
Manuscript submitted to doi:10.3934/xx.xxxxxxx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

Control Problems with Vanishing Lie Bracket Arising from Complete

Odd Circulant Evolutionary Games

Christopher Griffin

Applied Research Laboratory
Penn State University

University Park, PA 16802, USA

James Fan∗

Naval Postgraduate School

Monterey, CA 93940, USA

Abstract. We study an optimal control problem arising from a generalization

of rock-paper-scissors in which the number of strategies may be selected from
any positive odd number greater than 1 and in which the payoff to the winner

is controlled by a control variable γ. Using the replicator dynamics as the

equations of motion, we show that a quasi-linearization of the problem admits
a special optimal control form in which explicit dynamics for the controller

can be identified. We show that all optimal controls must satisfy a specific

second order differential equation parameterized by the number of strategies
in the game. We show that as the number of strategies increases, a limiting

case admits a closed form for the open-loop optimal control. In performing

our analysis we show necessary conditions on an optimal control problem that
allow this analytic approach to function.

1. Introduction. In this paper, we study the frequently occurring phenomenon of
cyclic competition in nature [20, 45, 23, 10, 25, 22, 30]. Cyclic competition in coral
reef populations are studied in [20]. Sinervo and Lively first characterized rock-
paper-scissors like competition in lizards [45], while Gilg, Hanski and Sittler [10]
study this behavior in rodents. Cyclic behavior in microbial populations is studied
in [23, 25, 22, 30]. In classical and evolutionary game theory, cyclic dominance
(e.g., matching pennies, rock-paper-scissors) games are commonly studied [29, 49].
Biologically speaking, in an idealized cyclic game, the absolute fitness measure
(payoff) resulting from species interaction can be represented by a circulant matrix,
in which row k is a rotation of row k − 1 for each k. Games with circulant payoff
matrices have been studied extensively in evolutionary game theory [50, 43, 16, 17,
6, 18, 48, 11] and provide some of the most interesting behaviors [48].

In early work, cyclic interaction is considered without explicit reference to games.
Cyclic (chemo-biological) interactions are studied extensively in [41, 15, 42] in which
both competitive and cooperative behaviors are identified. Analysis of the replica-
tor in which a circulant matrix emerges is studied in [43] as a result of cyclic mass
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interaction kinetics. Zeeman [50] made an early study of the dynamics of cyclic
games showing that in rock-paper-scissors a degenerate Hopf bifurcation leads to
the emergence of a non-linear center with no limit cycle possible in any 3 strategy
game under the replicator dynamics. Since this early work, several authors have
investigated various cyclic games and games characterized by circulant matrices.
Among many other works: Hofbauer and Schlag [18] consider imitation in cyclic
games; Diekmann and Gils specifically study the cyclic replicator dynamics and
focus on the properties of low-dimensional cyclic games [6]; Ermentrout et al. con-
sider a transition matrix evolutionary dynamic in which a limit cycle emerges in
the rock-paper-scissors game [7]; and Griffin and Belmonte [12] study a triple pub-
lic goods game and show that is is diffeomorphic to generalized rock-paper-scissors.
Each of these works focuses explicitly on classes of circulant games, while recent
work by Granić and Kerns [11] characterizes the Nash equilibria of arbitrary cir-
culant games, but does not focus on the evolutionary game context. Rock paper
scissors has been studied extensively in the literature starting with [27]. [3] studies
RPS at the mesoscopic scale, while chaotic behavior in special forms of RPS are
studied in [19, 38, 39, 37]. [30] studies the evolution of restraint in a RPS context.
[28] studies the effect of mutation. RPS is used as an exemplar in a non-standard
evolutionary dynamic in[13].

There has also been extensive work on spatial games with circulant payoff ma-
trices. Peltomäki and Alvara [31] consider both 3 and 4 state rock-paper-scissors.
Other papers consider rock-paper-scissors with variations on reaction rate [14] or
study the basins of attraction [44]. DeForest and Belmonte [5] study a fitness gradi-
ent variation on the spatial replicator and show rock-paper-scissors can exhibit spa-
tial chaos under these dynamics. More recent work by Szczesny et. al [47] considers
spiral formations in rock-paper-scissors. Spatial rock-paper-scissors not motivated
by the replicator equation is studied extensively in [32, 47, 48, 35, 36, 14, 33, 46].

In this paper, we extend work in [12] by studying an optimal control problem
defined on a N -strategy (N = 3, 5, 7, . . . ) generalization of rock-paper-scissors. Odd
cardinality interactions are interesting because they model specific biological cases
[45, 10, 41, 15, 42]. Additionally, when N is very large, these have the potential to
model systems in which many individuals with a variety of strengths and weaknesses
interact. Recent work by [34] studies the replicator as emerging from the minimiza-
tion of an action. This work is related to but distinct from the work studied in this
paper.

For this paper, we assume that the payoff matrix is (i) defined by the sum of two
circulant matrices, and (ii) one of those circulant matrices admits a single control
parameter. Thus we consider the general class of control problems first studied
in a specific case in [12]. Our payoff matrix is inspired by the generalized rock-
paper-scissors matrix defined in [49]. Since every pair of heterogeneous strategic
interactions (e.g., rock vs. scissors) results in a non-zero payoff, we refer to this
class of games as complete odd circulant games.

The main results in this paper are:

1. We generalize the control problem defined in [12] to complete odd circulant
games of any order by writing the replicator dynamics as the sum of an uncon-
trolled component and a controlled component, both of which have circulant
Jacobian matrices.

2. We show that a quasi-linearization of the control problem (as done in [12])
has special form admitting a complete characterization of the dynamics of the
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optimal control. We also derive a sufficient condition on control optimality
and thus completely generalize the results in [12] to arbitrary complete odd
circulant games.

3. As a part of the generalization, we find a second order ordinary differential
equation that the optimal control must obey and show that the asymptotic
form (as N grows large) of this ODE has a natural closed form solution.

The remainder of this paper is organized as follows: In Section 2 we present
preliminary results and notation. In Section 3 we introduce the control problem
of interest and study a general class of optimal control problems that will assist
in the derivation of our main results. Our main results on control of complete
odd circulant games are found in Section 4. Conclusions and future directions are
presented in Section 5. In addition, we provide three appendices. Appendix A
provides essential results from optimal control theory used in this paper. Appendix
B provides technical proofs to four lemmas used in the paper. Appendix C contains
numerical examples.

2. Notation and Preliminary Results. A circulant matrix is a square matrix
with form:

A =

⎡⎢⎢⎢⎣
a0 an−1 an−2 · · · a1
a1 a0 an−1 · · · a2
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0

⎤⎥⎥⎥⎦ .

