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Grid-aware aggregation and realtime disaggregation
of distributed energy resources in radial networks
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Abstract— Dispatching a fleet of distributed energy resources

(DERs) in response to wholesale energy market or regional grid

signals requires solving a challenging disaggregation problem when

the DERs are coupled within a distribution network. This manuscript

presents a computationally tractable convex inner approximation

for the optimal power flow (OPF) problem that quantifies a feeder’s

aggregate DERs hosting capacity and enables a realtime, grid-aware

control policy for DERs in radial distribution networks. The inner

approximation is derived by considering convex envelopes on the

nonlinear terms in the AC power flow equations. The resulting convex

formulation is then used to derive provable nodal injection limits,

such that any combination of DER dispatches within their respective

nodal limits is guaranteed to be AC admissible. These nodal injection

limits are then used to construct a realtime, open-loop control policy

for dispatching DERs at each location in the network to deliver fast

grid services in aggregate. The IEEE-37 distribution network is used

to validate the technical results and illustrate use cases.

Index Terms—Distributed energy resources, convex inner

approximation, convex restriction, aggregation, disaggregation,

optimal power flow, hosting capacity, AC admissibility.

I. INTRODUCTION

The distribution system was engineered under the assumption
that residential and commercial customers would only have power
directed to them from the bulk grid. However, the increasing
penetration of solar PV in distribution feeders has created so-called
“prosumers” who (at times) can supply the grid with energy rather
than just consume it. This leads to reverse power flows that can
result in unexpected violations of voltage and transformer limits,
which may negatively impact system reliability [1]. Furthermore,
the significant variability inherent to solar PV generation challenges
traditional distribution system operating paradigms. In addition, with
ubiquitous connectivity, behind-the-meter (BTM) smart appliances
and DERs will soon underpin a demand that is inherently flexible.
Many works in literature, such as [2], [3], provide methodologies
for aggregating the flexibility of DERs to provide grid services.
The authors in [4] employ transactive energy principles as way
to disaggregate flexibility amongst the individual DERs. However,
none of these methods consider the underlying network, which
may become overloaded when flexible demand is deployed at
scale in a distribution feeder. The optimal power flow (OPF)
represents a method for algorithms to improve reliability of the
grid and responsiveness of flexible resources (e.g., batteries, PV
inverters). However, due to the sub-minutely timescale of the solar

⇤N. Nazir (nawaf.nazir@pnnl.gov) is affiliated with Pacific Northwest National
Lab, Richland, WA 99354. †M. Almassalkhi (malmassa@uvm.edu) is with the
Department of Electrical and Biomedical Engineering, The University of Vermont,
Burlington, VT 05405, USA. Support from the U.S. Department of Energy’s
Advanced Research Projects Agency—Energy (ARPA-E) Award DE-AR0000694
is gratefully acknowledged. M. Almassalkhi was supported in part by the National
Science Foundation (NSF) Award ECCS-2047306.

Fig. 1. A schematic representation of the system model. The physical layer
represents the circuit that couples the different DER groups into an aggregate virtual
battery, whereas the cyber layer enables the disaggregation of the virtual battery
market signal to the DER groups based on the nodal hosting capacities that are
determined offline. VB image source: https://esdnews.com.au/

PV variability, these algorithms must be computationally tractable
and, yet, representative of the physics. That is, grid optimization
algorithms should ensure admissible network operations [5].

Since Carpentier’s original OPF formulation [6] and subsequent
improvements in optimization solvers, the OPF problem has become
a powerful methodology for optimizing the dispatch of various grid
resources. This is because OPF-based methods can account for the
underlying grid physics, static network constraints on voltages and
apparent branch flows, and resource limitations. However, it was also
recognized early on that the nonlinear AC power flow equations that
model the underlying grid physics render the AC OPF problem non-
convex [7]. To overcome the computational challenges associated
with non-convex OPF formulations, many recent techniques involve
using linear approximations or convex relaxations [8]. Traditional
optimization techniques for dispatching resources include linear
OPF-based LinDist models [9]. These models work well when
the distribution system is not heavily loaded (e.g., low losses).
In [10], it is shown how optimal DER dispatch based of the LinDist
model can lead to voltage violations. Similarly, the authors in [11]
quantified the errors associated with more general linear power flow
approximations. Recently, improved linear approximations of the
power flow equations have been proposed that provide improved
accuracy over a wider range of operation [12], [13]. However, the
solution space of the AC power flow equations is highly non-convex,
which means that linear approximations alone cannot guarantee
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a network-admissible dispatch under all (net) load conditions.
Beyond linear approximations, recent attention in literature has

focused on convex relaxations of the AC power flow equations,
including second-order cone programs, semi-definite programs,
and quadratic relaxations [14]. Several works in literature have
shown that, under certain analytical conditions, these relaxations
can be exact and the solution of the relaxed convex problem then
represents the global optimum of the original non-convex AC OPF
problem [15]. However, these conditions fail to hold under extreme
solar PV injections, when the network experiences reverse power
flows, which engenders a non-zero duality gap solution that may
not be network admissible, i.e., not feasible in the original AC OPF
formulation [16].

However, in many practical applications, guaranteeing network
admissibility is often more valuable than finding the globally optimal
solution. The authors in [17], develop an optimization-based method
to certify whether a specific DER dispatch will result in constraint
violations. However, they do not discuss whether a range of DER
control actions is network-admissible. In [18], the authors employ a
convex restriction that guarantees an AC admissible solution, which
they utilize in [19] to determine an admissible path from a known
initial operating point to a desired final operating point. However,
their method requires careful coordination of generator outputs due
to the ellipsoidal nature of their convex restriction. Note that this
manuscript obtains a hyper-rectangle for the convex inner approx-
imation, which enables DERs to operate independently. In [20], the
convex OPF formulation is based on an augmented second-order
cone relaxation. The authors in [21] solve a large number of non-
convex OPF problems to determine nodal injection bounds. How-
ever, these methods either rely on non-convex techniques or they can-
not ensure that the full range of DER dispatch is network-admissible.

