

Magnetic Flux Transport Identification of Active Reconnection: MMS Observations in the Earth's Magnetosphere

Yi Qi¹²³, Tak Chu Li⁴, Christopher T. Russell², Robert E. Ergun³, Ying-Dong Jia²,
Mark Hubbert²

Abstract

10 Magnetic reconnection plays an important role in converting energy while
11 modifying field topology. This process takes place under varied plasma
12 conditions during which the transport of magnetic flux is intrinsic.
13 Identifying active magnetic reconnection sites with in-situ observations is
14 challenging. A new technique, Magnetic Flux Transport (MFT) analysis, has
15 been developed recently and proven in numerical simulation for identifying
16 active reconnection efficiently and accurately. In this study we examine the
17 MFT process in 37 previously reported electron diffusion region
18 (EDR)/reconnection-line crossing events at the dayside magnetopause, in the
19 magnetotail and turbulent magnetosheath using Magnetospheric Multiscale (MMS)
20 measurements. The co-existing inward and outward MFT flow at an X-point
21 provides a signature that magnetic field lines become disconnected and
22 reconnected. The application of MFT analysis to in-situ observations
23 demonstrates that MFT can successfully identify active reconnection sites
24 under complex varied conditions, including asymmetric and turbulent upstream
25 conditions. It also provides a higher rate of identification than plasma
26 outflow jets alone. MFT can be applied to in-situ measurements from both
27 single- and multi-spacecraft missions, and laboratory experiments.

¹ Corresponding author yqi@g.ucla.edu

²Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA

³Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA

⁴ Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA

67 et al. 2011) and strong shear flows (Li et al. 2021; Liu et al. 2018) likely
68 in a turbulent system may all distort the signatures, adding complexity to
69 reconnection.

70

71 Recent studies have analyzed the transport of magnetic flux around an X-point
72 in kinetic simulations (Liu & Hesse 2016, Liu et al. 2018). An innovative
73 technique based on Magnetic Flux Transport (MFT) has been developed and
74 carefully analyzed in a two-dimensional gyrokinetic simulation (Li et al.
75 2021) where MFT was applied to both symmetric and asymmetric reconnection X-
76 point regions in turbulence generated by a double-vortex setup (Li et al.
77 2016). MFT successfully captures bidirectional inflows and outflows of magnetic
78 flux around active X-points in a region significantly smaller than the region
79 extended by plasma outflow jets or finite energy conversion, and thus the MFT
80 method can locate the active reconnection sites more accurately than previous
81 methods. In addition, although strong background shear flows distort the
82 bidirectional plasma outflow jets, the velocity of magnetic flux transport U_ψ
83 maintains its regular pattern, demonstrating that the MFT method is more
84 robust than previous methods. Quadrupolar structures are observed in $\nabla \cdot U_\psi$ at
85 the X-points, supporting the active reconnection picture. Based on these
86 numerical modeling results, MFT has the potential to be a more accurate
87 indicator of active reconnection. This study applies this newly developed
88 technique to MMS in-situ observations and validates its functionality under
89 various plasma conditions.

90

91 2. Data

92 The data used herein is obtained by the MMS mission. This mission is designed
93 to capture the elusively thin and fast-moving diffusion regions of
94 reconnection with unprecedented time resolution (Burch et al. 2015). The
95 orbits cover the most common reconnection locations on both the dayside and
96 nightside of the Earth's magnetosphere, a natural laboratory for in-situ
97 observations of reconnection. Four identical spacecraft form a tetrahedron
98 configuration with spacecraft separation varying from ~10 to 150 km which
99 provides spatial resolution down to kinetic scales (Fuselier et al. 2016).
100 The magnetic field is measured by the fluxgate magnetometer (FGM) (Russell et
101 al. 2016) at its highest sampling rate of 128 Hz.
102
103 We select previously identified EDR or reconnection line crossing events to
104 represent different environments of reconnection near Earth. The events

105 include reconnection in the turbulent shock transition region (Wang et al.
 106 2019), turbulent magnetosheath (Eriksson et al. 2018; Phan et al. 2018),
 107 dayside magnetopause (Burch et al. 2016; Burch & Phan 2016; Khotyaintsev et
 108 al. 2016), magnetotail (Lu et al. 2020; Torbert et al. 2018; Zhou et al.
 109 2019), and a list of EDRs reported by Webster et al. (2018). The selected
 110 events are sufficiently typical, representing symmetric and asymmetric
 111 upstream conditions, varying guide field strength, quiet and turbulent
 112 regions, as well as classic ion-coupled reconnection and newly discovered
 113 electron-only reconnection. Requiring events with four spacecraft
 114 measurements for calculating spatial gradient, we exclude one event where
 115 MMS3 was not available from the 32 EDR events. We also note that three out of
 116 the nine single events considered overlaps with the EDR list (Webster et al.
 117 2018). Thus, in total there are $31 + (9 - 3) = 37$ events that we apply the MFT
 118 analysis to, listed in Table 1, with the average spacecraft separation
 119 normalized to the electron inertial length d_e based on upstream hybrid
 120 densities (equation 17, Cassak & Shay, 2007).
 121

