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Abstract

The problem of counterfactual visual explanations is
considered. A new family of discriminant explanations is
introduced. These produce heatmaps that attribute high
scores to image regions informative of a classifier predic-
tion but not of a counter class. They connect attributive
explanations, which are based on a single heat map, to
counterfactual explanations, which account for both pre-
dicted class and counter class. The latter are shown to
be computable by combination of two discriminant expla-
nations, with reversed class pairs. It is argued that self-
awareness, namely the ability to produce classification con-
fidence scores, is important for the computation of discrimi-
nant explanations, which seek to identify regions where it is
easy to discriminate between prediction and counter class.
This suggests the computation of discriminant explanations
by the combination of three attribution maps. The resulting
counterfactual explanations are optimization free and thus
much faster than previous methods. To address the diffi-
culty of their evaluation, a proxy task and set of quantita-
tive metrics are also proposed. Experiments under this pro-
tocol show that the proposed counterfactual explanations
outperform the state of the art while achieving much higher
speeds, for popular networks. In a human-learning machine
teaching experiment, they are also shown to improve mean
student accuracy from chance level to 95%.

1. Introduction

Deep learning (DL) systems are difficult to deploy in
specialized domains, such as medical diagnosis or biology,
requiring very fine-grained distinctions between visual fea-
tures unnoticeable to the untrained eye. Two main difficul-
ties arise. The first is the black-box nature of DL. When
high-stakes decisions are involved, e.g. a tumor diagno-
sis, the system users, e.g. physicians, require a justifica-
tion for its predictions. The second is the large data label-
ing requirements of DL. Since supervised training is usu-
ally needed for optimal classification, modern networks are
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Figure 1: Given a query image (Cardinal) and a counterfactual class (Sum-
mer Tanager), discriminant explanations bridge the gap between attribu-
tions and counterfactual explanations. This enables a fast optimization-free
computation of the latter.

trained with large datasets, manually annotated on Amazon
MTurk. However, because MTurk annotators lack domain
expertise, the approach does not scale to specialized do-
mains.

Both problems can be addressed by explainable Al
(XAI) techniques, which complement network predictions
with human-understandable explanations. These can both
circumvent the black-box nature of DL and enable the de-
sign of machine teaching systems that provide feedback to
annotators when they make mistakes [43]. In computer vi-
sion, the dominant XAl paradigm is attribution, which con-
sists of computing a heatmap of how strongly each image
pixel [31, 3, 29, 1] or region [41, 28] contributes to a net-
work prediction. For example, when asked “why is this
a truck?” an attributive system would answer or visual-
ize something like “because it has wheels, a hood, seats, a
steering wheel, a flatbed, head and tail lights, and rearview
mirrors.”

While useful to a naive user, this explanation is less use-
ful to an expert in the domain. The latter is likely to be inter-
ested in more precise feedback, asking instead the question
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“Why is it not a car?” The answer “because it has a flatbed.
If it did not have a flatbed it would be a car,” is known as a
counterfactual or contrastive explanation [36, 8, 24]. Such
explanations are more desirable in expert domains. When
faced with a prediction of lesion A, a doctor would natu-
rally ask “why A but not B?” The same question would
be posed by a student that incorrectly assigned an image to
class B upon receiving feedback that it belongs to class A.
By supporting a specific query with respect to a counter-
factual class (B), these explanations allow expert users to
zero-in on a specific ambiguity between two classes, which
they already know to be plausible prediction outcomes. Un-
like attributions, counterfactual explanations scale naturally
with user expertise. As the latter increases, the class and
counterfactual class simply become more fine-grained.

In computer vision, counterfactual explanations have
only recently received attention. They are usually imple-
mented as “correct class is A. Class B would require chang-
ing the image as follows,” where “as follows” is some visual
transformations. Possible transformations include image
perturbations [8], synthesis [36] or the exhaustive search of
a large feature pool, to find replacement features that map
the image from class A to B [12]. However, image pertur-
bations and synthesis frequently leave the space of natural
images only working on simple non-expert domains, and
feature search is too complex for interactive applications.

