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representative of the design spectrum, via a free 
wave propagation approach, i.e., waves that are not 
driven at a given frequency. Predictions of the infi-
nite medium reveal that each configuration is asso-
ciated with its own dissipative characteristics which 
are depicted using a set of unique wavenumber-free 
band structures directly relating Bloch damping ratios 
to oscillatory damped frequencies. We show that the 
implemented framework enables a direct comparison 
with the finite metamaterial counterparts via modal 
damping ratios obtained at discrete frequencies, pro-
viding a straightforward yet firm validation of the 
resultant behavior across the entire frequency spec-
trum. Depending on the frequency range of interest, 
the choice of the inertant network combined with 
appropriate damping deployment within the host 
structure or the resonating substructure can be tai-
lored to instigate an efficient damped response which 
is best suited for a given application. The presented 
work provides a new perspective on elastic metama-
terials with inertant networks, elucidating the inter-
play between prescribed damping and emergent dis-
sipation and changing the current paradigm from 
one that merely looks at damping amount to a cost-
effective, placement-based strategy which maximizes 
the aggregate dissipation corresponding to a given 
amount of damping material.

Keywords  Elastic metamaterial · Bandgap · 
Inerter · Metadamping

Abstract  Elastic metamaterials have proposed 
transformative solutions to applications in struc-
tural mechanics owing to their unique capabilities in 
the domain of wave propagation and control. Nota-
ble among them are inertant metamaterials which 
augment their locally resonant mechanism with 
mechanical inerters, thereby expanding their disper-
sion profiles and versatility. In this work, we provide 
a comprehensive analysis of the different ways such 
profiles can be shaped via an informed reconfigura-
tion of a hierarchical mechanical network comprising 
the inerter element. Through a series of examples, 
we demonstrate the pivotal roles played by the net-
work components, architecture, as well as damping 
placement on the response, bandgap characteristics, 
and emergent dissipation. Using the finite element 
method, band structures are computed for locally 
resonant flexural beams with six inertant networks 
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1  Introduction

Traditional measures of active and passive vibra-
tion control are widely adopted and often effective 
in broadband mitigation of high-amplitude structural 
loads, undesirable noise, as well as seismic impacts 
[1, 2]. Nonetheless, the continuous need of an elec-
trical input in active techniques and the low strength 
and load-carrying ability associated with passive vis-
cous or viscoelastic materials pose serious questions 
about the practicality of these measures. As a result, 
elastic metamaterials have recently jumped to the 
forefront of creative solutions which, owing to their 
unique wave dispersive mechanics, can provide tar-
geted suppression of incident excitations through res-
onant scattering in an elastic medium [3–9]. In their 
most common form, elastic metamaterials comprise 
a host structure which either houses or is attached to 
an array of periodic local resonators. The ability of 
such array to confine and manipulate incident waves 
was first demonstrated by Liu et al. [10] in fabricated 
sonic crystals, giving rise to narrow frequency band-
gaps which open up at a subwavelength scale and can 
be potentially tuned to low frequency regimes without 
large size trade-offs. The idea has since rapidly spread 
to a wide range of structures with variations of the 
same concept adopted in a large portfolio of mechani-
cal configurations and platforms. Examples range 
from lattices to solid continua [11, 12], bars to flex-
ural beams [13, 14], one-dimensional to multi-dimen-
sional and multilayered structures [15–17], as well as 
structures with electroelastic [18, 19] and artificially-
synthesized resonant bandgaps [20].

Local resonators are classically fabricated using 
single or multiple degree of freedom (DOF) vibration 
absorbers. Although efficient in creating subwave-
length bandgaps within the dispersion spectrum, the 
use of classical resonators have also exposed some 
limitations of locally resonant metamaterials. These 
include the narrow frequency span of induced gaps, 
the recurring need for large masses to tune these 
gaps, and the limited number of design variables 
with which such tunability can take place. The pre-
vious issues, as well as other, have underscored the 
need for novel and smart mechanisms that provide a 
pathway for performance enhancement of locally res-
onant metamaterials. Remarkable among them is the 
concept of inertial amplification from small masses, 
which was introduced by Yilmaz et al. [21] as a novel 

mechanism to induce bandgaps. Contrary to tradi-
tional local resonance and Bragg scattering phenom-
ena which are more common in literature, such mech-
anism has been successfully used to produce wide 
and low frequency bandgaps in one, two, and three 
dimensional periodic structures [22–26]. Inspired by 
this concept, a class of elastic metamaterials, typi-
cally referred to as “inertant metamaterials” (IMMs), 
has recently gained traction owing to its demonstrable 
superior dispersion properties. In their design, IMMs 
exploit the mechanical inerter as a source of inertial 
amplification, by replacing classical resonators that 
are used in conventional metamaterials with inerter-
based resonators, henceforth referred to as “inerter 
resonators”. In this framework, inerters can be per-
ceived as discrete elements which constitute the ideal 
inertial equivalent of springs and dampers, providing 
a force that is proportional to the relative acceleration 
between two terminals. The mechanical inerter con-
cept was originally introduced by Smith [27] in an 
analogy with electrical networks. It was first synthe-
sized by meshing a flywheel with a rack gear, with the 
flywheel’s pivot forming one terminal of the device 
and the rack gear forming the other [28]. Shortly 
thereafter, the principle was used in suspension sys-
tems of racing cars under the alternative name of the 
J-damper and has since been implemented in vari-
ous forms in studies pertaining to vibration absorp-
tion [29–32]. In the context of bandgap materials and 
structures, the mechanical inerter was recently inte-
grated in lumped parameter metamaterials [33, 34], 
continuous metastructures [35–37], as well as tunable 
metasurfaces [38]. Most recently, novel configura-
tions of IMMs have been shown to enhance seismic 
base isolation properties [39], and induce double 
attenuation peaks within low frequency bandgaps 
while retaining decent bandgap strength [40].

