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Abstract—Artificial intelligence (AI) and Machine Learning
(ML) are becoming pervasive in today’s applications, such as
autonomous vehicles, healthcare, aerospace, cybersecurity, and
many critical applications. Ensuring the reliability and robustness
of the underlying AI/ML hardware becomes our paramount
importance. In this paper, we explore and evaluate the relia-
bility of different AI/ML hardware. The first section outlines
the reliability issues in a commercial systolic array-based ML
accelerator in the presence of faults engendering from device-
level non-idealities in the DRAM. Next, we quantified the impact
of circuit-level faults in the MSB and LSB logic cones of the
Multiply and Accumulate (MAC) block of the AI accelerator
on the AI/ML accuracy. Finally, we present two key reliability
issues – circuit aging and endurance in emerging neuromorphic
hardware platforms and present our system-level approach to
mitigate them.

Index Terms—Machine learning, deep learning accelerator,
neuromorphic computing, reliability

I. IMPACT ON DRAM FAULTS ON DNN ACCELERATORS

Deep Neural Networks (DNNs), with their ever increasing
computing power are gaining momentum over classical ma-
chine learning and computer vision algorithms. As a result,
DNNs are being extensively deployed across real-time data
driven applications on resource constrained Internet-of-Things
(IoT) edge devices. Conventional CPU architectures tend to
lose out on implementing the computational complexity of
state-of-the-art DNNs, which propelled the development of
cost and energy efficient application-specific neural network
accelerators. Both industry and academia responded to this
emerging community of DNN accelerators by developing sev-
eral purpose-built inference hardware [1]–[3]. Google’s Tensor
Processing Unit (TPU) is one such accelerator that achieves
15–30× higher performance and 30–80× higher performance-
per-watt over traditional CPUs and GPUs [1]. These custom
built DNN accelerators find their application in the domains
of computer vision, multimedia processing, graph analytics,
and search. With this widespread proliferation of DNNs,
researchers have focused on performance optimization and
energy-efficiency of such hardware architectures. Even though
DNNs are presumed to be resilient against errors by virtue of
their inherent fault tolerant capabilities, the threshold of such
resiliency can be easily inflicted with bit-level hardware faults,
leading to graceless degradation in classification accuracy of
the DNN [4].
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Figure 1: Fault manifestation in DRAM leading to misclassi-
fication in a mission-critical DNN accelerator.

To execute an inference network at the edge, considerable
amount of on-chip memory is required to store millions of
trained network parameters, input activations and intermediate
feature maps. For this purpose, energy restricted DNN accel-
erators utilize Dynamic Random Access Memory (DRAM)
as their primary memory subsystem, owing to its low ac-
cess latency and high density architecture. However, due to
various non-idealities associated with the access transistor,
the charge stored in the DRAM cells leak away over time,
engendering bit-level faults throughout the memory. In order
to alleviate this, a DRAM is periodically replenished using
an implicit background refresh operation, which contributes
to a significant amount of DRAM energy overhead as well
as performance bottleneck in the DNN accelerator. Existing
research to alleviate this high refresh rate of DRAMs have
focused on utilizing sub-optimal refresh rates; at the expense
of bit-flip faults that are highly dependent on temperature and
variable retention times of each cell in the structure. Such
faults manifested in the structure adversely impact the classifi-
cation of the network, as demonstrated in Figure 1. Since DNN
accelerators are often deployed in high-assurance environ-
ments, e.g., self driving vehicles for enhancing the autonomous
driving dynamics, smart sensors in aerial surveillance vehicles
like drones, analyzing the impact of these DRAM faults is
highly imperative to avoid catastrophic circumstances.

A. DRAM Basics

DRAM is the primary choice for main memory in most
computing platforms ranging from large scale data centers
to miniature edge devices, due to its high density, longevity,
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and low cost. The basic element of the 2D-DRAM array is
a DRAM bitcell, which consists of a single capacitor and
an access transistor. Depending on the charge in the DRAM
cell capacitor, a binary data value is identified as 1 when the
capacitor is fully charged, or 0 when it is in a discharged
state. However, DRAM capacitor loses charge over time due
to various factors predominantly related to the non-ideality
of the access transistor like sub-threshold leakage and gate-
induced drain leakage. As a result of this, faults in the form
of bit flips start to manifest in the data bits after a certain
time interval (known as retention time). Therefore, the charge
needs to be refreshed periodically to preserve the integrity
of the data. The leakiest cell in the entire DRAM array
determines the worst-case retention time, which is usually
64ms in case of commercial DRAM modules. Even though
high refresh rates are imperative to maintain correctness, they
also adversely impact on the overall energy efficiency and
performance. Energy efficiency declines due to the periodic
activation of individual rows as well as the increase in energy
consumption due to a longer execution time.

Existing research to alleviate the high refresh rate of
DRAMs have focused on utilizing sub-optimal refresh rates,
approximating the device performance. One of the earliest
work in this domain, Flikker, partitions the application data
into critical and non-critical parts, injecting errors in the non-
critical portion at higher refresh intervals [5]. Sparkk, a DRAM
approximation framework refreshes the most significant bits at
a higher refresh rate than the least significant ones [6]. Other
DRAM approximation schemes have also been proposed, that
reduces DRAM energy consumption at lower refresh rates
[7]–[9]. A quality configurable approximate DRAM has been
proposed, that utilizes the concept of critical and non-critical
data partitioning to allocate data in multiple quality bins,
considering the property of variable retention times exhibited
by DRAM cells [10]. However, the impact of the errors on
high assurance DNN accelerators has not been well explored
at high DRAM refresh intervals, which drives us to analyze
the reliability of such high assurance architectures.