Date and time	Location	Guide field	Type	Spacecraft separation [de]	Reference
2015-10-16 13:07:02	dayside	~ 0	Classic	~ 6	Burch et al. 2016
2015-12-08 11:20:43	dayside	~ 1	Classic	~ 6	Burch & Phan 2016
2015-12-06 23:38:31	dayside	~0.2	Classic	~ 10	Khotyaintsev et al. 2016
2015-10-25 11:07:46	sheath	~ 0.5	Classic	~ 20	Eriksson et al. 2018
2016-12-09 09:03:54	sheath	> 5	Electron-only	~ 5	Phan et al. 2018
2016-11-09 13:39:26	Shock transition region	~ 0	Classic	~ 16	Wang et al. 2019
2017-07-11 22:34:02	Tail	~ 0	Classic	~ 1	Torbert et al. 2018
2017-06-17	Tail	~ 0	Electron-	~ 4	Lu et al. 2020

20:24:07			only		
2017-08-10 12:18:33	Tail	~ 0.1	Classic	~ 2	Zhou et al. 2019
31 EDRs	Dayside	varying	Classic	2-70	Webster et al. 2018

122 Table 1: Event list of EDR/reconnection line crossings.

123

124 To apply this technique to observations by MMS and other spacecraft missions,
125 we first validate it with known events. With the 37 events of varied plasma
126 conditions, we find this technique robust enough for identifying reconnection.

127 **3. Method**

128 The MFT velocity U_ψ was previously derived in one and two dimensions (Liu &
129 Hesse 2016; Liu et al. 2018). The formula of this velocity can be found in
130 (Li et al. 2021):

$$131 \quad U_\psi \equiv v_{ep} - (v_{ep} \cdot \hat{b}_p) \hat{b}_p + \frac{cE'_{ez}}{B_p} (\hat{z} \times \hat{b}_p), \quad (1)$$

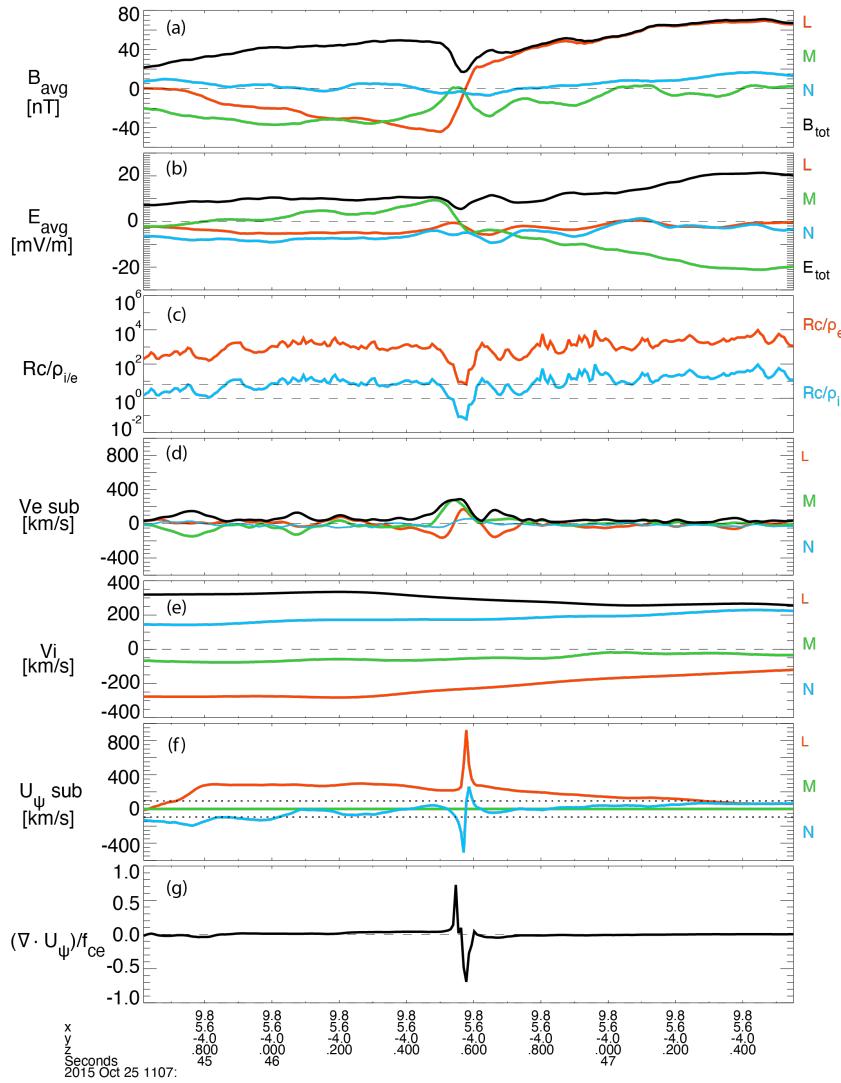
132 where $\hat{b}_p = B_p/B_p$ is the unit vector of the magnetic field component (B_p) in
133 the 2D reconnection plane, the LN plane in LMN coordinates, and v_{ep} is the
134 electron flow in the 2D reconnection plane, and \hat{z} is the out-of-plane (M)
135 direction. $E'_e = E + v_e \times B/c$ is the nonideal electric field in the electron
136 frame. The first two terms represent the in-plane electron flow perpendicular
137 to B_p , and the last term represent the slippage between magnetic flux and
138 electron flow. Without separating the perpendicular electron flow and slippage
139 terms, Equation (1) can be simplified to $U_\psi = (cE_z/B_p)(\hat{z} \times \hat{b}_p)$ (Li et al. 2021).

