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Abstract Elastic metamaterials have proposed
transformative solutions to applications in struc-
tural mechanics owing to their unique capabilities in
the domain of wave propagation and control. Nota-
ble among them are inertant metamaterials which
augment their locally resonant mechanism with
mechanical inerters, thereby expanding their disper-
sion profiles and versatility. In this work, we provide
a comprehensive analysis of the different ways such
profiles can be shaped via an informed reconfigura-
tion of a hierarchical mechanical network comprising
the inerter element. Through a series of examples,
we demonstrate the pivotal roles played by the net-
work components, architecture, as well as damping
placement on the response, bandgap characteristics,
and emergent dissipation. Using the finite element
method, band structures are computed for locally
resonant flexural beams with six inertant networks
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representative of the design spectrum, via a free
wave propagation approach, i.e., waves that are not
driven at a given frequency. Predictions of the infi-
nite medium reveal that each configuration is asso-
ciated with its own dissipative characteristics which
are depicted using a set of unique wavenumber-free
band structures directly relating Bloch damping ratios
to oscillatory damped frequencies. We show that the
implemented framework enables a direct comparison
with the finite metamaterial counterparts via modal
damping ratios obtained at discrete frequencies, pro-
viding a straightforward yet firm validation of the
resultant behavior across the entire frequency spec-
trum. Depending on the frequency range of interest,
the choice of the inertant network combined with
appropriate damping deployment within the host
structure or the resonating substructure can be tai-
lored to instigate an efficient damped response which
is best suited for a given application. The presented
work provides a new perspective on elastic metama-
terials with inertant networks, elucidating the inter-
play between prescribed damping and emergent dis-
sipation and changing the current paradigm from
one that merely looks at damping amount to a cost-
effective, placement-based strategy which maximizes
the aggregate dissipation corresponding to a given
amount of damping material.

Keywords Elastic metamaterial - Bandgap -
Inerter - Metadamping
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1 Introduction

Traditional measures of active and passive vibra-
tion control are widely adopted and often effective
in broadband mitigation of high-amplitude structural
loads, undesirable noise, as well as seismic impacts
[1, 2]. Nonetheless, the continuous need of an elec-
trical input in active techniques and the low strength
and load-carrying ability associated with passive vis-
cous or viscoelastic materials pose serious questions
about the practicality of these measures. As a result,
elastic metamaterials have recently jumped to the
forefront of creative solutions which, owing to their
unique wave dispersive mechanics, can provide tar-
geted suppression of incident excitations through res-
onant scattering in an elastic medium [3-9]. In their
most common form, elastic metamaterials comprise
a host structure which either houses or is attached to
an array of periodic local resonators. The ability of
such array to confine and manipulate incident waves
was first demonstrated by Liu et al. [10] in fabricated
sonic crystals, giving rise to narrow frequency band-
gaps which open up at a subwavelength scale and can
be potentially tuned to low frequency regimes without
large size trade-offs. The idea has since rapidly spread
to a wide range of structures with variations of the
same concept adopted in a large portfolio of mechani-
cal configurations and platforms. Examples range
from lattices to solid continua [11, 12], bars to flex-
ural beams [13, 14], one-dimensional to multi-dimen-
sional and multilayered structures [15-17], as well as
structures with electroelastic [18, 19] and artificially-
synthesized resonant bandgaps [20].

Local resonators are classically fabricated using
single or multiple degree of freedom (DOF) vibration
absorbers. Although efficient in creating subwave-
length bandgaps within the dispersion spectrum, the
use of classical resonators have also exposed some
limitations of locally resonant metamaterials. These
include the narrow frequency span of induced gaps,
the recurring need for large masses to tune these
gaps, and the limited number of design variables
with which such tunability can take place. The pre-
vious issues, as well as other, have underscored the
need for novel and smart mechanisms that provide a
pathway for performance enhancement of locally res-
onant metamaterials. Remarkable among them is the
concept of inertial amplification from small masses,
which was introduced by Yilmaz et al. [21] as a novel
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mechanism to induce bandgaps. Contrary to tradi-
tional local resonance and Bragg scattering phenom-
ena which are more common in literature, such mech-
anism has been successfully used to produce wide
and low frequency bandgaps in one, two, and three
dimensional periodic structures [22-26]. Inspired by
this concept, a class of elastic metamaterials, typi-
cally referred to as “inertant metamaterials” (IMMs),
has recently gained traction owing to its demonstrable
superior dispersion properties. In their design, IMMs
exploit the mechanical inerter as a source of inertial
amplification, by replacing classical resonators that
are used in conventional metamaterials with inerter-
based resonators, henceforth referred to as “inerter
resonators”. In this framework, inerters can be per-
ceived as discrete elements which constitute the ideal
inertial equivalent of springs and dampers, providing
a force that is proportional to the relative acceleration
between two terminals. The mechanical inerter con-
cept was originally introduced by Smith [27] in an
analogy with electrical networks. It was first synthe-
sized by meshing a flywheel with a rack gear, with the
flywheel’s pivot forming one terminal of the device
and the rack gear forming the other [28]. Shortly
thereafter, the principle was used in suspension sys-
tems of racing cars under the alternative name of the
J-damper and has since been implemented in vari-
ous forms in studies pertaining to vibration absorp-
tion [29-32]. In the context of bandgap materials and
structures, the mechanical inerter was recently inte-
grated in lumped parameter metamaterials [33, 34],
continuous metastructures [35-37], as well as tunable
metasurfaces [38]. Most recently, novel configura-
tions of IMMs have been shown to enhance seismic
base isolation properties [39], and induce double
attenuation peaks within low frequency bandgaps
while retaining decent bandgap strength [40].