A circulant matrix is entirely characterized by its first row and all other rows are
cyclic permutations of this first row. The set of N ×N circulant matrices forms a
commutative algebra, a fact that will be used frequently in this paper. Moreover, the
eigenvalues of these matrices have special form. If A is an N ×N circulant matrix
and ω0, . . . , ωN−1 are the N th roots of unity, then eigenvalue λj (j = 0, . . . , N − 1)
is given by the expression:

λj = a0 + an−1ωj + an−2ω
2
j + · · ·+ a1ω

N−1
j .

Further details on this class of matrices is available in [4].
Let:

∆N =
{︁
u ∈ RN : 1Tu = 1,u ≥ 0

}︁
be the unit N -simplex embedded in N -dimensional Euclidean space. Here 1 is an
appropriately sized vector of 1’s and 0 is a zero vector. Circulant matrices are a
special subclass of Toeplitz matrices and as such inherit all their properties and
more.

We consider a family of control problems defined on parameterized cyclic games
with N = 2n + 1 strategies, where n = 1, 2, . . . . For the remainder of this paper,
define LN ,MN ∈ RN×N circulant matrices so that the first row of LN is given by:

L1· = [0,−1, 1,−1, 1, . . . ,−1, 1] (1)

and

M1· = [0, 0, 1, 0, 1, · · · , 0, 1] (2)
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By way of example, we illustrate the matrices L5 and M5 for the 5-strategy cyclic
game.

L5 =

⎡⎢⎢⎢⎢⎣
0 −1 1 −1 1
1 0 −1 1 −1
−1 1 0 −1 1
1 −1 1 0 −1
−1 1 −1 1 0

⎤⎥⎥⎥⎥⎦ , M5 =

⎡⎢⎢⎢⎢⎣
0 0 1 0 1
1 0 0 1 0
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0

⎤⎥⎥⎥⎥⎦ .

From a game-theoretic perspective, we can think of LN as being the traditional
payoff matrix of the complete cyclic game with N strategies. MN can be thought
of an actuating matrix that will determine whether the interior fixed point of the
complete cyclic game is stable or unstable.

In the remainder of this paper, we will consider the generalized cyclic game with
N strategies where N = 3, 5, 7, . . . , and we note that both LN and MN are circulant
matrices. The payoff matrix for the generalized cyclic game with N strategies and
parameter γ is:

AN (γ) = LN + γMN .

If γ = 0 and N = 3, then A3(γ) is just the rock-paper-scissors matrix. Without
loss of generality, we assume γ > −1. Otherwise, the natural winning precedence
in the cyclic game is reversed.

In the control problem defined in the sequel, the replicator dynamics are the
nonlinear equations of motion with control parameter γ:

SN =

{︄
u̇i = ui

(︁
(ei − u)TAN (γ)u

)︁
,

u(0) = u0.
(3)

Here u = ⟨u1, . . . , uN ⟩ is the vector denoting the proportion of the population
playing each of the N strategies. It is well known [16, 49] that if u0 ∈ ∆N , then
u(t) is confined to ∆N for all time. For the remainder of this paper, we assume
u0 ∈ ∆N .

The following lemma and corollary can be found in [16] (page 174).

Lemma 2.1. Let n ∈ {1, 2, . . . , } and N = 2n+ 1, then:

1. SN has among its fixed points ei ∈ ∆N (i = 1, . . . , N) and u∗ = 1
N 1 in the

interior of ∆N .
2. Furthermore if 1

N 1 is stable, it is globally asymptotically stable on the interior

of ∆N . If 1
N 1 is unstable, then all trajectories converge to the boundary of

∆N unless u0 = u∗ = 1
N 1.

Corollary 2.2. The fixed point u∗ = 1
N 1 is the unique interior fixed point for

SN .

Let F,G : ∆N → Rn be defined component-wise as:

Fi(u) = ui ((ei − u)LNu) , (4)

Gi(u) = ui ((ei − u)MNu) . (5)

The replicator dynamics are then:

u̇ = F(u) + γG(u),

which are the dynamics that will be used in the control problem of interest.
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We note that F and G are the functional imprints of the standard payoff matrix
LN and the actuation matrix MN within the replicator framework. Understanding
their Jacobian matrices is essential in understanding the dynamics. The structure
of the Jacobian matrix for a circulant matrix is given in [16] (page 173). However,
we need an explicit form not presented in that text. The proof of the following
lemmas is given in Appendix B.

Lemma 2.3. The Jacobian matrix of F evaluated at u∗ = 1
N 1 is:

J ≜ DuF =
1

N
LN .

Consequently, J is a circulant matrix.

Lemma 2.4. The Jacobian matrix of G evaluated at u∗ = 1
N 1 is:

H ≜ DuG =
1

N2
MN − 2n

N2
(1N −MN ) =

1

N2
(N (MN − 1N ) + 1N ) ,

where 1N is an N ×N matrix of 1’s. Consequently H is a circulant matrix.

Theorem 2.5. If γ > 0, then the fixed point u∗ = 1
N 1 is asymptotically stable. If

γ < 0, then the fixed point u∗ is asymptotically unstable.

Proof. From Lemmas 2.3 and 2.4, we note that the Jacobian matrix of SN at u∗

has the following form:

J = J+ γH =
1

N
LN + γ

(︃
1

N2
MN − 2n

N2
(1N −MN )

)︃
.

By its construction, it is a circulant matrix with first row given by:

J 1j =

⎧⎪⎨⎪⎩
−γ 2n

N2 if j = 1,

− 1
N − γ 2n

N2 if j > 1 and j − 1 is odd,
1
N + γ 1

N2 otherwise.

(6)

Letting ωj for j = 0, . . . , N − 1 be the N th roots of unity1, we know that the jth

eigenvalue of J is:
N∑︂

k=1

J 1,kω
k−1
j .

It now remains to show that the sign of the real-part of λj is entirely dependent on
γ. The real part of the eigenvalue is given by:

Re (λj) =

N∑︂
k=1

J 1,k cos

(︃
2πj(k − 1)

N

)︃
. (7)

The first eigenvalue (j = 0) is real and readily computed:

λ0 = n

(︃
γ

1

N2
− γ

2n

N2

)︃
− γ

2n

N2
= −γ

n(1 + 2n)

N2
.

It is clear at once that the sign of this eigenvalue is entirely controlled by the sign
of γ.

For j > 0, note that the periodicity of the cosine function (and the fact that the
roots of unity are the vertices of the regular unit N -gon) implies that the coefficient

1For details see [4]
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of J 1,k is identical to the coefficient of J 1,N−(k−2) if 2 ≤ k ≤ n+1. From this fact
and Expression 6, the sum in Equation 7 becomes:

Re (λj) = γ

(︄
− 2n

N2
+

n+1∑︂
k=2

cos

(︃
2πj(k − 1)

N

)︃(︃
1

N2
− 2n

N2

)︃)︄
.