140 According to simulation work (Li et al. 2021), U_ψ will form super-Alfvenic
141 jets in both inflow (N) and outflow (L) directions, indicating strong
142 magnetic flux transport close to the active X-points. The upstream hybrid
143 Alfvén speed V_A is calculated using the L component of the magnetic field and
144 ion density on the two upstream sides (equation 13, Cassak & Shay, 2007). We
145 subtract the ion bulk flow velocity from U_ψ (and electron flow) to demonstrate
146 the MFT jets more clearly in the ion frame.

147 With four spacecraft measurements, we can estimate the divergence of the
148 magnetic flux transport velocity $\nabla \cdot \mathbf{U}_\psi$ following the linear gradient
149 technique (Chanteur, ISSI, 1998, Ch. 11). This quantity is able to represent

150 the converging inflows and diverging outflows of magnetic flux. In addition
151 to the signature in \mathbf{U}_ψ , these bidirectional inflows and outflows of magnetic flux
152 at an X-point signify active reconnection.

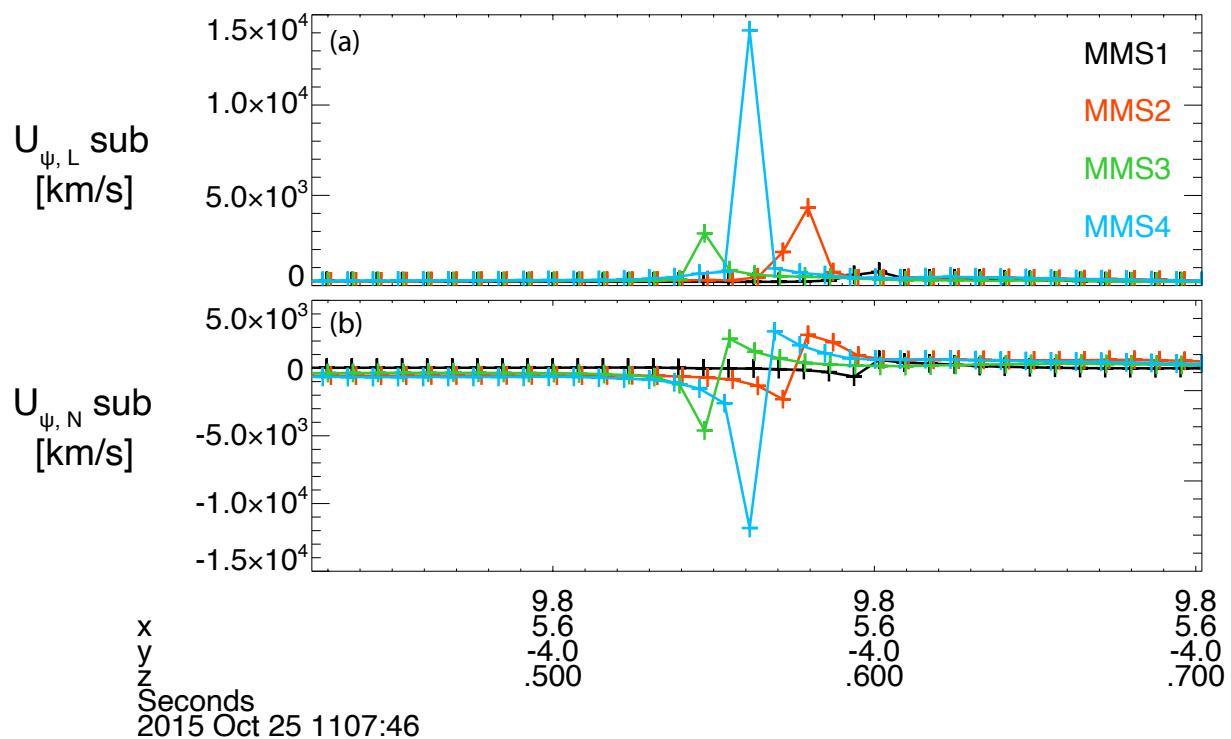
153 Transforming the field data to the LMN coordinate is required for the MFT
154 analysis. For the 9 single events, the coordinate rotation matrices from the
155 literature are used. For events from Webster et al. (2018), the Minimum
156 Variance Analysis (MVA) technique (Sonnerup & Cahill 1967) is applied on the
157 magnetic field in the interval around the recorded EDR crossings to determine
158 the LMN coordinate. The maximum variance direction (L) aligns with the
159 reconnecting field direction, corresponding to the expected outflow direction.
160 The minimum variance direction (N) gives the normal of the reconnecting
161 current sheet, the expected inflow direction.