Despite their promise, studies of IMMs although
valiant efforts, have undertaken either a simple swap
of a spring-mass absorber with an inerter element or
mostly focused on a limited number of design con-
figurations. As will be shown throughout this work,
the precise placement of the inerter within the
locally resonant mechanical network and the archi-
tecture of the network itself play a profound role
in the resultant behavior which can be tailored to
serve varying needs. Furthermore, efforts pertain-
ing to the (1) effect of, and (2) source of damping
in inertant metamaterials have been scarce, if not
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nonexistent. As a result, the driven wave approach
has consistently been the method of choice in most
(if not all) of the efforts in this domain. The study
of dissipative elements in elastic metamaterials has
rapidly gone beyond the mere analysis of undesir-
able effects in the attenuated dynamic response and
has provided an intriguing avenue to remarkably
amplify the metamaterial’s spatial and temporal dis-
sipative capacity over a frequency range of inter-
est; a concept typically referred to as metadamping
in locally resonant structures [41]. The favorable
implications of metadamping have recently been
quantitatively and qualitatively illustrated across a
sweeping range of bandgap systems including vis-
coelastic [42], mono/bi-polar and non-local [43,
44], flexural [45], as well as multi-resonator [46]
metamaterials. As such, the absence of a compre-
hensive examination of the possible functionali-
ties provided by dissipative IMMs with viscously
damped inerter-based resonators represents missed
opportunity and an untapped design resource which
will be a central focus of this work.

In this paper, the wave dispersion patterns of
IMMs are investigated using the finite element
method (FEM) for six different design configura-
tions. Each of these configurations is associated with
its own bandgap characteristics, which are interpreted
as function of the: (1) inertance ratio and (2) fre-
quency ratio, which are non-dimensional parameters.
By implementing a free wave approach, the damping
ratio band structure emerges as a unique feature that
provides a platform for analyzing the metadamping
phenomenon which would otherwise be impossible
to address using the commonly used driven wave
approach. Upon the conclusion of this effort, it will
become evident that IMMs can be used to achieve
dissipative characteristics that utterly depart from
conventional metamaterials. The paper is organized
as follows: following the introduction and a brief out-
line of the inertant metamaterial beam configurations,
the computational free wave framework is presented
in light of the different unit cell motion equations.
Following which, we detail the different aspects per-
taining to bandgap formation in undamped IMMs.
The focus is then shifted to the damped IMM config-
urations and damping is applied separately at the host
structure, the non-inerter component of the resonant
inclusion, and finally within the inerter-containing
network of the resonator.

2 Computational free wave dispersion mechanics
2.1 Inertant metamaterial beam configurations

An inerter is a two-terminal mechanical element (see
Fig. 1) that operates on the relative acceleration of its
terminals such that

F; = b(it, — ity) (nH

where F; is the force exerted in the inerter element,
b is the inertance, and ii; and ii, are the accelerations
defined at terminals 1 and 2, respectively. There are
many ways in which an inerter can be incorporated
into a resonator. In this article, inerter resonators com-
prised of different mechanical networks are utilized in
place of classical resonators in locally resonant meta-
material beams in order to investigate their vibration
and wave propagation characteristics. Henceforth, we
refer to this class of metamaterials as inertant meta-
materials. Figure 2a shows a schematic diagram of a
cantilevered inertant metamaterial beam where a set
of periodic lumped masses are attached to the lower
surface of the host beam. As shown in Fig. 2b, each
lumped mass is connected to the host beam via a
spring k,, a viscous damper c,, and a mechanical net-
work (MN) which comprises an inerter b as one of
its components. Figure 2¢ displays some of the most
commonly used mechanical network configurations
in inerter-based dynamic vibration absorbers [47],
which will be individually investigated here when
embedded as part of a periodic self-repeated local
resonator unit cell. k; and c; represent the mechanical
network’s spring and viscous damper, respectively.
To fully understand the working mechanics of iner-
tant metamaterials, a number of undamped configura-
tions: UC1, UC2, and UC3 will be analyzed first, fol-
lowed by the damped configurations: DC1, DC2, and
DC3. It should be noted that the undamped configura-
tions UC2 and UC3 can be obtained by setting ¢; = 0
in DC2 and DC3, respectively, and can therefore be
thought of as their corresponding counterparts. The

PO s

Fig. 1 Schematic of a mechanical inerter
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Fig. 2 Inertant metamaterials. Schematic diagrams of a A
cantilevered inertant metamaterial beam and b an inerter res-
onator comprised of a lumped mass suspended from a spring
and a viscous damper, both in parallel with a mechanical net-

analysis of the three leftmost configurations in Fig. 2c
via a free wave approach will give insight into the
bandgap characteristics of inertant metamaterials in
their non-dissipative form. Following which, damp-
ing effects will be detailed via a thorough examina-
tion of the three rightmost networks, which will shed
light on some of the important features associated
with damped resonant inclusions in elastic metamate-
rials (i.e., the metadamping phenomenon) in the pres-
ence of inerter elements.