B. DNN Accelerator and Its Reliability

In recent years, DNNs have acquired a meteoric rise in
various spheres of life due to their use of sophisticated
mathematical modeling to process data with high complexity
parameters. To meet the extreme compute requirements of
these compute-heavy DNN algorithms, a number of DNN
accelerators have emerged over the past decade. Most DNN
accelerators in practice utilizes DRAM as the main memory
subsystem. For example, well known DNN accelerators such
as Google TPU [1], Eyeriss [2], NVIDIA Jetson Dev Board
[11], Google Coral Edge TPU [12], and Intel MyriadX VPU
[13] consists of 8 GB, 1 GB, 4 GB, 1 GB, and 2 GB of
DRAM, respectively. Recently, a new class of sparse DNN
accelerators has emerged, such as Eyeriss v2 [14], NVIDIA
Ampere [15], Intel Keem Bay VPU [16], etc., that accelerates
the performance of sparse matrix convolution in the inference.
These accelerators leverage the sparsity in a tensor graph

and therefore, skip certain computations during the inference,
based on the bitmap encoding of the tensors. In these sparse
accelerators, DRAM reliability is extremely critical, which can
lead to subverting the accuracy of the DNN accelerator.

With the extensive deployment of DNN accelerators in a
wide gamut of applications, researchers have analyzed the
impact of faults in various inference hardware. To explore
the correlation between bit error rate and model accuracy,
permanent faults are injected in the memory elements of a
customized DNN accelerator [17]. The impact of single bit
soft errors in the memory on the network performance is
explored in [18], which further proposed a bit-flip resilience
optimization method for DNN accelerators. Memory faults
are induced in the Autonomous Driving System (ADS) of a
vehicle and the corresponding resilience of different modules
are examined [19]. The susceptibility of the architecture under
single event upsets on the datapath of an accelerator is
analyzed on multiple Convolutional Neural Network (CNN)
models [20]. The safety critical bits in a machine learning
system were identified by inducing soft errors in the network
datapath and evaluating them on eight DNN models across six
datasets [21]. A formal analysis on the impact of faults in the
datapath of an accelerator has been illustrated using Discrete-
Time Markov Chain (DTMC) formalism [22]. The intense
performance penalty in a systolic array-based DNN accelerator
has been demonstrated by inducing manufacturing defects in
the datapath of the accelerator [4], [23], [24]. However, fault
characterization of DNN accelerators due to device-level non-
idealities in the DRAM cells has not been well explored.

C. Fault Characterization to Estimate Network Performance

In order to analyze the impact of DRAM faults on the
performance of the DNN accelerator, we implement Multilayer
Perceptron (MLP) on two different datasets —MNIST and
Fashion-MNIST. The detailed network configuration of the
MLP is provided in Table I. We consider Google’s Tensor
Processing Unit as the baseline DNN accelerator, having 8GB
of dual-channel DDR3 DRAM as the main memory subsys-
tem. The trained weights from each network are extracted and
quantized to 8 bits to be stored in the DRAM, similar to
[4]. Subsequently, the trained weights from the DRAM are
mapped on to the inference hardware. MNIST furnishes a
baseline classification accuracy of 97.28%, whereas Fashion-
MNIST manifest an accuracy of 88.17% on MLP. Errors in the
form of bit-flips are induced throughout the DRAM structure,
following which the application-level fault characterization of
the accelerator is analyzed in this section.

Table I: Overview of the MLP Architecture.

Dataset Model Configuration
MLP on MNIST 784− 256− 256− 256− 10

MLP on Fashion-MNIST 784− 256− 256− 256− 10

1) Impact of Faults for Varying Bit Positions: In this exper-
iment, the vulnerability of the network is analyzed for varying
bit positions of the induced fault in the 8-bit weight stored in
the DRAM. Bit-flips are introduced at random positions and
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Figure 2: Impact of Faulty Bit Position on Classification
Accuracy of MLP on (a) MNIST and (b) Fashion-MNIST.

the average classification accuracy of the model is observed for
10 runs. Bit flip faults are induced in the three most significant
bit positions, starting from the sign bit.

The corresponding accuracy drop for MLPs on MNIST
and Fashion-MNIST are represented in Figures 2a and 2b
respectively. As seen from the figures, with the increase in
number of faults, the classification accuracy of the network
reduces for every bit position. As the significance of the bit po-
sition diminishes, the sensitivity of the induced fault reduces;
thereby increasing the number of faults to accomplish identical
reduction in classification accuracy. Since bit-flips induced
in the sign bit reverses the signed integer representations,
it causes maximum impact on the classification accuracy of
the network. Hence, MLPs on MNIST and Fashion-MNIST
manifest an 1-2% reduction in accuracy with only 250 and 40
faults injected in each layer, respectively, at the sign bit of the
weights. Thus, minimal faults in the sign bit have the most
intense impact on the reliability of the DNN accelerator.