The manuscript herein presents a novel convex approximation
of the AC OPF problem to quantify the network-admissible range
of DER nodal injections in radial, balanced distribution feeders. In
general, obtaining a convex inner approximation is NP-hard [22].
However, the work herein uses the nonlinear branch-flow model
(BFM) formulation of the AC power flow equations to define a
convex envelope on the nonlinear terms relating the branch currents,
nodal voltages, and apparent power flows. This is combined with
the remaining linear elements of the BFM to form a convex inner ap-
proximation and ensures that all feasible (and, hence, optimal) solu-
tions in the convex OPF are also feasible in the non-convex AC OPF
formulation. We denote such a solution as network admissible or
AC admissible. From this approach, we achieve an OPF formulation
that exhibits computational solve times similar to that of linear for-
mulations with the added (and crucial benefit) that the formulation
guarantees admissible solutions. This convex inner approximation is
then utilized to determine the admissible nodal DER dispatch ranges
for a radial network, i.e., any combination of dispatching DERs is
network-admissible as long as each node is dispatched within its
computed DER range. This methodology represents a major contri-
bution in grid-aware dispatch of networked grid assets in distribution
feeders and overcomes practical limitations of methods that rely on
repeatedly solving centralized AC OPFs at each instant in receding-
horizon fashion [23] or require extensive, realtime communication
of network and DER data [24]. The convex inner approximation
methodology was first introduced in [25], but was utilized to opti-
mize the reactive power set-points of controllable, discrete mechani-

cal assets to maximize voltage margins (i.e., find a single optimal op-
erating point). In this work, we have significantly extended the CIA
approach to determine a range of admissible DER dispatch in radial
feeders. The main contributions of this manuscript are as follows:

• Generalizes a CIA of the AC OPF problem that is applicable
to any radial, balanced distribution feeder, such as those with
a mix of inductive and capacitive branches and with branch
current and nodal voltage limits. This improves over [25].

• The resulting CIA is employed to optimize the feeder’s
DER nodal hosting capacities, which represent the ranges
of admissible injections for DERs at each node in the network
such that all branch flows and nodal voltages are within limits
(i.e., network admissible). Thus, the optimized DER nodal ca-
pacities can then be trivially aggregated to form the network’s
capacity for flexibility. Provable guarantees are provided for
admissibility over the entire range of the nodal DER dispatch.

• The CIA formulation provably guarantees existence and
uniqueness of the underlying AC power flow solutions for the
entire range of DER dispatches. This is achieved by adding
another set of convex constraints to the CIA formulation.

• The admissible DER nodal capacities beget an open-loop,
realtime disaggregation policy that accounts for network
reliability constraints while enabling fast grid services.

• Simulation-based analysis assesses practicality of the proposed
methods and investigates the conservativeness of the results
and different reactive power strategies for augmenting a
feeder’s aggregate DER nodal capacity.

The remainder of the manuscript is organized as follows.
Section II develops the mathematical formulation of the convex
inner approximation for the OPF problem using the robust bounds
on nonlinear terms. Section III provides admissibility guarantees for
the obtained DER nodal capacity and proposes an iterative algorithm
that augments the admissible range. In Section IV, we present and
analyze the effect of different nodal reactive power control policies
to further augment the range of AC admissible flexibility that can be
dispatched reiliably, whereas Section V describes a realtime dispatch
policy to disaggregate flexibility over a network in a grid-aware
manner using the DER nodal capacities. Finally, Section VI
concludes the manuscript and lays out future research directions.

II. FORMULATING THE CONVEX INNER APPROXIMATION

The nonlinear DistFlow model accurately represents the underly-
ing physics for a radial, balanced AC distribution network [9]. How-
ever, using DistFlow in an AC OPF setting results in a non-convex
optimization problem. Common techniques that employ linear ap-
proximations or convex relaxations are only valid under certain tech-
nical assumptions or near a pre-defined operating point. In this sec-
tion, we develop a novel convex inner approximation of the AC OPF
that is used to compute the range of allowable nodal net injections,
such that any combination of nodal injections within those ranges
are guaranteed to satisfy AC limits for voltages and branch flows.

A. Mathematical model
Consider a balanced, radial distribution network, shown in Fig. 2,

as an undirected graph G = {N [ {0},L} consisting of a set of
N+1 nodes with N := {1,...,N} and a set of N branches L :=
{1,...,N}✓N⇥N , such that (i,j)2L, if nodes i,j are connected.
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Fig. 2. Nomenclature for a radial distribution network [26].

Node 0 is assumed to be the substation node with a fixed voltage
V0. Let B 2R(N+1)⇥N be the incidence matrix of G relating the
branches in L to the nodes in N[{0}, such that the (i,k)-th entry of
B is 1, if the i-th node is connected to the k-th branch and, otherwise,
0. Without loss of generality, B can be organized to form an upper-
triangular matrix. If Vi is the voltage phasors at node i and Iij is the
current phasor in branch (i,j)2L, then define vi := |Vi|2 and lij :=
|Iij|2. Let Pij (Qij) be the active (reactive) power flow from node
j to i, denote pj (qj) the active (reactive) power injections into node
j, and let rij (xij) be the resistance (reactance) of branch (i,j)2L,
which means that the branch impedance is given by zij :=rij+ixij.
Then, for a radial network, the relation between nodal voltages and
power flows is given by the DistFlow equations 8(i,j)2L:

vj=vi+2rijPij+2xijQij�|zij|2lij (1a)

Pij=pj+
X

h:h!j

(Pjh�rjhljh) (1b)

Qij=qj+
X

h:h!j

(Qjh�xjhljh) (1c)

lij(Pij,Qij,vj)=
P

2
ij+Q

2
ij

vj
, (1d)

where nodal power injections are pj :=pg,j�PL,j and qj :=qg,j�
QL,j with pg,j (qg,j) as the controllable active (reactive) injections
and PL,j (QL,j) is the uncontrollable active (reactive) demand. The
controllable injections include solar PV and flexible demand.

The goal of this work is to maximize the range of active
power injections, pg, from a given feasible operating point with
pg,j = 0, qg,j = 0 8j 2N , such that all voltages vj and currents
lij are within their respective limits (i.e., vj 2 [vj,vj]8j 2N and
lij 2 [lij,lij]8(i,j) 2 L). However, finding such a range is chal-
lenging due to the non-linear nature of (1d). For clarity, we provide
definitions of the following key terms used in the manuscript.

Definition II.1 (AC Admissibility). A solution, p⇤g, of a convex OPF
problem is AC admissible, if the solution applied to (1) yields corre-
sponding voltages and branch currents within their respective limits.

Definition II.2 (Nodal capacity). Nodal capacity is the range of AC
admissible active power injections �pg,j :=[p�g,j,p

+
g,j]⇢R 8j2N

with p
�
g,j  0 and p

+
g,j � 0. That is, the hyper-rectangle defined

by the Cartesian product of intervals �pg,j contains all AC
admissible (net) injections, i.e., all pg2�pg :=⇥�pg,j⇢RN are
AC admissible, and characterizes the nodal capacities.