In the following three subsections, a general-
ized computational framework is developed based
on the FEM to compute band structures of inertant
metamaterials. To ensure a systematic process, the
framework is divided into the following three steps:
(1) In the first step, the finite element equations
of motion (EOMs) are obtained for a generic unit
cell. This is followed by the application of Bloch
periodicity boundary conditions, leading to a wave-
number-dependent eigenvalue problem that can be
solved for complex frequencies, from which band
structures can be obtained. (2) In the second step,
the EOMs corresponding to the mechanical network
configurations shown in Fig. 2c are derived using
simplified lumped parameter models, and (3) In the
third step, we show how to integrate steps 1 and 2 in
a generalized finite element context.
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work (blue box). The six mechanical networks studied here are
shown in c. d A discrete model of an inertant unit cell com-
prising a primary mass and an inerter resonator with DC2 as
the mechanical network. (Color figure online)

2.2 FEM-based free wave solution

Consider a free unit cell representing an infinitely
periodic metamaterial beam with a displacement
field denoted by the vector u. Employing Bloch’s
theorem, the wave field vector can be expressed as
u(x, k, 1) = u(x, k)4 satisfying the periodicity
constraint given by u(x, ,t) = u(x + a, k, ), where i
is the periodic amplitude vector, a represents the spa-
tial periodicity of the unit cell in the x-direction, x is
the wavenumber, and A is a complex frequency func-
tion that permits wave attenuation in time. Applying
the periodicity constraint, Bloch’s theorem enables
the displacement field to be expressed as a relation-
ship between the unit cell boundaries such that

ulx + a, k., t) = ulx, k, 1)e/<*

@

Using FEM, u can be discretized into general-
ized displacements satisfying the EOMs given by
MU + CU + KU = 0, where U is the free general-
ized displacements vector and M, C, and K denote
the unit cell mass, viscous damping, and stiffness
matrices, respectively. For discretized models, Eq. (2)
is equivalent to a set of Bloch periodicity boundary
conditions ensuring that primal assembly of the left
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and right interfaces of the unit cell is possible. In this
context, U can be expressed as U = PU, where U is
the periodic generalized displacements vector which
includes only internal and left boundary displace-
ments and rotations and P is the Bloch periodicity
matrix, expressed as follows:

I 0
Pk)=10 I 3)
0 I/

with I and 0 being identity and null matrices of proper
sizes. In terms of sz the free unit cell EOMs can be
reduced to MU + CU + KU = 0, where

M = PTMP (4a)
C=P'CP (4b)
K =P'KP (4c)

with P' being the Hermitian transpose of the Bloch

periodicity matrix. As detailed in Aladwani and
Nouh [46], by introducing the state vector Y = [U0)
and assuming a solution of the form Y = Ye#, the
eigenvalue problem [A(k)A(k) + B(x)]Y(x) =0 is
obtained in state-space format, with

< [ 0 M) - [-M@x) 0
A= [M(K) C(K)] and B = [ 0 K(K)] )

which gives complex eigenvalues of the form:
MK) = =C(K)®,(K) + jo (k) (©6)

where ®, is the wavenumber-dependent undamped
resonant frequency. The damped frequency w,, and
the damping ratio ¢ can be expressed as follows:

_ Re[4(x)]

T e v T

which can be usefully combined and presented using
non-traditional band structures that are free from
wavenumbers, as will be shown in Sect. 4.

2.3 Equations of discretized inertant unit cells
Each configuration in Fig. 2c¢ has its own set of EOMs.

For brevity, only the equations corresponding to the
damped configurations DC1, DC2, and DC3 are

derived here (with the understanding that EOMs of
the undamped configurations can be easily obtained
from the damped ones as indicated earlier). To this
end, consider Fig. 2d which depicts a discrete model of
an inertant unit cell comprising a DC2 inerter resona-
tor attached to a lumped portion of the host beam. The
model consists of a resonator mass m, which is con-
nected to a primary mass M via a spring of stiffness k,,
a viscous damper with coefficient ¢, both in parallel
with the DC2 mechanical network. The EOMs of this
3-DOF system can be expressed as follows:

Mii, =k, (u, —u)+c,(@, —u)+F (8a)
mvuv = _kv(uv - us) - cv(uv - ua) -F (8b)
F = b(iiy, — ity) = k;(u, — up,) + c;(it, — i) (8c)

where k; and c; are given the subscript i to indicate

that they are part of the inerter-based mechanical
network as stated earlier. Moreover, u, and u, are the
displacements of the primary and resonator masses,
respectively, and u, is the intermediate DOF shown in
Fig. 2d. By substituting Eq. (8c) into Egs. (8a) and
(8b) and eliminating iz, from Eq. (8c), we arrive at the
following free motion equations:

Mii, + c i, — (¢, + cpir, + ¢ty + kug

— (K, + kpu, + K, =0 ©a)

myit, — c i, — (¢, + ¢, — c;i, — k,ug

+ (k, + kp)u, — kju, =0 ©b)

biiy, — c;(1+ A%)MV +¢;(1+ A%)“b + (,%)kv”s
— [k, + k) + k], + k(1 + 2 )u, =0 90)
Following analogous steps, it is straightforward to

show that the EOMs with DC1 and DC3 as mechanical
networks can be expressed, respectively, as follows:

Mii, + (c, + ¢))itg — ¢ it, — c;ity, + ku, —k,u, =0

(10a)
myit, — (c, + ¢y + c, i, + c;iy, — kug +ku, =0
(10b)
bity, = ¢, (1 + = )ity + ¢;(1+ = )i, = (=) ku,
" " ' (10¢)