2) Impact of Faults on the Most Vulnerable Weights:
Random errors throughout the fault space furnish adequate
degradation in classification accuracy. However, the number
of random faults required to bring about such degradation
is usually quite large. Hence, in this experiment, we focus
on estimating the most vulnerable weights in a MLP. The
weights corresponding to a particular layer in the MLP are
arranged in the form of rows and columns in the 2D DRAM
structure, where a particular column of weights corresponds
to a specific neuron in the layer [4]. Hence, inducing faults
along a distinct column is likely to produce a deeper impact
on the network performance. As described in Section I-C1,
since flipping the sign bit has the most impact on the model
performance, we introduce bit-flip errors in the sign bit across
only 20 random locations along a particular column of the
weight matrix. This erroneous column location is varied, and
the corresponding degradation in accuracy, averaged over 10
random runs, is depicted in Figure 3 for both the datasets.
We observe that faults in all the columns till column ‘9’
render almost a consistent reduction in accuracy for all the
datasets. However, as the column number exceeds ‘9’, the
accuracy drop plummets close to zero, signifying almost
negligible impact of the faults on the accuracy of the network.
Since the output layer of the network consists of 10 neurons
corresponding to 10 distinct classes in all the datasets, the
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Figure 3: Variation of Accuracy Drop for 20 Faults across
Varying Columns of the Weight Matrix.

Table II: Multiplication and additions in CNNs to classify one
image [26]

CNN
Architecture

Conv2d
Layers

Linear
Layers

Number of
Multiplications

Number of
Additions

LeNet-5 3 2 416,520 416,520
AlexNet 5 3 714,188,480 714,188,480
VGG-16 13 3 15,470,264,320 15,470,264,320

ResNet-50 53 1 3,729,522,688 1,761,820,672

last layer weights are mapped onto the first 10 columns of
the matrix. When faults are induced in one among those 10
columns, the computation for that column corresponding to a
specific neuron, and thereby to a particular application class
is disrupted. With datasets having higher number of classes,
such faults can impact differently, affecting the computation
in other columns of the systolic array.

Therefore, by injecting bit-wise faults engendering from
device-level non-idealities in the primary memory subsys-
tem, we analyzed the reliability of resource-constrained DNN
accelerators. We perform an extensive fault characterization
of a neural network architecture on multivariate exhaustive
datasets. An application-level analysis on the quantized pre-
trained inference networks demonstrate degradation of classi-
fication accuracy, even at infinitesimal error rates. Hence, it is
highly imperative to develop mitigation strategies that protect
the most vulnerable network parameters in the memory, in
order to improve the performance of the DNN accelerator at
sub-optimal DRAM refresh rates.

II. AI/DEEP LEARNING ACCELERATOR FAULTS AND
PERFORMANCE IMPACT

AI and Deep Learning tasks are compute-intensive and
require millions of Multiply and Accumulate (MAC) opera-
tions for training and inference. In Table II, the number of
MACs required for classifying a single image from ImageNet
benchmark [25] during inference is shown. To increase the
execution throughput, the AI accelerators are designed with
thousands of densely packed Processing Elements(PEs)/MAC
circuits [1]. As a result of this dense integration at advanced
technology nodes which are susceptible to defect and yield
issues, the AI chips are especially vulnerable to circuit faults
(Fig. 4).

3



 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Desired output 
Actual 
output 

Training Input 
images/patterns 

Forward Pass Calculate Loss or Error 

Error Backpropagation and 
Weight Update 

Trained 
weights 

AI 

Inference Hardware in the 
Training Loop 

Robustness-aware Modified Loss/Cost 
Function  
 Sensitivity-based Weight and Error Smoothing 

 Hardware-aware reularization 

Robustness-aware 
Weight Pruning 

Pooling Convolution + ReLU 

Filters  Feature maps  Fully connected layers 

Repeat: Convolution + ReLU + Pooling  Outputs 

Class 1  

 Class N  

Deep Learning/AI Accelerator Hardware 

AI 

Hardware hazards 

∙Circuit and Memory Faults 

∙Variability in Circuits 

∙Circuit Aging  

∙Soft Error 

∙Memory Bit‐flips 

∙Power Supply Noise 

 Memory 

PE  PE  PE  PE 

PE  PE  PE  PE 

PE  PE  PE  PE 

AI/Deep Learning  

Class 2  

Figure 4: Hardware hazards and faults impacting AI acceler-
ator chips.

A. Circuit and Hardware Hazards on Deep Learning/AI Ac-
celerator Fidelity

The major types of circuit and transistor level hazards that
can impact the performance of AI/Deep Learning accelerator
are, (i) process variation induced circuit parameter variations,
(ii) runtime power supply voltage noise and droop, (iii) cir-
cuit aging with time, and (iv) radiation induced soft errors.
For safety-critical applications, chips with permanent stuck-at
faults are generally discarded according to defective parts per
million/billion (DPPM/DPPB) guidelines of FuSa standards
[27]. However, aging induced in-field stuck-at faults can be a
concern for automotives.