In the next section we use a simple 3-node system to motivate
the need for analyzing nodal capacity in distribution systems.

B. Motivating example on nodal capacity
Consider the 3-node system shown in Fig. 3. Each branch of

the system has an impedance of z = 0.55+ i1.33pu. Node 2 has

Fig. 3. The 3-node network used as a motivating example.

a load injection sL,2 = �0.02+ i0.005pu and node 3 has a load
injection sL,3 = �0.015+ i0.001pu. Flexible resources pg,2 and
pg,3 are located at nodes 2 and 3. Only the active power at nodes 2
and 3 is controllable1. By varying pg,2 and pg,3 and obtaining the
corresponding AC power flows via Matpower [27], we can mapt
the set of AC admissible injections as shown in Fig. 4(Bottom)
with voltage limits (i.e., [0.95,1.05]). As can be seen from Fig. 4,
the admissible set is non-convex and contains “holes”. Hence, it
is important when dispatching pg,2 and pg,3, to choose the right
trajectory in order to maintain AC admissibility. Fig. 4 shows two
different dispatch trajectories and the corresponding voltage profiles.
Trajectory A (green) is contained within the admissible set and, as a
result, the voltage profile shown in green in the top of Fig. 4, satisfies
the voltage limits. On the other hand, Trajectory B (red) is not
contained in the admissible set, which manifests itself as a voltage
limit violation in the red curve in the top of Fig. 4. Even though
trajectory A is AC admissible it requires pg,2 and pg,3 to be coor-
dinated (i.e., stay on the trajectory) to ensure admissibility, so they
cannot be manipulated independently. This means that any changes
in either requires a change in the other and, thus, end-point A in
Fig. 4(Top) is not a nodal capacity. This is because a nodal capacity
requires that nodal injections be manipulated independently. Note
that due to the network coupling in the AC power flow equations,
the nodal capacities are inherently coupled and cannot be solved
independently of each other. This simple example shows the need to
develop tools that determine nodal capacities for any radial, balanced
network. Towards that objective, the next section develops a convex
inner approximation of the nonlinear DistFlow formulation in (1).

C. Convex Inner Approximation Preliminaries
In this section, we first present a compact matrix representation

of the linear components (1a)-(1c). Then, we bound the nonlinear
branch current terms, lij(Pij,Qij,vj) in (1d), by a convex envelope,
which begets a convex inner approximation of (1).

First, define vectors P := [Pij](i,j)2L 2 RN ,
Q := [Qij](i,j)2L 2RN , V := [vi]i2N 2RN , p := [pi]i2N 2RN ,
pg := [pg,i]i2N 2RN , PL := [PL,i]i2N 2RN , q := [qi]i2N 2RN ,
QL := [QL,i]i2N 2 RN , and l := [lij](i,j)2L 2 RN and matrices
R := diag{rij}(i,j)2L 2RN⇥N , X := diag{xij}(i,j)2L 2RN⇥N ,
Z

2 := diag{z2ij}(i,j)2L 2 RN⇥N , and A := [0N IN ]B � IN ,
where IN is the N⇥N identity matrix and 0N 2RN . Then, directly
applying [26], we get the following expression for P , Q and V :

V =v01N+Mpp+Mqq�Hl, (2)
P=Cp�DRl, Q=Cq�DXl, (3)

1For this manuscript, any mechanical devices such as tap-changers, capacitor
banks and switches are assumed to be fixed at their nominal values and are not part
of the optimization problem.
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Fig. 4. AC admissibility for 3-node motivating example. (Top) Voltage profiles from
sweeping (pg,2,pg,3) along admissible trajectory A and inadmissible trajectory B.
(Bottom) The set of admissible injections is non-convex with trajectories A and B
showing admissible (green) and inadmissible (red) dispatch, respectively.

where matricesMp :=2CT
RC,Mq :=2CT

XC,C :=(IN�A)�1,
H := C

T (2(RDR +XDX)+Z
2), DR := (IN �A)�1

AR, and
DX := (IN � A)�1

AX describe the network topology and
impedance parameters. Note that in the authors’ previous work in
[10], it is shown that the matrix (IN�A) is non-singular for radial
and balanced distribution networks. Furthermore, the convex inner
approximation in [25] is valid only for purely inductive2, radial, and
balanced networks. In the current manuscript, we extend the convex
formulation to any radial and balanced network, including those
with mixed inductive and capacitive branches.

Clearly, (2) and (3) represent linear relationships between the
nodal power injections, (p,q), the branch power flows, (P,Q), and
node voltages V . However, setting l = 0 and neglecting (1d), as
done with the commonly used LinDist approximation, can result in
overestimating the nodal capacities [10]. Next, we present methods
for bounding the nonlinearity lij(Pij,Qij,vj) from above and below.

Based on the description of voltages in (2) and branch flows
in (3), denote llb and lub as lower and upper bounds on l. Then, we
can define proxy variables for the corresponding upper (.)+ and
lower (.)� bounds of P , Q and V as follows:

P
+ :=Cp�DRllb (4a)

P
� :=Cp�DRlub (4b)

Q
+ :=Cq�DX+llb�DX�lub (4c)

Q
� :=Cq�DX+lub�DX�llb (4d)

V
+ :=v01n+Mpp+Mqq�H+llb�H�lub (4e)

V
� :=v01n+Mpp+Mqq�H+lub�H�llb, (4f)

2The term inductive (capacitive) branch refers herein to a network branch whose
reactance is inductive (capacitive), which means xij�0 (xij<0).

where DX+ and H+ include the non-negative elements of DX and
H, respectively, andDX� andH� are the corresponding negative el-
ements. For example, if the network is purely inductive, thenDX� =
H�=0 and the formulation reduces to the one presented in [25].
These upper and lower bounds in (4) satisfy P

�PP
+, Q�

QQ
+ andV �V V

+. Note that bounds llb and lub in (4) effec-
tively allow us to neglect the nonlinear (1d). Thus, if we can find con-
vex representations of these bounds, the corresponding OPF formu-
lation will be a convex inner approximation. This is described next.

Equation (4) provides a linear formulation for bounding the AC
power flow equations in terms of bounds llb,lub and controllable
injections. This was first presented in [25], where bounds llb,lub
were derived based on a nominal operating point and used to
maximize voltage margins with mechanical grid assets (e.g., LTCs
and capacitor-banks). Next, we summarize the derivation of these
bounds and leverage them to formulate a novel convex inner
approximation of the AC OPF to determine the nodal capacities.