In this work, a new procedure is proposed to gener-
ate Self-aware disCriminant cOUnterfactual explanaTions
(SCOUT). We show that counterfactual explanations can
be much more efficiently generated by a combination of
attributive explanations and self-awareness mechanisms,
which quantify the confidence of the predictions of a DL
system. For this, we start by introducing discriminant ex-
planations that, as shown in Figure 1, connect attributive to
counterfactual explanations. Like attributive explanations,
they consist of a single heatmap. This, however, is an at-
tribution map for the discrimination of classes A and B,
attributing high scores to image regions that are informative
of A but not of B. In this sense, discriminant explanations
are similar to counterfactual explanations and more precise
than attributive explanations (see Figure 1). A counterfac-
tual explanation can then be produced by the computation
of two discriminant explanations, with the roles of A and B
reversed.

We next consider how to compute discriminant expla-
nations and argue for the importance of self-awareness. A
system is self-aware if it can quantify the confidence with
which it classifies an image. This is generally true for DL
systems, which complement a class prediction with an esti-
mate of the posterior class distribution, from which a con-
fidence score can be derived [10, 39]. The attribution map
of this score is an indicator of the image regions where the
classification is easy. This fits nicely in the discriminant

explanation framework, where the goal is to find the spa-
tial regions predictive of class A but unpredictive of class
B. It leads to the definition of discriminant explanations as
image regions that simultaneously: 1) have high attribution
for class A, 2) have low attribution for class B, and 3) are
classified with high confidence. It follows that, as shown
in Figure 1, discriminant explanations can be computed by
combination of three attribution maps. This, in turn, shows
that counterfactual explanations can be seen as a general-
ization of attributive explanations and computed by a com-
bination of attribution [31, 3, 29, 34, 1] and confidence pre-
diction methods [10, 39, 37] that is much more efficient to
compute than previous methods.

Beyond explanations, a significant challenge to XAl is
the lack of explanation ground truth for performance eval-
uation. Besides user-based evaluations [12], whose results
are difficult to replicate, we propose a quantitative metric
based on a proxy localization task. To the best of our knowl-
edge, this is the first proposal for semantically quantitative
evaluation of counterfactual visual explanations indepen-
dently of human experiments. Compared to the latter, the
proposed proxy evaluation is substantially easier to repli-
cate. This evaluation shows that SCOUT both outperforms
the state of the art [12] and is 50 to 1000 x faster for pop-
ular networks. This is quite important for applications such
as machine teaching, where explanation algorithms should
operate in real-time, and ideally in low-complexity plat-
forms such as mobile devices.

Overall, the paper makes five contributions. First, a new
family of discriminant explanations, which are substantially
more precise than attributive explanations. Second, the use
of self-awareness to improve the accuracy of attributive ex-
planations. Third, the derivation of counterfactual explana-
tions by combination of discriminant explanations, making
them more efficient to compute. Fourth, a new experimental
protocol for quantitative evaluation of counterfactual expla-
nations. Fifth, experimental results using both this protocol
and machine teaching experiments, showing that the pro-
posed SCOUT outperforms previous methods and is sub-
stantially faster.

2. Related work

In this section we review the literature on explanations,
self-awareness, and machine teaching.
Explanations: Two main approaches to explainable Al
(XAI) have emerged in computer vision. Natural language
(NL) systems attempt to produce a textual explanation un-
derstandable to humans [13, 2, 26]. Since image to text
translation is still a difficult problem, full blown NL expla-
nations tend to target specific applications, like self driv-
ing [6]. More robust systems tend to use a limited vo-
cabulary, e.g. a set of image attributes [2, 13]. For ex-
ample, [2] proposed counterfactual NL image descriptions
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and [13] produces counterfactual explanations by extract-
ing noun phrases from the counter-class, which are filtered
with an evidence checker. Since phrases are defined by at-
tributes, this boils down to detecting presence/absence of at-
tributes in the query image. These methods require a priori
definition of a vocabulary (e.g. attributes), training data for
each vocabulary term, and training of the classifier to pro-
duce this side information. Due to these difficulties, most
explanation methods rely instead on visualizations. While
the ideas proposed in this work could be extended to NL
systems, we consider only visual explanations.

Attributive explanations: The most popular approach to
visual explanations is to rely on attributions [3, 29, 34].
These methods produce a heatmap that encodes how much
the classifier prediction can be attributed to each pixel or
image region. Many attribution functions have been pro-
posed [31, 3, 29, 34, 1]. The most popular framework is to
compute some variant of the gradient of the classifier pre-
diction with respect a chosen layer of the network and then
backproject to the input [28, 41]. These techniques tend
to work well when the object of the predicted class is im-
mersed in a large background (as in object detection), but
are less useful when the image contains the object alone
(as in recognition). In this setting, the most suitable for the
close inspection required in expert domains, the heat map
frequently covers the whole object. This is illustrated in
Figure 1. Counterfactual explanations, which involve dif-
ferences with respect to a counterfactual class, tend not to
suffer from this problem.