1) Process Variations:: Process parameter variations are
caused by semiconductor manufacturing imperfections, which
is a major concern for current advanced technologies (e.g.,
10nm and newer), and impact circuit performance at both
the memory and MAC units in accelerator hardware. As a
result, different samples of the same accelerator chip might
exhibit different frequencies (i.e., speed binning [28]) post-
fabrication. For safety-critical AV application, it is important to
analyze how process variations can impact the Deep Learning
accuracy and fidelity. Unlike other areas, a one-size-fits-all
training method may not be suitable for Deep Learning used
in safety-critical domains.

2) Power Supply Noise:: Voltage noise is caused by simul-
taneous switching events inside the chip. Since the accelerator
chips will perform millions of operations to infer decisions
from analysis of the images, the extensive switching inside
the MAC and memory units from this can cause voltage noise
[29]. The corresponding transient voltage droop can cause
timing violations or bit-flips inside the accelerator.

3) Circuit Aging:: Circuit aging is a critical reliability
problem in modern VLSI chips [30]. Since aging is use-case
dependent and cannot be accurately estimated at time 0, it
is a major concern for safety-critical applications. Aging can
impact the weight storage SRAM modules by altering their
read/write stability with time, and thus cause bit-flip errors.
The Deep Learning accelerator’s performance (i.e., operating
frequency FMAX ) might shift with time depending on the
amount of usage.

4) Soft Errors:: Although most of the AI accelerators are
used at sea-level altitude, it may seem they are immune to soft

errors caused by high-energy neutrons from cosmic radiation.
However, as shown in detail in [31], because of weight reuse
in Deep Learning, soft-errors can indeed impact the accuracy
of accelerators. Hence, it is essential to embed resiliency and
robustness against random bit-flips in addition to radiation
hardening of the critical MSB bits.

The key modules of accelerators that are susceptible to
defects are the weight storage SRAM/Register Files (RF)
and the PE/MACs. For SRAM/RF, the faults are generally
repaired with ECC and spare cells. The timing-faults in MAC
can be solved by appropriate timing guard-band and run-time
frequency adjustment. The stuck-at faults in the MAC are
permanent and can adversely impact accuracy. In this section
accuracy impact of stuck-at faults in MAC are analyzed.
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Figure 6: Deactivating some non-critically faulty PEs to keep
fault rate within FRmax non−crit to ensure accuracy does not
degrade beyond acceptable limit.

B. Fault Location and Accuracy Impact:

Systematic defects and yield losses are caused by layout-
sensitive lithographic hotspots and other process imperfec-
tions, variations, and are generally independent of the lay-
out area. On the other hand, random defect generated yield
losses are caused by defect particles and are dependent on
the standard-cell or the layout area as well as the defect
particle size [32]. These defects (e.g., short/open defect, poor
contact/via, etc.) and corresponding circuit faults can occur
at different sites inside the MAC circuit block. The precision
loss - due to the presence of circuit faults - at the output of
multiply and accumulate operation will depend on the location
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Figure 7: Impact of faults in logic cones of LSB positions on
inference accuracy for AlexNet with ImageNet data set. (a),
(b) int8 data format and MAC type.; (c), (d) bfloat16 data
format and MAC type.

of the fault inside the MAC circuit and the logic cone impacted
by the fault as shown in Fig. 5. For example, if a multiplier
circuit that performs the multiplication of two 8-bit numbers,
has faults impacting up to K LSB bits, then it will sustain
a worst-case error of ±

∑K+1
i=0 2i (the last 2K+1 term comes

from the worst-case carry-in path of partial product addition,
as explained in the next subsection). As K increases, the faults
impact the more significant digits causing the worst-case error
of the multiplier to increase. Errors will also occur in the
adder circuit of the MAC if it is corrupted by faults. Since the
multiplier is the more area-dominant block in a MAC, it will be
more prone to faults and computation errors. A similar analysis
can be also done for bfloat16 [33] MAC to identify faults in
LSB positions (i.e., logic cone of corresponding bits) and their
impact on accuracy. If any PE has a fault in the critical logic
cone then it needs to be deactivated to prevent accuracy loss
because critical faults can cause large magnitude error in MAC
output. For faults in the non-critical logic cone, up to a certain
fault rate (i.e., FRmax non−crit) may be acceptable.

The IDs of faulty PEs and their fault type (e.g., critical
or non-critical) can be identified with ATPG test patterns
and recorded in a Fault Status Register (FSR) [26]. During
inference, the mobile/edge accelerator’s FSR and control unit
reads the FRmax non−crit and if it is lower than the current
fault rate FRnon−crit, then the control unit sends deactivation
signals to disable some of the PEs. The deactivation protocol
and the complete map of faulty PE locations are programmed
in firmware/software by the manufacturer. With the user-given
input of acceptable fault rate and the stored PE fault map,
the protocol will automatically disable a few faulty PEs to
ensure that the overall faulty PE rate of the accelerator does not
exceed a threshold (i.e., FRmax non−crit). When deactivating
some faulty PEs, the firmware/software will ensure that the
remaining faulty PEs are not clustered. As shown in Fig. 6,
control signals are transmitted from the FSR to all the PEs to
selectively disable the faulty PEs when needed. By adopting

this scheme, the manufacturer can avoid discarding the full
accelerator chip/die only because of the presence of few PEs
with faulty MACs, and thereby increase yield. The overhead
in this yield loss reduction are the extra on-chip register (FSR)
to store the IDs and the control signal routes to disable faulty
PEs [26].

