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Abstract—A source node updates its status as a point process
and also forwards its updates to a network of observer nodes.
Within the network of observers, these updates are forwarded
as point processes from node to node. Each node wishes its
knowledge of the source to be as timely as possible. In this
network, timeliness is measured by a discrete form of age of
information: each status change at the source is referred to as a
version and the age at a node is how many versions out of date
is its most recent update from the source. This work introduces
a method for evaluating the average version age at each node
in the network when nodes forward updates using a memoryless
gossip protocol. This method is then demonstrated by version
age analysis for a collection of simple networks. For gossip on a
complete graph with symmetric updating rates, it is shown that
each node has average age that grows as the logarithm of the
network size.

I. INTRODUCTION

Gossip is a popular mechanism to convey status information

in a distributed systems and networks. The efficacy of gossip

mechanisms for distributed computation [1], [2] and message

dissemination [3] is well known. While it is also known

that gossip can be inefficient relative to more complex or

application-specific algorithms, gossip mechanisms remain an

attractive option when protocols need to be simple or the

network connectivity is time-varying [4]. For example, gossip

protocols could be a good choice for low latency vehicular

safety messaging. And yet, while vehicular message exchange

was the early motivation for age of information (AoI) research

[5], [6], there has been little (if any) effort to examine AoI for

gossip protocols.

In this work, we begin to re-examine gossip from an age-of-

information (AoI) perspective [7], [8]. Specifically, a source

wishes to share its status update messages with a network

of n nodes. These nodes, which can be viewed monitors of

the source, employ gossip to randomly forward these update

messages amongst themselves in order that all nodes have

timely knowledge of the state of the source.

This work extends AoI analysis in a class of status sampling

networks, a networking paradigm that is consistent with gossip

models in that short messages, representing samples of a

node’s status update process, are delivered as point processes

to neighbor nodes. This “zero service time” model may be

useful in a high speed network in which updates represent

small amounts of protocol information (requiring negligible

time for transmission) that are given priority over data traffic.

This model has also been widely used in the age analysis
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of energy harvesting updaters [9]–[15] where updating rates

are constrained by energy rather than bandwidth. While the

transmission of a single update may be negligible, the update

rates are limited so that protocol information in the aggregate

does not consume an excessive fraction of network resources.

Prior work on status sampling networks [16], [17] developed

tools for analyzing age in line networks in which each node i
only received updates from node i−1. The key advance of this

work is the development of an average age analysis method

for monitors that receive updates via multiple network paths.

II. SYSTEM MODEL AND SUMMARY OF RESULTS

Status updates of a source node 0 are shared via a network

with a set of nodes N = {1, 2, . . . , n}. Motivated by sensor

networks in which accurate clocks may be unavailable, timeli-

ness at each node is measured by update versions. The source

node 0 maintains the current (fresh) version of its status and

thus node 0 always has version age X0(t) = 0. Starting at time

t = 0, status updates at the source node 0 occur as a rate λ00
Poisson process N0(t). That is, at time t > 0, the most recent

update at the source is version N0(t). If the current update at

node i is version Ni(t), then the age at node i, as measured

in versions, is Xi(t) = N0(t)−Ni(t). An example of version

age sample paths is depicted in Figure 1. In particular, if the

source has an update at time t, the age at each node i becomes

X ′
i(t) = Xi(t) + 1.

In this work, we develop a method for evaluating the

limiting average age limt→∞ E[Xi(t)], which we refer to as

the version AoI at node i. Building on prior work [17], [18],

this paper employs the methodology of the stochastic hybrid

system (SHS) to analyze the convergence of the expected age.

Specifically, we assume the nodes forward updates using

gossip. Node i sends its most recent update to node j as a

rate λij Poisson process. If node i sends its update to node j
at time t, the age at node j becomes

X ′
j(t) = min[Xi(t), Xj(t)]. (1)

Implicit in (1) is that updates are version-stamped so that node

j only adopts fresher updates from node i.
The SHS approach is to develop a set of ordinary differ-

ential equations for E[Xi(t)] that enables the evaluation of

the limiting age limt→∞ E[Xi(t)]. As we see in (1), this

will require the characterization of age variables such as

X{i,j}(t) ≡ min(Xi(t), Xj(t)). More generally, for arbitrary

subsets S ⊆ N , the analysis will need to track the age

XS(t) ≡ min
j∈S

Xj(t) (2a)
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and its expected value

vS(t) ≡ E[XS(t)]. (2b)

We can interpret XS(t) as the status age of an observer of

updates arriving at any node in S and we may refer to XS(t)
as the (version) age of subset S.

