
Parallel Construction of Module Networks
Ankit Srivastava

Georgia Institute of Technology

Atlanta, GA, USA

asrivast@gatech.edu

Sriram P. Chockalingam

Georgia Institute of Technology

Atlanta, GA, USA

srirampc@gatech.edu

Maneesha Aluru

Georgia Institute of Technology

Atlanta, GA, USA

maneesha.aluru@biology.gatech.edu

Srinivas Aluru

Georgia Institute of Technology

Atlanta, GA, USA

aluru@cc.gatech.edu

ABSTRACT
Module networks (MoNets) are a parameter-sharing specializa-

tion of Bayesian networks that are used for reasoning about multi-

dimensional entities with concerted interactions between groups

of variables. Construction of MoNets is compute-intensive, with

sequential methods requiring months for learning networks with a

few thousand variables. In this paper, we present the first scalable

distributed-memory parallel solution for constructing MoNets by

parallelizing Lemon-Tree, a widely used sequential software. We

demonstrate the scalability of our parallel method on a key applica-

tion of MoNets – the construction of genome-scale gene regulatory

networks. Using 4096 cores, our parallel implementation constructs

regulatory networks for 5, 716 and 18, 373 genes of two model or-

ganisms in 24 minutes and 4.2 hours, compared to an estimated 49

and 1561 days using Lemon-Tree for generating exactly the same

networks, respectively. Our method is application-agnostic and

broadly applicable to the learning of high-dimensional MoNets for

any of its wide array of applications.

CCS CONCEPTS
• Computing methodologies→ Bayesian network models.

KEYWORDS
Bayesian networks, module networks, score-based learning, parallel

machine learning, gene networks

ACM Reference Format:
Ankit Srivastava, Sriram P. Chockalingam, Maneesha Aluru, and Srinivas

Aluru. 2021. Parallel Construction of Module Networks. In The International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’21), November 14–19, 2021, St. Louis, MO, USA. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3458817.3476207

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00

https://doi.org/10.1145/3458817.3476207

1 INTRODUCTION
Bayesian networks (BNs) use a directed acyclic graph (DAG) to

represent the joint probability distribution of a set of random vari-

ables and thereby provide a compact model for reasoning about

interactions in multi-dimensional entities. The capability of the BN

framework to reason about uncertainty has led to their successful

use in many different fields [9, 11, 62]. However, the deployment

of BNs in intricate domains with a large number of variables has

uncovered two major limitations – (a) it is difficult to interpret

complex interactions between groups of variables that may lead to

an emergent behavior of the entity from the BN models of such en-

tities [30, 37], and (b) confidence in learned BN models is low when

the data set does not have sufficient number of observations [48].

Specialization of BNs that rely on variations of parameter-sharing
have been proposed to overcome these limitations [44].

Introduced by Segal et al., module networks (MoNets) [51, 52]

are among the most commonly used parameter-sharing specializa-

tions of BNs. A learned MoNet can identify groups of variables

(or modules) that operate in a concerted fashion, possibly driven

by other groups of variables. The primary advantage of MoNets

over other parameter-sharing BN specializations – such as object-

oriented BNs [31], probabilistic relational models [30], hierarchical

BNs [19], etc. – is that, unlike these variations, MoNets can be

learned in an unsupervised manner, i.e., without requiring any

prior knowledge of relationships between variables. Due to their

unsupervised nature, MoNets have been utilized in a wide range of

applications in computational biology, e.g., gene regulatory stud-

ies [53], cancer genomics [34, 49, 50, 54], construction of cellular

networks [7, 39, 47], and integration of multi-omics data [1, 12, 13].

MoNets and other parameter-sharing specializations of BNs have

also found applications in diverse fields, e.g., medical diagnosis [32],

stock market analysis [52], traffic modeling [28], active learning us-

ing serious games [57], feature selection and feature extraction [23],

computational psychology [17, 18], and data mining [36].