Despite their promise, studies of IMMs although 
valiant efforts, have undertaken either a simple swap 
of a spring-mass absorber with an inerter element or 
mostly focused on a limited number of design con-
figurations. As will be shown throughout this work, 
the precise placement of the inerter within the 
locally resonant mechanical network and the archi-
tecture of the network itself play a profound role 
in the resultant behavior which can be tailored to 
serve varying needs. Furthermore, efforts pertain-
ing to the (1) effect of, and (2) source of damping 
in inertant metamaterials have been scarce, if not 
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nonexistent. As a result, the driven wave approach 
has consistently been the method of choice in most 
(if not all) of the efforts in this domain. The study 
of dissipative elements in elastic metamaterials has 
rapidly gone beyond the mere analysis of undesir-
able effects in the attenuated dynamic response and 
has provided an intriguing avenue to remarkably 
amplify the metamaterial’s spatial and temporal dis-
sipative capacity over a frequency range of inter-
est; a concept typically referred to as metadamping 
in locally resonant structures [41]. The favorable 
implications of metadamping have recently been 
quantitatively and qualitatively illustrated across a 
sweeping range of bandgap systems including vis-
coelastic [42], mono/bi-polar and non-local [43, 
44], flexural [45], as well as multi-resonator [46] 
metamaterials. As such, the absence of a compre-
hensive examination of the possible functionali-
ties provided by dissipative IMMs with viscously 
damped inerter-based resonators represents missed 
opportunity and an untapped design resource which 
will be a central focus of this work.

In this paper, the wave dispersion patterns of 
IMMs are investigated using the finite element 
method (FEM) for six different design configura-
tions. Each of these configurations is associated with 
its own bandgap characteristics, which are interpreted 
as function of the: (1) inertance ratio and (2) fre-
quency ratio, which are non-dimensional parameters. 
By implementing a free wave approach, the damping 
ratio band structure emerges as a unique feature that 
provides a platform for analyzing the metadamping 
phenomenon which would otherwise be impossible 
to address using the commonly used driven wave 
approach. Upon the conclusion of this effort, it will 
become evident that IMMs can be used to achieve 
dissipative characteristics that utterly depart from 
conventional metamaterials. The paper is organized 
as follows: following the introduction and a brief out-
line of the inertant metamaterial beam configurations, 
the computational free wave framework is presented 
in light of the different unit cell motion equations. 
Following which, we detail the different aspects per-
taining to bandgap formation in undamped IMMs. 
The focus is then shifted to the damped IMM config-
urations and damping is applied separately at the host 
structure, the non-inerter component of the resonant 
inclusion, and finally within the inerter-containing 
network of the resonator.

2 � Computational free wave dispersion mechanics

2.1 � Inertant metamaterial beam configurations

An inerter is a two-terminal mechanical element (see 
Fig. 1) that operates on the relative acceleration of its 
terminals such that

where Fi is the force exerted in the inerter element, 
b is the inertance, and ü1 and ü2 are the accelerations 
defined at terminals 1 and 2, respectively. There are 
many ways in which an inerter can be incorporated 
into a resonator. In this article, inerter resonators com-
prised of different mechanical networks are utilized in 
place of classical resonators in locally resonant meta-
material beams in order to investigate their vibration 
and wave propagation characteristics. Henceforth, we 
refer to this class of metamaterials as inertant meta-
materials. Figure 2a shows a schematic diagram of a 
cantilevered inertant metamaterial beam where a set 
of periodic lumped masses are attached to the lower 
surface of the host beam. As shown in Fig. 2b, each 
lumped mass is connected to the host beam via a 
spring kv , a viscous damper cv , and a mechanical net-
work (MN) which comprises an inerter b as one of 
its components. Figure 2c displays some of the most 
commonly used mechanical network configurations 
in inerter-based dynamic vibration absorbers [47], 
which will be individually investigated here when 
embedded as part of a periodic self-repeated local 
resonator unit cell. ki and ci represent the mechanical 
network’s spring and viscous damper, respectively. 
To fully understand the working mechanics of iner-
tant metamaterials, a number of undamped configura-
tions: UC1, UC2, and UC3 will be analyzed first, fol-
lowed by the damped configurations: DC1, DC2, and 
DC3. It should be noted that the undamped configura-
tions UC2 and UC3 can be obtained by setting ci = 0 
in DC2 and DC3, respectively, and can therefore be 
thought of as their corresponding counterparts. The 

(1)F
i
= b(ü2 − ü1)

Fig. 1   Schematic of a mechanical inerter
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analysis of the three leftmost configurations in Fig. 2c 
via a free wave approach will give insight into the 
bandgap characteristics of inertant metamaterials in 
their non-dissipative form. Following which, damp-
ing effects will be detailed via a thorough examina-
tion of the three rightmost networks, which will shed 
light on some of the important features associated 
with damped resonant inclusions in elastic metamate-
rials (i.e., the metadamping phenomenon) in the pres-
ence of inerter elements.

