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Abstract—A source node updates its status as a point process
and also forwards its updates to a network of observer nodes.
Within the network of observers, these updates are forwarded
as point processes from node to node. Each node wishes its
knowledge of the source to be as timely as possible. In this
network, timeliness is measured by a discrete form of age of
information: each status change at the source is referred to as a
version and the age at a node is how many versions out of date
is its most recent update from the source. This work introduces
a method for evaluating the average version age at each node
in the network when nodes forward updates using a memoryless
gossip protocol. This method is then demonstrated by version
age analysis for a collection of simple networks. For gossip on a
complete graph with symmetric updating rates, it is shown that
each node has average age that grows as the logarithm of the
network size.

I. INTRODUCTION

Gossip is a popular mechanism to convey status information
in a distributed systems and networks. The efficacy of gossip
mechanisms for distributed computation [1], [2] and message
dissemination [3] is well known. While it is also known
that gossip can be inefficient relative to more complex or
application-specific algorithms, gossip mechanisms remain an
attractive option when protocols need to be simple or the
network connectivity is time-varying [4]. For example, gossip
protocols could be a good choice for low latency vehicular
safety messaging. And yet, while vehicular message exchange
was the early motivation for age of information (Aol) research
[5], [6], there has been little (if any) effort to examine Aol for
gossip protocols.

In this work, we begin to re-examine gossip from an age-of-
information (Aol) perspective [7], [8]. Specifically, a source
wishes to share its status update messages with a network
of n nodes. These nodes, which can be viewed monitors of
the source, employ gossip to randomly forward these update
messages amongst themselves in order that all nodes have
timely knowledge of the state of the source.

This work extends Aol analysis in a class of status sampling
networks, a networking paradigm that is consistent with gossip
models in that short messages, representing samples of a
node’s status update process, are delivered as point processes
to neighbor nodes. This “zero service time” model may be
useful in a high speed network in which updates represent
small amounts of protocol information (requiring negligible
time for transmission) that are given priority over data traffic.
This model has also been widely used in the age analysis
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of energy harvesting updaters [9]-[15] where updating rates
are constrained by energy rather than bandwidth. While the
transmission of a single update may be negligible, the update
rates are limited so that protocol information in the aggregate
does not consume an excessive fraction of network resources.

Prior work on status sampling networks [16], [17] developed
tools for analyzing age in line networks in which each node
only received updates from node ¢ — 1. The key advance of this
work is the development of an average age analysis method
for monitors that receive updates via multiple network paths.

II. SYSTEM MODEL AND SUMMARY OF RESULTS

Status updates of a source node O are shared via a network
with a set of nodes N' = {1,2,...,n}. Motivated by sensor
networks in which accurate clocks may be unavailable, timeli-
ness at each node is measured by update versions. The source
node 0 maintains the current (fresh) version of its status and
thus node 0 always has version age X (t) = 0. Starting at time
t = 0, status updates at the source node 0 occur as a rate g
Poisson process Ny(t). That is, at time ¢ > 0, the most recent
update at the source is version Ny(t). If the current update at
node i is version N;(t), then the age at node 4, as measured
in versions, is X;(t) = No(t) — N;(t). An example of version
age sample paths is depicted in Figure 1. In particular, if the
source has an update at time ¢, the age at each node 7 becomes
X[(t) = X;(t) + 1.

In this work, we develop a method for evaluating the
limiting average age lim;_, o, E[X;(¢)], which we refer to as
the version Aol at node ¢. Building on prior work [17], [18],
this paper employs the methodology of the stochastic hybrid
system (SHS) to analyze the convergence of the expected age.

Specifically, we assume the nodes forward updates using
gossip. Node ¢ sends its most recent update to node j as a
rate \;; Poisson process. If node ¢ sends its update to node j
at time ¢, the age at node j becomes

Xj(t) = min[X;(t), X;(t)]. (1)

J

Implicit in (1) is that updates are version-stamped so that node
7 only adopts fresher updates from node <.