Factoring further we see:

Re (λj) =
γ

N2

(︄
−2n+

n+1∑︂
k=2

cos

(︃
2πj(k − 1)

N

)︃
(1− 2n)

)︄
=

γ

N2

(︄
−2n+ (1− 2n)

(︄
n+1∑︂
k=2

cos

(︃
2πj(k − 1)

N

)︃)︄)︄
.

The roots of unity are evenly distributed on the vertices of the unit N -gon in C and
therefore the sum of the real parts must be zero. It follows that:

n+1∑︂
k=2

cos

(︃
2πj(k − 1)

N

)︃
= −1

2
.

We now obtain an exact value for the real parts of the eigenvalues:

Re (λj) =
γ

N2

(︃
−2n− 1

2
(1− 2n)

)︃
= − γ

N2

(︃
n+

1

2

)︃
. (8)

Thus we have proved that when γ > 0, then Re(λj) < 0 for all j and if γ < 0, then
Re(λj) > 0. The asymptotic stability (resp. instability) of the fixed point follows
immediately.

3. The Control Problem and Some General Results. We now state our con-
trol problem of interest:

CN =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

∫︂ tf

0

1

2
∥u− u∗∥2 + r

2
γ2 dt

s.t. u̇ = F(u) + γG(u),

u(0) = u0.

(9)

where u∗ = 1
N 1. Such a problem arises naturally if we consider agents interacting

in a cyclic manner and γ is a costly control mechanism, i.e., a penalty by which
a benevolent social planner may control species populations. Because such a con-
trol mechanism is inefficient, the controller seeks to minimize the penalty while
driving the population toward a mixed state. As in [12], we will show that a
quasi-linearization of this control problem has special structure, and we extend our
results to show that this special structure holds for all odd cyclic games (i.e., for
all N = 2n + 1). Furthermore, we discuss the limiting behavior of the control as
N grows large. To do this, we first consider a very general optimal control prob-
lem and obtain necessary conditions for simplifying the Euler-Lagrange necessary
conditions. We then use these simplifications to generalize the results in [12]. For
the interested reader, an overview of optimal control necessary and sufficient condi-
tions can be found in [26, 24, 9] with the more modern Geometric Optimal Control
found in [40]. We provide a summary of the elementary results from optimal control
theory used in the remainder of this paper in Appendix A.
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3.1. Control Problems with One Control and Vanishing Lie Bracket. In
the remainder of this section, the functions F,G : Rn → Rn are arbitrary smooth
functions, rather than the functions specific to the replicator dynamics for cyclic
games given in Equations 4 and 5, x ∈ Rn is a state vector, and γ is the control
function to be determined.

Consider the optimal control problem with form:⎧⎪⎪⎪⎨⎪⎪⎪⎩
min Ψ(x(tf )) +

∫︂ tf

0

F0(x) + γG0(x) +
r

2
γ2 dt

s.t. ẋ = F(x) + γG(x),

x(0) = x0.

(10)

The functions F0, G0 : Rn → R are smooth. Let r > 0, tf be the terminal time,
and F0(x) be convex. Expression 9 has this structure, so we are simply considering
a more general case of our problem of interest.

The Euler-Lagrange necessary conditions for control are simple to derive for this
problem and have an almost linear behavior. Note the Hamiltonian is:

H(x, γ,λ) = F0(x) + γG0(x) +
r

2
γ2 + λTF(x) + γλTG(x). (11)

The Hamiltonian is (strictly) convex in the control γ, and thus we propose the
following:

Lemma 3.1. Any solution γ∗ to Hγ = 0 satisfies the necessary conditions:

1. Hγ = 0, and
2. Hγγ > 0, the strong Legendre-Clebsch condition;

therefore, it minimizes the Hamiltonian at all times.

Deriving the optimal control by solving ∂H/∂γ = 0 for γ to obtain:

γ∗ = −1

r

(︁
λTG(x) +G0(x)

)︁
. (12)

The two conditions in Lemma 3.1, along with the fact that x∗ and λ∗ solve the
resulting Euler-Lagrange two-point boundary value problem (see Expression 14),
form the complete set of necessary conditions for the optimal control problem.
Adding in the additional requirement that the corresponding matrix Riccati equa-
tion is bounded on [0, tf ], these form sufficient conditions for a weak local minimal
optimal controller [2, 21]. We discuss this sufficient condition in the sequel.

For simplicity, we refer to the optimal control as γ (rather than γ∗) in the re-
mainder of this paper and assume it is given by Equation 12. The adjoint dynamics
are:

λ̇
T
= −(∇xF0(x))

T − γ(∇xG0(x))
T − λTDxF− γλTDxG, (13)

where DxF is the Jacobian (with respect to x). Thus we have the Euler-Lagrange
two-point boundary value problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = F(x) + γG(x),

λ̇ = −∇xF0(x)− γ∇xG0(x)− (DxF)
Tλ− u(DxG)Tλ,

x(0) = x0,

λ(tf ) = ∇xΨ(x[tf ]). (Transverality Condition)

(14)
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Proposition 3.2. If γ is an optimal control, then:

γ(tf ) = −1

r

(︁
∇xΨ(x(tf ))

TG(x(tf )) +G0(x(tf ))
)︁
. (15)

Proof. This follows from the transversality condition.

From Equation 12, note that:

rγ̇ = −λ̇
T
G(x)− λT (DxG)ẋ− (∇xG0)ẋ. (16)

Then:

rγ̇ =
(︁
(∇xF0(x))

T + γ(∇xG0(x))
T + λT (DxF) + γλT (DxG)

)︁
G(x)−

λT (DxG) (F(x) + γG(x))− (∇xG0) (F(x) + γG(x)) . (17)

Simplifying we have:

rγ̇ = (∇xF0(x))
TG(x)− (∇xG0(x))

TF(x) + λT ((DxF)G(x)− (DxG)F(x)) .

If the Lie Bracket vanishes, i.e.,:

[F,G] = (DxF)G− (DxG)F = 0, (18)

then this simplifies to:

γ̇ =
1

r

(︁
(∇xF0(x))

TG(x)− (∇xG0(x))
TF(x)

)︁
, (19)

and all co-state variables are eliminated. We have shown the following:

Theorem 3.3. Consider the general optimal control problem given in Expression
10. If [F,G] = 0 and γ is an optimal control, then the pair (x(γ), γ) is a solution
of the two point boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ =F(x) + γG(x),

γ̇ =
1

r

(︁
(∇xF0(x))

TG(x)− (∇xG0(x))
TF(x)

)︁
,

x(0) =x0,

γ(tf ) =− 1

r

(︁
∇xΨ(x(tf ))

TG(x(tf )) +G0(x(tf ))
)︁
.