In the following three subsections, a general-
ized computational framework is developed based 
on the FEM to compute band structures of inertant 
metamaterials. To ensure a systematic process, the 
framework is divided into the following three steps: 
(1) In the first step, the finite element equations 
of motion (EOMs) are obtained for a generic unit 
cell. This is followed by the application of Bloch 
periodicity boundary conditions, leading to a wave-
number-dependent eigenvalue problem that can be 
solved for complex frequencies, from which band 
structures can be obtained. (2) In the second step, 
the EOMs corresponding to the mechanical network 
configurations shown in Fig.  2c are derived using 
simplified lumped parameter models, and (3) In the 
third step, we show how to integrate steps 1 and 2 in 
a generalized finite element context.

2.2 � FEM‑based free wave solution

Consider a free unit cell representing an infinitely 
periodic metamaterial beam with a displacement 
field denoted by the vector � . Employing Bloch’s 
theorem, the wave field vector can be expressed as 
�(x, 𝜅, t) = �̃(x, 𝜅)ej𝜅x+𝜆t , satisfying the periodicity 
constraint given by �̃(x, 𝜅, t) = �̃(x + a, 𝜅, t) , where �̃ 
is the periodic amplitude vector, a represents the spa-
tial periodicity of the unit cell in the x-direction, � is 
the wavenumber, and � is a complex frequency func-
tion that permits wave attenuation in time. Applying 
the periodicity constraint, Bloch’s theorem enables 
the displacement field to be expressed as a relation-
ship between the unit cell boundaries such that

Using FEM, � can be discretized into general-
ized displacements satisfying the EOMs given by 
��̈ + ��̇ +�� = � , where � is the free general-
ized displacements vector and � , � , and � denote 
the unit cell mass, viscous damping, and stiffness 
matrices, respectively. For discretized models, Eq. (2) 
is equivalent to a set of Bloch periodicity boundary 
conditions ensuring that primal assembly of the left 

(2)�(x + a, �, t) = �(x, �, t)ej�a

a b

dc

Fig. 2   Inertant metamaterials. Schematic diagrams of a A 
cantilevered inertant metamaterial beam and b an inerter res-
onator comprised of a lumped mass suspended from a spring 
and a viscous damper, both in parallel with a mechanical net-

work (blue box). The six mechanical networks studied here are 
shown in c. d A discrete model of an inertant unit cell com-
prising a primary mass and an inerter resonator with DC2 as 
the mechanical network. (Color figure online)
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and right interfaces of the unit cell is possible. In this 
context, � can be expressed as � = ��̃ , where �̃ is 
the periodic generalized displacements vector which 
includes only internal and left boundary displace-
ments and rotations and � is the Bloch periodicity 
matrix, expressed as follows:

with � and � being identity and null matrices of proper 
sizes. In terms of �̃ , the free unit cell EOMs can be 
reduced to �̃ ̈̃

� + �̃
̇̃
� + �̃�̃ = � , where 

 with �† being the Hermitian transpose of the Bloch 
periodicity matrix. As detailed in Aladwani and 
Nouh [46], by introducing the state vector �̃ = [ ̇̃��̃]T 
and assuming a solution of the form �̃ = �̄e𝜆t , the 
eigenvalue problem [𝜆(𝜅)�̃(𝜅) + �̃(𝜅)]�̄(𝜅) = � is 
obtained in state-space format, with

 which gives complex eigenvalues of the form:

where �u is the wavenumber-dependent undamped 
resonant frequency. The damped frequency �d , and 
the damping ratio � can be expressed as follows:

which can be usefully combined and presented using 
non-traditional band structures that are free from 
wavenumbers, as will be shown in Sect. 4.

2.3 � Equations of discretized inertant unit cells

Each configuration in Fig. 2c has its own set of EOMs. 
For brevity, only the equations corresponding to the 
damped configurations DC1, DC2, and DC3 are 

(3)�(�) =

⎡

⎢

⎢

⎣

� �

� �

� �ej�a

⎤

⎥

⎥

⎦

(4a)�̃ = �
†
��

(4b)�̃ = �
†
��

(4c)�̃ = �
†
��

(5)�̃ =

[

� �̃(𝜅)

�̃(𝜅) �̃(𝜅)

]

and �̃ =

[

−�̃(𝜅) �

� �̃(𝜅)

]

(6)�(�) = −�(�)�u(�) ± j�d(�)

(7)�
d
(�) = ��[�(�)] and �(�) = −

��[�(�)]

|�(�)|

derived here (with the understanding that EOMs of 
the undamped configurations can be easily obtained 
from the damped ones as indicated earlier). To this 
end, consider Fig. 2d which depicts a discrete model of 
an inertant unit cell comprising a DC2 inerter resona-
tor attached to a lumped portion of the host beam. The 
model consists of a resonator mass mv which is con-
nected to a primary mass M via a spring of stiffness kv , 
a viscous damper with coefficient cv , both in parallel 
with the DC2 mechanical network. The EOMs of this 
3-DOF system can be expressed as follows: 

 where ki and ci are given the subscript i to indicate 
that they are part of the inerter-based mechanical 
network as stated earlier. Moreover, us and uv are the 
displacements of the primary and resonator masses, 
respectively, and ub is the intermediate DOF shown in 
Fig.  2d. By substituting Eq.  (8c) into Eqs.  (8a) and 
(8b) and eliminating üs from Eq. (8c), we arrive at the 
following free motion equations: 

Following analogous steps, it is straightforward to 
show that the EOMs with DC1 and DC3 as mechanical 
networks can be expressed, respectively, as follows: 

(8a)Müs = kv(uv − us) + cv(u̇v − u̇s) + F

(8b)mvüv = −kv(uv − us) − cv(u̇v − u̇s) − F

(8c)F = b(üb − üs) = ki(uv − ub) + ci(u̇v − u̇b)