Learning a MoNet from data requires learning of a module as-

signment function that maps each variable to a module, in addition

to learning the parent-child relationships between variables in the

form of a DAG. Therefore, the MoNet learning problem is at least

as hard as the problem of exactly learning BN structure, which is

NP-hard [15]. Consequently, approaches to construct MoNets resort

to heuristic methods. However, even using these heuristic methods,

learning MoNets from data sets with thousands of variables and

observations can take months sequentially.

https://doi.org/10.1145/3458817.3476207
https://doi.org/10.1145/3458817.3476207
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SC ’21, November 14–19, 2021, St. Louis, MO, USA Srivastava et al.

1.1 Related Work
Various score-based heuristic methods have been proposed for con-

structing MoNets from observed data [5, 13, 25, 40, 52]. The score

of a MoNet is a Bayesian metric that evaluates the fitness of both

the partition of variables into modules and the structure of the

underlying network, given observed data. Similar to the score-based
approaches used for BN structure learning [20], heuristics are used

in MoNet learning to traverse the space of all possible MoNets

and obtain a network with locally optimal score in the expectation

that it approximates the globally optimal network reasonably well.

In contrast to BN learning methods, though, the MoNet learning

methods also need to learn the conditional probability distribu-

tions (CPDs) for the modules as part of their structure learning

routine. The most popular software packages for MoNet learning

are GENOMICA [52] and Lemon-Tree [13]. In both these software,

the learned CPDs are represented using regression trees [14].

GENOMICA implements the iterative two-step algorithm pro-

posed by Segal et al. [51, 52] to construct MoNets. Lemon-Tree, on
the other hand, implements the approach outlined by Bonnet et
al. [13], that refined an earlier approach by Michoel et al. [40]. This
approach separates the learning of module assignments and parents

and CPDs into three distinct tasks which are described in detail

in Section 2.2. Previous studies that evaluated the two approaches

found Lemon-Tree to be more effective at constructing robust MoN-

ets from both synthetic as well as real-world data sets [25, 35, 40].

Further, Lemon-Tree software has been successfully used in multiple

recent works with potential for far-reaching impact. These include

studies intending to increase life expectancy by understanding com-

plex diseases such as glioblastoma [13], cholangiocarcinoma [43],

breast cancer [34], penile cancer [38], and rheumatoid arthritis [35].

The software has also been used in works aiming to enhance quality

of life by improving food production processes through studies on

stress-related immune response [10] and feed efficiency [2] of cattle,

analysis of early stage development of European sea bass [27], and

identification of genes critical for tomato ripening [4] and apple

edibility [6].

However, Lemon-Tree is computationally expensive, which has

limited its use for genome-wide gene regulatory network studies

to smaller micro-organisms. For organisms with tens of thousands

of genes, MoNet construction is possible only for a subset of genes

that are involved in specific pathways of interest [4, 60]. Even for

the single-celled Saccharomyces cerevisiae, with 5, 716 genes, we

estimate that sequentially constructing a whole-genome network

using Lemon-Tree will take 49 days.
To mitigate the run-time issues in constructing MoNets, the

approach proposed by Segal et al. has been parallelized by multiple

groups. Liu et al. [33] parallelized the MoNet learning method using

a distributed-memory approach. They report a speedup of up to

29.3X using a maximum of 32 cores. Jiang et al. [24] developed a

shared-memory parallel solution and report a maximum speedup

of 3.5X using 4 threads. In addition to limited scaling, both these

parallelization strategies are specific to the approach by Segal et al.,
i.e., GENOMICA, and are not applicable for parallelizing Lemon-Tree.