+ [(L)k, = kJu, + ki, =0
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and
Mii, + c g — cit, + (k, + kug, — ku, — kju, =0
(11a)
myit, — c i, + c i, — (k, + kpug + ku, + ku, =0
(11b)

bity, — c;it, + ity — [k, + k) + K Juy + (2= )k,

+ k(14 2, =0
(11c)

2.4 Augmented finite element matrices

Because the FEM is used to compute band structures
as outlined in Sect. 2.2, it is important to show how
to build the finite element matrices of a given inertant

of the host beam alone are 6 X 6 dimensional while
U, = [w1 0, ¢, w, 0, ¢2]T is a 6 X 1 column vec-
tor containing the generalized displacements of the
host beam alone. Next, the previous element matrices
can be augmented with one-set of the discretized equa-
tions derived in Sect. 2.3 to account for the presence of
inerter resonators by including u, and “» as additional
DOFs in the generalized displacements vector. For
example, if a DC2 inerter resonator is attached to node
1 of a given element, then M = m,;, u; = w;, and U can
be expanded in the following form:

T
U=|w =u, 0, ¢ wy 0, ¢y u, u (12)

while the corresponding matrices can be expressed as
follows:

metamaterial beam in a systematic manner. As a start- _mll =M my, myz my ms myg 0 0]
ing point, the finite element matrices of a Timoshenko My My Moy My, Mhs My 00
host beam can be easily obtained using standard My Mzy Mzz Mgy My Mz 0 0
finite element techniques. In this work, the element M| a1 May May My Mys My 0 0
used is two-noded, with each node having 3 DOFs to Mg, Mgy, Mgy Mgy Mss msg 0 0
describe the transverse displacement w and the bend- Mgy Mgy Mgy Mgy Mg Mg 0 0
ing 0 and shear ¢ rotations [46]. Therefore, the ele- 0 o o0 o0 o0 0 mO
ment matrices M, = [mij], C, = [cij], and K, = [kij] 0 O O O O 0 o0 b
(13a)
[clite, ez oy s ¢ — (e, +0) Ci
€21 Cp Cp3 (g4 Co5 Cp6 0 0
G311 C3 C33 (34 C35 C36 0 0
Car C42 C43 Caq C4s5 Cgo 0 0
C=1 & s ey sy ess eso 0 0 (130)
C1  C62 €63 Cea Cos Coo 0 0
—c, 0 0 0 0 0 —(,+¢p) -¢
0 0 0 0 0 0 —ci(1+mi”) ci(1+mi”)
(ki +k, kiy ks ki ks ki = (k, + k) k;
kap ky kyy kyy kos kag 0 0
ki kyy kyy kg kss ];36 8 8
ki ke kay Ky kas kag
K= ks ksy ksy Ksy kss ks 0 0 (159
Kot ker ko3 Kea kes Kes 0 0
-k, 0 0 0 0 O k, +k; —k;
2k 0 0 0 0 0 —[mi”(kv+ki)+ki] k,.(1+mi“)
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where Eq. (9) has been explicitly utilized to construct

Eq. (13). Finally, we note that the matrices given in
Eq. (13) can be particularly used for elements with
resonator attachments, i.e., only for beam elements
at appropriate locations along the beam length. For
elements that are not attached to resonators, the 6 X 6
element matrices discussed earlier for a standard
Timoshenko beam do not need further alterations. For
completeness, the element matrices corresponding to
DC1 and DC3 are provided in the “Appendix”.

3 Mechanics of bandgap formation in inertant
metamaterials

In this section, we investigate the effects of different
design parameters on bandgap formation in inertant
metamaterials in their undamped form. Following
this analysis and building off of it, we will detail the
metadamping phenomenon and its associated features
in the context of dissipative inertant metamaterials in
the next section. The mechanical system considered
in this study consists of a cantilevered Aluminum
Timoshenko beam which is L =360 mm Ilong,
W = 40 mm wide, and T = 6 mm thick. The beam has
a density of p = 2,700 kg/m* and a Young’s modu-
lus of 70 GPa. Twelve inerter resonators are peri-
odically distributed over the beam’s length, which
implies that any two consecutive resonators are a
distance a = 30 mm apart. The total mass of a sin-
gle inerter resonator is kept constant at all times with

-
- (9]

Undamped Frequency, €2,
o
(&

[

Wavenumber, ka

Fig.3 Bandgap formation in undamped inertant metamate-
rials (UC1). a Band structure for a unit cell with UCI as the
mechanical network: the dashed-dotted lines correspond to a
zero inertance ratio (6 = 0) whereas the solid lines correspond

Bandgap Limits

m, + b = 0.4m,, where m, = pWTa is the mass of the
host beam portion contained in a single cell. The tun-
ing frequency of the local resonators is w, = /k,/m,,.
Finally, the non-dimensional parameters 6 = (b/m,)
and ¢ = (w./®,) are defined as the inertance and
frequency ratios, respectively, where w, = 1/k;/b is
known as the corner frequency.