(9a)
Mü

s
+ c

v
u̇
s
− (c

v
+ c

i
)u̇

v
+ c

i
u̇
b
+ k

v
u
s

− (k
v
+ k

i
)u

v
+ k

i
u
b
= 0

(9b)
m

v
ü
v
− c

v
u̇
s
− (c

v
+ c

i
)u̇

v
− c

i
u̇
b
− k

v
u
s

+ (k
v
+ k

i
)u

v
− k

i
u
b
= 0

(9c)

bü
b
− c

i

(

1 +
b

M

)

u̇
v
+ c

i

(

1 +
b

M

)

u̇
b
+
(

b

M

)

k
v
u
s

−
[

(
b

M
)(k

v
+ k

i
) + k

i

]

u
v
+ k

i

(

1 +
b

M

)

u
b
= 0

(10a)
Müs + (cv + ci)u̇s − cvu̇v − ciu̇b + kvus − kvuv = 0

(10b)
mvüv − (cv + ci)u̇s + cvu̇v + ciu̇b − kvus + kvuv = 0

(10c)
bü

b
− c

i

(

1 +
b

mv

)

u̇
s
+ c

i

(

1 +
b

mv

)

u̇
b
−
(

b

mv

)

k
v
u
s

+
[

(
b

mv

)k
v
− k

i

]

u
v
+ k

i
u
b
= 0
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and 

2.4 � Augmented finite element matrices

Because the FEM is used to compute band structures 
as outlined in Sect.  2.2, it is important to show how 
to build the finite element matrices of a given inertant 
metamaterial beam in a systematic manner. As a start-
ing point, the finite element matrices of a Timoshenko 
host beam can be easily obtained using standard 
finite element techniques. In this work, the element 
used is two-noded, with each node having 3 DOFs to 
describe the transverse displacement w and the bend-
ing � and shear � rotations [46]. Therefore, the ele-
ment matrices �b = [mij] , �b = [cij] , and �b = [kij] 

(11a)
Müs + cvu̇s − cvu̇v + (kv + ki)us − kvuv − kiub = 0

(11b)
mvüv − cvu̇s + cvu̇v − (kv + ki)us + kvuv + kiub = 0

(11c)

bü
b
− c

i
u̇
v
+ c

i
u̇
b
−
[

(
b

mv

)(k
v
+ k

i
) + k

i

]

u
s
+
(

b

mv

)

k
v
u
v

+ k
i

(

1 +
b

mv

)u
b
= 0

of the host beam alone are 6 × 6 dimensional while 
�b =

[

w1 �1 �1 w2 �2 �2

]T is a 6 × 1 column vec-
tor containing the generalized displacements of the 
host beam alone. Next, the previous element matrices 
can be augmented with one-set of the discretized equa-
tions derived in Sect. 2.3 to account for the presence of 
inerter resonators by including us and ub as additional 
DOFs in the generalized displacements vector. For 
example, if a DC2 inerter resonator is attached to node 
1 of a given element, then M = m11 , us = w1 , and � can 
be expanded in the following form:

while the corresponding matrices can be expressed as 
follows: 

(12)� =
[

w1 = us �1 �1 w2 �2 �2 uv ub
]T

(13a)

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

m11 = M m12 m13 m14 m15 m16 0 0

m21 m22 m23 m24 m25 m26 0 0

m31 m32 m33 m34 m35 m36 0 0

m41 m42 m43 m44 m45 m46 0 0

m51 m52 m53 m54 m55 m56 0 0

m61 m62 m63 m64 m65 m66 0 0

0 0 0 0 0 0 mv 0

0 0 0 0 0 0 0 b

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13b)� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c11 + cv c12 c13 c14 c15 c16 − (cv + ci) ci
c21 c22 c23 c24 c25 c26 0 0

c31 c32 c33 c34 c35 c36 0 0

c41 c42 c43 c44 c45 c46 0 0

c51 c52 c53 c54 c55 c56 0 0

c61 c62 c63 c64 c65 c66 0 0

−cv 0 0 0 0 0 − (cv + ci) − ci
0 0 0 0 0 0 − ci(1 +

b

m11

) ci(1 +
b

m11

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13c)� =
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⎢

⎣

k11 + kv k12 k13 k14 k15 k16 − (kv + ki) ki
k21 k22 k23 k24 k25 k26 0 0

k31 k32 k33 k34 k35 k36 0 0

k41 k42 k43 k44 k45 k46 0 0

k51 k52 k53 k54 k55 k56 0 0

k61 k62 k63 k64 k65 k66 0 0

−kv 0 0 0 0 0 kv + ki − ki
b

m11

kv 0 0 0 0 0 −
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b

m11

(kv + ki) + ki
�
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b

m11
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 where Eq. (9) has been explicitly utilized to construct 
Eq.  (13). Finally, we note that the matrices given in 
Eq.  (13) can be particularly used for elements with 
resonator attachments, i.e., only for beam elements 
at appropriate locations along the beam length. For 
elements that are not attached to resonators, the 6 × 6 
element matrices discussed earlier for a standard 
Timoshenko beam do not need further alterations. For 
completeness, the element matrices corresponding to 
DC1 and DC3 are provided in the “Appendix”.