1.2 Contributions
In this paper, we introduce a parallel, distributed-memory based

approach for constructing large MoNets efficiently. We limit our fo-

cus to parallelizing Lemon-Tree, which is more widely used for this

purpose. We present distributed-memory parallel algorithms for

the tasks used in Lemon-Tree, both for learning the modules and the

CPD regression trees. To demonstrate that our implementation of

the parallel algorithms can scale to constructing networks for tens

of thousands of variables from thousands of observations, we con-

struct genome-scale gene networks for S. cerevisiae and Arabidopsis
thaliana with 5, 716 and 18, 373 genes, respectively. Our parallel im-

plementation can construct a MoNet for S. cerevisiae in 25 minutes

and for A. thaliana in 4.2 hours using 4096 cores as compared to an

estimated 13.5 and 433.6 days, respectively, with our optimized C++
sequential implementation. The corresponding run-time estimates

when using Lemon-Tree are 48.6 and 1561 days for generating ex-

actly the same network. Our method is application-agnostic and is

broadly applicable to the learning of high-dimensional MoNets for

any of its wide array of applications.

2 BACKGROUND
2.1 Module networks
For a set of𝑛 random variablesX = {𝑋1, . . . , 𝑋𝑛}, the corresponding
BN is a compact representation of the joint probability distribution

of the variables via a DAG such that the distribution decomposes

as 𝑃 (X) = ∏
𝑖 𝑃 (𝑋𝑖 |Pa(𝑋𝑖)), where Pa(𝑋𝑖) is the set of parents of

𝑋𝑖 in the DAG. We denote the children of a variable 𝑋𝑖 in the DAG

by Ch(𝑋𝑖).
MoNets are BNs with the variables partitioned into modules,

where a module consists of a set of variables that share the same

set of parents and the same CPD. We use 𝐾 to denote the maximum

number of modules in the MoNet and represent each module by

a module variable (M1, M2, etc.) and the set of all the modules

asM = {M1, . . . ,M𝐾 }. A module assignment function, denoted

𝐴 𝐵

𝐶 𝐷

𝐸 𝐹 𝐺

𝐻

M1

M2

M3 M4

M5

(a) Bayesian network

M1

M2

M3 M4

M5

(b) Module network

Figure 1: An example BN for a set of eight random variables
{𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺, 𝐻 } and the corresponding MoNet.

Parallel Construction of Module Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

by A, assigns each variable in X to one of the modules in M,

e.g., A(𝑋𝑖) = M𝑗 implies that the variable 𝑋𝑖 is an element of the

module M𝑗 . Each module has a set of parent variables, represented

by Pa(M𝑗), where Pa(M𝑗) ⊂ X. Given these definitions, a MoNet

is a DAG that has:

• a vertex for every module variable inM, and

• a directed edge M𝑗 → M𝑘 if and only if there exists a variable

𝑋 ∈ X such that A(𝑋) = M𝑗 and 𝑋 ∈ Pa(M𝑘).

Figure 1a shows an example BN with a potential assignment of

variables to modules shown by dashed rectangles in whichA(𝐴) =
M1, A(𝐶) = M2, etc. The MoNet structure corresponding to this

assignment of variables to modules is shown in Figure 1b. Note that,

the parents of a module should be a parent for all the variables in

the module, e.g., 𝐵 ∈ Pa(M2) ⇐⇒ 𝐵 ∈ Pa(𝐶) and 𝐵 ∈ Pa(𝐷) in
the figure. However, the variables in a module may have different

sets of descendants, e.g., Ch(𝐶) ≠ Ch(𝐷).
MoNets are learned from multiple (𝑚) observations of the 𝑛

random variables, represented as an 𝑛 ×𝑚 matrix of either discrete

or continuous values. As the focus in this work is parallelization of

Lemon-Tree, learning of MoNets using the corresponding algorithm

is described in greater detail next.

2.2 The Lemon-Tree Algorithm
Lemon-Tree implements the MoNet learning method proposed by

Bonnet et al. [13]. This MoNet learning method consists of three

main tasks that are executed in the order they are described below.