(20)

Geometrically, Equation 18 implies that the flows derived by the vector fields
F and G commute locally. From a game-theoretic view, this means that locally
evolutionary motion caused by competition in the uncontrolled game commutes
with evolutionary motion caused by the actuation payoffs on local space/time scales.
As we see in the sequel, this is not true for actuated cyclic games, but is true for
their quasi-linear approximations as in [12], meaning we can use Theorem 3.3 to
determine properties of the optimal control near the interior fixed point.

It is worth noting that a differential equation for the control function is derived
in [1], without the assumption of the vanishing Lie Bracket. However, without
this assumption the system does not simplify in as useful a way and, in fact, in
[1] the relevant Lie Bracket is not considered. Note, in formulating Theorem 3.3,
we are assuming that solving the Euler-Lagrange equations will yield an optimal
control. We can use the well known fact that a sufficient condition for optimality
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is the boundedness of the solution to the matrix Ricatti equation [2, 21] to derive
complete necessary and sufficient conditions for optimality of the control. Let:

ẋ = F(x) + γG(x) = f(x, γ).

Then the Matrix Ricatti equation is:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Ṡ = DxxH+ (Dxf)

TS+ S(Dxf)−
1

r

(︁
DγxH+ (∂γf)

TS
)︁T (︁

DγxH+ (∂γf)
TS
)︁
,

S(tf ) = ∇2
xΨ(x[tf ]).

(21)

Here Dxx is the second order differential operator with respect to the state and
∂γ is an ordinary partial derivative, since there is only one control variable. When
taken together with Lemma 3.1, the system of differential equations in Theorem
3.3 and the co-state dynamics, Equation 13, we have a complete characterization
of the necessary and sufficient conditions for the optimal control. This yields the
corollary:

Corollary 3.4 (Corollary to Theorem 3.3). Let f(x, γ) = F(x) + γG(x) in the
optimal control problem in Expression 10, with Hamiltonian H(x, γ,λ). Assume
[F,G] = 0. Any solution to the system of differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = f(x, γ),

γ̇ =
1

r

(︁
(∇xF0(x))

TG(x)− (∇xG0(x))
TF(x)

)︁
,

λ̇ = −∇xF0(x)− γ∇xG0(x)− (DxF)
Tλ− u(DxG)Tλ,

−Ṡ = DxxH+ (Dxf)
TS+ S(Dxf)−

1

r

(︁
DγxH+ (∂γf)

TS
)︁T (︁

DγxH+ (∂γf)
TS
)︁
,

x(0) = x0,

γ(tf ) = −1

r

(︁
∇xΨ(x(tf ))

TG(x(tf )) +G0(x(tf ))
)︁
,

λ(tf ) = ∇xΨ(x[tf ]),

S(tf ) = ∇2
xΨ(x[tf ]),

(22)

in which γ(t) = − 1
r

(︁
λTG[x] +G0[x]

)︁
and S is bounded for all t ∈ [0, tf ] constitutes

a weak local optimal solution for Expression 10.

We note that this is the general analog of Proposition 2 in [8], which is specialized
to a control problem with one-dimensional state. In general, checking the bound-
edness of the solution to the Matrix Ricatti equation must be done numerically. In
the sequel we develop a simpler test for optimality using Mangasarian’s sufficiency
condition; i.e., by checking that the Hamiltonian is jointly convex.

Problem 9 (CN ) does not satisfy the necessary condition that [F,G] = 0. How-
ever, a quasi-linearization of the problem does satisfy this condition (as in [12]). We
now discuss a special case of Theorem 3.3 as well as extensions that apply to this
quasi-linearized form.

3.2. The Quasi-Linear Case. For the remainder of this section, let J and H be
arbitrary matrices of appropriate size, rather than the Jacobian matrices derived in
Lemmas 2.3 and 2.4.
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In Problem 10, let: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
F0(x) =

1

2
xTQx,

G0(x) = 0,

F(x) = Jx,

G(x) = Hx.

(23)

where Q is a (symmetric) positive definite matrix of appropriate size. We will add
additional criteria to J and H as we proceed. We refer to this as a quasi-linear case
because the only non-linearity arises from the interaction of the state and control
variables. The following Corollary is immediate from Theorem 3.3:

Corollary 3.5. If the identify JH = HJ holds and γ∗ is an optimal control, then
the pair (x(γ∗), γ∗) is a solution of the two point boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ =Jx+ γHx,

γ̇ =
1

r
xTQHx,

x(0) =x0,

γ(tf ) =− 1

r
∇xΨ(x(tf ))

THx(tf ).

(24)

The condition that J and H commute is exactly the statement that the Lie
Bracket of the vector fields in the dynamics vanishes. Therefore, Theorem 3.3 can
be applied to any linear quadratic control problem where the state equation satisfies
this condition.

We now derive some special results on γ̈ and the optimal control in this quasi-
linear case. Let K ≜ QH and assume JH = HJ. Computing the second derivative
of γ yields:

rγ̈ = ẋTKx+ xTKẋ =
(︁
xTJT + γxTHT

)︁
Kx+ xTK (Jx+ γHx) =

xT
(︁
JTK+KJ+ γ

(︁
HTK+KH

)︁)︁
x.

To simplify this, we will add an additional assumption to J; suppose that JT = −J
(i.e., J is skew-symmetric) and JK = KJ. Then:

r
γ̈

γ
= xT

(︁
HTK+KH

)︁
x. (25)

Before proceeding note that:

d

dt

(︁
xTQx

)︁
=
(︁
xTJT + γxTHT

)︁
Qx+ xTQ (Jx+ γHx) =

xT (−JQ+QJ)x+ γxT
(︁
HTQ+QH

)︁
x =

xT (−JQ+QJ)x+ γxT
(︁
HTQT +QH

)︁
x =

xT (−JQ+QJ)x+ 2γxTKx =

xT (−JQ+QJ)x+ 2rγγ̇.

Thus, we have the following proposition and its corollary:

Proposition 3.6. If J = −JT , JH = HJ and JQ = QJ and K ≜ QH, then:
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1.

JK = KJ,

2.
d

dt

(︁
xTQx

)︁
= 2rγγ̇, (26)

3.

r
γ̈

γ
= xT

(︁
HTK+KH

)︁
x. (27)

Corollary 3.7. For some constant C,

xTQx = rγ2 + C (28)

is the implicit closed-loop control, where C must satisfy:

C = xT (tf )Qx(tf )− r

(︃
1

r
∇xΨ(x(tf ))

THx(tf )

)︃2

. (29)

Furthermore the optimal control γ exists at time t just in case:

xT (t)Qx(t)− C ≥ 0. (30)

4. Application of Control Results to Complete Odd Circulant Games. We
now return to the study of cyclic games with N strategies and specifically to the
control problem in Expression 9. As noted already, we cannot apply Theorem 3.3
directly to Problem 9 because the appropriate Lie Bracket does not vanish. However,
we can construct the quasi-linearized form of the problem. Let x = u − u∗. The
quasi-linearized problem is:

C̃N =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

∫︂ tf

0

1

2
∥x∥2 + r

2
γ2 dt

s.t. ẋ = Jx+ γHx,

x(0) = x0.