162 There are two signatures of active reconnection in MFT analysis. They are: 1)
163 co-existing magnetic flux (\mathbf{U}_ψ) jets in the inflow (N) and outflow (L)
164 directions, and 2) a significantly enhanced divergence of flux transport
165 ($\nabla \cdot \mathbf{U}_\psi$) at the X-point. Previous theory and simulation work suggested that \mathbf{U}_ψ
166 is at least ion Alfvénic ($\gtrsim 0.5 V_A$), and the divergence at the order of 0.1
167 electron cyclotron frequency ($\nabla \cdot \mathbf{U}_\psi \gtrsim 0.05 f_{ce}$) (Li et al. 2021). Observing either
168 signature identifies an encounter of an active reconnection site. For each
169 event, we select a region of interest around the EDR/reconnection-line
170 crossing such that the radius of the field line curvature R_c becomes \lesssim the ion
171 gyro-radius ρ_i , indicating agyrotropic ion motions indicative of the IDR
172 (Rogers et al. 2019). Within the selected region, we record the peak values
173 of \mathbf{U}_ψ jets and $\nabla \cdot \mathbf{U}_\psi$.
174

175 4. Results

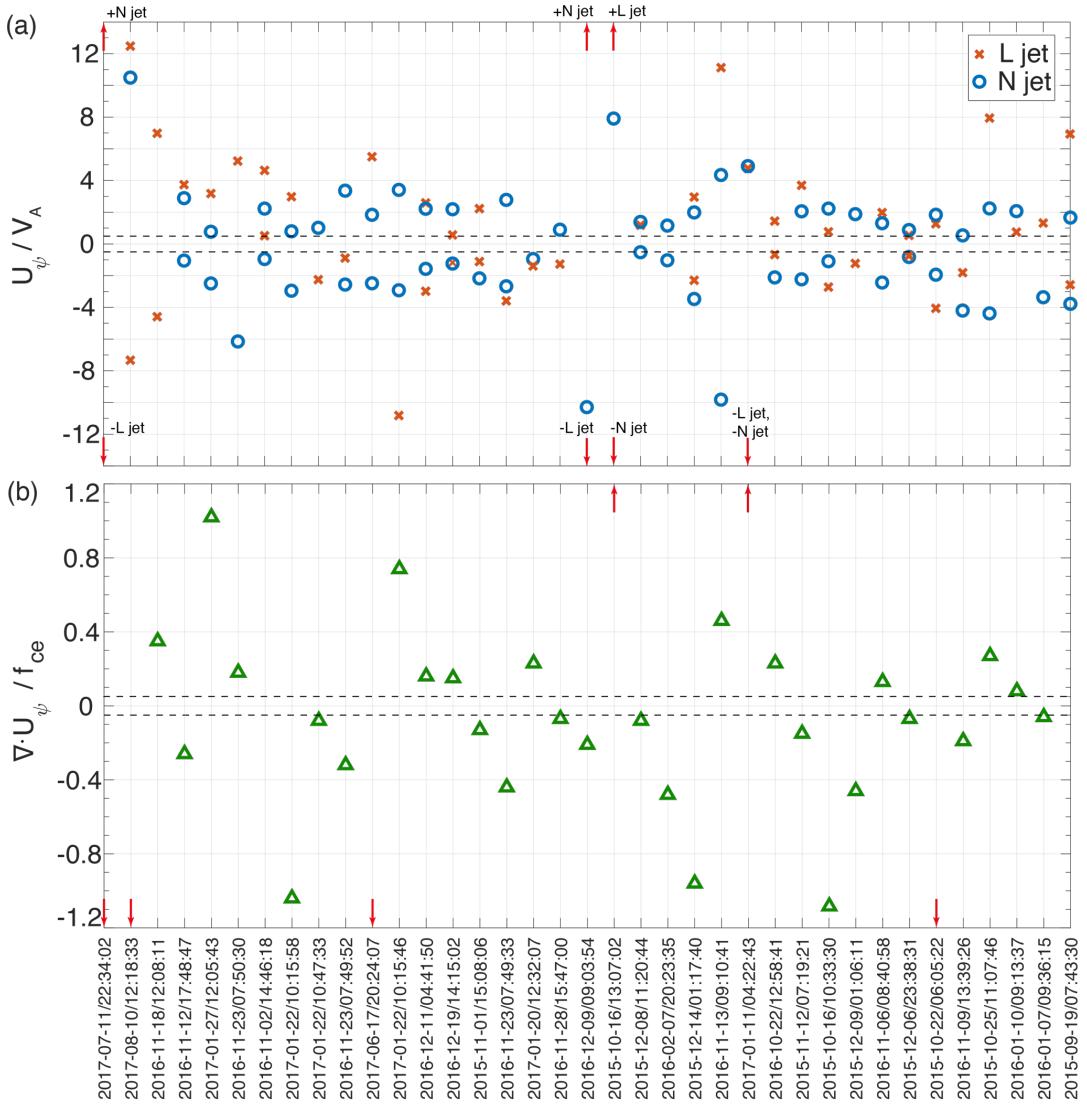
176 4.1 Example of a successfully identified reconnection site
177 As an example of MFT signatures in MMS data, we summarize in Figure 1 the
178 analysis of an active reconnection event in the magnetosheath reported by
179 Eriksson et al. (2018). At the reversal of the magnetic field L component (a),
180 the magnetic curvature increases and R_c reaches the electron gyro-radius ρ_e .
181 The MFT velocity demonstrates a bipolar signature in the N direction (blue,
182 (f)) and a unipolar peak in L (red). Both peaks exceed the upstream Alfvén
183 speed V_A (horizontal dotted line). These bidirectional MFT inflows and
184 unidirectional outflow are consistent with (h) the deduced spacecraft