The main result of the paper is the development of a

system of linear equations for the calculation of the limiting

average age v̄S = limt→∞ E[XS(t)]. To describe this system

of equations, define the update rate of node i into set S as

λi(S) ≡
{

∑

j∈S λij i 6∈ S,

0 i ∈ S,
(3)

and the set of updating neighbors of S as

N(S) ≡ {i ∈ N : λi(S) > 0}. (4)

With this notation, we state our main result.

Theorem 1: The expected status age vS(t) = E[XS(t)] of

an observer of node set S converges to v̄S = limt→∞ vS(t)
satisfying

v̄S =
λ00 +

∑

i∈N(S) λi(S)v̄S∪{i}

λ0(S) +
∑

i∈N(S) λi(S)
. (5)

Proof of this claim is deferred to Section V-B.

In Section IV, we demonstrate the use of Theorem 1 first

for the n = 3 node network in Figure 2 and second for the

n node symmetric gossip network on a complete graph, as

depicted in Figure 3 for n = 6 nodes. In the complete graph,

λij = λ/(n− 1) for all node pairs i, j ∈ N . This corresponds

to each node i ∈ N randomly sending its current updates to

each of the other n − 1 nodes as a rate λ/(n − 1) Poisson

process. In addition, the source sends symmetrically to each

node j ∈ N with Poisson rate λ0j = λ/n. By exploiting the

symmetry of the complete graph, Theorem 1 shows that the

average age at a node grows as log n.

Theorem 2: For the symmetric complete gossip network

with the source sending updates to each node i ∈ N at rate

λ/n, the average version age of each node i is

λ00
λ

[

n− 1

n

n−1
∑

k=1

1

k
+

1

n

]

≤ lim
t→∞

E[Xi(t)] ≤
λ00
λ

n
∑

k=1

1

k
. (6)

Hence, as the network size n grows, the average age at

each node only grows logarithmically in n. Although the

communication models are different in various small ways,

this average result is analogous to [3, Theorem 3.1] in which

the ǫ-dissemination time, i.e. the time until the probability a

source message has not reached all nodes is less than ǫ, is

shown to grow as O(log n).

III. RELATED WORK

AoI analysis started with single-source single-server first-

come first-served (FCFS) queues [7], the M/M/1 last-come

first-served (LCFS) queue with preemption in service [19],

and the M/M/1 FCFS system with multiple sources [20]. An

overview of AoI research can be found in [8]; here we focus

on the most closely related contributions.

version age

t

t0,01 t0,02 t0,11 t0,03 t0,04 t1,21 t0,12 t0,05 t0,21 t0,06

1

2

3

4

X1(t)

X2(t)

Fig. 1. Fresh updates from a source pass through the network as point

processes; ti,jn marks the nth update sent on link (i, j). Node 1 gets updates
from the source node 0. Node 2 gets updates from both the source and also
from node 1. Age is measured in versions, Xi(t) records how many versions
out-of-date the update at node i is relative to the source.

To evaluate AoI for a single source sending updates through

a network cloud [21] or through an M/M/m server [22]–[24],

out-of-order packet delivery was the key analytical challenge.

The first evaluation of the average AoI over multihop network

routes [25] employed a discrete-time version of the status

sampling network also employed in [16], [17]. These works

obtained simple AoI results because the updates followed

a single path to a destination monitor. This avoided the

complexity of multiple paths and the consequent accounting

for repeated and out-of-order update message deliveries.

When multiple sources employ wireless networks subject

to interference constraints, AoI has been analyzed under a

variety of link scheduling strategies [26]–[34]. Age bounds

were developed from graph connectivity properties [35] when

each node needs to update every other node. For DSRC-

based vehicular networks, update piggybacking strategies were

developed and evaluated [6].

When update transmission times over network links are

exponentially distributed, sample path arguments were used

[36]–[38] to show that a preemptive Last-Generated, First-

Served (LGFS) policy results in smaller age processes at all

nodes of the network than any other causal policy. Note that

the status sampling network model in this work can also be

viewed as a network of preemptive LGFS server; see [17]

for details. With that equivalence, [38] and this work can

be viewed as complementary in that [38] proves the age-

optimality of LGFS policies and this work provides analytic

tools for the evaluation of those policies.