Counterfactual explanations: Given an image of class A
and a counterfactual class B, counterfactual explanations
(also known as contrastive [8]) produce an image transfor-
mation that elicits the classification as B [35, 36, 21, 44].
The simplest example are adversarial attacks [8, 35, 43],
which optimize perturbations to map an image of class A
into class B. However, adversarial perturbations usually
push the perturbed image outside the boundaries of the
space of natural images. Generative methods have been pro-
posed to address this problem, computing large perturba-
tions that generate realistic images [21, 23]. This is guaran-
teed by the introduction of regularization constraints, auto-
encoders, or GANs [11]. However, because realistic images
are difficult to synthesize, these approaches have only been
applied to simple MNIST or CelebA [22] style datasets, not
expert domains. A more plausible alternative is to exhaus-
tively search the space of features extracted from a large col-
lection of images, to find replacement features that map the
image from class A to B [12]. While this has been shown
to perform well on fine-grained datasets, exhaustive search
is too complex for interactive applications.

Evaluation: The performance of explanation algorithms
is frequently only illustrated by the display of visualiza-
tions. In some cases, explanations are evaluated quantita-

tively with recourse to human experiments. This involves
the design of a system to elicit user feedback on how trust-
ful a deep learning system is [28, 12, 8, 38] or evaluate if
explanations improve user performance on some tasks [12].
While we present results of this type, they have several lim-
itations: it can be difficult to replicate system design, con-
clusions can be affected by the users that participate in the
experiments, and the experiments can be cumbersome to
both set up and perform. In result, the experimental results
are rarely replicable or even comparable. This hampers the
scalable evaluation of algorithms. In this work, we intro-
duce a quantitative protocol for the evaluation of counter-
factual explanations, which overcomes these problems.
Self-awareness: Self-aware systems are systems with some
abilities to measure their limitations or predict failures. This
includes topics such as out-of-distribution detection [14, 20,
7, 18, 19] or open set recognition [27, 5], where classi-
fiers are trained to reject non-sensical images, adversarial
attacks, or images from classes on which they were not
trained. All these problems require the classifier to produce
a confidence score for image rejection. The most popular
solution is to guarantee that the posterior class distribution
is uniform, or has high entropy, outside the space covered
by training images [18, 15]. This, however, is not suffi-
cient for counterfactual explanations, which require more
precise confidence scores explicitly addressing class A or
B. In this sense, the latter are more closely related to real-
istic classification [37], where a classifier must identify and
reject examples that it deems too difficult to classify.
Machine teaching: Machine teaching systems [43] are
usually designed to teach some tasks to human learners,
e.g. 1image labeling. These systems usually leverage
a model of student learning to optimize teaching perfor-
mance [33, 4, 17, 25]. Counterfactual explanations are nat-
urally suited for machine teaching, because they provide
feedback on why a mistake (the choice of the counterfactual
class B) was made. While the goal of this work is not to de-
sign a full blown machine teaching system, we investigate
if counterfactual explanations can improve human labeling
performance. This follows the protocol introduced by [12],
which highlights matching bounding boxes on paired im-
ages (what part of A should be replaced by what part of B)
to provide feedback to students. Besides improved labeling
performance, the proposed explanations are orders of mag-
nitude faster than the exhaustive search of [12].

3. Discriminant Counterfactual Explanations

In this section, we briefly review the main ideas be-
hind previous explanation approaches and introduce the
proposed explanation technique.

Counterfactual explanations: Consider a recognition
problem, mapping images x € X into classes y € )V =
{1,...,C?}. Images are classified by an object recognition
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system H : X — Y of the form

y* = arg max hy(x), (1)
y

where h(x) : X — [0,1]¢ is a C-dimensional proba-
bility distribution with 25:1 hy(x) = 1, usually com-

puted by a convolutional neural network (CNN). The clas-
sifier is learned on a training set D of N i.i.d. samples
D = {(xi,y:)}Y,, where y; € Y is the label of im-
age x; € X, and its performance evaluated on a test set
T = {(xj, yj)}j]‘/il Given an image x, for which the clas-
sifier predicts class y*, counterfactual explanations answer
the question of why the image does not belong to a counter-
factual class (also denoted counter class) y©¢ # y*, chosen
by the user who receives the explanation.