The SHS approach is to develop a set of ordinary differ-
ential equations for E[X;(¢)] that enables the evaluation of
the limiting age lim; oo E[X;(¢)]. As we see in (1), this
will require the characterization of age variables such as
X{i g3 (t) = min(X;(t), X;(t)). More generally, for arbitrary
subsets S C N, the analysis will need to track the age

Xs(t) = 1]116151 X;(t) (2a)
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and its expected value
vs(t) = E[Xs(2)]-

We can interpret Xg(t) as the status age of an observer of
updates arriving at any node in .S and we may refer to Xg(t)
as the (version) age of subset S.

The main result of the paper is the development of a
system of linear equations for the calculation of the limiting
average age Us = lim;_, o, E[Xs(t)]. To describe this system
of equations, define the update rate of node ¢ into set .S as

(2b)

A(s) = § Zies i TES 3)
0 i€ S,
and the set of updating neighbors of S as
N(S)={i e N: \(S) > 0}. 4)

With this notation, we state our main result.

Theorem 1: The expected status age vs(t) = E[Xg(t)] of
an observer of node set S converges to Ug = lim;_, o vg(t)
satisfying

. Aoo + D ien(s) Ai(S)Usugiy )
g Ao(S) + Xiens) AilS)
Proof of this claim is deferred to Section V-B.

In Section IV, we demonstrate the use of Theorem 1 first
for the n = 3 node network in Figure 2 and second for the
n node symmetric gossip network on a complete graph, as
depicted in Figure 3 for n = 6 nodes. In the complete graph,
Xij = A/(n—1) for all node pairs ¢, j € N. This corresponds
to each node i € A randomly sending its current updates to
each of the other n — 1 nodes as a rate A\/(n — 1) Poisson
process. In addition, the source sends symmetrically to each
node j € N with Poisson rate \o; = \/n. By exploiting the
symmetry of the complete graph, Theorem 1 shows that the
average age at a node grows as logn.

Theorem 2: For the symmetric complete gossip network
with the source sending updates to each node i € A at rate
A/n, the average version age of each node ¢ is

-1
Ao [n—11 1
eI
A n k n
k=1
Hence, as the network size m grows, the average age at
each node only grows logarithmically in n. Although the
communication models are different in various small ways,
this average result is analogous to [3, Theorem 3.1] in which
the e-dissemination time, i.e. the time until the probability a

source message has not reached all nodes is less than e, is
shown to grow as O(logn).

. (6)

t—o0

. oo
<1 ElX;(t)] < —
< Jim PO <Y

III. RELATED WORK

Aol analysis started with single-source single-server first-
come first-served (FCFS) queues [7], the M/M/1 last-come
first-served (LCFS) queue with preemption in service [19],
and the M/M/1 FCFS system with multiple sources [20]. An
overview of Aol research can be found in [8]; here we focus
on the most closely related contributions.

version age

4
P -
2 re- SEPPPRRE = s - Xl(t)
e T e B ot e ety
j T : } T T Lo i T t
R A e R AR Ul U A e
Fig. 1.  Fresh updates from a source pass through the network as point

processes; t;;” marks the nth update sent on link (4, j). Node 1 gets updates
from the source node 0. Node 2 gets updates from both the source and also
from node 1. Age is measured in versions, X;(¢) records how many versions
out-of-date the update at node ¢ is relative to the source.

To evaluate Aol for a single source sending updates through
a network cloud [21] or through an M/M/m server [22]-[24],
out-of-order packet delivery was the key analytical challenge.
The first evaluation of the average Aol over multihop network
routes [25] employed a discrete-time version of the status
sampling network also employed in [16], [17]. These works
obtained simple Aol results because the updates followed
a single path to a destination monitor. This avoided the
complexity of multiple paths and the consequent accounting
for repeated and out-of-order update message deliveries.

When multiple sources employ wireless networks subject
to interference constraints, Aol has been analyzed under a
variety of link scheduling strategies [26]-[34]. Age bounds
were developed from graph connectivity properties [35] when
each node needs to update every other node. For DSRC-
based vehicular networks, update piggybacking strategies were
developed and evaluated [6].