185 trajectory of MMS crossing the actively reconnecting current sheet from

186 upstream to downstream and then to upstream on the other side. In panel (g)
 187 the bipolar structure in $\nabla \cdot \mathbf{U}_\psi$ is consistent with converging MFT inflows and
 188 diverging outflows near the X-point, with a peak value exceeding order of
 189 $0.1 f_{ce}$. The observed MFT signatures agree well with simulation.


190

191

192 Figure 1. MMS observations of an example event on Oct 25, 2015. Vectors are
 193 transformed in LMN coordinates ($L = [0.31, -0.91, 0.28]$, $M = [0.31, 0.37,$
 194 $0.87]$, $N = [-0.90, -0.19, 0.40]$ in GSE). Four-spacecraft-averaged (a) magnetic
 195 field and (b) electric field. (c) Radius of curvature R_c normalized to the
 196 electron (red) and ion (blue) gyro-radius. (d, e) Electron bulk flow velocity
 197 (with ion velocity subtracted) and ion bulk flow velocity. (f) MFT velocity \mathbf{U}_ψ .
 198 (with ion velocity subtracted). (g) $\nabla \cdot \mathbf{U}_\psi$ normalized to the local electron
 199 cyclotron frequency f_{ce} (h) Sketch of MMS trajectory and expected MFT flows,
 200 adapted from Eriksson et al. (2018).


201
 202 We plot the L and N component of \mathbf{U}_ψ on each spacecraft in Figure 2. The
 203 patterns of the velocity are similar on all spacecraft, suggesting the scale
 204 of the structure is greater than the spacecraft separation. Thus, MMS
 205 resolves the structure of \mathbf{U}_ψ . MMS4 and MMS2 detect the two strongest peaks in
 206 the L-component, in agreement with the X-point being south of the spacecraft
 207 and MMS4 and MMS2 being the closest to it. Examining \mathbf{U}_ψ on each spacecraft is
 208 generally useful for events with a large spacecraft separation, where the
 209 four-spacecraft average may not resolve the structure of \mathbf{U}_ψ .
 210