Based on nominal operating point x0ij :=col{P0
ij,Q

0
ij,v

0
j}2R3,

the second-order approximation for (1d) can be expressed as

lij⇡l
0
ij+J

>
ij�ij+

1

2
�
>
ijHe,ij�ij, (5)

where l0ij :=lij(x0ij) are squared branch currents and �ij, Jacobian
Jij, and Hessian He,ij are defined below:

�ij :=

2

4
Pij�P

0
ij

Qij�Q
0
ij

vj�v
0
j

3

5, Jij :=

2

64

@lij
@Pij
@lij
@Qij
@lij
@vj

3

75

�������
x0
ij

=

2

6664

2P0
ij

v0
j

2Q0
ij

v0
j

� (P0
ij)

2+(Q0
ij)

2

(v0
j )

2

3

7775
(6)

He,ij :=

2

6664

2
v0
j

0
�2P0

ij

(v0
j )

2

0 2
v0
j

�2Q0
ij

(v0
j )

2

�2P0
ij

(v0
j )

2

�2Q0
ij

(v0
j )

2 2
(P0

ij)
2+(Q0

ij)
2

(v0
j )

3

3

7775
. (7)

Fig. 5 compares the accuracy of the second-order approximation
in (5) with the non-linear expression from (1d). Note that, for
the IEEE-13 node network, the worst-case approximation error
for lij is less than 0.008pu over the wide range of net injections
[�3000,3000]kW. Thus, we can assume that the expression in (5)
is sufficiently accurate and omit the higher-order terms.

Furthermore, [25] shows that He,ij is positive semi-definite,
which, together with (5), means that lower and upper bounds of
lij for all (i,j)2L are given by:

lij= |lij|⇡ |l0ij+J
>
ij�ij+

1

2
�
>
ijHe,ij�ij| (8)

 |l0ij|+|J>
ij�ij|+|1

2
�
>
ijHe,ij�ij| (9)

l
0
ij+max{2|J>

ij�ij|,|�>ijHe,ij�ij|} (10)
=) lijl

0
ij+max{2|J>

ij+�
+
ij+J

>
ij��

�
ij |, ij}lub,ij, (11)

and lij�l
0
ij+J

>
ij+�

�
ij+J

>
ij��

+
ij=:llb,ij, (12)

where Jij+ and Jij� includes the positive and negative elements of
Jij, �+ij := �ij(P

+
ij ,Q

+
ij,v

+
j ,x

0
ij) and ��ij := �ij(P

�
ij ,Q

�
ij,v

�
j ,x

0
ij),

and  ij := max{(�+,�
ij )>He,ij(�

+,�
ij )}, which represents the

largest of eight possible combinations of P/Q/v terms in �ij with
mixed +,� superscripts. Note that from (12), the lower bound
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Fig. 5. Comparison of the second-order approximation from (5) with the original
(nonlinear) expression of l in (1d) for the IEEE 13-node feeder. The maximum
absolute approximation error is found at branch l12 when the active net-injection
at node 2 (pg,2) is �3000kW and is 0.0074pu (and 2.5%) and relative error is
less than 5% for pg,22 [�3000,1600] kW.

llb,ij may become negative, however, we know from the physics
that lij � 0, which means the llb,ij may be conservative. Also,
from the expression of Jij, it can be seen that if P0

ij, Q
0
ij⇡0, then

llb,ij=l
0
ij⇡0 and so the lower bound is fixed for this operating point.

This results in a conservative estimate of the lower bound, which can
result in undersizing nodal hosting capacity. To alleviate this short-
coming, Algorithm 1 in Section III-B presents an iterative approach
that improves the nodal capacity. Thus, with (4), (11), and (12),
we have a convex inner approximation of (1) that can be used to
determine the nodal capacities. Furthermore, since the Jacobian and
Hessian are calculated separately for each branch in the network,
the size of the matrices does not grow with the size of the system.
This enables the extension of this approach to large scale systems.

D. Optimizing DER nodal capacity
The bounds from (11) and (12) allow us to omit (1d) entirely

and replace the original variables P , Q, and V with corresponding
proxy variables that serve as upper and lower bounds (.)+ and (.)�

in (4). Since (.)+ and (.)� are outer approximations, using them
in an OPF formulation results in a feasible set that is contained in
the original, non-convex AC OPF. This means that the following
represents a convex inner approximation and can be used to
determine nodal capacities:

(P1) p
+
g (p

�
g )=arg min

pg,i,qg,i

NX

i=1

fi(pg,i) (13a)

s.t. (4a)�(4f),(11),(12) (13b)
p=pg�PL q=qg�QL, (13c)
V V

�(p,q) V
+(p,q)V (13d)

lubl qgqgqg. (13e)

In (P1), (13d) ensures that any feasible dispatch pg satisfies the
nodal voltages in the original AC OPF based on (1). Also, the
current limit constraint in (13e) ensures that the upper limit of the
branch current (lub) is within the given thermal line current limits.
To determine the hyper-rectangle �pg, we must solve (P1) once
for the lower ranges, p�g , and once for the upper ranges, p+g . Thus,
the objective function components, fi(pg,i), must be designed to

engender p�g,i and p
+
g,i. For example, to compute p�g,i, we can choose

fi(pg,i):=↵ipg,i and, for p+g,i, we can designate fi(pg,i):=�↵ipg,i,
where ↵i � 0 is the relative priority of nodal capacity at node i.
Clearly, the choice of objective function determines how flexibility
is allocated over the network, e.g., choosing objective function
such as ±↵i log(pg,i) can result in a different allocation of nodal
capacity over the network as compared with ±↵ipg,i. The design
of the objective function represents an interesting future extension
into energy policy and incentive mechanism and rate design [28].

While (P1) ensures AC admissibility at the nodal capacity values,
it is natural to consider what happens when the nodal flexibility is
below the rated capacity. That is, are all injections within the hosting
capacity range guaranteed to be admissible across all the nodes?
The next section answers this question by providing analytical
guarantees of admissibility for the nodal hosting capacity, within
the hyper-rectangle �pg, and then presents an iterative algorithm
to successively improve �pg.

III. ANALYSIS OF CONVEX INNER APPROXIMATION

Next, we analyze (P1) and prove that all (net) injections pg2�pg
are AC admissible.

A. Admissibility guarantees

Due to page limitations, AC admissibility guarantees consider
only nodal voltage limits, however, the case of admissibility under
branch flow limits is similar.