3 � Mechanics of bandgap formation in inertant 
metamaterials

In this section, we investigate the effects of different 
design parameters on bandgap formation in inertant 
metamaterials in their undamped form. Following 
this analysis and building off of it, we will detail the 
metadamping phenomenon and its associated features 
in the context of dissipative inertant metamaterials in 
the next section. The mechanical system considered 
in this study consists of a cantilevered Aluminum 
Timoshenko beam which is L = 360 mm long, 
W = 40 mm wide, and T = 6 mm thick. The beam has 
a density of � = 2, 700 kg/m3 and a Young’s modu-
lus of 70 GPa. Twelve inerter resonators are peri-
odically distributed over the beam’s length, which 
implies that any two consecutive resonators are a 
distance a = 30 mm apart. The total mass of a sin-
gle inerter resonator is kept constant at all times with 

mv + b = 0.4mb , where mb = �WTa is the mass of the 
host beam portion contained in a single cell. The tun-
ing frequency of the local resonators is �

t
=
√

k
v
∕m

v
 . 

Finally, the non-dimensional parameters � = (b∕m
v
) 

and � = (�
c
∕�

t
) are defined as the inertance and 

frequency ratios, respectively, where �
c
=
√

k
i
∕b is 

known as the corner frequency.

3.1 � Bandgap formation in UC1

Bandgaps are characterized by their (1) width (i.e., 
frequency span) and (2) location along the frequency 
spectrum, and are commonly obtained via a disper-
sion analysis of a single unit cell. The emphasis here 
will be on scrutinizing bandgaps of the local reso-
nance type regardless of the presence (or lack thereof) 
of Bragg bandgaps in any of these configurations. 
Figure 3a shows the band structure for a unit cell with 
UC1 as the mechanical network, plotting the dimen-
sionless undamped frequency Ωu =

�u

�t

 versus the 
dimensionless wavenumber �a . The dashed-dotted 
acoustic (lower) and optical (upper) branches in 
Fig. 3a correspond to a zero inertance ratio ( � = 0 ), 
which corresponds to a unit cell of a conventional 
metamaterial beam with an undamped classical reso-
nator. The local resonance bandgap induced in this 
particular case spans the 0.996 − 1.183 range on the 
vertical frequency axis. This is consistent with previ-
ous literature which has showed that locally resonant 
bandgaps start slightly below the tuning frequency 
( Ωu = 1 ) in conventional lumped elastic 

a b

Fig. 3   Bandgap formation in undamped inertant metamate-
rials (UC1). a Band structure for a unit cell with UC1 as the 
mechanical network: the dashed-dotted lines correspond to a 
zero inertance ratio ( � = 0 ) whereas the solid lines correspond 

to nonzero � values. Darker lines depict larger � values. The 
evolution of the bandgap limits corresponding to the unit cell 
in a is shown in b as function of �
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metamaterials [11]. The rest of the curves represent 
different UC1 unit cells with varying nonzero � val-
ues. They are graded (light to dark) colors with the 
darker lines representing larger � values. As can be 
seen, when � increases, both the acoustic and optical 
branches are down-shifted as a result of inertial 
amplification and, as a consequence, induced band-
gaps are shifted to lower frequency zones. This down-
shift in bandgap range is favorable for applications 
requiring suppression of elevated vibroacoustic 
amplitudes within low frequency regimes. However, 
this comes at the expense of bandgap width as shown 
Fig.  3b, which tracks the lower and upper bandgap 
bounds (and therefore width) with increasing iner-
tance ratios.

3.2 � Bandgap formation in UC2 and UC3

Figure  4 examines unit cells with UC2 and UC3 
as mechanical networks. Since the inerter-spring 
arrangement in UC2 is reversed in UC3, these two 
configurations are analyzed simultaneously. Unlike 
UC1, these configurations produce two local reso-
nance bandgaps as a result of an intermediate DOF. 
The band structures of both cells are shown in Fig. 4a 
for � = 1 and � =

1

7
 , with the solid and dashed lines 

representing UC2 and UC3, respectively. The dis-
persion branches are color-coded similar to Fig.  3a 
(acoustic: blue; optical: orange), while the green lines 
represent the newly added intermediate branches. 
It is clear that each configuration is associated with 
its own dispersion properties, dictated by the widths 

and locations of its bandgaps which can be better 
understood by inspecting Fig. 4b, c. In Fig. 4b, band-
gap limits are captured by sweeping along a sensi-
ble � range with � kept at 1. Two main observations 
are deduced from the figure: (1) Higher frequency 
bandgaps are wider than lower frequency ones over 
the considered � range, in both UC2 and UC3 with 
the following caveat: UC2 gives rise to bandgaps 
that are closer to each other in terms of their widths 
whereas for UC3, the higher frequency bandgap is 
notably wider than the lower frequency one. (2) The 
frequency range separating both bandgaps increases 
proportionally with � , in both UC2 and UC3. How-
ever, it remains wider in UC2 than in UC3 through-
out the entire � range. For example, when � =

1

7
 , UC2 

produces bandgaps that span the following frequency 
ranges: 0.649 − 0.717 and 1.535 − 1.621 , while UC3 
exhibits the following bandgaps: 0.828 − 0.953 and 
1.203 − 1.337 . This numerical example confirms both 
of the previous takeaways.