C. Accelerator Architecture and Faulty PE Deactivation

AI accelerators can be designed either in SIMD or Sys-
tolic architectures. In SIMD architecture the loosely coupled
independent Processing Elements (PEs) are connected with
NoC or mesh and can be individually switched off and
bypassed with wires [1], [2], [26]. The tightly-coupled 2D
systolic-arrays in TPU introduce challenges in deactivating
and bypassing individual PEs. A common technique is to use
spare PE blocks to substitute for faulty PEs. However, this
approach requires complex wiring between spare and faulty
PEs [34]. An innovative software-level technique to deactivate
and bypass faulty PEs in systolic array without any hardware-
level modifications was proposed in [26].

D. Results and Analysis

To identify the impact of the number of LSBs having faults
in their logic cones, the number of LSBs were varied from
2 to 4 for int8 and 3 to 5 for bfloat16 [33] data formats
for the CNN model AlexNet with the ImageNet test set.
These experiments were done with PyTorch. The results are
shown in Fig. 7, where X-axis is fault-rate in non-critical
logic cones (the LSBs). From this analysis, we conservatively
selected 2 LSBs for int8 and 4 mantissa LSBs for the bfloat16
hardware models as non-critical (i.e., circuit faults occurring
in their logic cones are non-critical), and rest of all the bits
are considered critical. Any PE with one or more critical
faults are considered defective and must be deactivated to
ensure fidelity in accuracy. In the experiments the accelerator
hardware comprised of 128 by 128 array of PE/MACs. The
faulty PEs are modeled as uniformly distributed across the
accelerator columns with fault probability of FR%, the fault
rate. This implies that for FR% fault rate, each column of
the accelerator has 0.01 ∗ FR ∗ NRow faulty PEs randomly
distributed across that column.

The accuracy changes - in the standard Top-1 and Top-5
format - with MAC faults are shown in Fig. 8 for 50,000
test images from ImageNet [25]. We observe from Fig. 8 that
up to a certain fault (non-critical) rate might be acceptable
depending on the desired accuracy of the AI/Deep Learning
task.

1) Fault-aware training to enhance Robustness: Using a
fault-aware training flow some of the accuracy loss due
to faults in MAC units can be recovered by incorporating
the fault effects in the backpropagation-based weight update
segment and allowing the DNN to adapt accordingly [26]. To
experimentally demonstrate this technique, we used the LeNet-
5 CNN architecture. Results from this fault-aware training are
shown in Fig. 9. For 7.5% fault rate (non-critical faults) the
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Figure 8: Inference accuracy changes with fault (non-critical) rates for CNNs running imagenet dataset. (a), (b) Top-1 and
Top-5 accuracy changes ; (c), (d) Top-1 and Top-5 accuracy changes with model pruning; (e) to (h) normalized accuracy
changes in Top-1 and Top-5 (with and without pruning) for fault rates.
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Figure 9: Improvement in accuracy with fault-aware training
on LeNet-5.

normalized accuracy loss improved from 0.5% to 0.22% due
to fault-aware training.

III. DEPENDABILITY ISSUES IN NEUROMORPHIC
COMPUTING

Neuromorphic Computing is a term coined by Carver Mead
in the late 1980s describing Very Large-Scale Integration
(VLSI) systems, which mimic the neuro-biological architec-
ture of the central nervous system [35]. Neuromorphic systems
are energy efficient in executing Spiking Neural Networks
(SNNs), which are considered as the third generation of
neural networks. SNNs use spike-based computations and bio-
inspired learning algorithms in solving pattern recognition
problems [36]. In an SNN, pre-synaptic neurons communicate
information encoded in spike trains to post-synaptic neurons,
via synapses. Performance, e.g., accuracy of an SNN model
can be assessed in terms of the inter-spike interval (ISI), which
is defined as inverse of the mean firing rate of neurons. This
is illustrated in Figure 10.

Recently, neuromorphic platforms such as DYNAPs [37],
TrueNorth [38], and Loihi [39] are introduced to the systems

binary events
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Figure 10: Integration of spike trains at the post-synaptic
neuron from four pre-synaptic neurons in a Spiking Neural
Network (SNN). Each spike is a voltage waveform of small
time duration to the order of ms.

community. These systems are designed as tile-based architec-
tures with a shared interconnect for communication [40]–[42].
A tile may consist of a crossbar for mapping neurons and
synapses of an application. Recently, Non-Volatile Memory
(NVM) technologies such as Phase-Change Memory (PCM)
and Oxide-based Resistive RAM (OxRRAM) are used to im-
plement synaptic storage in each crossbar [43], [44].* NVMs
bring certain advantages such as high integration density,
multi-bit synapses, CMOS compatibility, and above all, non-
volatility, which can further lower the energy consumption of
neuromorphic hardware. However, NVMs also introduce reli-
ability issues such as endurance, aging, and read disturbances
(see Table III for a summary of these issues). In this paper, we
will discuss some of these issues and our approach to mitigate
them.