Theorem III.1. Under conditions C1) @V +

@pg,i
� 0, C2) @V �

@pg,i
� 0,

8i 2 N , if �pg is obtained via nodal capacities from (P1), then
8pg2�pg and p(pg)=pg�PL, we have

V V
�(p)V (p)V

+(p)V ,

where V (p) represents the actual nodal voltages from (1) resulting
from (net) injections p.

Proof. Consider two cases: 0pgp
+
g (Case 1) and p

�
g pg0

(Case 2).
Proof of Case 1: Using (4e) at p+g yields:

V
+(p+)=v01n+Mpp

++Mqq
+�H+llb�H�lubV (14)

where p
+ = p

+
g � PL and q

+ = q
+
g � QL. Now, consider any

pg2�pg such that 0pgp
+
g and using C1, then

V
+(p)=v01n+Mpp+Mqq

+�H+llb(p)�H�lub(p)V (15)

where p=pg�PL. The actual voltage according to (2) at p is

V (p)=v01n+Mpp+Mqq
+�H+l(p)�H�l(p) (16)

Then, subtracting (15) from (16) gives:

V
+(p)�V (p)=H+(l(p)�llb(p))+H�(l(p)�lub(p)) (17)

Using (12) and (11) we get, llb(p)  l(p)  lub(p) and that
V

+(p)�V (p)�0 =) V (p)V
+(p)V .

Proof of Case 2: Using (4f) at p�g yields:

V
�(p�)=v01n+Mpp

�+Mqq
��H+lub�H�llb�V (18)
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where p
� = p

�
g � PL and q

� = q
�
g �QL. Now, consider any

pg2�pg such that p�g pg0 and C2, then

V
�(p)=v01n+Mpp+Mqq

��H+lub(p)�H�llb(p)�V (19)

where p=pg�PL. The actual voltage according to (2) at p is

V (p)=v01n+Mpp+Mqq
��H+l(p)�H�l(p) (20)

Then, subtracting (19) from (20) gives:

V
�(p)�V (p)=H+(l(p)�lub(p))+H�(l(p)�llb(p)) (21)

Using (12) and (11) we get, llb(p)  l(p)  lub(p), and that
V

�(p)�V (p) 0 =) V (p)� V
�(p)� V . Combining Case 1

and Case 2 completes the proof.

Note that conditions C1 and C2 are not trivial condition and may
fail to hold under certain operating conditions. This can be seen
from (4e) and (4f), as V + and V � depend on the upper bound lub of
the loss term l. This upper bound in turn is based on the expression
in (11) and can either increase or decrease with p. This is further
illustrated in Fig. 4, which shows that the voltage magnitude can
decrease with increasing power injections. In addition, conditions
C1 and C2 only guarantee satisfaction of network constraints for
injections in �pg but do not guarantees existence of AC power flow
solutions, which is provided in Section III.D. Finally, Theorem III.1
significantly improves over the result provided in [25], since it
guarantees that the entire set, �pg, is AC admissible rather than
just the solutions, p+g and p

�
g . Importantly, this is exactly why �pg

can be used to characterize the nodal hosting capacity. As with
any convex inner approximation, the results can be conservative.
Thus, in the next section, a new iterative algorithm is presented that
successively increases the nodal capacity.

B. Iterative algorithm for nodal capacity improvement
The bounds llb,lub obtained in Section II-C can be conservative

depending upon the nominal operating point, x0. Thus, when we
solve (P1) to determine p

+
g and p

�
g , the nodal capacities can be

significantly underestimated. This is especially the case when
P

0
ij,Q

0
ij⇡0, which yields a Jacobian close to zero and the first-order

estimate of llb,ij also close to l
0
ij⇡0 per (12). Algorithm 1 mitigates

the conservativeness by successively augmenting the set �pg via
updating the operating point, Jacobian, and Hessian to reflect
known nodal capacities. This approach is similar to the so-called
convex-concave procedure [29]. Algorithm 1 outlines the steps
involved in the proposed scheme.

Next, we illustrate how the nodal capacity improves with
Algorithm 1 for the motivating example in Fig. 3. Note that reactive
power net injections, qg,i, are decision variables in (P1), however,
in the proceeding analysis and simulations, we set qg,i=0. Later
in Section IV, we analyze the role of reactive power strategies to
further augment nodal capacities. For the sake of simplicity, we
neglect the branch limit constraint (13e) in (P1) and assume an
oversized substation transformer, which is a common practice in
the US. The focus is on voltage because that is often the primary
concern of utilities in the US [30]. However, the formulation in (P1)
and the analysis therein hold for branch limit constraints as well.

The importance of conditions C1 and C2 in Algorithm 1 in
determining �pg is illustrated in Fig. 6. Specifically, without C1

Algorithm 1: Successive enhancement of DER nodal
capacity �pg (unity power factor case)

Result: Admissible set of injections �pg :=⇥[p�g,i,p
+
g,i]

1 Input: PL,QL2RN , convex fi(pg,i)8i2N , and ✏>0
2 Run Load flow w/ PL,QL,pg(0)=0N )J(0),He(0)
3 for m=1:2 do

4 if m=1 then

5 pg,i!p
+
g,i, Cond(i)! Check @V +

@pg,i
�0 8i2N

6 else

7 pg,i!p
�
g,i, Cond(i)! Check @V �

@pg,i
�0 8i2N

8 end

9 Initialize k=1, error(0)=1
10 while 9i, s.t. Cond(i) holds ^ error(k�1)>✏ do

11 for i=1:N do

12 if Cond(i) does not hold then

13 Set pg,i(k)=pg,i(k�1)
14 end

15 end

16 Solve (P1) )pg,i(k),fi(pg,i(k)), 8i2N
17 Run load flow w/ PL�pg(k),QL)J(k),He(k)
18 Update Cond(i) 8i2N
19 Update error:
20 error(k)=maxi2N |fi(pg,i(k))�fi(pg,i(k�1))|
21 k!k+1
22 end

23 end

and C2 (i.e., omitting lines 12-14 from Algorithm 1), we get a
piece-wise linear dispatch trajectory (red dots and dashed black
lines), which represents a large nodal dispatch range, but does not
permit independent dispatch from different nodes and is, thus, not
a valid nodal capacity. However, when the conditions C1 and C2
are explicitly considered then Algorithm 1 yields the green region
in Fig. 6, which is a convex inner approximation of the blue set
(of AC admissible dispatches). From the non-convex nature of
the blue set, it is clear that operating beyond the green set may
require coordination between different nodes in order to ensure AC
admissibility. Furthermore, since the green set represents �pg and
is a hyper-rectangle, no coordination between nodes is necessary
in order to guarantee AC admissibility. In summary, Algorithm 1
can iteratively solve (P1) to augment �pg to achieve a larger
nodal capacity, which reduces conservativeness of the CIA-based
approach.