3.1 Bandgap formation in UCI

Bandgaps are characterized by their (1) width (i.e.,
frequency span) and (2) location along the frequency
spectrum, and are commonly obtained via a disper-
sion analysis of a single unit cell. The emphasis here
will be on scrutinizing bandgaps of the local reso-
nance type regardless of the presence (or lack thereof)
of Bragg bandgaps in any of these configurations.
Figure 3a shows the band structure for a unit cell with
UCI1 as the mechanical network, plotting the dimen-

sionless undamped frequency Q, = % versus the
t

dimensionless wavenumber xa. The dashed-dotted
acoustic (lower) and optical (upper) branches in
Fig. 3a correspond to a zero inertance ratio (6 = 0),
which corresponds to a unit cell of a conventional
metamaterial beam with an undamped classical reso-
nator. The local resonance bandgap induced in this
particular case spans the 0.996 — 1.183 range on the
vertical frequency axis. This is consistent with previ-
ous literature which has showed that locally resonant
bandgaps start slightly below the tuning frequency
(Q,=1) in conventional lumped elastic

b Inertance Ratio, &

to nonzero 6 values. Darker lines depict larger 6 values. The
evolution of the bandgap limits corresponding to the unit cell
in a is shown in b as function of 6
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Fig. 4 Bandgap formation in undamped inertant metamateri-
als (UC2 and UC3). a A comparison between the band struc-
tures for two unit cells with UC2 (solid) and UC3 (dotted)
as mechanical networks (for ¢ =1 and 6 = %). The evolution

metamaterials [11]. The rest of the curves represent
different UC1 unit cells with varying nonzero 6 val-
ues. They are graded (light to dark) colors with the
darker lines representing larger 6 values. As can be
seen, when 6 increases, both the acoustic and optical
branches are down-shifted as a result of inertial
amplification and, as a consequence, induced band-
gaps are shifted to lower frequency zones. This down-
shift in bandgap range is favorable for applications
requiring suppression of elevated vibroacoustic
amplitudes within low frequency regimes. However,
this comes at the expense of bandgap width as shown
Fig. 3b, which tracks the lower and upper bandgap
bounds (and therefore width) with increasing iner-
tance ratios.

3.2 Bandgap formation in UC2 and UC3

Figure 4 examines unit cells with UC2 and UC3
as mechanical networks. Since the inerter-spring
arrangement in UC2 is reversed in UC3, these two
configurations are analyzed simultaneously. Unlike
UCI1, these configurations produce two local reso-
nance bandgaps as a result of an intermediate DOF.
The band structures of both cells are shown in Fig. 4a
forgp=1and 6 = % with the solid and dashed lines
representing UC2 and UC3, respectively. The dis-
persion branches are color-coded similar to Fig. 3a
(acoustic: blue; optical: orange), while the green lines
represent the newly added intermediate branches.
It is clear that each configuration is associated with
its own dispersion properties, dictated by the widths
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of the bandgap limits corresponding to the unit cells in a are
shown in b as function of 6 (when ¢ = 1) and in ¢ as function
of ¢ (when § = 2)

and locations of its bandgaps which can be better
understood by inspecting Fig. 4b, c. In Fig. 4b, band-
gap limits are captured by sweeping along a sensi-
ble 6 range with ¢ kept at 1. Two main observations
are deduced from the figure: (1) Higher frequency
bandgaps are wider than lower frequency ones over
the considered 6 range, in both UC2 and UC3 with
the following caveat: UC2 gives rise to bandgaps
that are closer to each other in terms of their widths
whereas for UC3, the higher frequency bandgap is
notably wider than the lower frequency one. (2) The
frequency range separating both bandgaps increases
proportionally with 6, in both UC2 and UC3. How-
ever, it remains wider in UC2 than in UC3 through-
out the entire 6 range. For example, when 6 = % ucC2
produces bandgaps that span the following frequency
ranges: 0.649 —0.717 and 1.535 — 1.621, while UC3
exhibits the following bandgaps: 0.828 — 0.953 and
1.203 — 1.337. This numerical example confirms both
of the previous takeaways.

The evolution of bandgap limits as function of ¢ is
shown in Fig. 4c, using 6 = % It can be observed that
as ¢ approaches zero, UC2 and UC3 produce a single
bandgap that is identical in both cases as expected.
However, a second low frequency bandgap starts to
grow in size as ¢ increases. Furthermore, both band-
gaps gradually shift to higher frequency regions as ¢
increases, with the lower frequency gap widening and
the higher frequency one narrowing. Finally, a close
look at the figure reveals that the frequency range
separating both bandgaps reaches its smallest attain-
able value at ¢p = 0.6 for UC2 and ¢ = 0.9 for UC3.
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4 Dissipation mechanics in inertant
metamaterials

Augmented with damping, inertant metamaterials
can bring about some unusual dispersion properties
that are discussed in this section. Practically speak-
ing, damping can potentially arise from both the
host beam and the local inerter-based resonators.
However, damping sources impact the overall dissi-
pative behavior differently which is critical to note.
We seek a better understanding of this by inspecting
such damping sources separately in an attempt to iso-
late their individual effects on the emergent behavior.
Since traditional (i.e., frequency-wavenumber) band
structures were already presented, we focus here on
the dissipative behavior which is most pertinent to
this analysis and is best interpreted in the context of
damping ratio vs. wavenumber and damping ratio vs.
damped frequency band structures.