When update transmission times over network links are
exponentially distributed, sample path arguments were used
[36]-[38] to show that a preemptive Last-Generated, First-
Served (LGFS) policy results in smaller age processes at all
nodes of the network than any other causal policy. Note that
the status sampling network model in this work can also be
viewed as a network of preemptive LGFS server; see [17]
for details. With that equivalence, [38] and this work can
be viewed as complementary in that [38] proves the age-
optimality of LGFS policies and this work provides analytic
tools for the evaluation of those policies.

While these prior contributions used sawtooth age functions,
version age in this work is related to various discretized age
metrics. Notably, version age is similar to the age of incorrect
information [39] and age of synchronization [40] metrics. For
all three metrics, the age at a node is zero as long as that
node has the current status of the source. Both this work and
[41] employ version age to track a Poisson updating process, a
problem introduced in [42]. Another interpretation of version
age is that zero age is fresh, and nonzero age is stale. This is
the binary freshness metric found in [43]-[45].

IV. APPLICATIONS OF THEOREM 1

To utilize Theorem 1, suppose we wish to calculate the
average age at node n. We start with S = {n} and generate
an equation for ¥, in terms of the variables vy; ) for nodes
i such that \; , > 0. For each such node i, the next step is
to apply (5) recursively with S = {i,n}. This generates an
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Fig. 2. Updates generated at node O are forwarded to nodes 1, 2, and 3.

equation for each vy; »y in terms of variables v; ;, for each
node j that sends updates to one or both nodes in {i,n}.

In general, at stage k, we construct equations for vg for
sets S with size |S| = k in terms of variables ¥sr such
that each S’ has size |S’| = k + 1. In the worst case, this
procedure terminates at stage K = n when S = N. For a
fully connected graph, this procedure generates equations for
all 2™ — 1 non-empty subsets of A. On the other hand, when
the network graph is sparse, substantially fewer equations may
be generated.

In the next three sections, we demonstrate Theorem 1
with three examples; a three-node toy network with arbitrary
rates, version age analysis of the n-node symmetric complete
graph that provides the proof of Theorem 2, and an n-node
symmetric ring network.

A. Toy example of Theorem 1

Here we demonstrate Theorem 1 by solving for the average
version age vo} at node 2 for the network shown in Figure 2.
The recursive application of (5) with S = {2}, S = {1,2},
S =1{2,3} and S = {1, 2,3} yields

20,0 T A1,2041,2) + A3,20(2,3)

— 7
{2} A2+ Asz2 , 7
B 20,0 T A3,27¢1,2,3}
_ 70, ; 125 7b
U{1.2y Ao+ Az 2 7
. ~ Ao+ (M2 4+ A3)000.3) (7¢)
1 VS P VP
~ 20,0
Y{1,2,3} Ao+ Ao,s 7

We note that (7d) is an example of the general result that
U = Ago/Ao(N). For this n, it follows from (7) that

A32 )
" ,
Ao+ Ao3

A32 ( A2+ M 3)}
+ : ) ®
Aoz + A2+ A3 Ao,1 + o3

The solution (8) is complicated because it includes a variety
of special cases. For example, when A; 2 — o0, Vy1,2,3) and
Uy1,2) are unchanged but vyp) — vy 2y because nodes 1 and
2 become equivalent to a single node with update rates Ao 1
from node 0 and A3z » from node 3. On the other hand, when
A1,2 = 0, Dg1,2,3) is unchanged while

S 0,0 [ 1,2 (
@ A2+ Az Ao,1 + Az2

20,0 + A1,3041,2,3)
Xojs+ A

In this case, the solution for v,y reflects the path diversity
offered by the two paths from the source to node 2.

®
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Fig. 3. Updates generated at node O at rate Ago are forwarded to nodes
in N = {1,...,6} which form a complete graph. Node O sends updates to
each node 7 € A at rate A\/6. Each node 7 € N send updates to every other
node j at rate \/5.

B. Proof of Theorem 2

We now use Theorem 1 to find the average version age of a
node for the n-node complete graph, as depicted for n = 6 in
Figure 3. Here the symmetry of the complete graph is essential
to derive Theorem 2. In the absence of symmetry, the recursion
of Theorem 1 would generate equations for all 2" —1 nontrivial
subsets of N.