Next, we present Case Study 1, which employs Algorithm 1 to
determine the solar PV hosting capacity for a distribution network.

Case study 1: Algorithm 1 is applied to the IEEE-37 node
distribution feeder shown in Fig. 7 for three different scenarios to
determine p+g,i. In this context, p+g,i can effectively be considered the
solar PV hosting capacity. The three different scenarios are specified
in Table I. In scenarios A (linear objective) and B (logarithmic
objective), the solar PV units are installed at the (orange) leaf nodes
with the largest demand, whereas in scenario C (linear objective),
solar PV is only allowed at (cyan) node 2 (e.g., utility-scale solar
PV array). The optimization problem (P1) is solved with Gurobi 9.1
in Julia 1.1 in less than 1 sec and the solution is validated with Mat-
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Fig. 6. The set of admissible injections for the 3-node network is non-convex (blue).
Algorithm 1 can find maximal admissible injections via iterations (red dots), but
monotonicity conditions C1 and C2 in Theorem III.1 are important to define the
convex inner approximation (green), which yields the nodal capacity, �pg.

Fig. 7. Single-phase version of the IEEE-37 node distribution network from [31].
The orange and cyan dots represent the different locations of solar PV.

power [27] on a standard MacBook Pro laptop with 2.2GHz CPU
and 16GB RAM. The comparison of the resulting solar PV hosting
capacity from each scenario using Algorithm 1 is shown in Fig. 8a,
with the stacked bars showing the allocated hosting capacity at the
different nodes in the system. It can be seen that having a single cen-
tralized solar unit allows greater total solar PV capacity as compared
to the distributed cases. The reason for this is that Scenario C has
fewer network limits to consider than the distributed case. This can
be seen in Fig. 8b, which shows nodal voltages resulting from PV
injections at the hosting capacity values after the first and second
iteration of Algorithm 1. As can be seen from the figure, voltages
are at their upper limit at multiple nodes for scenarios A and B,
but only at the head-node (node 2) for scenario C. As a result, the
distributed case (case A and B) has more active constraints and,
hence, represents a more conservative solution as compared to the
case with a single central PV (scenario C). Furthermore, scenario B
favors a more equitable allocation (log objective) that results in
smaller net solar PV capacity (

P
ipg,i), leading to reduced overall

hosting capacity as compared to scenario A. Thus, Case Study 1
illustrates AC admissibility of the PV hosting capacity solutions
resulting from Algorithm 1 and the effects of different objective
function terms on the allocation of hosting capacity. The objective
function design represents a powerful, but simple approach to align

TABLE I
PV HOSTING CAPACITY SCENARIOS

Scenario Nodes with PVs Objective function

A {5,9,12,15,20,25,31,34} fi(pg,i)=�pg,i
B {5,9,12,15,20,25,31,34} fi(pg,i)=�log(pg,i)
C {2} fi(pg,i)=�pg,i

.
(a) (b)

Fig. 8. Case study 1 on IEEE-37 node network for the three PV scenarios. (a) Shows
the feeder’s solar PV hosting capacity with Algorithm 1. (b) illustrates admissibility
of PV hosting capacity via voltage profiles, where V 1

A ,V 1
B ,V 1

C results from first
iteration and V 2

A ,V 2
B ,V 2

C are from the final iteration of Algorithm 1.

hosting capacity with available incentives that prioritize certain load
pockets or to ensure an equitable distribution of dispatchable DERs.

C. Quantifying conservativeness
In this section, we present simulation-based analysis to quantify

the conservativeness of the convex inner approximation. We
show how Algorithm 1 iteratively enlarges �pg for the IEEE-13
node and IEEE-37 node test feeders. The results are tabulated in
Table II and quantify how Algorithm 1 increases nodal capacity
uniformly across the three scenarios (A, B, and C) and reduces the
conservativeness of the CIA-based method.

TABLE II
FEEDER SOLAR PV HOSTING CAPACITY INCREASE WITH ITERATIONS IN

ALGORITHM 1 FOR IEEE-13 NODE AND IEEE-37 NODE SYSTEMS.
IEEE-13 node system IEEE-37 node system

Iteration A B C

Iter 1 (MW) 6.6 6.3 8.8
Iter 2 (MW) 9.1 8.6 12.1

Iteration A B C

Iter 1 (MW) 5.1 4.4 7.4
Iter 2 (MW) 5.3 4.6 7.7

Furthermore, to understand conservativeness of the CIA-based
method, we compare it with other techniques from literature,
including an SOCP relaxation and a non-convex, non-linear program
(NLP). For the convex relaxation, we consider the SOCP formula-
tion of the AC power flow equations and solve with GUROBI. The
NLP formulation is based on the original non-convex AC OPF
formulation and is solved using IPOPT. In general, the SOCP
relaxation represents an upper bound on the nodal capacity, but
can provide solutions that are not physically realizable, i.e., will
violate network constraints. The non-convex NLP’s (locally optimal)
solutions, p�g and p

+
g , are only guaranteed to be AC admissible at

p
�
g and p

+
g and do not provide guarantees within the corresponding

hyper-rectangle, �pg. The proposed CIA-based approach in (P1),
however, guarantees not only that voltages and currents are within
their limits over the entire range, but also that the nodal injections
can be manipulated independently. The results in Table III provide a
measure of the conservativeness of the convex inner approximation
by quantifying p�g and p+g for three distribution systems (13 node, 37
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node and 123 node). The results indicate that the CIA-based solution
is close to the NLP solution and, thus, is not overly conservative.
The SOCP results provide much larger p�g and p

+
g , however, they

are not physically realizable, i.e., they violate network constraints.
This comparison shows the effectiveness of the proposed approach
in obtaining nodal capacity limits while guaranteeing satisfaction
of network constraints. Note that the CIA-based method takes less
than ten seconds to determine �pg for the IEEE-123 node system
on a standard MacBook Pro with 2.2GHz CPU and 16GB RAM.