A. Introduction to Non-Volatile Memory

Emerging NVM technologies such as phase-change memory
(PCM), oxide-based memory (OxRAM), spin-based magnetic
memory (STT-MRAM), and Flash have recently been used

*Beside neuromorphic computing, some of these NVM technologies are
also used to implement main memory in conventional computers to improve
performance and energy efficiency [45]–[49].
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Table III: Reliability issues in NVMs.
Reliability Issues NVMs
High-voltage related circuit aging PCM, Flash
High-current related circuit aging OxRAM, STT-MRAM
Read disturbance All
Limited endurance All

to implement synaptic storage in neuromorphic hardware.
NVMs are non-volatile, have high CMOS compatibility, and
can achieve high integration density. Each NVM device can
implement both a single-bit and multi-bit synapse. Because
of these properties, an NVM-based neuromorphic hardware
typically consumes energy that is in the order of magnitudes
lower than using SRAMs [43].

Without loss of generality, we discuss the dependability
issues for PCM-based neuromorphic computing. PCM is one
of the mature NVM technologies and is successfully demon-
strated in recent neuromorphic prototypes [44].

Figure 11 ¶ illustrates how a chalcogenide semiconductor
alloy is used to build a PCM cell. The amorphous phase
(RESET) in this alloy has higher resistance than the crystalline
phase (SET). Ge2Sb2Te5 (GST) is the most commonly used
alloy for PCM. To compute (xi ·wi), a current is injected into
the resistor-chalcogenide junction via the heater element. The
current is controlled to ensure that the phase of the PCM
cell is not disturbed. This is the fundamental operation of
forward propagation of neuron excitation during inference.
For online learning (e.g., using STDP), the injected current
induces (Joule) heating in the chalcogenide alloy, changing
its conductivity, thereby achieving synaptic weight updates.
Figure 11 · illustrates the current profiles necessary for
inference (using the read pulse) and online learning (using
SET and RESET pulses) in PCM. These current profiles are
generated using an on-chip charge pump (CP). Figure 11 ¸
illustrates the PCM cell’s operation when idle, i.e., when
a neuron is not activated. We illustrate a 1D-1R structure,
where a single PCM cell is connected to a row and column
using a diode as an access device. Diode-based PCM cells
allow very high integration density in scaled technology nodes
compared to transistor-based PCM. The CP is operated at
1.8V to maintain the required biasing. Finally, Figure 11 ¹
illustrates the PCM operation during inference. The CP is
operated at 3V to generate the read current profile of Figure 11
· using the sense amplifier (SA). The write driver (WD) is
used for generating the currents for online learning.

resistive 
heating element

chalcogenide 
alloy (GST)

metal (to bottom 
elcrode via diode)

metal (to to 
top electrode)

1 PCM Cell 2 Current profiles for read, 
SET and RESET

1.8V

SA

BL = floating

WL = 1.8V

WD

CP

3 Idle

3V

BL = 3V

WL = 0V

WD

CP

4 Spike Propagation

SA

Diode Diode

PCM 
Cell

PCM 
Cell

Figure 11: Operation of PCM in neuromorphic computing.

These high-voltage operations of the charge pump (and
the peripheral circuit of a crossbar) accelerate circuit aging,
lowering the dependability of neuromorphic computing.

Apart from diode, transistors are also used as access devices.
When using transistor-based PCM cells, the CP is operated
at lower voltages: 1.2V during idle and 1.8V during spike
propagation. Though aging issues are less severe in such de-
signs, they are still a dependability concern for neuromorphic
computing.

Peripheral aging are not the only dependability issues in
neuromorphic hardware. Unfortunately, NVMs have limited
endurance, ranging from 105 (for Flash) to 1010 (for OxR-
RAM), with PCM somewhere in between (≈ 107).

In the following we describe our recent efforts in mitigating
aging and endurance in neuromorphic computing.

B. Mitigating Peripheral Aging in Neuromorphic Hardware

In our prior work [50]–[52], we have analyzed different
aging issues in the peripheral circuit of a neuromorphic
hardware. We briefly elaborate on these issues.

We consider the CMOS aging due to Time-Dependent
Dielectric Breakdown (TDDB), Bias Temperature Instability
(BTI), and Hot-Carrier Injection (HCI) failure mechanisms.
These are the dominant ones in scaled technology nodes (45nm
and below). In older nodes, Electromigration (EM) also plays
a key role [53]–[70].

CMOS aging is accelerated when the device is stressed, i.e.,
exposed to high overdrive voltages*. With this understanding,
we provide a brief background of these failure mechanisms.

• TDDB: This is a failure mechanism in a CMOS device,
when the gate oxide breaks down as a result of long-time
application of relatively low electric field (as opposed to
immediate breakdown, which is caused by strong electric
field) [71]. The lifetime of a CMOS device is measured
in terms of its mean time to failure (MTTF) as

MTTFTDDB = A.e−γ
√
V , (1)

where A and γ are material-related constants, and V is
the overdrive gate voltage of the CMOS device.

• BTI: This is a failure mechanism in a CMOS device
in which positive charges are trapped at the oxide-
semiconductor boundary underneath the gate [72]. BTI
manifests as 1) decrease in drain current and transcon-
ductance, and 2) increase in off current and threshold
voltage. The BTI lifetime of a CMOS device is

MTTFBTI =
A

V γ
e

Ea
KT , (2)

where A and γ are material-related constants, Ea is the
activation energy, K is the Boltzmann constant, T is the
temperature, and V is the overdrive gate voltage.