2.2.1 GaneSH Co-Clustering. The first task constructs an ensemble

of variable clusters using a Gibbs sampler algorithm called GaneSH ,

proposed by Joshi et al. [26]. The algorithm performs two-way clus-

tering of variables and observations to get a variable-observation

co-clustering. GaneSH scores a co-clustering using a decomposable

Bayesian scoring function (described in [26]) that can be computed

by aggregating the independently computed scores for all the vari-

able and observation clusters. The algorithm explores the space of

co-clustering solutions as follows:

(1) Random Initialization: The 𝑛 variables are randomly assigned

to a user-provided number of variable clusters, or 𝑛/2 clusters if no
input is provided. In each variable cluster, the𝑚 observations are

randomly assigned to

√
𝑚 observation clusters.

(2) Update Steps: The randomly initialized co-clustering is up-

dated multiple times, as per user input. In each update step of the

algorithm, the clustering of variables and observations is updated

as follows:

◦ Variable Clustering: For 𝑛 iterations, the cluster assignment of

a randomly selected variable is evaluated while keeping the as-

signment of all the other variables and observations fixed. The

chosen variable is then randomly assigned to one of the existing

clusters or moved to its own separate cluster. The probability

of each choice for this random reassignment is proportional to

the corresponding change in the score. After 𝑛 reassignment

iterations, each variable cluster is considered one at a time and

is merged with one of the other clusters or left as is, chosen at

random with the probability of each possible action weighted by

the corresponding score.

◦ Observation Clustering: The variable cluster assignments are fixed

and for each variable cluster, updates to observation clustering

proceed similar to the variable clustering iteration. First, the clus-

ter assignment of𝑚 randomly selected observations is changed,

one at a time, similar to the random reassignment of variables

described above. Then, the merging of observation clusters pro-

ceeds similar to the merging of variable clusters.

The co-clustering algorithm simulates a Markov chain, i.e., the

probability to visit a particular co-clustering corresponds exactly to

its posterior probability given the data. In order to get the variable

clusters corresponding to high posterior probability, the algorithm

is run multiple times with different random initializations and vari-

able clusters are sampled at the end of each run.

Let 𝐾 be the maximum number of variable clusters and 𝐿 be

the maximum number of observation clusters in any variable clus-

ter. Then, variable and observation clustering phases in each sam-

pling step require 𝑂 (𝑛𝐾𝐿𝑚 + 𝐾2𝐿𝑚𝑛) and 𝑂 (𝐾 (𝑚𝐿𝑛 + 𝐿2)) time,

respectively, for an asymptotic complexity of 𝑂 (𝐾2𝐿𝑛𝑚) per up-
date step. Therefore, in order to sample variable clusterings from

𝐺 runs of GaneSH with𝑈 update steps, the total time required is

𝑂 (𝐺𝑈𝐾2𝐿𝑛𝑚).

2.2.2 Consensus Clustering. In the second task, a single consensus

variable clustering solution is constructed from the ensemble of

variable clusters sampled in the first task. This is done by creating

a symmetric co-occurrence frequency matrix 𝐴 of size 𝑛 × 𝑛. The
entry𝐴(𝑖, 𝑗) of the matrix is set to the number of times the variables

𝑋𝑖 and 𝑋 𝑗 occur in the same cluster in the ensemble, as a fraction

of the total number of sampled clusters. Note that 𝐴(𝑖, 𝑗) is set to
zero if the co-occurrence weight is below a user-provided threshold.

The matrix 𝐴 is then provided as an input to the spectral clustering

algorithm proposed by Michoel and Nachtergaele [41] to obtain the

consensus variable clusters. The time complexity of the complete

consensus clustering step is 𝑂 (𝐺𝑛2), where 𝐺 is the number of

variable cluster samples from the first task.