TABLE III
COMPARING NODAL CAPACITIES WITH THE CONVEX INNER APPROXIMATION
(CIA), CONVEX RELAXATION (CR), AND NON-CONVEX (NLP) FORMULATIONS

System CIA (MW) NLP (MW) CR (MW)

13-node [-1.5, 9.1] [-1.5, 9.7] [-1.5, 12]
37-node [-2.7, 5.3] [-2.7, 5.3] [-2.7, 16]

123-node [-4.5, 13.9] [-4.5, 14] [-4.5, 24]

Remark (Adapting analysis to distribution planning). It is
important to note that the nodal capacity herein can incorporate
both flexible supply (p+g >0) and demand (p�g <0), but that �pg
is with respect to a particular operating point, (PL, QL). This
is different from conventional PV hosting capacity studies that
consider a representative annual, hourly demand profile [30]. In
future work, we will extend (P1) and Algorithm 1 for multi-hour
planning problems and incorporate battery storage and flexible
demand to determine the “dynamic hosting capacity” of a feeder
from quasi-static time-series (QSTS) analysis.

D. Existence and uniqueness of power flow solution

If a solution to the power flow equations in (1) exists, the convex
inner approximation (CIA) approach presented herein guarantees
satisfaction of network constraints for all, pg2�pg. However, the
CIA-based approach in (P1) does not guarantee existence of a power
flow solution. Early work on the existence of power flow solutions
in radial distribution networks showed that a unique solution exists
for a wide range of practical parameter values [32]. However,
there are power injections for which a solution may not exist, but
such cases often occur under impractical operating conditions [33].
Nonetheless, ensuring existence of solutions for the entire range of
nodal capacities is valuable. Recent works in literature, e.g., [34],
have provided sufficient conditions for the existence and uniqueness
of a solution to (1). This has since been extended to multi-phase
distribution networks [35]. The existence of power flow solutions
is also closely related to the voltage collapse problem and has
been studied in [36]. In this section, we utilize sufficient conditions
from [34], to provide guarantees for both the satisfaction of network
constraints and the existence of a solution over the range of nodal ca-
pacities. In this regard, we augment Algorithm 1 with two additional
conditions that are adapted from [34]. The first condition ensures
a solution exists at the current operating point of Algorithm 1, i.e.,
x
0
ij=col{P0

ij,Q
0
ij,v

0
j} 8(i,j)2L. This condition is given by:

⇣(ŝ)<u
2
min (22)

where ⇣(ŝ) and umin are defined as:

⇣(s):=||W�1
Y

�1
LL W

�1
diag(s)||1 (23)

umin :=min
j
|V 0

j /wj| (24)

with W := diag(w), w :=�Y
�1

LL YL0, s= p+ iq is the complex
nodal power injection, ŝ=�PL � iQL, and Y is the admittance
matrix such that

Y =


Y00 Y0L
YL0 YLL

�
.

Condition (22) can be readily checked in Algorithm 1 at the
operating point before each iteration.

The second condition is incorporated into (P1) as follows. Define
s= ŝ+sg, where sg = pg+iqg. We can then determine sufficient
conditions for existence of a solution over the range of nodal
capacities p�g pgp

+
g with the following constraint added to (P1):

� :=

✓
umin�

⇣(ŝ)

umin

◆2

�4⇣(sg)>0. (25)

To incorporate (25) effectively, we define � := (umin � ⇣(ŝ)
umin

)2/4

and A
w := W

�1
Y

�1
LL W

�1
, which yields condition

||Awdiag(sg)||1 < �, from which we employ the definition
of matrix norm to get expression

max
i=1,...,N

NX

j=1

|Aw
ijsg,j|<�. (26)

The constraint in (26) can also be represented byN constraints of the
form

PN
j=1|Aw

ijsg,j|<� 8i=1,...,N . By defining A
w
ij=a

w
ij+ibij

and using and expanding the complex product, we get the following
equivalent convex formulation of (25) that is composed of N linear
inequalities and N second-order cone (SOC) constraints:

NX

j=1

tij<� 8i=1,...,N

����

����


a

w
ij b

w
ij

b
w
ij �a

w
ij

�
pg,j
qg,j

�����

����
2

tij 8j=1,...,N.

(C3)

The convex reformulation in (C3) can now be readily included in
(P1) to compute the nodal capacities with guarantees on the existence
of an AC power flow solution. To investigate the conservativeness of
the CIA-based method with and without (C3), Table IV compares
the hosting capacity for the 13-, 37-, and 123-node networks. The
results indicate that including (C3) still leads to meaningful and
practical solutions similar to the results in Section III-C.

TABLE IV
COMPARING PROPOSED CONVEX INNER APPROXIMATION WITH AND WITHOUT

EXISTENCE CONDITION (C3)

Type 13-node 37-node 123-node

Without C3 (MW) [-1.5, 9.1] [-2.7, 5.3] [-4.5, 13.9]
With C3 (MW) [-1.5, 8.8] [-2.7, 5.3] [-4.5, 13.8]

The analysis and simulation results presented in Case Study 1 and
this section set qg=0, e.g., no controllable reactive power. However,
the role of reactive power management in optimizing DER nodal
capacities is valuable and, thus, the focus of the next section.
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IV. ROLE OF REACTIVE POWER

Controlling reactive power, qg, can increase the nodal capacity,
�pg as shown by analyzing the effect of different reactive power
control schemes in this section. Specifically, we will compare
between DERs that are operated at unity power factor, fixed power
factor, and those with advanced reactive power control capability,
such as IEEE Standard 1547 [37]. The different reactive power
schemes along with the relevant relations between qg and pg are
provided in Table V. For each particular scheme, the corresponding
constraints are added to (P1) when determining the nodal capacity.

Fig. 9a compares the feeder’s solar PV hosting capacities,
P

ip
+
g,i,

resulting from the different reactive power schemes applied to
Scenario A of Case Study 1. The stacked bar chart in Fig. 9a also
shows the hosting capacity at the different nodes with DERs in
this system. Scheme UPF represents the hosting capacity with
unity power factor, which matches the result from Scenario A in
Fig. 8a and serves as the base-case for comparison. Scheme LAG
employs a lagging power factor of 0.95 (�i=�0.33), while LEAD
uses a leading power factor of 0.95 (�i =+0.33). Scheme QVP
employs a common volt-VAr policy with �0i =0 and �1i =�0.073,
while QCON represents advanced inverter capability with quadratic
constraints and S̄g,i=2MVA and a minimum power factor of 0.95.
The results show that for scheme LEAD, the hosting capacity is
reduced while schemes LAG, QCON and QVP increase hosting
capacity. In LEAD, this is due to reactive power injections increasing
with active power injections resulting in larger v and, hence, reduces
p
+
g . The opposite occurs in the other schemes. Interestingly, QCON

achieves the same nodal capacity as LAG by bringing power factors
to their lower limit of 0.95 in order to maximize nodal capacity. The
voltage profiles at the hosting capacities for the different schemes
are compared in Fig. 9b and are clearly AC admissible. The results
in Fig. 9 highlight the complex relationship between PV hosting
capacity and reactive power control and how CIA-based methods
can be used to effectively study siting, sizing, and dispatch of
DERs in a grid-aware manner. This is in line with the ongoing
developments of reactive power requirements and standards [37].