Let S; denote an arbitrary j-node subset of the complete
graph. By symmetry, the age processes X, (t) for all subsets
S; are statistically identical. Hence we define ©; = vg;.
Moreover, each subset S; has [N (S;)| = n—j neighbor nodes
i that send updates to S; at rate \;(S;) = jA/(n — 1). For
each such neighbor ¢, S; U {i} is a j 4+ 1 node subset S,1.
Also, because the source symmetrically updates all nodes in
N, each subset S; receives updates from the source node at
rate A\o(Sj) = jA/n. Thus Theorem 1 yields

in=i)A
Moo + LD,

5. = Moo+ [N(S;)Ai(55)041 _
T X(S) + N(SHN(S)

ayiop
For j = n, S; = S, is the set of all nodes. With all
nodes in the observer set, the neighbor set N(N) is empty,
Ao(N) = A, and Theorem 1 yields 0,, = tpr = Ago/A. With
this initial condition, (10) enables iterative computation of
Up—1,Up—2, ... until we reach v;, the average age of a single
node. However to complete the proof, let j = n — k, implying

- (ning)/\ + nﬁlfjnflﬁﬂ
By = S (1)
n n—1
With the definition 9y = U,,—g+1, (11) becomes
A k a A ko
. —x T a1k iy T nlk
Vg+1 = 1 % < % . (12)
n T a1 ntn

The upper bound in (12) holds iff o) < nAgo/(n — k). Since
01 = U, = Ago/A this requirement holds at £ = 1 and can be
shown by induction to hold for all k. Defining yx = kv /n,
it follows from (12) that

Aoo
< — . 13
yk+1,(n_k))\+yk (13)
Since y1 = Ago/(nA), it follows from (13) that
I Joow 1

N L~k
k=1

(14)
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Fig. 4. Average version age of a node on the symmetric n node ring with
A0o/A = 1. The dashed blue line 1.25+/n is an empirical approximation, but
not an upper bound; the age will exceed the approximation for n > 40401.

Since y, = ¥, = U1, this completes the proof of the
Theorem 2 upper bound. For the lower bound, the equality
in (12) implies

R n—1 )\00 k' N
> .
R s sy S (15
Defining i = k0 /(n — 1), (15) implies
N Aoo .
> . 16
wﬁl_(n—kM_%% (16)

It follows from (16) that ©,, = (n — 1)3,, /n satisfies the lower
bound of Theorem 2.

C. Age on a Symmetric Ring

In the ring network, the source sends updates to each node
at rate A\/n while each node i sends updates to each of its
neighbor nodes! i+ 1 and 7 — 1 at rate \/2. Thus the network
resembles the complete graph of Figure 3, except the interior
transitions are deleted.

For the ring graph, let R; = {i,i+1,...,i+j—1}
denote an arbitrary contiguous j-node subset of the ring. By
symmetry, the age processes Xp, (t) for all subsets R; are
statistically identical. Hence we define v; = vg;. Moreover,
for j < n—1, each subset R; has |N(R;)| = 2 neighbor nodes
k e {i — 1,7} that send updates to R; at rate \p(R;) = \/2.
For each neighbor k, R; U {k} is a j + 1 node subset R, ;.
In addition, for a subset R,_1, there is a single neighbor k
who sends updates at rate Ag(R,—1) = A (at rate A\/2 to
neighbor nodes k£ + 1 and k£ — 1 that are the head and tail
of R,—1. Thus |[N(R;)|\x(R;) = A for j € {1,...,n—1}.
Also, because the source symmetrically updates all nodes in
N, each subset R; receives updates from the source node at
rate Ao(R;) = jA/n. Thus Theorem 1 yields

5. = 200+ [N(B))Ak(R))0j+1 _ Aoo + Aj
T Xo(By) + N(Rj)Mk(R;) JA/n+ A

For j = n, R; = R, is the set of all nodes. With all
nodes in the observer set, the neighbor set N(N) is empty,
Ao(N) = A, and Theorem 1 yields ©,, = Onr = A/ Ago, as it
does for all graphs. With this initial condition, (17) enables
iterative computation of ¥p,_1, U, _2, ... until we reach 91, the
average age of an individual node. As of this writing, the
downward iteration (17) has not yet yielded a simple bound
for 1. However, as the numerical evaluation is nearly trivial,

17)

I'We assume node indexing modulo the n node ring, i.e., node n + 1 refers
to node 1 and node 1 — 1 refers to node n.

an age plot is presented in Figure 4 for Agg/\ = 1. From the
figure, it is empirically observed that A, (n) ~ 1.25\/n.