2.2.3 Learning the Modules. The consensus variable clusters iden-
tified by the second task are defined as the modules (M) of the

MoNet and are provided as an input to the third task. In this task,

the parent variables and the corresponding CPDs are learned for

each module by first learning regression tree structures followed by

the assignment of the parent variables and split values, or parent

splits, to the nodes of the regression trees. The parent variables are

chosen from a list of candidate parent variables for all the modules

that can be provided as an input to this step. If no candidate list

is provided, then every variable is considered a candidate parent.

For each module M𝑖 ∈ M, the third task proceeds through the

following three main steps:

(1) Learning Regression Tree Structures: For the module M𝑖 , an

ensemble of regression trees (denoted by T (M𝑖)) are learned as

follows. First, the leaf nodes of the trees are built by learning multi-

ple different clusterings of observations. This is accomplished by

executing the GaneSH algorithm (described in Section 2.2.1) while

constraining the variable clusters to a single cluster containing the

variables assigned to the module M𝑖 , and sampling an ensemble

of likely observation clustering solutions for M𝑖 . Then, a binary

regression tree structure is constructed by initializing the leaf nodes

SC ’21, November 14–19, 2021, St. Louis, MO, USA Srivastava et al.

with the observation clusters and merging them using Bayesian

hierarchical agglomerative clustering [21, 40], until all the nodes

are merged into one root node with all the observations.

If 𝑅 sets of observation clusters are sampled in this step, then

GaneSH algorithm takes𝑂 (𝑅(𝑚𝐿𝑛 +𝐿2)) time, where 𝐿 is the maxi-

mum number of observation clusters. Then, the hierarchical cluster-

ing for getting each regression tree structure requires𝑂 (𝐿𝑛𝑚 + 𝐿2)
time. Therefore, this step requires a total of 𝑂 (𝑅(𝐿𝑛𝑚 + 𝐿2)) time

that is bounded by 𝑂 (𝑅𝐿𝑛𝑚), since 𝐿 = 𝑂 (𝑚).
(2) Node Parent Split Assignments: In this step, for all the regres-

sion tree structures learned for M𝑖 , i.e., all the trees in T (M𝑖), the
assignment of parent splits to every internal node is accomplished

as follows:

(i) Scoring Candidate Splits: Given the set of candidate parents P,
all the ⟨𝑋𝑖 ,D𝑖 𝑗 ⟩ pairs are considered as candidate parent splits

for the given internal node, where 𝑋𝑖 is a candidate parent and

D𝑖 𝑗 is a value of 𝑋𝑖 in D corresponding to the observations

at the node. The maximum posterior probability of assigning

every such candidate parent split to the node is computed by

sampling from a discrete distribution, as described in [25], and

the candidate splits with zero posterior probability are discarded.

Since all the 𝑛 variables may be candidate parents in this stage,

the number of splits at every node is bounded by 𝑂 (𝑛𝑚). If 𝑆 is

the maximum number of discrete sampling steps for any split,

then computing the posterior probability for a split requires

𝑂 (𝑆𝑚) time for a total time of 𝑂 (𝑆𝑛𝑚2) for this stage.
(ii) Assigning Parent Splits: In this stage, a user supplied number

of splits are chosen from all the candidate splits retained in

the previous stage, using weighted random sampling with the

corresponding posterior probabilities as weights. Additionally,

the same number of splits are selected using uniform random

sampling. Both these sets of selected splits are assigned to the

internal node. This stage performs a linear scan through the list

of candidate splits, for weighted sampling, in 𝑂 (𝑛𝑚) time.

The total number of non-leaf nodes in every binary regression tree

is bounded by 𝑂 (𝐿) as the total number of leaf nodes is bounded

by 𝑂 (𝐿). Therefore, the assignment of splits to all the nodes of the

𝑅 regression trees of M𝑖 requires a total of 𝑂 (𝑅𝐿𝑆𝑛𝑚2) time.

(3) Learning Module Parents: For a module M𝑖 , the parents of

the module include all the variables corresponding to all the splits

assigned to all the nodes of all the regression trees learned for M𝑖 .