While these prior contributions used sawtooth age functions,

version age in this work is related to various discretized age

metrics. Notably, version age is similar to the age of incorrect

information [39] and age of synchronization [40] metrics. For

all three metrics, the age at a node is zero as long as that

node has the current status of the source. Both this work and

[41] employ version age to track a Poisson updating process, a

problem introduced in [42]. Another interpretation of version

age is that zero age is fresh, and nonzero age is stale. This is

the binary freshness metric found in [43]–[45].

IV. APPLICATIONS OF THEOREM 1

To utilize Theorem 1, suppose we wish to calculate the

average age at node n. We start with S = {n} and generate

an equation for v̄{n} in terms of the variables v̄{i,n} for nodes

i such that λi,n > 0. For each such node i, the next step is

to apply (5) recursively with S = {i, n}. This generates an

2985
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Fig. 2. Updates generated at node 0 are forwarded to nodes 1, 2, and 3.

equation for each v̄{i,n} in terms of variables v̄i,j,n for each

node j that sends updates to one or both nodes in {i, n}.

In general, at stage k, we construct equations for v̄S for

sets S with size |S| = k in terms of variables v̄S′ such

that each S′ has size |S′| = k + 1. In the worst case, this

procedure terminates at stage k = n when S = N . For a

fully connected graph, this procedure generates equations for

all 2n − 1 non-empty subsets of N . On the other hand, when

the network graph is sparse, substantially fewer equations may

be generated.

In the next three sections, we demonstrate Theorem 1

with three examples; a three-node toy network with arbitrary

rates, version age analysis of the n-node symmetric complete

graph that provides the proof of Theorem 2, and an n-node

symmetric ring network.

A. Toy example of Theorem 1

Here we demonstrate Theorem 1 by solving for the average

version age v̄{2} at node 2 for the network shown in Figure 2.

The recursive application of (5) with S = {2}, S = {1, 2},

S = {2, 3} and S = {1, 2, 3} yields

v̄{2} =
λ0,0 + λ1,2v̄{1,2} + λ3,2v̄{2,3}

λ1,2 + λ3,2
, (7a)

v̄{1,2} =
λ0,0 + λ3,2v̄{1,2,3}

λ0,1 + λ3,2
, (7b)

v̄{2,3} =
λ0,0 + (λ1,2 + λ1,3)v̄{1,2,3}

λ0,3 + λ1,2 + λ1,3
, (7c)

v̄{1,2,3} =
λ0,0

λ0,1 + λ0,3
. (7d)

We note that (7d) is an example of the general result that

v̄N = λ00/λ0(N ). For this n, it follows from (7) that

v̄{2} =
λ0,0

λ1,2 + λ3,2

[

1 +
λ1,2

λ0,1 + λ3,2

(

1 +
λ3,2

λ0,1 + λ0,3

)

+
λ3,2

λ0,3 + λ1,2 + λ1,3

(

1 +
λ1,2 + λ1,3
λ0,1 + λ0,3

)]

. (8)

The solution (8) is complicated because it includes a variety

of special cases. For example, when λ1,2 → ∞, v̄{1,2,3} and

v̄{1,2} are unchanged but v̄{2} → v̄{1,2} because nodes 1 and

2 become equivalent to a single node with update rates λ0,1
from node 0 and λ3,2 from node 3. On the other hand, when

λ1,2 → 0, v̄{1,2,3} is unchanged while

v̄{2} → λ0,0
λ3,2

+ v̄{2,3}, v̄{2,3} → λ0,0 + λ1,3v̄{1,2,3}

λ0,3 + λ1,3
. (9)

In this case, the solution for v̄{2} reflects the path diversity

offered by the two paths from the source to node 2.

0

1

2

3

4

5

6

λ00

Fig. 3. Updates generated at node 0 at rate λ00 are forwarded to nodes
in N = {1, . . . , 6} which form a complete graph. Node 0 sends updates to
each node i ∈ N at rate λ/6. Each node i ∈ N send updates to every other
node j at rate λ/5.

B. Proof of Theorem 2

We now use Theorem 1 to find the average version age of a

node for the n-node complete graph, as depicted for n = 6 in

Figure 3. Here the symmetry of the complete graph is essential

to derive Theorem 2. In the absence of symmetry, the recursion

of Theorem 1 would generate equations for all 2n−1 nontrivial

subsets of N .

Let Sj denote an arbitrary j-node subset of the complete

graph. By symmetry, the age processes XSj
(t) for all subsets

Sj are statistically identical. Hence we define ṽj = v̄Sj
.