• HCI: This is a failure mechanism in a CMOS device,
when a carrier (electron or hole) gains sufficient kinetic
energy to overcome the potential barrier of the conducting
channel and gets trapped in the gate dielectric, perma-
nently changing the CMOS’s switching properties [73].

*Overdrive voltage is defined as the voltage between transistor gate and
source (VGS ) in excess of the threshold voltage (Vth), where Vth is the
minimum voltage required between gate and source to turn the transistor on.

7



Unlike the TDDB and BTI failure mechanisms, for which
silicon-characterized reliability models are available from
foundries, characterized models for HCI failure mechanism
are still in development for scaled nodes.

Current methods for qualifying reliability are overly con-
servative, since they estimate circuit aging considering worst-
case operating conditions and unnecessarily constrain perfor-
mance. Recent system-level works on mapping SNN-based
applications to neuromorphic hardware, such as [74]–[83],
target performance improvement only. They do not consider
reliability issues of neuromorphic computing.

To address these limitations, we have designed
RENEU [51], a reliability-oriented approach to map
machine learning applications to neuromorphic hardware,
with the aim of improving system-wide reliability, without
compromising key performance metrics such as execution
time of these applications on the hardware. Fundamental to
RENEU is a novel formulation of the aging of CMOS-based
circuits in a neuromorphic hardware considering different
failure mechanisms. Using this formulation, RENEU develops
a system-wide reliability model which can be used inside a
design-space exploration framework involving the mapping of
neurons and synapses to the hardware. To this end, RENEU
uses an instance of Binary Particle Swarm Optimization
(PSO) [84] to generate mappings that are Pareto-optimal
in terms of performance and reliability. We evaluate
RENEU using SNN-based streaming and non-streaming
applications [85]–[89]. We evaluate these applications on a
state-of-the-art neuromorphic hardware with PCM synapses.

Figure 12 reports the circuit aging caused by RENEU
normalized to PyCARL, a state-of-the-art SNN mapping ap-
proach. We plot results for each of our machine learning
applications. We observe that the aging of RENEU is lower
than PyCARL by an average of 38%. This improvement is
because RENEU formulates the detailed circuit aging of a neu-
romorphic hardware and allocates the neurons and synapses of
a machine learning application to minimize it.
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Figure 12: Circuit aging in the neuromorphic hardware nor-
malized to PyCARL (lower is better) [51].

C. Mitigating Thermal and Endurance Issues in Neuromor-
phic Hardware

In our prior work [90]–[92], we have formulated the thermal
issues in neuromorphic hardware and established its impact on
endurance.

We analyze the internal architecture of a PCM crossbar (see
Fig. 13) and observe that parasitic components on horizontal

and vertical wires of a crossbar are a major source of parasitic
voltage drops in the crossbar. Using detailed circuit simula-
tions at different process (P), voltage (V), and temperature
(T) corners, we show that these voltage drops create current
variations in the crossbar. For the same spike voltage, current
on the shortest path is significantly higher than the current
on the longest path in the crossbar, where the length of a
current path is measured in terms of its number of parasitic
components. These current variations create asymmetry in the
self-heating temperature of PCM cells during their weight
updates, e.g., during model training and continuous online
learning [93], which directly influences their endurance.

𝐶"#
𝐶"#

𝐶"#$"#

𝐶%#$"#𝐶%#$"#

𝐶%#$"# 𝐶%#$"#𝐶%#$%#

𝑅"#

𝑅"#
𝑅"#

𝑅"#𝑅%#

𝑅%# 𝑅%#

𝑅%#

𝑉

𝑉

𝐼( 𝐼)

NVM cell

Access transistor

Synaptic cell

(shortest path) (longest path)

Figure 13: Bitline and wordline parasitics in a PCM crossbar.
Figure 14 plots the temperature and endurance maps of a

128x128 crossbar at 65nm process node with Tamb = 298K.
The PCM cells at the bottom-left corner have higher self-
heating temperature than at the top-right corner. This asymme-
try in the self-heating temperature creates a wide distribution
of endurance, ranging from 106 cycles for PCM cells at the
bottom-left corner to 1010 cycles at the top-right corner. These
endurance values are consistent with the values reported for
recent PCM chips from IBM [94].IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, MONTH YEAR 5

4.1 Model Prediction

The thermal and endurance models in Equations 6 and
10, respectively are integrated as follows. The self-heating
temperature of Equation 6 is first computed using the PCM’s
programming current. This self-heating temperature is then
used to compute the endurance using Equation 10.

Figure 8 shows the simulation of the proposed model
with programming currents of 200µA and 329µA, which
correspond to the longest and shortest current paths in a
65nm 128x128 PCM crossbar at 298K. Figures 8a, 8b, and
8c plot respectively, the crystallization fraction, the PCM
resistance, and the temperature for these two current values.
We make the following two key observations.
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Fig. 8. Validation of the proposed model.

First, the speed of amorphization depends on the cur-
rent, i.e., with higher programming current, the GST mate-
rial amorphizes faster. This means that the PCM cells on
shorter current paths are faster to program. Second, the
self-heating temperature is higher for higher programming
current. This means that PCM cells on shorter current paths
have lower endurance.