The evolution of bandgap limits as function of � is 
shown in Fig. 4c, using � =

1

7
 . It can be observed that 

as � approaches zero, UC2 and UC3 produce a single 
bandgap that is identical in both cases as expected. 
However, a second low frequency bandgap starts to 
grow in size as � increases. Furthermore, both band-
gaps gradually shift to higher frequency regions as � 
increases, with the lower frequency gap widening and 
the higher frequency one narrowing. Finally, a close 
look at the figure reveals that the frequency range 
separating both bandgaps reaches its smallest attain-
able value at � = 0.6 for UC2 and � = 0.9 for UC3.

a b c

Fig. 4   Bandgap formation in undamped inertant metamateri-
als (UC2 and UC3). a A comparison between the band struc-
tures for two unit cells with UC2 (solid) and UC3 (dotted) 
as mechanical networks (for � = 1 and � =

1

7
 ). The evolution 

of the bandgap limits corresponding to the unit cells in a are 
shown in b as function of � (when � = 1 ) and in c as function 
of � (when � =

1

7
)
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4 � Dissipation mechanics in inertant 
metamaterials

Augmented with damping, inertant metamaterials 
can bring about some unusual dispersion properties 
that are discussed in this section. Practically speak-
ing, damping can potentially arise from both the 
host beam and the local inerter-based resonators. 
However, damping sources impact the overall dissi-
pative behavior differently which is critical to note. 
We seek a better understanding of this by inspecting 
such damping sources separately in an attempt to iso-
late their individual effects on the emergent behavior. 
Since traditional (i.e., frequency-wavenumber) band 
structures were already presented, we focus here on 
the dissipative behavior which is most pertinent to 
this analysis and is best interpreted in the context of 
damping ratio vs. wavenumber and damping ratio vs. 
damped frequency band structures.

4.1 � Damping in host beam only

We start by investigating the effect of utilizing a 
damped host beam of the inertant metamaterial. 
Given the lack of damping in any of the resonator 
components, our analysis remains focused on the 
undamped configurations (UC) of the mechanical net-
works. We adopt a proportional damping approach 
where �b = ��b , with �b and �b denoting the vis-
cous damping and stiffness matrices of the host beam. 
� is a proportionality constant that is selected to ren-
der �b = 0.001 , where �b is the fundamental mode’s 
damping ratio. In the following, two inertant 

metamaterials composed of the same host beam but 
different resonator configurations (with UC2 and 
UC3 as mechanical networks) are compared, when 
� = 1 and � =

1

7
 . The damping ratio band structures 

of both metamaterials are superimposed on top of 
each other in Fig.  5, with the solid and dotted lines 
being associated with UC2 and UC3, respectively. 
Figure  5a depicts the variation of Bloch damping 
ratios as function of wavenumbers, and is then used to 
obtain Fig.  5b which plots the damping ratio versus 
the dimensionless damped frequency Ωd =

�d

�t

 . The 
latter enables unit cell predictions to be evaluated in 
the context of structural vibration rather than wave 
propagation since Bloch damping ratios are plotted 
against oscillatory frequencies in this case. We vali-
date these results by computing the modal damping 
ratios of a finite beam with UC2 as mechanical net-
work and plotting them as discrete points (circle 
markers) in Fig. 5b. These discrete points, which are 
in very close agreement with the solid curves at their 
respective locations, enable us to compare the realis-
tic behavior of the finite metamaterial with the infi-
nite medium predictions obtained from a single cell 
analysis. Three observations can be extracted from 
Fig. 5b as follows: (1) Bloch damping ratios exhibit 
vanishingly small values at the vicinity of bandgaps 
in both resonator configurations. (2) The intermediate 
branch exhibits a concave-down formation, irrespec-
tive of the used resonator configuration (However, the 
maximum attainable damping ratio in UC2 is higher 
than its counterpart corresponding to UC3). (3) Far 
away from the bandgap regions, the dissipative 

a b

Fig. 5   Dissipative behavior of an inertant metamaterial beam 
with damping in the host beam only. A comparison between 
the a damping ratio and b damping-frequency band struc-
tures for two unit cells with UC2 (solid) and UC3 (dotted) as 

mechanical networks when �
b
= 0.001 while � = 1 and � =

1

7
 . 

Damping in the resonator is ignored ( �
v
= �

i
= 0 ). The modal 

damping ratios of a finite beam with UC2 as the mechanical 
network are plotted in b as discrete points (small black circles)
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behavior of the acoustic and optical branches in both 
configurations is almost identical.

4.2 � Damping in inerter resonator only

We now examine damping in the local resonators 
using an undamped host beam. While both viscous 
dampers cv and ci are resonator components, their 
influences on the overall dissipative behavior are radi-
cally different and therefore merit two separate inves-
tigations. In the first scenario, we look at an iner-
tant metamaterial beam with cv ≠ 0 and ci = 0 (i.e., 
damping placed outside the inerter-based mechanical 
network) and in the second, cv = 0 and ci ≠ 0 (i.e., 
damping placed inside the inerter-based mechanical 
network).

4.2.1 � Damping placement outside the mechanical 
network

Initially, the first scenario is examined for two iner-
tant metamaterials composed of identical undamped 
host beams but different resonator configurations 
(with UC2 and UC3 as mechanical networks) when 
� = 1 , � =

1

7
 , and �v = 0.001 . For both metamateri-

als, the damping ratio band structures are computed 
as shown in Fig. 6. The modal damping ratios asso-
ciated with UC2 are calculated for a representative 
finite medium and superimposed on Fig. 6b for vali-
dation. We observe that: (1) The first bandgap is sur-
rounded by Bloch damping ratios that are higher in 
UC2 than UC3 with the acoustic branch in UC2 being 

more dissipative than that of UC3. Conversely, Bloch 
damping ratios surrounding the second bandgap are 
higher in UC3 than UC2, especially at the start of 
the optical branch. (2) Both configurations exhibit 
extremely small damping ratios at some point along 
the intermediate branch which implies that as long as 
mechanical networks are rendered lossless, the result-
ant metamaterial will produce strongly oscillating 
vibration modes between induced bandgaps. Fortu-
nately, damping placement inside the inerter-based 
mechanical network overcomes this problem, as will 
be shown next.

