to SpiNeMap for four technology nodes
– 65nm, 45nm (default), 32nm, and 16nm. We observe that the



improvement of inference lifetime over SpiNeMap increases
as the technology scales down, even though the absolute
inference lifetime is lower at scaled nodes. This is because
with technology scaling, the endurance variation within each
crossbar becomes more significant. Therefore, the proposed
approach, which incorporates such variation in the cluster
mapping and synapse placement process leads to higher in-
ference lifetime compared to SpiNeMap.
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Fig. 13. Impact of technology scaling on inference lifetime.

VI. CONCLUSIONS

We present a novel Binary Non-Linear Programming
(BNLP) formulation of the inference lifetime of machine
learning workloads when mapped on to the RRAM cells of
a neuromorphic system. Using such formulation, we show
that the parasitic IR drops in the system create a significant
difference in read endurance of the RRAM cells. We incorpo-
rate the BNLP formulation and endurance variation inside a
Hill-Climbing-based mapping exploration to find an optimum
mapping of the clusters of an inference model to the crossbars
of a hardware, improving its inference lifetime. Our formula-
tion ensures that critical synapses (those that propagate more
spikes) are never mapped on to the weaker cells (ones that have
lower endurance). We evaluate our approach with 10 machine
learning applications on a cycle-accurate simulator of state-
of-the-art neuromorphic hardware. Our results demonstrate an
average 3.4x improvement in inference lifetime with only 6%
increase in spike propagation delay.
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