The score for a parent variable 𝑋𝑖 is computed as the average of

the posterior probabilities for the splits containing 𝑋𝑖 , weighted by

the number of observations at the node that the splits are assigned

to. Further, the scores of the parents from splits chosen uniformly

at random for every node are also computed. The computed scores

for both the sets of parents, chosen using weighted sampling as

well as uniform random sampling, are used for further downstream

analysis, e.g., to assess the significance of the parent variables [13,

25]. If 𝐽 splits are chosen in the previous step, the parent weights

for every module can be learned in 𝑂 (𝐽𝑅𝐿) time.

The time complexity of the third task for one module is 𝑂 (𝑅𝐿𝑛𝑚 +
𝑅𝐿𝑆𝑛𝑚2 + 𝐽𝑅𝐿), where 𝐽 is bounded by the total number of possible

splits 𝑂 (𝑛𝑚) and 𝑅 = 𝑂 (𝑈). Therefore, the run-time of this task

for 𝐾 modules is 𝑂 (𝑈𝐾𝐿𝑆𝑛𝑚2). The total time complexity of the

three tasks of Lemon-Tree is

𝑂 (𝐺𝑈𝐾2𝐿𝑛𝑚 +𝐺𝑛2 +𝑈𝐾𝐿𝑆𝑛𝑚2) (1)

where 𝐺 is the number of GaneSH runs,𝑈 is the number of update

steps in each GaneSH run, 𝐾 = 𝑂 (𝑛) is the maximum number of

variable clusters, 𝐿 = 𝑂 (𝑚) is the maximum number of observa-

tion clusters, and 𝑆 is the maximum number of sampling steps for

computing the split probabilities. Since 𝐺 , 𝑈 , 𝐾 , and 𝐿 are much

smaller than 𝑛 and𝑚 for large data sets, the time taken by the last

task dominates the total run-time of Lemon-Tree as observed in the

experiments reported in Section 5.

Note that, a network learned using the Lemon-Tree approach
may not satisfy the formal definition of MoNets because of the

following two reasons. First, multiple regression trees for every

module are learned when 𝑅 > 1. This can be easily addressed by

changing the corresponding input parameter to sample only one

observation cluster in the third task. Second, the algorithm does not

enforce the acyclicity constraint. Therefore, the MoNets learned

by the algorithm may need to be post-processed using an existing

method to get the DAG for the learned network.

3 OUR PARALLEL ALGORITHM
We design our parallel algorithm for learning MoNets to ensure

consistency of results with the sequential Lemon-Tree implemen-

tation for all data sets. Since the sequential version of Lemon-Tree
has been proven to be successful in many applications, this ensures

ready adoption of our parallel software, while providing the needed

scalability.

3.1 Assumptions
We develop the proposed parallel algorithms for execution using

𝑝 processors assuming the networked distributed memory model.

The processors in the model have their own local memory and

communicate with the other processors using a communication

network. While a processor in the model can only communicate

with one other processor at a time, the network is assumed to be

capable of supporting communication between multiple distinct

pairs of processors concurrently. The communication time of the

algorithms designed for this model is estimated by assuming 𝜏 time

to setup communication and 𝜇 time per word to send a message

between any two processors. Note that the model is consistent

with the widely used Message Passing Interface (MPI) programming

standard. We assume that the complete data set D is available on

all the processors.