Visual explanations: Counterfactual explanations for vi-
sion systems are usually based on visualizations. Two pos-
sibilities exist. The first is to explicitly transform the im-
age x into an image x° of class ¥, by replacing some of
its pixel values. The transformation can consist of apply-
ing an image perturbation akin to those used in adversarial
attacks [8], or replacing regions of x by regions of some
images in the counter class y° [12]. Due to the difficulties
of realistic image synthesis, these methods are only feasible
when x is relatively simple, e.g. an MNIST digit.

A more plausible alternative is to use an already avail-
able image x© from class y° and highlight the differences
between x and x¢. [12] proposed to do this by displaying
matched bounding boxes on the two images, and showed
that explanation performance is nearly independent of the
choice of x¢, i.e. it suffices to use a random image x¢ from
class y©. We adopt a similar strategy in this work. For these
approaches, the explanation consists of

C Y™y x%) = (e7(x), €(x%)), 2)

where ¢*(x) and c¢(x°) are counterfactual heatmaps for
images x and x°, respectively, from which region segments
r*(x) and r°(x°) can be obtained, usually by thresholding.
The question is how to compute these heatmaps. [12] pro-
posed to search by exhaustively matching all combinations
of features in x and x°, which is expensive. In this work,
we propose a much simpler and more effective procedure
that leverages a large literature on attributive explanations.

Attributive explanations: Attributive explanations are a
family of explanations based on the attribution of the pre-
diction y* to regions of x [31, 3, 29, 34, 1]. They are usually
produced by applying an attribution function to a tensor of
activations F € RW>H*D of spatial dimensions W x H
and D channels, extracted at any layer of a deep network.
While many attribution functions have been proposed, they
are usually some variant of the gradient of - (x) with re-
spect to F. This results in an artribution map a; j(x) whose
amplitude encodes the attribution of the prediction to each

entry 7, j along the spatial dimensions of F. Attributive ex-
planations produce heat maps of the form

Alx,y") = a(hy-(x)) 3)

for some attribution function a(.). Two examples of attribu-
tive heatmaps of an image of a ”Cardinal,” with respect to
predictions “Cardinal” and ”Summer Tanager,” are shown
in the top row of Figure 1.

Discriminant explanations: In this work, we propose a
new class of explanations, which is denoted as discriminant
and defined as

'D(X,y*,yc) = d(hy* (X)7hyc (X))v “4)

which have commonalities with both attributive and coun-
terfactual explanations. Like counterfactual explanations,
they consider both the prediction y* and a counterfac-
tual class y°. Like attributive explanations, they com-
pute a single attribution map through d(.,.). The differ-
ence is that this map attributes the discrimination between
the prediction y* and counter y° class to regions of x.
While a(hy~(x)) assigns large attribution to pixels that are
strongly informative of class y*, d(hy~(x), hye(x)) does
the same to pixels that are strongly informative of class y*
but uninformative of class y°.

Discriminant explanations can be used to compute coun-
terfactual explanations by implementing (2) with

C(X7 y*’ycyxc) = (D(Xa y*’yc)7fD(chyc7y*)). (5)

The first map identifies the regions of x that are informative
of the predicted class but not the counter class while the sec-
ond identifies the regions of x° informative of the counter
class but not of the predicted class. Altogether, the expla-
nation shows that the regions highlighted in the two images
are matched: the region of the first image depicts features
that only appear in the predicted class while that of the sec-
ond depicts features that only appear in the counterfactual
class. Figure 1 illustrates the construction of a counterfac-
tual explanation with two discriminant explanations.