4.1 Damping in host beam only

We start by investigating the effect of utilizing a
damped host beam of the inertant metamaterial.
Given the lack of damping in any of the resonator
components, our analysis remains focused on the
undamped configurations (UC) of the mechanical net-
works. We adopt a proportional damping approach
where C, = aK,, with C, and K, denoting the vis-
cous damping and stiffness matrices of the host beam.
a is a proportionality constant that is selected to ren-
der ¢, = 0.001, where ¢, is the fundamental mode’s

metamaterials composed of the same host beam but
different resonator configurations (with UC2 and
UC3 as mechanical networks) are compared, when
¢=1and 6 = % The damping ratio band structures
of both metamaterials are superimposed on top of
each other in Fig. 5, with the solid and dotted lines
being associated with UC2 and UC3, respectively.
Figure 5a depicts the variation of Bloch damping
ratios as function of wavenumbers, and is then used to
obtain Fig. 5b which plots the damping ratio versus
the dimensionless damped frequency Q, = % The

latter enables unit cell predictions to be evaluated in
the context of structural vibration rather than wave
propagation since Bloch damping ratios are plotted
against oscillatory frequencies in this case. We vali-
date these results by computing the modal damping
ratios of a finite beam with UC2 as mechanical net-
work and plotting them as discrete points (circle
markers) in Fig. 5b. These discrete points, which are
in very close agreement with the solid curves at their
respective locations, enable us to compare the realis-
tic behavior of the finite metamaterial with the infi-
nite medium predictions obtained from a single cell
analysis. Three observations can be extracted from
Fig. 5b as follows: (1) Bloch damping ratios exhibit
vanishingly small values at the vicinity of bandgaps
in both resonator configurations. (2) The intermediate
branch exhibits a concave-down formation, irrespec-
tive of the used resonator configuration (However, the
maximum attainable damping ratio in UC2 is higher
than its counterpart corresponding to UC3). (3) Far
away from the bandgap regions, the dissipative

damping ratio. In the following, two inertant
0.1 T T T z ]
i i A B & B
o o oosF © Modal damping ratios P N I-[
5 g T 9 Finite 12
g & 0.06 [ 1
o o . — -
< £ <€ $LEm —»oo Infinite
a a 0.04F 1 ]
£ £
© © o) G
(=] (=] ’ L
0.02 -\ P ! 1 Damping in host beam only
y ke Solid: UC2 Dashed: UC3
% o5 1 ’12 2 25 G=00 65 6 =0
a b ' ' ' $p=1,6=1

Wavenumber, ka

Fig. 5 Dissipative behavior of an inertant metamaterial beam
with damping in the host beam only. A comparison between
the a damping ratio and b damping-frequency band struc-
tures for two unit cells with UC2 (solid) and UC3 (dotted) as

Damped Frequency, 4

mechanical networks when ¢, = 0.001 while ¢ =1 and 6 = L
Damping in the resonator is ignored ({, = ¢; = 0). The modal
damping ratios of a finite beam with UC2 as the mechanical
network are plotted in b as discrete points (small black circles)
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Fig. 6 Dissipative behavior of an inertant metamaterial beam
with damping in the resonator only. A comparison between
the a damping ratio and b damping-frequency band struc-
tures for two unit cells with UC2 (solid) and UC3 (dotted) as
mechanical networks. Damping is placed outside the mechani-

behavior of the acoustic and optical branches in both
configurations is almost identical.

4.2 Damping in inerter resonator only

We now examine damping in the local resonators
using an undamped host beam. While both viscous
dampers ¢, and c; are resonator components, their
influences on the overall dissipative behavior are radi-
cally different and therefore merit two separate inves-
tigations. In the first scenario, we look at an iner-
tant metamaterial beam with ¢, # 0 and ¢; =0 (i.e.,
damping placed outside the inerter-based mechanical
network) and in the second, ¢, =0 and ¢; # 0 (i.e.,
damping placed inside the inerter-based mechanical
network).

4.2.1 Damping placement outside the mechanical
network

Initially, the first scenario is examined for two iner-
tant metamaterials composed of identical undamped
host beams but different resonator configurations
(with UC2 and UC3 as mechanical networks) when
$p=1,6= %, and ¢, = 0.001. For both metamateri-
als, the damping ratio band structures are computed
as shown in Fig. 6. The modal damping ratios asso-
ciated with UC2 are calculated for a representative
finite medium and superimposed on Fig. 6b for vali-
dation. We observe that: (1) The first bandgap is sur-
rounded by Bloch damping ratios that are higher in
UC2 than UC3 with the acoustic branch in UC2 being

@ Springer
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cal network component of the resonator only (£, = 0.001 and
§,=¢(=0)while¢p=1and 6 = 1. The modal damping ratios
of a finite beam with UC2 as the mechanical network are plot-
ted in b as discrete points (small black circles)

more dissipative than that of UC3. Conversely, Bloch
damping ratios surrounding the second bandgap are
higher in UC3 than UC2, especially at the start of
the optical branch. (2) Both configurations exhibit
extremely small damping ratios at some point along
the intermediate branch which implies that as long as
mechanical networks are rendered lossless, the result-
ant metamaterial will produce strongly oscillating
vibration modes between induced bandgaps. Fortu-
nately, damping placement inside the inerter-based
mechanical network overcomes this problem, as will
be shown next.