211
 212 Figure 2 MFT velocity on each spacecraft. (a) The L and (b) N components of \mathbf{U}_ψ
 213 measured by four spacecraft.
 214
 215

216 4.2 Identification in 37 events

217
 218 The same analysis is applied to the 37 events. Figure 3 summarizes the result.
 219 Events are ordered from left to right with increasing normalized spacecraft
 220 separation.
 221

222

223 Figure 3 MFT signatures in 37 events. The peak values of (a) \mathbf{U}_ψ in the L and N
 224 direction normalized to V_A and (b) $\nabla \cdot \mathbf{U}_\psi$ normalized to f_{ce} . The red arrows
 225 indicate L/N jets and $\nabla \cdot \mathbf{U}_\psi$ out of the plotted range. The dashed lines
 226 represent (a) $\pm 0.5 V_A$ and (b) $\pm 0.05 f_{ce}$.

227

228 One of the two MFT signatures for active reconnection is co-existing Alfvénic
 229 jets in the inflow and outflow directions. Figure 3(a) shows the peaks of MFT
 230 jets in N (circles) and L (crosses) directions for all events. \mathbf{U}_ψ is
 231 normalized to V_A . The dashed lines mark $\pm 0.5 V_A$, above which they are
 232 considered Alfvénic. Jets less than $0.5 V_A$ are masked. For almost all events
 233 MMS observed co-existing N and L jets, demonstrating both inflow and outflow
 234 MFT in these events. Only two events on Nov 18 and Feb 07, 2016 do not have

235 this signature. For the event on Feb 07, 2016, examining \mathbf{U}_ψ on each spacecraft
236 also reveals co-existing super-Alfvenic inflow and outflow jets. For the
237 event on Nov 18, 2016, the divergence of \mathbf{U}_ψ can be used and also identifies
238 active reconnection (Figure 3(b)).

239

240 The other MFT signature of active reconnection is the divergence of \mathbf{U}_ψ being
241 of the order of 0.1 of the local electron cyclotron frequency f_{ce} or higher.
242 Plotted in Figure 3(b) is $\nabla \cdot \mathbf{U}_\psi$ normalized to f_{ce} . The dashed lines indicate
243 $\pm 0.05 f_{ce}$ Values smaller than 0.05 are considered below order $0.1 f_{ce}$, and masked.
244 Similar to the MFT jets, in nearly all events, the peak $\nabla \cdot \mathbf{U}_\psi$ exceeds the
245 threshold of $0(0.1 f_{ce})$, confirming active reconnection encounters. The typical
246 $\nabla \cdot \mathbf{U}_\psi$ signature lies within $\pm 0.5 f_{ce}$, consistent with the expected ordering.
247 As discussed, event on Nov 18 2016 has a high enough divergence of \mathbf{U}_ψ as a
248 signature of active reconnection. In total, all 37 events are successfully
249 identified as active reconnection through MFT signatures.

250

251 The median value of $+/ -$ L jet peak is $3.1/-2.3 V_A$, and that of N jet peak is
252 $2.0/-2.5 V_A$. They indicate that typical MFT jets are super-Alfvenic around the
253 active reconnection site. The median absolute value of $\nabla \cdot \mathbf{U}_\psi$ is $0.3 f_{ce}$, also
254 meeting the criteria of being order $0.1 \Omega_e$ or higher.

255

256 5. Discussion

257 The two MFT properties that serve as active reconnection signatures are co-
258 existing Alfvenic inflow and outflow flux jets and a high divergence of flux
259 transport velocity. These two properties are observed in 97% and 95% of all
260 the events. Satisfying either one of the two criteria will be sufficient for
261 reconnection identification. In this case, all 37 events are successfully
262 identified by MFT properties.

263

264 The MFT signatures are also compared with plasma outflow jet signatures. To
265 confidently identify reconnection line crossing using plasma flows we usually
266 need the flow to be bi-directional. The occurrence rates for Alfvenic bi-
267 directional plasma outflow jets are lower than 50% (19% for ion and 43% for
268 electron). If we use bi-directional outflow jets as the criteria for active
269 reconnection crossing, we will very likely miss more than half of the events.
270 Using only one jet as the criteria, it is not confined as closely around the
271 x-line as the MFT signatures (Li et al. 2021), and it is harder to establish

272 a straightforward link between the observation of a single plasma jet and the
273 reconnection.

274

275 The existence of a finite guide field will make the situation more
276 complicated. It does not only modify the topology at the reconnection sites,
277 but also possibly change the planar picture into a more turbulent three-
278 dimensional scenario (Chen et al. 2020; Ng et al. 2011). Our database
279 includes a variety of guide field strength and as mentioned earlier,
280 regardless of the guide field strength, the MFT analysis successfully
281 identified active reconnection. Thus, we suggest the accuracy of MFT is
282 robust in the presence of varying guide fields.