Self-awareness: Discriminant maps could be computed by
combining attributive explanations with respect to the pre-
dicted and counter class. Assuming that binary ground
truth segmentation maps s; ; and s; ; are available for the
attributions of the predicted and counter classes, respec-
tively, this could be done with the segmentation map s; ; =
s7j-(1 — s{ ;). This map would identify image regions at-
tributable to the predicted class y* but not the counter class
y©. In practice, segmentation maps are not available and
can only be estimated from attribution maps a; ; and af ;.
While this could work well when the two classes are very
different, it is not likely to work when they are similar. This
is because, as shown in Figure 1, attribution maps usually
cover substantial parts of the object. When the two classes
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Figure 2: Discriminant explanation architecture (x: Cardinal, x¢: Summer Tanager.). Feature activations F';, and F'¢ are computed for some layers of the
classifier (upper branch) and confidence predictor (lower branch), respectively. Attributions for prediction h,«, counter class hyc, and confidence score s
are computed by attribution functions g(., .) according to (10) and then combined with (6) to obtain the discriminant map. Counterfactual explanations are
obtained by reversing the roles of x and x€ and thresholding the discriminant heat maps.

differ only in small parts or details, they lack the precision
to allow the identification of the associated regions. This
is critical for expert domains, where users are likely to ask
questions involving very similar classes.

Addressing this problem requires some ways to sharpen
attribution maps. In this work, we advocate for the use of
self-awareness. We assume that the classifier produces a
confidence score s(x) € [0, 1], which encodes the strength
of its belief that the image belongs to the predicted class.
Regions that clearly belong to the predicted class y* render
a score close to 1 while regions that clearly do not render a
score close to 0. This score is self-referential if generated
by the classifier itself and not self-referential if generated by
a separate network. The discriminant maps of (4) are then
implemented as

d(hy- (%), by (x)) = alhy-(x)) -a(hy (x)) -a(s(x)) (6)
where a(.) is the complement of a(.), i.e.

am- = HZI%X ai,j — ai,j. (7)
5

The discriminant map d is large only at locations (%, j)
that contribute strongly to the prediction of class y* but little
to that of class y°, and where the discrimination between the
two classes is easy, i.e. the classifier is confident. This, in
turn, implies that location (4, j) is strongly specific to class
y* but non specific to class y°, which is the essence of the
counterfactual explanation. Figure 1 shows how the self-
awareness attribution map is usually much sharper than the
other two maps.

Segmentations: For discriminant explanations, the dis-
criminant map of x is thresholded to obtain the segmen-
tation mask

r{y", ¥ Hx) = La(h, . (x) e (x)>T ®)

where 1s is the indicator function of set S and 7" a thresh-
old. For counterfactual explanations, segmentation masks

are also generated for x¢, using

r{y% ¥ Hx) = Lahye (x0) b« (x¢))> T ©)

Attribution maps: The attribution maps of (6) can be
computed with any attribution function a(.) in the litera-
ture [34, 29, 3]. In our implementation, we use the gradient-
based function of [30]. This calculates the dot-product of
the partial derivatives of the prediction p with respect to the
activations F(x) of a CNN layer and the activations, i.e.

Oh,(F Oh,(F
aij(hp) =q (fi,ja 8’;()) = <3pf,(,)’fi’j>’ (10)
0. 0.

where we omit the dependency on x for simplicity.
Confidence scores: Like attribution maps, many existing
confidence or hardness scores can be leveraged. We consid-
ered three scores of different characteristics. The softmax
score [10] is the largest class posterior probability

s%(x) :myaxhy(x). 11

It is computed by adding a max pooling layer to the net-
work output. The certainty score is the complement of the
normalized entropy of the softmax distribution [39],

1
s9(x) =1+ TogC Zhy(x) log hy(x). (12)
y

Its computation requires an additional layer of log non-
linearities and average pooling. These two scores are self-
referential. We also consider the non-self-referential easi-
ness score of [37],

59(x) = 1 — s"P(x) (13)

where s"P(x) is computed by an external hardness predic-
tor S, which is jointly trained with the classifier. S is imple-
mented with a network s"?(x) : X — [0, 1] whose output
is a sigmoid unit.
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Network implementation: Figure 2 shows a network im-
plementation of (6). Given a query image x of class y*, a
user-chosen counter class y© # y*, a predictor h,(x), and
a confidence predictor s(x) are used to produce the expla-
nation. Note that s(x) can share weights with h, (x) (self-
referential) or be separate (non-self-referential). x is for-
warded through the network, generating activation tensors
F.(x), Fs(x) in pre-chosen network layers and predictions
hy+ (%), hye(x), s(x). The attributions of y*, y° and s(x)
tox, i.e. A(x,y*), A(x,y°), A(x, s(x)) are then computed
with (10), which reduce to a backpropagation step with re-
spect to the desired layer activations and a few additional
operations. Finally, the three attributions are combined with
(6). Thresholding the resulting heatmap with (8) produces
the discriminant explanation r{y*,y°}(x). To further ob-
tain a counterfactual explanation, the network is simply ap-
plied to x¢ and r{y°, y* }(x¢) computed.