Moreover, each subset Sj has |N(Sj)| = n−j neighbor nodes

i that send updates to Sj at rate λi(Sj) = jλ/(n − 1). For

each such neighbor i, Sj ∪ {i} is a j + 1 node subset Sj+1.

Also, because the source symmetrically updates all nodes in

N , each subset Sj receives updates from the source node at

rate λ0(Sj) = jλ/n. Thus Theorem 1 yields

ṽj =
λ00 + |N(Sj)|λi(Sj)ṽj+1

λ0(Sj) +N(Sj)λi(Sj)
=
λ00 +

j(n−j)λ
n−1 ṽj+1

jλ
n

+ j(n−j)λ
n−1

. (10)

For j = n, Sj = Sn is the set of all nodes. With all

nodes in the observer set, the neighbor set N(N ) is empty,

λ0(N ) = λ, and Theorem 1 yields ṽn = v̄N = λ00/λ. With

this initial condition, (10) enables iterative computation of

ṽn−1, ṽn−2, . . . until we reach ṽ1, the average age of a single

node. However to complete the proof, let j = n−k, implying

ṽn−k =

λ00

(n−k)λ + k
n−1 ṽn−k+1

1
n
+ k

n−1

. (11)

With the definition v̂k ≡ ṽn−k+1, (11) becomes

v̂k+1 =

λ00

(n−k)λ + k
n−1 v̂k

1
n
+ k

n−1

≤
λ00

(n−k)λ + k
n
v̂k

1
n
+ k

n

. (12)

The upper bound in (12) holds iff v̂k ≤ nλ00/(n−k)λ. Since

v̂1 = ṽn = λ00/λ this requirement holds at k = 1 and can be

shown by induction to hold for all k. Defining yk = kv̂k/n,

it follows from (12) that

yk+1 ≤ λ00
(n− k)λ

+ yk. (13)

Since y1 = λ00/(nλ), it follows from (13) that

yn ≤ λ00
λ

n−1
∑

k=0

1

n− k
=
λ00
λ

n
∑

k=1

1

k
. (14)
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Fig. 4. Average version age of a node on the symmetric n node ring with
λ00/λ = 1. The dashed blue line 1.25

√
n is an empirical approximation, but

not an upper bound; the age will exceed the approximation for n > 40401.

Since yn = v̂n = ṽ1, this completes the proof of the

Theorem 2 upper bound. For the lower bound, the equality

in (12) implies

v̂k+1 ≥ n− 1

k − 1

[

λ00
(n− k)λ

+
k

n− 1
v̂k

]

. (15)

Defining ŷk ≡ kv̂k/(n− 1), (15) implies

ŷk+1 ≥ λ00
(n− k)λ

+ ŷk. (16)

It follows from (16) that v̂n = (n−1)ŷn/n satisfies the lower

bound of Theorem 2.

C. Age on a Symmetric Ring

In the ring network, the source sends updates to each node

at rate λ/n while each node i sends updates to each of its

neighbor nodes1 i+1 and i−1 at rate λ/2. Thus the network

resembles the complete graph of Figure 3, except the interior

transitions are deleted.

For the ring graph, let Rj = {i, i+ 1, . . . , i+ j − 1}
denote an arbitrary contiguous j-node subset of the ring. By

symmetry, the age processes XRj
(t) for all subsets Rj are

statistically identical. Hence we define ṽj = v̄Rj
. Moreover,

for j < n−1, each subset Rj has |N(Rj)| = 2 neighbor nodes

k ∈ {i− 1, j} that send updates to Rj at rate λk(Rj) = λ/2.

For each neighbor k, Rj ∪ {k} is a j + 1 node subset Rj+1.

In addition, for a subset Rn−1, there is a single neighbor k
who sends updates at rate λk(Rn−1) = λ (at rate λ/2 to

neighbor nodes k + 1 and k − 1 that are the head and tail

of Rn−1. Thus |N(Rj)|λk(Rj) = λ for j ∈ {1, . . . , n− 1}.