283

284 In classic reconnection, the IDR is typically elongated in the outflow
285 direction. In a steady state, the large aspect ratio of this region
286 translates into much higher outflow than inflow jets (by continuity of
287 density and incompressibility). However, MFT flows tend to be highly
288 localized to the X-line. This result in a smaller aspect ratio of the MFT
289 flow region, and therefore similar amplitudes for MFT inflows and outflows.
290 The result in Figure 3(a), where the L and N jets are of the same order of
291 magnitude, is consistent with this picture, and also consistent with
292 simulation.

293

294 Regardless of the broad range of normalized spacecraft separations of the 37
295 events (Table 1), \mathbf{U}_ψ ranges from the order of ion Alfvén to electron Alfvén
296 speeds, and $\nabla \cdot \mathbf{U}_\psi$ is of order 0.1-1 f_{ce} (Figure 3), consistent with simulation
297 (Li et al. 2021).

298

299 The choice of LMN coordinates has an impact on MFT analysis. In addition to
300 using MVA on the magnetic field, MVA can also be applied on the electron
301 velocity. Other methods including Minimum Faraday Residue (MFR) (Haaland et
302 al. 2019; Khrabrov & Sonnerup 1998) and Maximum Directional Derivative (MDD)
303 (Shi et al. 2019) may be considered. These methods have been compared in
304 detail in recent studies (Denton et al. 2018; Genestreti et al. 2018). While
305 determining the suitable LMN coordinates for MFT is out of the scope of this
306 study, it will be investigated in the future.

307

308

6. Conclusions

309 In this study, for the first time we have applied the newly developed
310 Magnetic Flux Transport (MFT) technique to MMS data and showed this technique
311 can successfully identify active reconnection. The two MFT properties that
312 are signatures of active reconnection encounter are co-existing Alfvénic
313 inflow and outflow flux jets and a high divergence of the flux transport
314 velocity. The detection of either one is sufficient for identification. We
315 select 37 previously reported EDR/reconnection line crossing events on the
316 Earth's dayside magnetopause, in the magnetotail and turbulent magnetosheath
317 to test the capability of MFT under various plasma conditions. All events are
318 successfully identified with the two MFT properties. The median value of the
319 magnetic flux transport velocity is typically super-Alfvénic, sufficient for
320 locating the active reconnection region. The divergence of the flux transport
321 velocity has a median absolute value of $0.27 f_{ce}$, above the expected threshold
322 for reconnection. The occurrence rates of these two properties are 97% and
323 95%, much higher success rates compared to using bi-directional plasma
324 outflow jets. This application of MFT to the terrestrial data demonstrated
325 its capability to identify reconnection under complex varied plasma
326 conditions, motivating the application of this technique for analyzing
327 reconnection in more heliospheric contexts such as the solar corona and solar
328 wind turbulence, and in laboratory experiments.

329

330

7. Acknowledgments

331 We appreciate the efforts of the entire MMS team, including many individuals
332 in spacecraft operation and data acquisition. We thank T. Phan, S. Schwartz,
333 and S. Eriksson for helpful discussions. This research was supported by NASA
334 MMS mission NNG04EB99C and NSF award AGS-2000222. The work at UCLA was
335 supported through subcontract 06-001 with the University of New Hampshire.