4.2.2 Damping placement inside the mechanical
network

When ¢; # 0, we need to shift our analysis to the
three damped configurations DC1, DC2, and DC3.
While each of these three configurations is comprised
of an inerter, a spring, and a viscous damper, their
respective arrangements and internal hierarchy has a
significant effect on the emergent dispersion charac-
teristics. As a case in point, the full dispersion prop-
erties for a unit cell with DC1 as mechanical network
are comprehensively illustrated in Fig. 7. Interest-
ingly, inerter resonators with this configuration pro-
duce only one local resonance bandgap (analogous
to UC1) despite the presence of an additional DOF
in their motion equations. This happens despite the
presence of an intermediate branch as confirmed by
Fig. 7, and mathematically anticipated given the addi-
tional DOF. Additionally, inertant metamaterials with



Meccanica

¢ =0.05 G=¢=0 o Modal damping ratios
007 T T T 007 T T T 007 T T T
=1
0.06 |- e 0.06 | . 0.06 | 7 1
Z0.05¢ 1 Z0.05¢ 1 Z0.05¢ 1 Q
5 = 5 0ose| 5@
o 0.04 b  0.04F 0.06 ] © 0.04F . 1o} i =
=2 o 2 0.054 S
'3 0.03F E ‘5 0.03F 0.055 E '3 0.03F 0.052 Q 4 Il
£ £ £ : » £
© © © O
Q 0.02F ) Q 0.02F 0057568 10 101 ] 0 0.02r 005 5 oo6 0598 1002 ] E%
Q
0.01F < > . 0.01F \ 0.01F .
0 & S 0 ——'/\ — 0¢
3 2 414 0 1 2 3 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
a Wavenumber, ka b Damped Frequency, € c Damped Frequency, €
0.07 T T T 0.07 T T T 0.07 T T T
0.06 . 0.06 . 0.06} ) 0= % .
® @]
~0.05F . “~0.05f . “~0.05f ° {1 O
g g g - =
& 0.04t E S 0.04t 0.065 - S 0.04t 0.058 i £
o o 0.06 o 0.056 \, S
‘5 0.03} . g 0.03F 0,055 . g 0.03| 0.054 1
% g . g 0.052 @ b E
0 0.02f 1 0 0.02f 0.05 1 0 0.02f 005 0 1 &
1.7 174 1.78 1.73 1.74 1.75 g
0.01F x! !x E 0.01 J—N 0.01F b
0 — — 0 —_ - oue—e-jj'{\'o\'a_'—
-3 -2 A 0 1 2 3 0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 2.5
d Wavenumber, Ka e Damped Frequency, Qg f Damped Frequency, Q4

Fig. 7 Dissipative behavior of an inertant metamaterial beam
with damping in the resonator only. Damping ratio and damp-
ing-frequency band structures for a unit cell with DC1 as the
mechanical network. Damping is placed inside the mechani-
cal network component of the resonator only ({; = 0.05 and
¢, =¢,=0). In a, b, the corner frequencies are tuned to

this configuration bring about some characteristics
which depart from classical metamaterials. For exam-
ple, Fig. 7a, b display the band structures for a DCI
unit cell corresponding to ¢; = 0.05 and four differ-
ent inertance ratios (6 increases as the curves become
darker). Each simulation depicts a 6 value which is
intentionally associated with a corner frequency that
is tuned to w, = wpg,, Where wgg, is the frequency
of the lower bound of the single local resonance
bandgap present in this system. Figure 7d, e repeat
the same exercise for a corner frequency tuned to
the upper bandgap bound (@, = wgg,). The four fig-
ures all show that the acoustic and optical branches
can be shaped in different ways (as needed) by tun-
ing the value of w.. When w, = wgyg,, the acoustic

®, = wgg; and in d, e, they are tuned to @, = wgg,, using four
different 6 values (6 increases as the curves become darker).
The results in b, e are validated in ¢, f, respectively, for the
special case when 6 = % by plotting the modal damping ratios
of the corresponding finite mediums as discrete points (small
black circles)

-100

-150

-200

-250

Free Tip Displacement (dB)

-300

Frequency, )

Fig. 8 Transverse displacements at the free tip of the cantile-
vered inertant metamaterial beams used in Fig. 7¢ (0w, = wgg;)
and 7f (w, = wgg,) with twelve resonators of DCI1 as the
mechanical network when an excitation force is applied a dis-
tance a from the fixed end of each beam
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Fig. 9 Dissipative behavior of an inertant metamaterial
beam with damping in the resonator only. Damping ratio and
damping-frequency band structures for two unit cells with
a, ¢ DC2 and d, f DC3 as mechanical networks. Damping is
placed inside the mechanical network component of the reso-
nator only ({; = 0.001 and {;, = ¢, = 0). The results in a, b, d,

branch is deliberately shaped to exhibit vanishingly
small damping ratios at the bandgap’s lower bound
frequency and when @, = wgg,, similar properties
are achieved at the bandgap’s upper bound frequency.
Moreover, it is clear that the intermediate branch is
always associated with relatively highly dissipative
Bloch modes. This is found to be the case even for
small ¢; values. Finally, the results in Fig. 7b, e are
validated in Fig. 7c, f, respectively, for the special
case when 6 = 1/7 by plotting the modal damping
ratios of the corresponding finite mediums. It is clear
that the intermediate branches in both figures are
realized by vibration modes inside the bandgaps (see
close-up insets). Consequently, a critical question that
arises from the previous discussion is whether these
vibration modes are detrimental to the integrity of
the bandgaps. A definite answer to this can be readily
inferred from Fig. 8, which computes the transverse
displacements at the tip points of the cantilevered
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e are shown for the special case when ¢ = 1and 6 = %, which
are validated in b, e by plotting the modal damping ratios of
the corresponding finite mediums as discrete points (small
black circles). ¢, f are computed using four different 6 values (6
increases as the curves become darker)

inertant metamaterial beams used in Fig. 7c, f when
a transverse excitation force is applied a distance a
from the fixed end of each respective beam. The fre-
quency response plot clearly shows that the bandgaps
are not affected by the presence of such vibration
modes within their bounds.