4.2.2 � Damping placement inside the mechanical 
network

When ci ≠ 0 , we need to shift our analysis to the 
three damped configurations DC1, DC2, and DC3. 
While each of these three configurations is comprised 
of an inerter, a spring, and a viscous damper, their 
respective arrangements and internal hierarchy has a 
significant effect on the emergent dispersion charac-
teristics. As a case in point, the full dispersion prop-
erties for a unit cell with DC1 as mechanical network 
are comprehensively illustrated in Fig.  7. Interest-
ingly, inerter resonators with this configuration pro-
duce only one local resonance bandgap (analogous 
to UC1) despite the presence of an additional DOF 
in their motion equations. This happens despite the 
presence of an intermediate branch as confirmed by 
Fig. 7, and mathematically anticipated given the addi-
tional DOF. Additionally, inertant metamaterials with 

a b

Fig. 6   Dissipative behavior of an inertant metamaterial beam 
with damping in the resonator only. A comparison between 
the a damping ratio and b damping-frequency band struc-
tures for two unit cells with UC2 (solid) and UC3 (dotted) as 
mechanical networks. Damping is placed outside the mechani-

cal network component of the resonator only ( �
v
= 0.001 and 

�
b
= �

i
= 0 ) while � = 1 and � =

1

7
 . The modal damping ratios 

of a finite beam with UC2 as the mechanical network are plot-
ted in b as discrete points (small black circles)
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this configuration bring about some characteristics 
which depart from classical metamaterials. For exam-
ple, Fig. 7a, b display the band structures for a DC1 
unit cell corresponding to �i = 0.05 and four differ-
ent inertance ratios ( � increases as the curves become 
darker). Each simulation depicts a � value which is 
intentionally associated with a corner frequency that 
is tuned to �c = �BG1 , where �BG1 is the frequency 
of the lower bound of the single local resonance 
bandgap present in this system. Figure  7d, e repeat 
the same exercise for a corner frequency tuned to 
the upper bandgap bound ( �c = �BG2 ). The four fig-
ures all show that the acoustic and optical branches 
can be shaped in different ways (as needed) by tun-
ing the value of �c . When �c = �BG1 , the acoustic 

a b c

d e f

Fig. 7   Dissipative behavior of an inertant metamaterial beam 
with damping in the resonator only. Damping ratio and damp-
ing-frequency band structures for a unit cell with DC1 as the 
mechanical network. Damping is placed inside the mechani-
cal network component of the resonator only ( �

i
= 0.05 and 

�
b
= �

v
= 0 ). In a, b, the corner frequencies are tuned to 

�
c
= �

BG1
 and in d, e, they are tuned to �

c
= �

BG2
 , using four 

different � values ( � increases as the curves become darker). 
The results in b, e are validated in c, f, respectively, for the 
special case when � =

1

7
 by plotting the modal damping ratios 

of the corresponding finite mediums as discrete points (small 
black circles)

Fig. 8   Transverse displacements at the free tip of the cantile-
vered inertant metamaterial beams used in Fig. 7c ( �

c
= �

BG1
) 

and 7f ( �
c
= �

BG2
 ) with twelve resonators of DC1 as the 

mechanical network when an excitation force is applied a dis-
tance a from the fixed end of each beam



	 Meccanica

1 3
Vol:. (1234567890)

branch is deliberately shaped to exhibit vanishingly 
small damping ratios at the bandgap’s lower bound 
frequency and when �c = �BG2 , similar properties 
are achieved at the bandgap’s upper bound frequency. 
Moreover, it is clear that the intermediate branch is 
always associated with relatively highly dissipative 
Bloch modes. This is found to be the case even for 
small �i values. Finally, the results in Fig.  7b, e are 
validated in Fig.  7c, f, respectively, for the special 
case when � = 1∕7 by plotting the modal damping 
ratios of the corresponding finite mediums. It is clear 
that the intermediate branches in both figures are 
realized by vibration modes inside the bandgaps (see 
close-up insets). Consequently, a critical question that 
arises from the previous discussion is whether these 
vibration modes are detrimental to the integrity of 
the bandgaps. A definite answer to this can be readily 
inferred from Fig.  8, which computes the transverse 
displacements at the tip points of the cantilevered 

inertant metamaterial beams used in Fig. 7c, f when 
a transverse excitation force is applied a distance a 
from the fixed end of each respective beam. The fre-
quency response plot clearly shows that the bandgaps 
are not affected by the presence of such vibration 
modes within their bounds.

Finally, we show that efficient vibration damping 
between induced bandgaps can be achieved when DC2 
or DC3 is utilized. To this end, Fig. 9 depicts their cor-
responding damping ratio and damping-frequency band 
structures when � = 1 , �v = 0 , and �i = 0.001 . Unlike 
their earlier counterparts (with �i = 0 , shown in Fig. 6), 
the intermediate branches in Fig. 9 (with Fig. 9a, b and d, 
e being associated with DC2 and DC3, respectively, 
when � =

1

7
 ) do not produce vanishingly small damping 

ratios, rendering these two damped configurations more 
suitable for applications that require vibration control 
between bandgaps. It is interesting to see how the disper-
sion branches evolve as function of the inertance ratio. 