336

337

338 References

339

340 Bessho, N., Chen, L. -J., Shuster, J. R., & Wang, S. 2014, *Geophys Res Lett*, 41, 8688

341 Bessho, N., Chen, L.-J., Wang, S., & Hesse, M. 2019, *Phys Plasmas*, 26, 082310

342 Büchner, J., & Zelenyi, L. M. 1991, *Adv Space Res-series*, 11, 177

343 Burch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. 2015, *Space Sci Rev*, 199, 5

344 Burch, J. L., & Phan, T. D. 2016, *Geophys Res Lett*, 43, 8327

345 Burch, J. L., Torbert, R. B., Phan, T. D., et al. 2016, *Science*, 352, aaf2939

346 Cassak, P. A., & Shay, M. A. 2007, *Phys Plasmas*, 14, 102114

347 Chen, L. -J., Wang, S., Hesse, M., et al. 2019, *Geophys Res Lett*, 46, 6230

348 Chen, L.-J., Wang, S., Contel, O. L., et al. 2020, *Phys Rev Lett*, 125, 025103

349 Denton, R. E., Sonnerup, B. U. Ö., Russell, C. T., et al. 2018, *J Geophys Res Space Phys*, 123, 2274

350 Dungey, J. W. 1961, *Phys Rev Lett*, 6, 47

351 Eriksson, E., Vaivads, A., Graham, D. B., et al. 2018, *Geophys Res Lett*, 45, 8081

352 Fargette, N., Lavraud, B., Rouillard, A., et al. 2020, *Astron Astrophys*

353 Fuselier, S. A., Lewis, W. S., Schiff, C., et al. 2016, *Space Sci Rev*, 199, 77

354 Genestreti, K. J., Nakamura, T. K. M., Nakamura, R., et al. 2018, *J Geophys Res Space Phys*, 123, 9130

355 Genestreti, K. J., Liu, Y. -H., Phan, T. -D., et al. 2020, *J Geophys Res Space Phys*, 125

356 Gosling, J. T., Skoug, R. M., McComas, D. J., et al. 2005, *J Geophys Res*, 110, A01107

357 Graham, D. B., Khotyaintsev, Yu. V., Norgren, C., et al. 2016, *Geophys Res Lett*, 43, 4691

358 Haaland, S., Runov, A., Artemyev, A., & Angelopoulos, V. 2019, *J Geophys Res Space Phys*, 124, 3421

359 Hesse, M., Liu, Y., Chen, L., et al. 2016, *Geophys Res Lett*, 43, 2359

360 Hwang, K.-J., Choi, E., Dokgo, K., et al. 2019, *Geophys Res Lett*, 46, 6287

361 Khotyaintsev, Yu. V., Graham, D. B., Norgren, C., et al. 2016, *Geophys Res Lett*, 43, 5571

362 Khrabrov, A. V., & Sonnerup, B. U. Ö. 1998, *Geophys Res Lett*, 25, 2373

363 Le, A., Egedal, J., Ohia, O., et al. 2013, *Phys Rev Lett*, 110, 135004

364 Li, T. C., Liu, Y.-H., & Qi, Y. 2021, *Astrophysical J Lett*, 909, L28

365 Li, T. C., Howes, G. G., Klein, K. G., et al. 2016, *Astrophysical J Lett*, 832, L24

366 Liu, Y.-H., & Hesse, M. 2016, *Phys Plasmas*, 23, 060704

367 Liu, Y.-H., Hesse, M., Guo, F., Li, H., & Nakamura, T. K. M. 2018, *Phys Plasmas*, 25, 080701

368 Lu, S., Wang, R., Lu, Q., et al. 2020, *Nat Commun*, 11, 5049

369 Ng, J., Egedal, J., Le, A., Daughton, W., & Chen, L.-J. 2011, *Phys Rev Lett*, 106, 065002

370 Phan, T. D., Bale, S. D., Eastwood, J. P., et al. 2020, *Astrophysical J Suppl Ser*, 246, 34

371 Phan, T. D., Eastwood, J. P., Shay, M. A., et al. 2018, *Nature*, 557, 202

372 Pollock, C., Moore, T., Jacques, A., et al. 2016, *Space Sci Rev*, 199, 331

373 Rogers, A. J., Farrugia, C. J., & Torbert, R. B. 2019, *J Geophys Res Space Phys*, 124, 6487

374 Russell, C. T., Anderson, B. J., Baumjohann, W., et al. 2016, *Space Sci Rev*, 199, 189

375 Shay, M. A., Phan, T. D., Haggerty, C. C., et al. 2016, *Geophys Res Lett*, 43, 4145

376 Shi, Q. Q., Tian, A. M., Bai, S. C., et al. 2019, *Space Sci Rev*, 215, 35

377 Smartt, R. N., Zhang, Z., & Smutko, M. F. 1993, *Sol Phys*, 148, 139

378 Sonnerup, B. U. Ö., & Cahill, L. J. 1967, *J Geophys Res*, 72, 171

379 Tang, B. -B, Li, W. Y., Graham, D. B., et al. 2019, *Geophys Res Lett*, 46, 3024

380 Torbert, R. B., Burch, J. L., Phan, T. D., et al. 2018, *Science*, 362, eaat2998

381 Treumann, R. A., & Baumjohann, W. 2013, *Frontiers in Physics*, 1, 31

382 Wang, S., Chen, L., Bessho, N., et al. 2019, *Geophys Res Lett*, 46, 562

383 Webster, J. M., Burch, J. L., Reiff, P. H., et al. 2018, *J Geophys Res Space Phys*, 123, 4858

384 Xue, Z., Yan, X., Cheng, X., et al. 2016, *Nat Commun*, 7, 11837

385 Zhou, M., Deng, X. H., Zhong, Z. H., et al. 2019, *Astrophysical J*, 870, 34

386