4. Evaluation

Challenges: Explanations are difficult to evaluate because
ground truth is unavailable. Previous works mainly pre-
sented qualitative results [13, 12]. [12] also performed a hu-
man evaluation on MTurk, using a machine teaching task.
However, this evaluation had a few flaws, which are dis-
cussed in Section 5.4. In any case, human evaluation is
cumbersome and difficult to replicate. To avoid this, we
introduce an alternative evaluation strategy based on the
proxy task of localization. Because this leverages datasets
with annotations for part locations and attributes', we some-
times refer to image regions (segments or keypoints) as
parts.
Ground-truth: The goal of counterfactual explanations is
to localize a region predictive of class A but unpredictive of
class B. Hence, parts with attributes specific to A and that
do not appear in B can be seen as ground truth counterfac-
tual regions. This enables the evaluation of counterfactual
explanations as a part localization problem. To synthesize
ground truth, the k%" part of an object of class c is repre-
sented by a semantic descriptor ¢¥ containing the attributes
present in this class. For example, an “eye” part can have
color attributes “red”, “blue”, “grey”, etc. The descriptor is
a probability distribution over these attributes, characteriz-
ing the attribute variability of the part under each class.
The dissimilarity between classes a and b, according to
part k, is defined as aff , = (¢}, ¢f), where ~(.,.) is a
dataset dependent function. Large dissimilarities indicate
that part & is a discriminant for classes a and b. The values
of a’;,b are computed for all class pairs (a, b) and parts pg.
The M triplets G = {(p;, a;, b;) } 2, of largest dissimilarity
are selected as counterfactual ground-truth.

Inote that part and attribute annotations are only required for perfor-
mance evaluation, not to compute the visualizations.

Evaluation metrics: The metrics of explanation perfor-
mance depend on the nature of part annotations. On datasets
where part locations are labelled with a single point, i.e.
p; is a point (usually the geometric center of the part),
the quality of region r{a,b}(x) is calculated by preci-
sion (P) and recall (R), where P m, R

|{¢\(pi,ai,bi)eé,ai:a,bi:b}|’ and J = [ilpi € r,a; =
a,b; = b}| is the number of included ground truth parts
of generated regions. Precision-recall curves are produced
by varying the threshold 7" used in (8). For datasets where
parts are annotated with segmentation masks, the quality
of r{a, b}(x) is evaluated using the intersection over union
(IoU) metric IoU = };Dg}, where p = {p;|(ps,a:,b;) €
g,ai = a,bi = b}

For counterfactual explanations, we define a measure of
the semantic consistency of two segments, r{a, b}(x) and
r{b, a}(x°), by calculating the consistency of the parts in-
cluded in them. This is denoted as the part IoU (PIoU),

Pl = {figredsi-aista sy, (14

These metrics allow the quantitative comparison of dif-
ferent counterfactual explanation methods. On datasets
with point-based ground truth, this is based on precision and
recall of the generated counterfactual regions. On datasets
with mask-based ground truth, the IoU is used. After con-
ducting the whole process on both x and x°, PIloU can
be computed to further measure the semantic matching be-
tween the highlighted regions in the two images. As long
as the compared counterfactual regions of different meth-
ods have the same size, the comparison is fair. For SCOUT,
region size can be controlled by manipulating 7" in (8) and
).

User expertise has an impact on counterfactual explana-
tions. Beginner users tend to choose random counterfactual
classes, while experts tend to pick counterfactual classes
similar to the true class. Hence, explanation performance
should be measured over the two user types. In this paper,
users are simulated by choosing a random counterfactual
class b for beginners and the class predicted by a small CNN
for advanced users. Class a is the prediction of the classifier
used to generate the explanation, which is a larger CNN.

S. Experiments

All experiments are performed on two datasets.
CUB200 [40] consists of 200 fine-grained bird classes, an-
notated with 15 part locations (points) including back, beak,
belly, breast, crown, forehead, left/right eye, left/right leg,
left/right wing, nape, tail and throat. Each part is associated

with attribute information [40] and dissimilarities o , are

computed with ~( Z,¢§) — AKL(¢511o4)+KL(d5 ||¢%)} [91,
where ¢ is a probability distribution over all attributes of
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Figure 3: Comparison to attributive explanations. Left: beginners, right:
advanced users.

the k' part under class ¢ and KL is the Kullback-Leibler
divergence. M is chosen to leave 80% largest triplets
(pi, ai, b;) as ground truth. The majority of (p;, a;, b;) are
selected because dissimilar parts dominate in a’;b space.