Random sampling is required in the different tasks of the Lemon-
Tree algorithm. In our description of the parallel algorithm, we as-

sume the availability of two oracle functions that facilitate uniform

and weighted random sampling in parallel. Select-Unif-Rand()

accepts as input a distributed list B, and returns an element 𝑏 ∈ B
chosen at random with a probability 1/|B|. Select-Wtd-Rand()

accepts two inputs – a distributed list B and a corresponding list

of real numbers,𝑊 , with the weights of all the elements in B. It
chooses an element𝑏 ∈ |B|with the probability𝑊 (𝑏)/∑𝑥 ∈B𝑊 (𝑥),
where𝑊 (𝑥) is the weight corresponding to the element 𝑥 . When

sampling using 𝑝 processors, Select-Unif-Rand() requires 𝑂 (1)
computation time and𝑂 ((𝜏 + 𝜇) log 𝑝) time for communicating the

Parallel Construction of Module Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

chosen element to all the processors, while Select-Wtd-Rand()

requires𝑂 (|B|/𝑝 + log𝑝) computation and𝑂 ((𝜏 +𝜇) log 𝑝) commu-

nication time, in order to compute the probability of picking each

element from𝑊 . Notice that the calls to these sampling functions

are collective communication calls, i.e., all the processors participate

in the sampling calls. We discuss the implementation of distributed

random sampling in Section 4.2.

3.2 Parallelizing Lemon-Tree
The sequential Lemon-Tree algorithm executes three different tasks

for the construction ofMoNets. In this section, we parallelize Lemon-
Tree by developing parallel algorithms for the different tasks. We

present pseudo-codes for the proposed algorithms from the per-

spective of an arbitrary processor with rank 𝑘 (0 ≤ 𝑘 < 𝑝). The data

structures local to the processor are identified by the subscript𝑘 . We

use standard parallel primitives such as bcast, all-reduce, all-gather,
and scan, in the design of these algorithms.

3.2.1 GaneSH Co-Clustering. The sequential GaneSH task samples

an ensemble of variable clusters by performing variable-observation

co-clustering as described in Section 2.2.1. We denote a cluster of

variables byV and the cluster of the observations for the variable

cluster 𝑉𝑖 ∈ V by O(𝑉𝑖). We also denote the 𝑗-th observation in

the data set D as D𝑗 .

Algorithm 1: Parallel Update of Variable Clusters

1 function Reassign-Var-Cluster():
Input: Variables X
Input/Output: Set of variable clustersV

2 parallel 𝑘 = rank of processor do
3 for 𝑖 ← 1 to |X| do
4 𝑟 ← Select-Unif-Rand({1, . . . , |X|})
5 𝑉𝑟 ← Cluster assignment of 𝑋𝑟 inV
6 V𝑘 ← 𝑘th block ofV ∪ {empty cluster}

partitioned into 𝑝 blocks

7 for 𝑉𝑗 ∈ V𝑘 do
8 vu-scores𝑘 (𝑉𝑗) ← Score for moving 𝑋𝑟 to 𝑉𝑗

if 𝑉𝑗 ≠ 𝑉𝑟 , else for keeping 𝑋𝑟 in 𝑉𝑟

9 𝑉𝑠 ← Select-Wtd-Rand(V , vu-scores𝑘)
10 if 𝑉𝑟 ≠ 𝑉𝑠 then
11 Move 𝑋𝑟 to 𝑉𝑠 and updateV

12 function Merge-Var-Cluster():
Input/Output: Set of variable clustersV

13 parallel 𝑘 = rank of processor do
14 for 𝑉𝑖 ∈ V do
15 V𝑘 ← 𝑘th block ofV partitioned into 𝑝 blocks

16 for 𝑉𝑗 ∈ V𝑘 do
17 vm-scores𝑘 (𝑉𝑘) ← Score for merging 𝑉𝑖

with 𝑉𝑗 if 𝑉𝑖 ≠ 𝑉𝑗 , else for retaining 𝑉𝑖

18 𝑉𝑠 ← Select-Wtd-Rand(V , vm-scores𝑘)
19 if 𝑉𝑖 ≠ 𝑉𝑠 then
20 Merge 𝑉𝑖 and 𝑉𝑠 and updateV