This numerical evidence may seem surprising since
O(nlogn) dissemination time has been reported for the ring
graph [3]. However, to enable age comparisons with the
complete graph, the ring model in this work sends its fresh
updates randomly to the ring. By contrast, the ring graph
model in [3] assumes the source is a node on the ring and
thus the dissemination time to all nodes must be Q(n). If
source updates were passed only to a single node on the ring,
the average age would indeed grow as O(n).

V. STOCHASTIC HYBRID SYSTEMS FOR AOI ANALYSIS

In this section we use a stochastic hybrid system (SHS)
model to derive Theorem 1. While there are many SHS
variations [46], this work follows [17], [18], which employ the
model and notation in [47]. In general, the SHS is described
by a discrete state ¢(t) € Q@ = {0, 1,. .., gmax } that evolves as
a point process, a continuous component X (¢) € R™ described
by a stochastic differential equation in each state ¢ € Q, and a
set L of transition/reset maps that correspond to both changes
in the discrete state and jumps in the continuous state.

A. Version Aol for gossip networks as an SHS

The operation of the gossip network is memoryless; each
node ¢ sends its current update to node j as a Poisson
process of rate \;;. Hence, the SHS discrete state space is the
trivial set @ = {0}. Furthermore, because age is measured
in versions, the normally continuous age state X(¢) in fact
becomes discrete. That is, X(¢) changes only when there is
a transition that corresponds to an update being forwarded.
In the absence of such a transition, the stochastic differential
equation of the SHS is trivially X(¢) = 0.

The remaining component of the SHS model is the set £
of discrete transition/reset maps. In the gossip network, £
corresponds to the set of directed edges (i,j) over which
node ¢ updates node j. However, because of the special role
of node 0 as the source, there are three kinds of transitions.
First, (¢,7) = (0, 0) corresponds to the source node generating
a new version so that the version age at all other nodes k
increases by one. The second type of transition is given by
(0, 4), corresponding to the source node 0 sending the current
version to node j, reducing the age at node j to zero. In the
third type, a gossiping node ¢ forwards its current update to
node j; node j accepts the update if it is a fresher than its
existing version. To summarize, the set of transitions is

L£={00,00}U{(0,5): 5 € N}U{(i,5): i, € N}, (18)

transition (7, j) occurs at rate \; ;, and in that transition the
age vector becomes ¢; ;(X) = [X] X] such that

Xp+1 i=0,j=0keN,
0 i =0,k=j5 €N,
Xp=1{ ' JeN (19a)
min(X;, X;) ieN,k=jeN,
X3 otherwise.
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Because of the generality and power of the SHS model,
complete characterization of the X(¢) process is often impos-
sible. The approach in [47] is to define test functions ¥ (q, X, t)
whose expected values E[¢(q(t), X(¢),t)] are performance
measures of interest that can be evaluated as functions of time;
see [47], [48], and the survey [46] for additional background.

Since the simplified SHS for the gossip network is time
invariant and has a trivial discrete state, it is sufficient to

employ the time invariant test functions ¥ s(X) = Xg. These
test functions yield the processes
Ps(X(t) = Xs(t), (20)
which have expected values
E[ys(X(1))] = E[Xs(t)] = vs(t). 21

The objective here is to use the SHS framework to derive a
system of differential equations for the vg(t). To do so, the
SHS mapping v — L1 known as the extended generator is
applied to every test function 1(X). The extended generator
L1 is simply the function whose expected value is the
expected rate of change of the test function . Specifically, a
test function ¥ (X(¢)) has an extended generator (L1))(X(t))
that satisfies Dynkin’s formula

dE[pXD)] _
dt B
For each test function (X

for E[(X(1))).