Also, because the source symmetrically updates all nodes in

N , each subset Rj receives updates from the source node at

rate λ0(Rj) = jλ/n. Thus Theorem 1 yields

ṽj =
λ00 + |N(Rj)|λk(Rj)ṽj+1

λ0(Rj) +N(Rj)λk(Rj)
=
λ00 + λṽj+1

jλ/n+ λ
. (17)

For j = n, Rj = Rn is the set of all nodes. With all

nodes in the observer set, the neighbor set N(N ) is empty,

λ0(N ) = λ, and Theorem 1 yields ṽn = v̄N = λ/λ00, as it

does for all graphs. With this initial condition, (17) enables

iterative computation of ṽn−1, ṽn−2, . . . until we reach ṽ1, the

average age of an individual node. As of this writing, the

downward iteration (17) has not yet yielded a simple bound

for ṽ1. However, as the numerical evaluation is nearly trivial,

1We assume node indexing modulo the n node ring, i.e., node n+1 refers
to node 1 and node 1− 1 refers to node n.

an age plot is presented in Figure 4 for λ00/λ = 1. From the

figure, it is empirically observed that ∆ring(n) ≈ 1.25
√
n.

This numerical evidence may seem surprising since

O(n log n) dissemination time has been reported for the ring

graph [3]. However, to enable age comparisons with the

complete graph, the ring model in this work sends its fresh

updates randomly to the ring. By contrast, the ring graph

model in [3] assumes the source is a node on the ring and

thus the dissemination time to all nodes must be Ω(n). If

source updates were passed only to a single node on the ring,

the average age would indeed grow as O(n).

V. STOCHASTIC HYBRID SYSTEMS FOR AOI ANALYSIS

In this section we use a stochastic hybrid system (SHS)

model to derive Theorem 1. While there are many SHS

variations [46], this work follows [17], [18], which employ the

model and notation in [47]. In general, the SHS is described

by a discrete state q(t) ∈ Q = {0, 1, . . . , qmax} that evolves as

a point process, a continuous component X(t) ∈ R
n described

by a stochastic differential equation in each state q ∈ Q, and a

set L of transition/reset maps that correspond to both changes

in the discrete state and jumps in the continuous state.

A. Version AoI for gossip networks as an SHS

The operation of the gossip network is memoryless; each

node i sends its current update to node j as a Poisson

process of rate λij . Hence, the SHS discrete state space is the

trivial set Q = {0}. Furthermore, because age is measured

in versions, the normally continuous age state X(t) in fact

becomes discrete. That is, X(t) changes only when there is

a transition that corresponds to an update being forwarded.

In the absence of such a transition, the stochastic differential

equation of the SHS is trivially Ẋ(t) = 0.

The remaining component of the SHS model is the set L
of discrete transition/reset maps. In the gossip network, L
corresponds to the set of directed edges (i, j) over which

node i updates node j. However, because of the special role

of node 0 as the source, there are three kinds of transitions.

First, (i, j) = (0, 0) corresponds to the source node generating

a new version so that the version age at all other nodes k
increases by one. The second type of transition is given by

(0, j), corresponding to the source node 0 sending the current

version to node j, reducing the age at node j to zero. In the

third type, a gossiping node i forwards its current update to

node j; node j accepts the update if it is a fresher than its

existing version. To summarize, the set of transitions is

L = {(0, 0)} ∪ {(0, j) : j ∈ N} ∪ {(i, j) : i, j ∈ N}, (18)

transition (i, j) occurs at rate λi,j , and in that transition the

age vector becomes φi,j(X) =
[

X ′
1 · · · X ′

n

]

such that

X ′
k =



















Xk + 1 i = 0, j = 0, k ∈ N ,

0 i = 0, k = j ∈ N ,

min(Xi, Xj) i ∈ N , k = j ∈ N ,

Xk otherwise.

(19a)
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Because of the generality and power of the SHS model,

complete characterization of the X(t) process is often impos-

sible. The approach in [47] is to define test functions ψ(q,X, t)
whose expected values E[ψ(q(t),X(t), t)] are performance

measures of interest that can be evaluated as functions of time;

see [47], [48], and the survey [46] for additional background.