Figure 8 is consistent with the change in crystallization
volume, resistance, and self-heating temperature in PCM
cells as reported in [54], [55]. Figure 9 plots the temperature
and endurance maps of a 128x128 crossbar at 65nm process
node with Tamb = 298K. The PCM cells at the bottom-left
corner have higher self-heating temperature than at the top-
right corner. This asymmetry in the self-heating temperature
creates a wide distribution of endurance, ranging from
106 cycles for PCM cells at the bottom-left corner to 1010

cycles at the top-right corner. These endurance values are
consistent with the values reported for recent PCM chips
from IBM [59].

Our goal is to assign synapses with higher activation
towards the top-right corner using an intelligent SNN map-
ping technique, which we describe next.

5 ENDURANCE-AWARE INTELLIGENT MAPPING

We present eSpine, our novel endurance-aware technique to
map SNNs to neuromorphic hardware. To this end, we first
formulate a joint metric effective lifetime (Li,j), defined for
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Fig. 9. Temperature and endurance map of a 128x128 crossbar at 65nm
process node with Tamb = 298K.

the memristor connecting the ith pre-synaptic neuron with
jth post-synaptic neuron in a memristive crossbar as

Li,j = Ei,j/ai,j , (11)

where ai,j is the number of synaptic activations of the mem-
ristor in a given SNN workload and Ei,j is its endurance.
Equation 11 combines the effect of software (SNN mapping)
on hardware (endurance and temperature). eSpine aims to
maximize the minimum normalized lifetime, i.e.,

Fopt = maximize{min
i,j
Li,j} (12)

In most earlier works on wear-leveling in the context of
non-volatile main memory (e.g., Flash), lifetime is computed
in terms of utilization of NVM cells, ignoring the variability
of endurance within the device. Instead, we formulate the
effective lifetime by considering a memristor’s endurance
and its utilization in a workload. This is to allow cells with
higher endurance to have higher utilization in a workload.

5.1 High-level Overview
Figure 10 shows a high-level overview of eSpine, consisting
of three abstraction layers – the application layer, system
software layer, and hardware layer. A machine learning
application is first simulated using PyCARL [51], which
uses CARLsim [60] for training and testing of SNNs. Py-
CARL estimates spike times and synaptic strength on every
connection in an SNN. This constitutes the workload of
the machine learning application. eSpine maps and places
neurons and synapses of a workload to crossbars of a
neuromorphic hardware, improving the effective lifetime.
To this end, a machine learning workload is first analyzed
to generate clusters of neurons and synapses, where each
cluster can fit on a crossbar. eSpine uses the Kernighan-Lin
Graph Partitioning algorithm of SpiNeMap [16] to parti-
tion an SNN workload, minimizing the inter-cluster spike
communication (see Table 1 for comparison of eSpine with
SpiNeMap). By reducing the inter-cluster communication,
eSpine reduces the energy consumption and latency on
the shared interconnect (see Sec. 8.2). Next, eSpine uses an
instance of the Particle Swarm Optimization (PSO) [61] to
map the clusters to the tiles of a hardware, maximizing the
minimum effective lifetime of memristors (Equation 11) in
each tile’s crossbar. Synapses of a cluster are implemented
on memristors using the synapse-to-memristor mapping,
ensuring that those with higher activation are mapped to
memristors with higher endurance, and vice versa.

Figure 14: Temperature and endurance map of a 128x128 PCM
crossbar at 65nm process node with Tamb = 298K.

Using such technology modeling, we propose eSpine, a
novel technique to improve endurance-related lifetime of PCM
by incorporating the endurance variation within each cross-
bar in mapping machine learning workloads, ensuring that
synapses with higher activation are always implemented on
PCM cells with higher endurance, and vice versa. eSpine
works in two steps. First, it uses the Kernighan-Lin Graph
Partitioning algorithm to partition a workload into clusters of
neurons and synapses, where each cluster can fit in a crossbar.
Second, it uses an instance of PSO to map clusters to tiles,
where the placement of synapses of a cluster to the PCM
cells of a crossbar is performed by analyzing their activation
within a workload. We evaluate eSpine for a state-of-the-art
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neuromorphic hardware model with PCM synapses. Using 10
SNN workloads, we demonstrate a significant improvement in
the effective lifetime.

IV. CONCLUSION

To conclude, as process technology continues to scale
aggressively, reliability issues in neuromorphic hardware are
becoming a primary concern for system developer. First, we
analyzed the reliability of DNN accelerators in the presence of
DRAM faults. By injecting bit-wise faults engendering from
device-level non-idealities in the memory subsystem of the
accelerator, we perform an extensive fault characterization
of multiple DNN architectures on multivariate exhaustive
datasets. An application-level analysis on the quantized pre-
trained inference networks demonstrate degradation of clas-
sification accuracy, even at infinitesimal error rates. Next,
we analyzed the MAC circuits, as they occupy a significant
portion of the DNN hardware. Circuit faults in MSB logic
cones of the MAC can adversely impact accuracy. For MACs
with faults in LSB logic cones, the fraction of such faulty
MACs must be within an application-dependent range to
ensure accuracy degradation does not exceed acceptable limits.
System-level approaches, such as the ones we highlighted
in this paper, mitigate these reliability issues via intelligent
neuron and synapses placement on the hardware. These ap-
proaches, however, can be further improved by incorporating
technology perspective within a holistic design-technology co-
optimization framework.
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