The second dataset is ADE20K [42] with more than
1000 fine-grained scene categories. Segmentation masks
are given for 150 objects. In this case, objects are seen as
scene parts and each object has a single attribute, i.e. ¢¥ is
scalar (where k € {1, ...,150}), which is the probability of
occurrence of the object in a scene of class c. This is esti-
mated by the relative frequency with which the part appears
in scenes of class c¢. Ground truth consists of the triplets
(pi,ai, b;) with ¥ > 0 and ¢f = 0, i.e. where object k
appears in class a but not in class b.

In the discussion below, results are obtained on CUB200,
except as otherwise stated. ADE20K results are presented
in the supplementary materials. Unless otherwise noted, vi-
sualizations are based on the last convolutional layer output
of VGG16 [32], a widely used network in visualization pa-
pers. All counterfactual explanation results are presented
for two types of virtual users. Randomly chosen labels
mimic beginners while AlexNet predictions [16] mimic ad-
vanced users.

5.1. Comparison to attributive explanations

Figure 3 compares the discriminant explanations of (6),
to attributive explanations a(h,«(x)), for the two user
types. Several conclusions are possible: 1) discriminant
maps significantly outperform attributions for both user
types, independently of the confidence score used; 2) best
performance is achieved with the easiness score of (13); 3)
the gains are larger for expert users than beginners. This
is because the counter and predicted classes tend to be
more similar for the former and the corresponding attribu-
tion maps overlap. In this case, pure attributive explana-
tions are very uninformative. The result also shows that
self-awareness is most useful in expert domains.

5.2. Comparison to state of the art

Table 1 presents a comparison between SCOUT and the
method of [12] which obtained the best results by exhaus-
tive search, for the two user types. For fair comparison,
these experiments use the softmax score of (11), so that

Beginner User Advanced User

Arch. |Metric|Goyal [12]| SCOUT || Goyal [12]| SCOUT
R 10.02 (0.01)| 0.05(0.01) |[0.05 (0.00)|0.05 (0.00)
P ]0.76 (0.01)| 0.84 (0.01) ([0.56 (0.01)|0.64 (0.01)

VGG16 PIoU |0.13 (0.00)| 0.15 (0.00) |[0.09 (0.00){0.14 (0.02)
IPS ]0.02 (0.00)| 26.51 (0.71)

R ]0.03(0.01)| 0.09 (0.02) {|0.12(0.01)|0.16 (0.00)

ResNet-50 P [0.77 (0.01) 0.81(0.01) [|0.57 (0.02)|0.60 (0.01)

PIoU |0.18 (0.01)| 0.16 (0.01) {/0.15 (0.00)[0.15 (0.01)
IPS |1.13(0.07)|78.54 (11.87)

Table 1: Comparison to the state of the art. (IPS: images per second, im-
plemented on NVIDIA TITAN Xp. Results are shown as mean(stddev))
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Figure 4: PIoU of SCOUT as a function of the segmentation threshold on
CUB200. Left: VGG16, right: ResNet-50.

model sizes are equal for both approaches. The size of the
counterfactual region is the receptive field size of one unit
(1107 =~ 0.005 of image size on VGG16 and - ~ 0.02
on ResNet-50). This was constrained by the speed of the al-
gorithm of [12], where the counterfactual region is detected
by exhaustive feature matching.

Several conclusions could be drawn from the table. First,
SCOUT outperforms [12] in almost all cases. Second,
SCOUT is much faster, improving the speed of [12] by
1000+ times on VGG and 50+ times on ResNet. This
is because it does not require exhaustive feature matching.
These gains increase with the size of the counterfactual re-
gion, since computation time is constant for the proposed
approach but exponential on region size for [12]. Third,
due to the small size used in these experiments, PIoU is rel-
atively low for both methods. It is, however, larger for the
proposed explanations with large gains in some cases (VGG
& advanced). Figure 4 shows that the PIoU can raise up to
0.5 for regions of 10% image size (VGG) or 20% (ResNet).
This suggests that, for regions of this size, the region pairs
have matching semantics.