(31)

In Expression 31, J and H are the Jacobian matrices of F(u) and G(u) as defined
in Lemmas 2.3 and 2.4. Problem 31 is an instance of the general control problem
studied in Section 3.

The following useful fact follows at once from Lemma 2.3.

Corollary 4.1. The Jacobian matrix J is skew-symmetric.

Lemma 4.2. Let γ be the optimal control for Problem 31. Then:

1. The (open-loop) optimal control obeys the following differential equations:

γ̇ =
1

r
xTHx, γ(tf ) = 0, (32)

r
γ̈

γ
= xT

(︁
HTH+HH

)︁
x. (33)

2. The following identity holds:

xTx = ∥x∥2 = rγ2 + C, (34)

where:

C = ∥x(tf )∥2 .
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Proof. Problem 31 is an instance of Problem 10, but with quasi-linear system dy-
namics and quadratic objective as given in the quasi-linear conditions in Expres-
sion 23. In particular, Problem 31 sets Q = IN . As a consequence the matrix
K = QH = H. From Corollary 4.1, we know J is skew-symmetric. Further, since
the circulant matrices form a commutative algebra, we have HJ = JH. The lemma
follows at once from Corollary 3.5, Proposition 3.6 and Corollary 3.7.

Expression 34 is the closed-loop control law for the controlled cyclic game. Fur-
thermore, Equation 32 allows us to determine some structural properties of γ.

Proposition 4.3. The matrix H is negative definite and therefore γ̇ ≤ 0 for all t.

In addition to determining that γ is decreasing, Problem 31 has further special
structure, which allows us to understand the structure of the derived control γ in
greater detail and ultimately derive a closed-form approximation for large N . The
derivation is similar to the one found in [12] for a special case diffeomorphic to
rock-paper-scissors. The proof of the following lemma is given in Appendix B.

Lemma 4.4. For all x ∈ RN :

xT
(︁
HTH+HH+H

)︁
x = − n

N2
∥x∥2 . (35)

Theorem 4.5. If γ is the open-loop optimal control for Problem 31, then γ satisfies
the following second order differential equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rγ̈ + rγγ̇ +
n

N2
γ
(︁
rγ2 + C

)︁
= 0,

γ(tf ) = 0,

γ′(0) =
1

r
xT
0 Hx0,

C = ∥x(tf )∥2 .

(36)

Proof. From Lemma 4.2 we have:

r
γ̈

γ
= xT

(︁
HTH+HH

)︁
x,

and
rγ̇ = xTHx.

Adding these together we obtain:

r
γ̈

γ
+ rγ̇ = xT

(︁
HTH+HH+H

)︁
x.

Therefore by Lemma 4.4:

r
γ̈

γ
+ γ̇ = − n

N2
∥x(t)∥2 .

From Lemma 4.2, we have:

r
γ̈

γ
+ γ̇ = − n

N2

(︁
rγ2 + C

)︁
,

where C = ∥x(tf )∥2. Thus:

rγ̈ + γγ̇ +
n

N2
γ
(︁
rγ2 + C

)︁
= 0.

The boundary conditions γ(0) = 0 and γ′(0) = xT
0 Hx0 follows from Lemma 4.2.
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The following corollary is illustrated in Appendix C.

Corollary 4.6. For N large, the open loop control γ can be approximated by ζ, a
solution to the following two-point boundary value problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

rζ̈ + rζζ̇ = 0,

ζ(tf ) = 0,

ζ ′(0) =
1

r
xT
0 Hx0.

(37)

4.1. Closed Form Analysis of the Limiting Behavior. For simplicity, let r = 1
in the following analysis. Corollary 4.6 can be made more useful by re-writing
Equation 37 as a system of first order differential equations and examining the
phase portrait (see Fig. 1):

ζ̇ = v,

v̇ = −ζv,

ζ(tf ) = 0,

v(0) = xT
0 Hx0.

(38)

The phase portrait indicates a sharp behavioral change in the direction field when

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

ζ

v

Figure 1. The phase portrait of the first order system represent-
ing the limiting behavior of the open loop control γ and it’s first
derivative.

moving from the v < 0 half-plane to the v > 0 half-plane. For the half-plane where
v < 0, γ ≥ 0 necessarily by Theorem 2.5. This is consistent with Proposition 4.3.
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System 38 has a closed form solution2 with several branches. The relevant solu-
tions on the interval [0, tf ] are:

ζ(t) =
√
2

√︄
κ tanh2

(︃√
κ (tf − t)√

2

)︃
,

ζ ′(t) = −2
√
κ

√︄
κ tanh2

(︃√
κ (tf − t)√

2

)︃
csch

(︂√
2
√
κ (tf − t)

)︂
.

Note, ζ ∼ O(| tanh(·)|). Thus, the usual behavior of tanh is modified so that ζ is
a decreasing function on [0, tf ] and then an increasing function outside this range.
As a consequence, this solution is only valid on the control domain of interest.

In the closed form solution, κ is a constant of integration that must be chosen
so that v(0) = ζ ′(0) = xT

0 Hx0. Finding a closed form expression for κ is difficult.
However as N increases, xT

0 Hx0 decreases in size because H ∼ 1/N and ∥x∥ is
bounded, since x is just a translation of u ∈ ∆N . For small values of xT

0 Hx0, we
expect κ to be small because of the structure of ζ ′(t). Furthermore, ζ ′(0) can be
approximated as:

ζ ′(0) ≈ −κ+O(κ2).

Thus, setting κ = −xT
0 Hx0 will give a reasonable approximation of the solution.

This is illustrated in Appendix C.

4.2. Sufficiency of the Euler-Lagrange Conditions. Corollary 3.4 contains
both necessary and sufficient conditions for the computed γ(t) to be the optimal
control. However, these conditions require the solution of the matrix Riccati equa-
tion. For the quasi-linearized optimal control problem on cyclic games, a simpler
test can be constructed using Mangaserian’s condition [26], which states that the
Hessian of the Hamiltonian must be positive definite (i.e., jointly convex in state and
control). For the optimal control in quasi-linearized cyclic games, the Hamiltonian
of this optimal control problem is:

H(x, γ,λ) = ∥x∥2 + 1

r
γ2 + λTJx+ γλTHx.

This is a specialization of Equation 11 to the quasi-linearized cyclic games problem.
The Hessian of H is:

H =

[︃
IN HTλT

λH r

]︃
.