TABLE V
DER REACTIVE POWER SCHEMES

Scheme Description Constraint (gi(pg,i,qg,i,vi))

UPF Unity power factor qg,i=0
LAG Lagging power factor qg,i=��ipg,i

LEAD Leading power factor qg,i=�ipg,i
QVP Volt-VAr policy qg,i=�0

i +�1
i vi

QCON Quadratic constraint p2g,i+q2g,iS
2
g,i

The next section employs the nodal capacity, �pg, to develop
a simple, open-loop, decentralized DER control policy for the
realtime, grid-aware disaggregation of a power reference signal. This
turns the whole feeder into a responsive grid resource with a-priori
AC admissibility guarantees that can provide fast grid services.

V. REALTIME GRID-AWARE DISAGGREGATION

Dispatching a set of networked DERs in response to a fast,
time-varying power reference signal while guaranteeing admissible
operations is a challenging problem. However, it is necessary to
solve this problem before aggregators can safely coordinate millions
of behind-the-meter DERs without jeopardizing reliability of the

(a) (b)
Fig. 9. Reactive power schemes for case Study 1 (Scenario A) on the IEEE-37
node network for five different reactive power schemes: (a) Solar PV hosting
capacity for each reactive power scheme after employing Algorithm 1 (b) Illustrating
admissibility with voltage profiles for the final iterate from Algorithm 1.

grid. Thus, after computing the available nodal capacity (offline),
as shown in Fig. 1, this section proposes a simple, grid-aware
controller to allocate the required flexibility among the available
resources in the network (i.e., disaggregate the signal) in realtime.
The advantage of such a mechanism is that it simplifies the interface
between the distribution system operator (DSO) and the individual
aggregators. The DSO has the responsibility of determining the
network’s DER nodal capacities, whereas the aggregator is only
required to operate within the DSO’s provided nodal capacities.
This is a reasonable setting as the DSO has access to the network
data while the aggregators may not, and aggregators have access
to DERs while DSO’s may not. Hence, the proposed CIA-based
method enables a bridge between the DSO and aggregator, taking
advantage of each of their capabilities and roles, in order to enable
grid-aware, real-time dispatch of DERs.

The necessary parameters to execute the realtime, grid-aware
disaggregation are p

+
g,i and p

�
g,i and can be updated every 15-60

minutes by the grid operator executing Algorithm 1, which is
the timescale of the baseline of the aggregate uncontrollable
net-demand. The realtime disaggregation can then be solved by
a DER aggregator to provide fast grid services without the need
to include any information about the underlying grid parameters.
That is, the nodal capacities embed the AC OPF parameters and
constraints to simplify the aggregator’s dispatch. The disaggregation
process is determined by the following open-loop policy executed
by the aggregator at each node i and discrete-time step k:

pg,i[k]=

8
><

>:

min{ p+g,iP
ip

+
g,i
Pref[k],p

+
g,i} Pref[k]�0

max{ p�g,iP
ip

�
g,i
Pref[k],p

�
g,i} Pref[k]<0

. (27)

The next case study shows the effectiveness of the proposed
disaggregation process in having DERs collectively respond to grid
service signals while guaranteeing AC admissibility. Future work
will consider the role of feedback and disturbances.

Case study 2: The effectiveness of the offline Algorithm 1 and
the online disaggregation in (27) is illustrated with the IEEE-37 node
system, where we use the nodal capacities defined by Scenario A.
The case study shows that the feeder is being managed within its
limits at all times despite providing a large range of flexibility from
the responsive DERs. Fig. 10a shows a power reference grid service
signal and the aggregate response from dispatching the DERs. As
shown, the reference signal is tracked well when it is within the
admissible range and the aggregator dispatch is also AC-admissible
as shown in Fig. 10b. In a practical setting, the DER aggregator
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(a) (b)
Fig. 10. Case study 2: (a) tracking performance of the realtime disaggregation policy
shown in (27) for IEEE-37 node system (b) Voltage profile of the IEEE-37 node
network showing admissible dispatch when following the grid-aware disaggregation
policy (red) and voltage violations when following a grid-agnostic approach (blue).
Note that the envelope of admissible voltage magnitudes from the grid-aware
dispatch is shown in pink. The grid-agnostic approach results in a maximum voltage
violation of 0.03pu at time-step 60s.

should only offer what can be delivered, but the case study is meant
to illustrate i) how the disaggregation enables realtime, grid-aware
nodal dispatch and ii) how the nodal capacity, �pg, enables simple
aggregation to characterize a radial feeder’s admissible range.
Clearly, if the aggregator was grid-agnostic and just coordinated
DERs to ensure perfect tracking, then such a “greedy” version of
the realtime DER dispatch leads to network voltages violations, as
illustrated by the blue dots in Fig. 10b. Thus, the proposed open-loop
control scheme is grid-aware and scalable across a network of
DERs by just broadcasting a single scalar power reference signal.

VI. CONCLUSIONS AND FUTURE WORK

This manuscript presents a convex inner approximation of the
AC OPF problem. Leveraging convex lower and upper bounds on
the nonlinear branch flow terms in the AC formulation, the inner
approximation enables a characterization of nodal capacity that is
provably AC admissible across the entire range. A novel algorithm
is then presented to successively improve the nodal capacity of a
feeder. The effect of different reactive power control schemes is
then illustrated and volt-VAr and advanced inverter schemes are
shown to further improve the nodal capacity. Finally, a realtime
disaggregation scheme is developed for dispatching flexible demand
in realtime across the network, while respecting the grid constraints,
thus, enabling grid-aware fast grid services.

Future work will extend this work to multi-phase feeder models
and meshed networks to account for more realistic distribution feed-
ers. Optimizing legacy and other front-of-meter grid asset schedules
to increase or maintain the nodal hosting capacities is also of interest.
Finally, employing feedback from salient grid measurements to
provide robust admissibility guarantees in realtime under changes to
expected demand/solar PV is another important area to investigate.
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