5.3. Visualizations

Figure 5 shows three examples of counterfactual visu-
alizations derived from the ResNet50 on CUB200. The
regions selected in the query and counter class image are
shown in red. The true y* and counter y¢ class are shown
below the images and followed by the ground truth dis-
criminative attributes for the image pair. Note how the
proposed explanations identify semantically matched and
class-specific bird parts on both images. For example, the
throat and bill that distinguish Laysan from Sooty Alba-
trosses. This feedback enables a user to learn that Laysans
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True: Laysan Albatross (white throat, yellow bill)
Counter: Sooty Albatross (black throat, black bill)

Counter: Indigo Bunting (cone bill shape, grey bill color)
Ours Goyal et al
Figure 5: Comparison of counterfactual explanations (true and counter
classes shown below each example, and ground truth class-specific part
attributes in parenthesis).

r{y" y3x) oy’ v 1 x)  r{y", ¥ x) r{yc’y*}(xc

5T
i z T 1i‘
True: Playroom (desk, ceiling)
Counter: Playground (tree, sky)

True: Promenade deck (floor, ceiling, sea) )
Counter: Bridge (tree, river, bridge)

True: Parking garage indoor (ceiling)
Counter: Street (sky, streetlight)

True: Bus interior (pole)
Counter: Storage room (box, closet)

Figure 6: Counterfactual explanations on ADE20K.

have white throats and yellow bills, while Sootys have
black throats and bills. This is unlike the regions produced
by [12], which sometimes highlight irrelevant cues, such
as the background. Figure 6 presents similar figures for
ADE20K, where the proposed explanations tend to identify
scene-discriminative objects. For example, that a prome-
nade deck contains objects ‘floor’, ‘ceiling’, ‘sea,” while a
bridge scene includes ‘tree’, ‘river’ and ‘bridge’.

5.4. Application to machine teaching

[12] used counterfactual explanations to design an exper-
iment to teach humans distinguish two bird classes. During
a training stage, learners are asked to classify birds. When
they make a mistake, they are shown counterfactual feed-
back of the type of Figure 5, using the true class as y* and
the class they chose as y°. This helps them understand why
they chose the wrong label, and learn how to better distin-
guish the classes. In a test stage, learners are then asked
to classify a bird without visual aids. Experiments reported
in [12] show that this is much more effective than simply
telling them whether their answer is correct/incorrect, or
other simple training strategies. We made two modifica-

Kentucky Warbler
Figure 7: Visualization of machine teaching experiment.

Setophaga Citrina

tions to this set-up. The first was to replace bounding boxes
with highlighting of the counterfactual reasons, as shown in
Figure 7. We also instructed learners not to be distracted by
the darkened regions. Unlike the set-up of [12], this guar-
antees that they do not exploit cues outside the counterfac-
tual regions to learn bird differences. Second, to check this,
we added two contrast experiments where 1) highlighted re-
gions are generated randomly (without telling the learners);
2) the entire images are lighted. If these produce the same
results, one can conclude that the explanations do not pro-
mote learning.

We also chose two more difficult birds, the Setophaga
Citrina and the Kentucky Warbler (see Figure 7), than those
used in [12]. This is because these classes have large intra-
class diversity. The two classes also cannot be distinguished
by color alone, unlike those used in [12]. The experiment
has three steps. The first is a pre-learning test, where stu-
dents are asked to classify 20 examples of the two classes,
or choose a ‘Don’t know’ option. The second is a learn-
ing stage, where counterfactual explanations are provided
for 10 bird pairs. The third is a post-learning test, where
students are asked to answer 20 binary classification ques-
tions. In this experiment, all students chose ‘Don’t know’ in
the pre-learning test. However, after the learning step, they
achieved 95% mean accuracy, compared to 60% (random
highlighted regions) and 77% (entire images lighted) in the
contrast settings. These results suggest that SCOUT can
help teach non-expert humans distinguish categories from
an expert domain.

6. Conclusion

In this work, we proposed a new family of discriminant
explanations, which leverage self-awareness and bridge the
gap between attributions and counterfactuals. A quantita-
tive evaluation protocol was also proposed. Experiments
under both this protocol and machine teaching experiments
show that both the proposed discriminant and counterfac-
tual explanations achieve much better performance than ex-
isting attributive and counterfactual methods.
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