From [47, Theorem 1], it follows from the trivial discrete
state, the trivial stochastic differential equation X(t) =0,
and the time invariance of 1g(X) in (20) that the extended
generator of a piecewise linear SHS is given by

(Les)(X) = 37 Aylos(1,5(X)) — bs(X)).

(i,4)eL

E[(Ly)(X(1))].
), (22) yields a differential equation

(22)

(23)

With these preliminaries, we now prove Theorem 1.

B. Proof of Theorem 1

In (23), it follows from (2a), (19), and (20) that the effect
on the test function of transition (i, j) is

Vs(9i (X)) = Xg = IgleigX;Q-

Evaluation of (24) depends on the transition type (,7), as
given in (19). In transition (0, 0), the source node has a version
update and each node k£ € S ages by one more version. This
implies X; = X, + 1 for all £ € N and thus

Xe=min X, =X 1.
s = MInAg s+

(24)

(25)

For other transitions (¢,j), only the age X; at node j is
changed. Thus if 7 ¢ S, then Xg = mingcg X} is unchanged.
However, if j € S, then

X5 = min X, = mi in(X;, X; in X
5 = i Xi = min(min(X,, X,),, iy, X2)
= min X = XSu{ 1 (26)

keSu{i}

In addition to the common (4, j) transition in which 7 € N is
a gossiping neighbor of j € S, we note that (26) incorporates

some special cases. If 7 = 0, then X§ = Xgyq0; = 0 since
Xy = 0. On the other hand, if ¢ € S, then SU {i} = S and
Xs = Xg. That is, an update sent by a node in .S cannot
reduce the age Xg.

Based on the three types of transitions, namely (0, 0), (0, ),

and (i, 7), we conclude that
(Ls)(X) = Aoo(Xs + 1= Xg) + D> Aoj[0 — Xs]
JjES
+) 0N N[ Xsu — Xs]. @D
i>0J€s

We note that X, Xg, and Xgyq in (27) refer to the age
processes X(t), Xg(t) and Xgyp;y(t). With this in mind,
we take the expectation of (27). On the left side of (27),
E[(Lys)(X(t))] = ©s(t) by Dynkin’s formula (22). On the
right side, E[Xg(t)] = vg(t) and E[Xgu{i}(t)] = USU{i}(t)
for all 7. These substitutions yield

Z )\OJ + Z Z /\m USU{Z}

JjeSs >0 j€8
iZS

) —vs(t)].

Us(t)=Xoo —vs(t

Employing the definitions (3) and (4) of the update rate \;(.S)
of node ¢ into S, and the neighbor set N(S), we obtain

vg(t)= S)—FZ)\i }—I—Z)\

1EN(S) 1EN(S)

Moo —vs(t) | Ao( Jvsugiy (1)

By setting the derivatives vg(t) = 0, we obtain a linear
equation for the time average age Ug = lim;_,~, vg(t) in terms
of the necessary vsyys)- This yields (5).

VI. CONCLUSION

This work has introduced Aol analysis tools for gossip
algorithms on network graphs. In Theorem 1 we developed a
set of linear equations for the computation of average version
age at any node in a gossip network described by an arbitrary
graph. While the general solution has exponential complexity
in the number of nodes, we believe this unavoidably reflects
the multiplicity of paths from the source to a node. When this
method is applied to the n node complete graph, it was shown
using graph symmetry that the average version age at each
node grows as log n. This promising result suggests that gossip
networks may indeed be suitable for low latency measurement
dissemination, particularly in sensor network settings.

As age analysis for gossip networks is new, considerable
work remains. Since this work has examined only the simplest
network graphs, age analysis over more complex graphs is
needed. Age analysis of gossip for energy harvesting sensors
would also be another obvious area of interest. While this work
employs the version age metric, we expect to see analogous
results for the traditional sawtooth age metric that tracks the
evolution of time. We also believe it may be possible to derive
distributional properties of the age in a gossip network by
extending the moment generating function (MGF) approach
to age analysis in [17].
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