Here, λ is the co-state for the optimal control problem.

Theorem 4.7. If r >
⃦⃦
HTλT

⃦⃦2
for all t ∈ [0, tf ], then the control derived in

Lemma 4.2 is optimal.

Proof. The Hessian matrix H is positive definite if and only if it has a Cholesky
decomposition, which then implies that H(x, γ,λ) is convex in both its state and
control. Computing the Cholesky decomposition for H we obtain:

H =

[︄
IN 0

λTH
√︁
r − ∥HTλT ∥

2

]︄[︄
IN HTλT

0

√︂
r − ∥HTλT ∥2

]︄
.

This decomposition exists if and only if r >
⃦⃦
HTλT

⃦⃦2
. The result follows immedi-

ately.

2Derived with MathematicaTM.



OPTIMAL CONTROL OF CIRCULANT GAMES 15

This sufficient condition for optimality is precisely the one identified in [12] for
the triple public goods game, which was shown to be diffeomorphic to the cyclic
game with three strategies (rock-paper-scissors). In Appendix C we show several
instances where this sufficient condition is satisfied and one where the matrix Ricatti
equation (see Corollary 3.4) must be used to establish weak local optimality.

5. Final Discussion and Future Directions. In this paper we studied an op-
timal control problem arising from the class of complete, odd circulant games that
generalize rock-paper-scissors. We used the replicator dynamics as the natural equa-
tions of motion in the optimal control problem. In particular, the control problem
was to drive trajectories toward the unique interior fixed point of the replicator
dynamics. We first studied the uncontrolled fixed points of the replicator. We
then showed that this class of problems admits a natural quasi-linearization, and
that this quasi-linearized optimal control problem has a open-loop optimal control
satisfying a specific second order differential equation. Furthermore, we showed
that as the number of strategies grows, this differential equation admits a closed
form solution. Numerical comparisons showed that this limiting case provides a
natural approximation for the optimal control. We also showed that even when the
starting conditions for the optimal control are far from the interior Nash equilib-
rium, where quasi-linearization is performed, we still can use it to approximate the
optimal control in the original problem.

A promising direction for future research would be to extend these results to
arbitrary circulant games or to cyclic games with a control parameter. In this
context, a cyclic game is any circulant game in which the first row of the LN matrix
has form (0, 1, 0, . . . , 0,−1). Here the number of 0’s between 1 and −1 is N − 3.
The resulting matrix MN with 1’s corresponding to the 1′ in L and 0 elsewhere is
the adjacency matrix of a cycle graph. Rock-paper-scissors is the only game that
is both a cyclic and complete odd circulant graph (because the three-cycle is the
complete graph on three vertices). Any circulant game whose payoff matrix can be
written as LN + γMN will obey Equation 32 because the circulant matrices form
a commutative algebra. Beyond that, it is possible addition dynamics govern the
optimal controls in these cases. This presents a logical area for further study.

Another extension of this work is to study circulant games with an off-center
interior equilibrium point, rather than u∗ = 1

N 1. Doing so, however, should in-
troduce additional control parameters. This would be an interesting extension as
well since this paper considered only a single control parameter. It also will make
the application more realistic since an individual may have varying degrees of con-
trol over each population. In addition to introducing additional controls, another
natural extension of this work is to derive controllers that drive the system toward
a non-interior equilibrium point. In particular it would be intriguing to study the
problem of deliberately eliminating one or more species.

Finally, studying more complex dynamics with control, like those found in the
mutator-replicator, may produce interesting and useful results. However, these may
not admit the necessary conditions to allow the control mechanisms identified in
this paper to be applied.

Acknowledgement. The authors thank Andrew Belmonte for his helpful com-
ments and discussion.
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Appendix A. Optimal Control Problems. In Section 3 we introduce the prob-
lem of driving a population playing a cyclic game to its mixed strategy equilibrium.
We present key facts from optimal control theory used in this study. Details are
available in [26, 24, 9].

A Bolza type optimal control problem is an optimization problem of the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩
min Ψ(x(tf )) +

∫︂ tf

t0

f(x(t),u(t), t)dt

s.t. ẋ = g(x(t),u(t), t),

x(0) = x0.

(39)

When Ψ(x(tf )) ≡ 0, this is called a Lagrange type optimal control problem. The
vector of variables x is called the state, while the vector of decision variables u is
called the control. Additional constraints on u, x or the joint function of x and u
can be added.

The Hamiltonian with adjoint variables (Lagrange multipliers) λ for this problem
is:

H(x,λ, u) = f(x(t),u(t), t) + λTg(x(t),u(t), t).

In what follows, we assume that all f(x,u, t) and g(x,u, t) are continuous and
differentiable in x and u, and Ψ(x(tf )) is continuous and differentiable in x(tf ). A
proof of this lemma can be found in almost every book on optimal control (e.g. [9]).

Lemma A.1 (Necessary Conditions of Optimal Control). If u∗ is a solution to
Optimal Control Problem (39), then there is a vector of adjoint variables λ∗ so
that:

H(x∗(t),u∗(t),λ∗(t)) ≤ H(x∗(t),u(t),λ∗(t)) (40)

for all t ∈ [0, T ] and for all admissible inputs u, and the following conditions hold:

1. Pontryagin’s Minimim Principle: u̇(t) = ∂H
∂u = 0 and ∂2H

∂u2 is positive definite,
2. Co-State Dynamics:

λ̇(t) = −∂H
∂x

= −λT (t)
∂g(x,u)

∂x
+

∂f(x,u)

∂x
,

3. State Dynamics: ẋ(t) = ∂H
∂λ = g(x,u),

4. Initial Condition: x(0) = x0, and
5. Transversality Condition: λ(tf ) =

∂Ψ
∂x (x(tf )).

We will use the following restricted form of Mangasarian’s Sufficiency condition
[26] to argue a controller we derive in Section 4 is the optimal controller.

Lemma A.2 (Mangasarian’s Sufficiency Condition - Restricted Form). Suppose
(x∗,u∗) satisfies the necessary conditions from Lemma A.1 and H is jointly convex
in x and u for all time, and Ψ(x(tf )) ≡ 0. Then (x∗,u∗) is a globally optimal
control in the sense that it minimizes the objective functional.

We note that Mangasarian’s Sufficiency Condition specifically implies the strong
Legendre-Clebsch necessary conditions for optimality of the control:

1. Hu = 0, and
2. Huu > 0.

In the paper, we also discuss the sufficiency of the boundedness of the matrix Riccati
equation. Since this plays only a small role in our overall analysis, we introduce
this when it is needed.
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Appendix B. Technical Proofs.