Finally, we show that efficient vibration damping
between induced bandgaps can be achieved when DC2
or DC3 is utilized. To this end, Fig. 9 depicts their cor-
responding damping ratio and damping-frequency band
structures when ¢ = 1, §, =0, and ¢; = 0.001. Unlike
their earlier counterparts (with §; = 0, shown in Fig. 6),
the intermediate branches in Fig. 9 (with Fig. 9a, b and d,
e being associated with DC2 and DC3, respectively,
when 6 = %) do not produce vanishingly small damping
ratios, rendering these two damped configurations more
suitable for applications that require vibration control
between bandgaps. It is interesting to see how the disper-
sion branches evolve as function of the inertance ratio.
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This is shown in Fig. 9c, f using four different 6 values
with graded (light to dark) colors where the darker ones
are associated with larger 6 values. For DC2 (Fig. 9c), it
is clear that as ¢ increases, higher Bloch damping ratios
are attained around the second bandgap, which also leads
to increasingly more dissipative optical branches. Con-
versely, lesser dissipative behavior is observed around
the first bandgap as a result of increasing 6. On the other
hand, the dispersion mechanics corresponding to DC3
are shown in Fig. 9e, which reveals the exact opposite
properties of DC2. More importantly, the intermediate
branch in both DC2 and DC3 switch its concavity as a
result of sweeping from smaller to larger 6 values, chang-
ing it from concave-down to concave-up formation as
can be inferred from Fig. 9c, f.

5 Conclusions

In this paper, a class of elastic metamaterials where
an inerter element is integrated in a lumped mechani-
cal network, which itself is a component of a locally
resonant substructure, was thoroughly investigated.
The layout of the mechanical network including the
nature of its components, the precise location of the
inerter within it, as well as the source of damping in
the metamaterial were all shown to play central roles
in shaping their dispersion mechanics and dissipative
performance. Overall, six configurations of inerter
resonators comprising different design architectures
were examined: UC1 through UC3 as the undamped
networks and DC1 through DC3 being their damped
counterparts. In terms of bandgap characteristics,
the following summarizes the two most important
takeaways:

e When UCI1 (or DC1) is used as the mechanical
network, one local resonance bandgap is gener-
ated (despite the presence of an intermediate dis-
persion branch in the DC1 case). As the inertance
ratio increases, the gap is down-shifted along the
frequency axis at the expense of its width.

e UC2 and UC3 (as well as DC2 and DC3) each
yields two bandgaps. Over a sensible range of
inertance ratios, it is shown that:

1. Higher frequency bandgaps are wider than
lower frequency ones in both UC2 and UC3
with the following caveat: UC2 gives rise

to bandgaps that are closer to each other in
terms of their widths whereas for UC3, the
higher frequency bandgap is significantly
wider than the lower frequency one.

2. The frequency range separating both band-
gaps increases proportionally with the iner-
tance ratio, in both UC2 and UC3.

Dissipation was shown to play a critical role in the
design of inertant metamaterials. Unconventional band
structures that directly relate Bloch damping ratios to
oscillatory damped frequencies are implemented in the
analysis. The mechanics of dissipation show that when
DCl1 is used, the acoustic and optical branches can be
shaped in different ways (as needed) by tuning the cor-
ner frequency. Moreover, the presence of an intermediate
branch is realized by vibration modes inside the band-
gap. It was shown, however, that the aforementioned
modes are not detrimental to the bandgap itself as evi-
dent from the frequency response of the finite realiza-
tion. Following a similar analysis of both DC2 and DC3,
it is observed that when damping is placed outside the
inerter-based mechanical network, vanishingly small
damping ratios appear at some point along the intermedi-
ate branch. The latter implies that as long as mechanical
networks are rendered lossless, respective finite systems
definitely produce strongly oscillating modes between the
gaps. Fortunately, damping placement inside the inerter-
based mechanical network overcomes this problem, ena-
bling efficient broadband mitigation between the gaps. It
was also shown that modal damping ratios obtained for
a given finite inertant metamaterial beam enable a very
efficient and direct comparison with unit cell predic-
tions by providing discrete data points at their respec-
tive frequency locations, which can be superimposed on
the aforementioned damping-frequency band structures.
These modal damping ratios were shown to be in very
close agreement with the dissipative dispersion mechan-
ics predicted from the various damped configurations
throughout the study. The work presented here provides
a comprehensive framework for the analysis of complex
and hierarchical mechanical networks which comprise
arbitrary combinations of elastic, dissipative, and inerter
elements, and that can be readily extended to different
configurations; thus expanding the current design space
of resonant metamaterials beyond the traditional notion
of basic spring-mass absorbers. Most importantly, it
sheds light on the interplay between prescribed damping
and emergent dissipation in dispersive inertant structures;
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effectively changing the current paradigm from one that
merely looks at damping amount to a more effective
placement-based strategy which selectively inserts a
given (fixed) damping amount within the resonant net-
work with the aim of maximizing the overall dissipative
effect.
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