Since the simplified SHS for the gossip network is time

invariant and has a trivial discrete state, it is sufficient to

employ the time invariant test functions ψS(X) = XS . These

test functions yield the processes

ψS(X(t)) = XS(t), (20)

which have expected values

E
[

ψS(X(t))
]

= E
[

XS(t)
]

≡ vS(t). (21)

The objective here is to use the SHS framework to derive a

system of differential equations for the vS(t). To do so, the

SHS mapping ψ → Lψ known as the extended generator is

applied to every test function ψ(X). The extended generator

Lψ is simply the function whose expected value is the

expected rate of change of the test function ψ. Specifically, a

test function ψ(X(t)) has an extended generator (Lψ)(X(t))
that satisfies Dynkin’s formula

d E[ψ(X(t))]

dt
= E[(Lψ)(X(t))]. (22)

For each test function ψ(X), (22) yields a differential equation

for E[ψ(X(t))].
From [47, Theorem 1], it follows from the trivial discrete

state, the trivial stochastic differential equation Ẋ(t) = 0,

and the time invariance of ψS(X) in (20) that the extended

generator of a piecewise linear SHS is given by

(LψS)(X) =
∑

(i,j)∈L

λij [ψS(φi,j(X))− ψS(X)]. (23)

With these preliminaries, we now prove Theorem 1.

B. Proof of Theorem 1

In (23), it follows from (2a), (19), and (20) that the effect

on the test function of transition (i, j) is

ψS(φi,j(X)) = X ′
S = min

k∈S
X ′

k. (24)

Evaluation of (24) depends on the transition type (i, j), as

given in (19). In transition (0, 0), the source node has a version

update and each node k ∈ S ages by one more version. This

implies X ′
k = Xk + 1 for all k ∈ N and thus

X ′
S = min

k∈S
X ′

k = XS + 1. (25)

For other transitions (i, j), only the age Xj at node j is

changed. Thus if j 6∈ S, then XS = mink∈S Xk is unchanged.

However, if j ∈ S, then

X ′
S = min

k∈S
X ′

k = min(min(Xi, Xj), min
k∈S\{j}

Xk)

= min
k∈S∪{i}

Xk = XS∪{i}. (26)

In addition to the common (i, j) transition in which i ∈ N is

a gossiping neighbor of j ∈ S, we note that (26) incorporates

some special cases. If i = 0, then X ′
S = XS∪{0} = 0 since

X0 = 0. On the other hand, if i ∈ S, then S ∪ {i} = S and

X ′
S = XS . That is, an update sent by a node in S cannot

reduce the age XS .

Based on the three types of transitions, namely (0, 0), (0, j),
and (i, j), we conclude that

(LψS)(X) = λ00(XS + 1−XS) +
∑

j∈S

λ0j [0−XS ]

+
∑

i>0
i 6∈S

∑

j∈S

λij
[

XS∪{i} −XS

]

. (27)

We note that X, XS , and XS∪{i} in (27) refer to the age

processes X(t), XS(t) and XS∪{i}(t). With this in mind,

we take the expectation of (27). On the left side of (27),

E[(LψS)(X(t))] = v̇S(t) by Dynkin’s formula (22). On the

right side, E[XS(t)] = vS(t) and E
[

XS∪{i}(t)
]

= vS∪{i}(t)
for all i. These substitutions yield

v̇S(t)=λ00−vS(t)
∑

j∈S

λ0j +
∑

i>0
i 6∈S

∑

j∈S

λij [vS∪{i}(t)− vS(t)].

Employing the definitions (3) and (4) of the update rate λi(S)
of node i into S, and the neighbor set N(S), we obtain

v̇S(t)=λ00−vS(t)
[

λ0(S)+
∑

i∈N(S)

λi(S)
]

+
∑

i∈N(S)

λi(S)vS∪{i}(t).

By setting the derivatives v̇S(t) = 0, we obtain a linear

equation for the time average age v̄S = limt→∞ vS(t) in terms

of the necessary v̄S∪{i}. This yields (5).

VI. CONCLUSION

This work has introduced AoI analysis tools for gossip

algorithms on network graphs. In Theorem 1 we developed a

set of linear equations for the computation of average version

age at any node in a gossip network described by an arbitrary

graph. While the general solution has exponential complexity

in the number of nodes, we believe this unavoidably reflects

the multiplicity of paths from the source to a node. When this

method is applied to the n node complete graph, it was shown

using graph symmetry that the average version age at each

node grows as log n. This promising result suggests that gossip

networks may indeed be suitable for low latency measurement

dissemination, particularly in sensor network settings.

As age analysis for gossip networks is new, considerable

work remains. Since this work has examined only the simplest

network graphs, age analysis over more complex graphs is

needed. Age analysis of gossip for energy harvesting sensors

would also be another obvious area of interest. While this work

employs the version age metric, we expect to see analogous

results for the traditional sawtooth age metric that tracks the

evolution of time. We also believe it may be possible to derive

distributional properties of the age in a gossip network by

extending the moment generating function (MGF) approach

to age analysis in [17].
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