Proof of Lemma 2.3. We prove the result for Row 1 of DuF. The remainder of the
argument follows from the circulant structure of LN . We have:

F1(u) = u1e
T
1 LNu,

because uTLNu = 0. Note:

u1e
T
1 LNu = u1

⎛⎝ N∑︂
j=2

(−1)j−1uj

⎞⎠ . (41)

Differentiating with respect to u1 and evaluating at u1 = u2 = · · · = un = 1
N yields:

[DuF]1,1 =
1

N

N∑︂
j=2

(−1)j−1 = 0,

since N is odd. Differentiating Expression 41 with respect to uj and evaluating at
u1 = u2 = · · · = un = 1

N yields:

[DuF]1,j =
(−1)j−1

N
=

1

N
LN1,j

.

The result now follows from the fact that LN is a circulant matrix.

Proof of Lemma 2.4. We show the result for Row 1 of DuG. The remainder of the
argument follows from the circulant structure of MN . We have already noted in
Corollary 2.2 that:

uTMNu =

N∑︂
i=1

∑︂
j>i

uiuj .

We compute:

eT1 MNu =

(N−1)/2∑︂
j=1

u2j+1.

Differentiate with respect to k = 2j + 1 for j ∈ {1, . . . , n}, corresponding to a
non-zero index in the first row of MN . We have:

∂G

∂uk
= u1

⎛⎝1−

⎛⎝∑︂
j ̸=k

uj

⎞⎠⎞⎠ .

Evaluating at u1 = u2 = · · · = un = 1
N we obtain:

[DuG]1,k =
1

N

(︃
1− N − 1

N

)︃
=

1

N2
,

for k = 2j + 1 with j ∈ {1, . . . , n}. Differentiate now with respect to u1 to obtain:

∂G

∂u1
=

(N−1)/2∑︂
j=1

u2j+1 − 2

N∑︂
j=2

u1uj −
N∑︂
i=2

∑︂
j>i

uiuj . (42)

Evaluating at u1 = u2 = · · · = un = 1
N we obtain:

[DuG]1,1 =
n

N
− 2

2n

N2
− 1

N2

(︃
1

2
(N − 2)(N − 1)

)︃
=

−N2 − 2nN +N − 2

N2
= −2n

N
,
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when 2n + 1 is substituted for N in the numerator. Finally, consider k ̸= 1 and
k ̸= 2j + 1 for j ∈ {1, . . . , n}. Differentiating with respect to uk we have:

∂G

∂uk
= −u1

⎛⎝∑︂
j ̸=k

uj

⎞⎠ .

Evaluating at u1 = u2 = · · · = un = 1
N we obtain:

[DuG]1,k = − 1

N2
(N − 1) = −2n

N
.

The result now follows from the fact that MN is a circulant matrix.

Proof of Proposition 4.3. Consider any vector x ∈ RN . Then:

xTHx =
1

N2
xT (N (MN − 1N ) + 1N )xT =

1

N2

⎛⎝N

⎛⎝ N∑︂
i=1

∑︂
j>i

xixj −
N∑︂
i=1

x2
i − 2

N∑︂
i=1

∑︂
j>i

xixj

⎞⎠+

N∑︂
i=1

x2
i + 2

N∑︂
i=1

∑︂
j>i

xixj

⎞⎠ =

− N − 1

N2

N∑︂
i=1

x2
i −

N − 2

N2

N∑︂
i=1

∑︂
j>i

xixj .

Let S ∈ RN×N be the upper-triangular matrix defined as:

Sij =

{︄
−N−1

N2 if i = j,

−N−2
N2 otherwise.

Then:

xTHx = xTSx = −N − 1

N2

N∑︂
i=1

x2
i −

N − 2

N2

N∑︂
i=1

∑︂
j>i

xixj .

The leading principal minors of S alternate in sign (the diagonal is entirely negative)
and thus by Sylvester’s criterion, S is negative definite. It follows at once that
xTHx < 0 for all x ̸= 0 and thus H is negative definite. The fact that γ̇ ≤ 0 now
follows from Lemma 4.2.

Proof of Lemma 4.4. From Lemma 2.4 we have:

H =
1

N2
(N (MN − 1N ) + 1N ) .

Let R = MN − 1N . The following computations are straight forward:

HTH =
1

N4

(︁
N2RTR+NRT1N +N1T

NR+ 1T
N1N

)︁
,

HH =
1

N4

(︁
N2RR+NR1N +N1NR+ 1N1N

)︁
.

Note that:

1T
N1N = 1N1N = N1N .

We may also compute:

1NMN = 1T
NMN = n1N ,

because MN contains n unit entries in each column (row). Consequently:(︁
MT

N1N

)︁T
= 1TMN = n1N ,
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and therefore:

MT
N1N = n1T

N = n1N .

Using this information, we compute:

RT1N = 1T
NR = 1NR = R1N = −(n+ 1)1N . (43)

Thus:

HTH+HH =
1

N4

(︁
N2
(︁
RT +R

)︁
R− 4N(n+ 1)1N + 2N1N

)︁
=

1

N4

(︁
N2
(︁
RT +R

)︁
R− 2N (2(n+ 1)− 1)1N

)︁
=

1

N2

(︁
N2
(︁
RT +R

)︁
R− 2N21N

)︁
=

1

N2

(︁(︁
RT +R

)︁
R− 21N

)︁
.

Using the fact that H = (NR+ 1N )/N2, we may write:

HTH+HH+H =
1

N2

(︁(︁
RT +R+NIN

)︁
R− 1N

)︁
.

The circulant structure of M implies the identity:

MT +M = 1N − IN .

Therefore:

RT +R = 1N − IN − 21N = −1N − IN .

Thus, using Equation 43 and the fact that N − 1 = 2n:

HTH+HH+H =
1

N2
(((N − 1)IN − 1N )R− 1N ) =

1

N2
((N − 1)(MN − 1N ) + (n+ 1)1N − 1N ) =

1

N2
(2nMN +−n1N ) =

n

N2
(2MN − 1N ) .

Recall from Corollary 2.2 that:

xTMNx =

N∑︂
i=1

∑︂
j>i

xixj .

Furthermore, it is straight forward to compute:

xT1Nx =

N∑︂
i=1

x2
i + 2

N∑︂
i=1

∑︂
j>i

xixj .

Therefore:

xT
(︁
HTH+HH+H

)︁
x =

n

N2
xT (2MN − 1N )x =

n

N2

⎛⎝2

N∑︂
i=1

∑︂
j>i

xixj −
N∑︂
i=1

x2
i − 2

N∑︂
i=1

∑︂
j>i

xixj

⎞⎠ = − n

N2
∥x∥2 .

This completes the proof.
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Appendix C. Examples with N = 3, 5, 7, 9. We study the derived optimal con-
trols for the case when N = 3, 5, 7, 9 in both the fully non-linear optimal control
problem and the quasi-linearized optimal control problem. In particular we observe
similar structure to the optimal controls in all cases. For these examples, we set
tf = 6, except in the last case where we extend it to show an example where the
sufficient condition for optimality is not satisfied.