a b c

fed

Fig. 9   Dissipative behavior of an inertant metamaterial 
beam with damping in the resonator only. Damping ratio and 
damping-frequency band structures for two unit cells with 
a, c DC2 and d, f DC3 as mechanical networks. Damping is 
placed inside the mechanical network component of the reso-
nator only ( �

i
= 0.001 and �

b
= �

v
= 0 ). The results in a, b, d, 

e are shown for the special case when � = 1 and � =
1

7
 , which 

are validated in b, e by plotting the modal damping ratios of 
the corresponding finite mediums as discrete points (small 
black circles). c, f are computed using four different � values ( � 
increases as the curves become darker)
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This is shown in Fig. 9c, f using four different � values 
with graded (light to dark) colors where the darker ones 
are associated with larger � values. For DC2 (Fig. 9c), it 
is clear that as � increases, higher Bloch damping ratios 
are attained around the second bandgap, which also leads 
to increasingly more dissipative optical branches. Con-
versely, lesser dissipative behavior is observed around 
the first bandgap as a result of increasing � . On the other 
hand, the dispersion mechanics corresponding to DC3 
are shown in Fig.  9e, which reveals the exact opposite 
properties of DC2. More importantly, the intermediate 
branch in both DC2 and DC3 switch its concavity as a 
result of sweeping from smaller to larger � values, chang-
ing it from concave-down to concave-up formation as 
can be inferred from Fig. 9c, f.

5 � Conclusions

In this paper, a class of elastic metamaterials where 
an inerter element is integrated in a lumped mechani-
cal network, which itself is a component of a locally 
resonant substructure, was thoroughly investigated. 
The layout of the mechanical network including the 
nature of its components, the precise location of the 
inerter within it, as well as the source of damping in 
the metamaterial were all shown to play central roles 
in shaping their dispersion mechanics and dissipative 
performance. Overall, six configurations of inerter 
resonators comprising different design architectures 
were examined: UC1 through UC3 as the undamped 
networks and DC1 through DC3 being their damped 
counterparts. In terms of bandgap characteristics, 
the following summarizes the two most important 
takeaways:

•	 When UC1 (or DC1) is used as the mechanical 
network, one local resonance bandgap is gener-
ated (despite the presence of an intermediate dis-
persion branch in the DC1 case). As the inertance 
ratio increases, the gap is down-shifted along the 
frequency axis at the expense of its width.

•	 UC2 and UC3 (as well as DC2 and DC3) each 
yields two bandgaps. Over a sensible range of 
inertance ratios, it is shown that: 

1.	 Higher frequency bandgaps are wider than 
lower frequency ones in both UC2 and UC3 
with the following caveat: UC2 gives rise 

to bandgaps that are closer to each other in 
terms of their widths whereas for UC3, the 
higher frequency bandgap is significantly 
wider than the lower frequency one.

2.	 The frequency range separating both band-
gaps increases proportionally with the iner-
tance ratio, in both UC2 and UC3.

Dissipation was shown to play a critical role in the 
design of inertant metamaterials. Unconventional band 
structures that directly relate Bloch damping ratios to 
oscillatory damped frequencies are implemented in the 
analysis. The mechanics of dissipation show that when 
DC1 is used, the acoustic and optical branches can be 
shaped in different ways (as needed) by tuning the cor-
ner frequency. Moreover, the presence of an intermediate 
branch is realized by vibration modes inside the band-
gap. It was shown, however, that the aforementioned 
modes are not detrimental to the bandgap itself as evi-
dent from the frequency response of the finite realiza-
tion. Following a similar analysis of both DC2 and DC3, 
it is observed that when damping is placed outside the 
inerter-based mechanical network, vanishingly small 
damping ratios appear at some point along the intermedi-
ate branch. The latter implies that as long as mechanical 
networks are rendered lossless, respective finite systems 
definitely produce strongly oscillating modes between the 
gaps. Fortunately, damping placement inside the inerter-
based mechanical network overcomes this problem, ena-
bling efficient broadband mitigation between the gaps. It 
was also shown that modal damping ratios obtained for 
a given finite inertant metamaterial beam enable a very 
efficient and direct comparison with unit cell predic-
tions by providing discrete data points at their respec-
tive frequency locations, which can be superimposed on 
the aforementioned damping-frequency band structures. 
These modal damping ratios were shown to be in very 
close agreement with the dissipative dispersion mechan-
ics predicted from the various damped configurations 
throughout the study. The work presented here provides 
a comprehensive framework for the analysis of complex 
and hierarchical mechanical networks which comprise 
arbitrary combinations of elastic, dissipative, and inerter 
elements, and that can be readily extended to different 
configurations; thus expanding the current design space 
of resonant metamaterials beyond the traditional notion 
of basic spring-mass absorbers. Most importantly, it 
sheds light on the interplay between prescribed damping 
and emergent dissipation in dispersive inertant structures; 
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effectively changing the current paradigm from one that 
merely looks at damping amount to a more effective 
placement-based strategy which selectively inserts a 
given (fixed) damping amount within the resonant net-
work with the aim of maximizing the overall dissipative 
effect.
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Appendix

When DC2 is replaced with DC1 or DC3 in Fig. 2d, 
the resulting mass matrix is identical to Eq.  (13a). 
However, the damping and stiffness matrices corre-
sponding to DC1 can be expressed as follows:

and
(14)

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c11 + cv + ci c12 c13 c14 c15 c16 − cv − ci
c21 c22 c23 c24 c25 c26 0 0

c31 c32 c33 c34 c35 c36 0 0

c41 c42 c43 c44 c45 c46 0 0

c51 c52 c53 c54 c55 c56 0 0

c61 c62 c63 c64 c65 c66 0 0

−(cv + ci) 0 0 0 0 0 cv ci
−ci(1 +

b

mv

) 0 0 0 0 0 0 ci(1 +
b

mv

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

whereas the damping and stiffness matrices corre-
sponding to DC3 can be written as:

and
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