In Figure 2 we show the optimal control for both the non-linear and quasi-
linearized optimal control problems. We set r = 0.2 and the initial state u0 =
(0.2333, 0.3333, 0.43333), which is close enough to the fixed point for the simpler
quasi-linearized approximation to be valid. We also demonstrate the equivalence
between the solution to the quasi-linearized Euler-Lagrange equations and the sec-
ond order differential equation (Eq. 36). We also show the approximation to the
quasi-linearized control function that arises as a solution to Equation 37. In the 3
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Figure 2. The control function, its approximations and the⃦⃦
HTλT

⃦⃦2
, used in determining whether the solution to the nec-

essary conditions are sufficient for an optimal control for the 3
strategy cyclic game (rock-paper-scissors).

strategy case, the condition for optimality is:

r >
⃦⃦
HTλT

⃦⃦2
=

1

9
∥λ∥2 . (44)

This is not generally true, but it is equivalent to the sufficient condition derived in
[12] for the diffeomorphic triple public goods game. Thus, Theorem 4.7 generalizes
the results from [12].

In Figure 3 we show the relevant control plots for the 5 strategy cyclic game (rock-
paper-scissors-Spock-lizard3). We again use r = 0.2 and u0 = (0.1, 0.3, 0, 0.1, 0.3).

An interesting feature of the 5 strategy cyclic game is that the limiting approx-
imation (Equation 37) does not perform as well as it did for the 3 strategy game.
As we see in Figures 4 and 5, the approximation does improve (as we expect) as N
increases. This anomalous behavior may be a function of numerical instability or a
property of the 5 strategy cyclic game. We do note that because of the properties
of Equations 36 and 37 (i.e, branching solutions), we did observe some numerical

3Developed by Sam Kass. See http://www.samkass.com/theories/RPSSL.html or Episode 8,
Season 2 of The Big Bang Theory. Note, to properly organize the moves to produce a circulant
matrix, the strategies should be ordered as rock-paper-scissors-Spock-lizard rather than rock-

paper-scissors-lizard-Spock as they are on The Big Bang Theory. Kass correctly organizes the
strategies.

http://www.samkass.com/theories/RPSSL.html
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Figure 3. The control function, its approximations and the⃦⃦
HTλT

⃦⃦2
, used in determining whether the solution to the nec-

essary conditions are sufficient for an optimal control for the 5
strategy cyclic game (rock-paper-scissors-Spock-lizard).

instability when simulating these systems. We note that in the 5 strategy case, the
sufficient condition on optimality is satisfied.

In Figures 4 and 5 we illustrate the optimal control for 7 and 9 strategy games. In
these cases r = 0.2 again. To maintain feasibility of the starting solution, we set u0

by alternately adding and subtracting 0.05 from the equilibrium, but kept the third
strategy at proportion 1/N in both cases. Thus we assured u0 was in ∆N in both
cases. As we expect, asN increases, the approximation in Equation 37 improves. It
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Figure 4. The control function, its approximations and the⃦⃦
HTλT

⃦⃦2
, used in determining whether the solution to the nec-

essary conditions are sufficient for an optimal control for the 7
strategy cyclic game.

is also interesting to note that the general structure of the optimal control function
is similar in all cases with the quasi-linearized control. It exhibits almost linear
behavior, and the fully non-linear controller shows decreasing oscillation. That the
optimal controller is a decreasing function is consistent with Proposition 4.3.

We can analyze the control problem even when the starting state is not near the
fixed point, which yields a case where the sufficient condition for optimality fails
to hold. We again consider the case when N = 3 and extend the time horizon of
control to tf = 15. We start at the point u0 = (0.8, 0.1, 0.1), which is not near
the equilibrium point u∗ = 1

31, thus reducing the accuracy of the quasi-linearized
approximation. The objective of this example is to study both the extended time



22 CHRISTOPHER GRIFFIN AND JAMES FAN

0 1 2 3 4 5 6

0.000

0.005

0.010

0.015

0.020

0.025

0.030

t

γ

Nonlinear Euler-Lagrange Solution

Quasi-Linearized  Solution

2nd Order ODE  Solution

Asymptotic Approxmation

9 Strategy Cyclic Game Optimal Control and Approximations

0 1 2 3 4 5 6

0.00

0.01

0.02

0.03

0.04

0.05

0.06

t

||H
T
λT

||2

Sufficient Condition Curve for 9 Strategy Cyclic Game Optimal Control 

Figure 5. The control function, its approximations and the⃦⃦
HTλT

⃦⃦2
, used in determining whether the solution to the nec-

essary conditions are sufficient for an optimal control for the 9
strategy cyclic game.

control horizon as well as the control that results when the starting point is further
from the equilibrium point.

We compute an optimal control using the fully non-linear Euler-Lagrange equa-
tions, the Euler-Lagrange equations for the quasi-linearized system, and the exact
differential equation for γ given in Lemma 4.2. As demonstrated in Figure 6, the
quasi-linearized control functions are identical to each other (as expected), and they
are highly correlated to the control function for the fully non-linear system. The
co-state, however does not satisfy the sufficient condition r > HTλ. Here r = 0.2,
as in the previous examples. We can still analyze this problem by solving the ma-
trix Riccati equation as given in Theorem 3.3 to show that it is bounded, and thus
the control identified for the quasi-linearized system is optimal. The matrix Riccati
equation for this system is:

−Ṡ = I3 + (J+ γH)
T
S+ S (J+ γH)−

1

r

(︁
λTH+ xTHTS

)︁T (︁
λTH+ xTHTS

)︁
,

S(tf ) = 0.

This system of equations contains nine equations because S is 3 × 3. As shown in
Figure 6, the solution curves for this equation are all bounded on the time interval
of consideration. Furthermore, since the state and co-state necessarily satisfy the
Euler-Lagrange equations, and the Hamiltonian is convex in γ and γ (and therefore
maximizes the Hamiltonian at all times (see Lemma 3.1)), the control function must
be (locally) optimal.

Note that while the starting point in this example is not near the equilibrium
point, the control computed for the quasi-linear approximation is still highly corre-
lated to the control computed for the non-linear system. Thus, in this case quasi-
linearization still provides a reasonable approximation to the optimal control in the
non-linear system.
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(a) Control and Co-State Plot
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Figure 6. A solution that violates the sufficient condition for op-
timality r > HTλ but can be shown to be optimal by appealing
to the matrix Riccatti equation, which has bounded solutions for
t ∈ [0, tf ]. We compare the solution to the ordinary controller
derived from the ordinary Euler-Lagrange equations and the con-
troller that is directly computed using Lemma 4.2. Note they are
identical as expected.
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