We parallelize this task by developing parallel algorithms for

the four key functions used by GaneSH . The first two functions are

used in the variable clustering phase, and therefore modify only

the variable clusters V while keeping O the same. Algorithm 1

describes the pseudo-code for our parallel algorithm for these func-

tions. For 𝑛 iterations, Reassign-Var-Cluster() selects a variable

𝑋𝑟 and computes the change in score for moving 𝑋𝑟 from its cur-

rent assignment to every other variable cluster. It randomly selects

a cluster 𝑉𝑠 with probability in proportion to the reassignment

scores and reassigns 𝑋𝑟 to 𝑉𝑠 (lines 3 – 11) . Merge-Var-Cluster()

evaluates, for each variable cluster 𝑉𝑖 , the score changes for merg-

ing it with every other variable cluster. Then, it merges 𝑉𝑖 with

a randomly chosen cluster with probability proportional to the

merge scores (lines 14 – 20). The computation of scores is done in

parallel in both the functions. Therefore, using 𝑝 processors, the

variable clustering phase requires a total of 𝑂 (𝐾2𝐿𝑛𝑚/𝑝 + 𝑛 log𝑝)
computation time and 𝑂 (𝑛(𝜏 + 𝜇) log 𝑝) communication time.

The other two functions are used in the observation clustering

phase to update the observation clusters O while keepingV the

same. Our proposed parallel algorithms for these two functions are

shown in Algorithm 2. Similar to the functions for updating variable

clusters, the pseudo-code for reassigning data instances from one

Algorithm 2: Parallel Update of Observation Clusters

1 function Reassign-Obs-Cluster():
Input: Number of observations𝑚, Data set D
Input/Output: Set of observation clusters O(𝑉𝑖)

2 parallel 𝑘 = rank of processor do
3 for 𝑖 ← 1 to𝑚 do
4 𝑟 ← Select-Unif-Rand({1, . . . ,𝑚})
5 𝑂𝑟 ← Cluster assignment of D𝑟 in O(𝑉𝑖)
6 O𝑘 ← 𝑘th block of O(𝑉𝑖) ∪ {empty cluster}

partitioned into 𝑝 blocks

7 for 𝑂 𝑗 ∈ O𝑘 do
8 ou-scores𝑘 (𝑂 𝑗) ← Score for moving D𝑟 to

𝑂 𝑗 if 𝑂 𝑗 ≠ 𝑂𝑟 , else for keeping D𝑟 in 𝑂𝑟
9 𝑂𝑠 ← Select-Wtd-Rand(O(𝑉𝑖), ou-scores𝑘)

10 if 𝑂𝑟 ≠ 𝑂𝑠 then
11 Move D𝑟 to 𝑂𝑠 and update O(𝑉𝑖)

12 function Merge-Obs-Cluster():
Input/Output: Set of observation clusters O(𝑉𝑖)

13 parallel 𝑘 = rank of processor do
14 for 𝑂𝑖 ∈ O(𝑉𝑖) do
15 O𝑘 ← 𝑘th block of O(𝑉𝑖) partitioned into 𝑝

blocks

16 for 𝑂 𝑗 ∈ O𝑘 do
17 om-scores𝑘 (𝑂 𝑗) ← Score for merging 𝑂𝑖

with 𝑂 𝑗 if 𝑂𝑖 ≠ 𝑂 𝑗 , else for retaining 𝑂𝑖

18 𝑂𝑠 ← Select-Wtd-Rand(O(𝑉𝑖), om-scores𝑘)
19 if 𝑂𝑖 ≠ 𝑂𝑠 then
20 Merge 𝑂𝑖 and 𝑂𝑠 and update O(𝑉𝑖)

SC ’21, November 14–19, 2021, St. Louis, MO, USA Srivastava et al.

Algorithm 3: Parallel GaneSH Co-Clustering

1 function GaneSH():
Input: X,𝑚, D, Initial number of variable clusters 𝐾0,

Number of update steps 𝑈

Output:V , O(𝑉𝑖) ∀𝑉𝑖 ∈ V
2 parallel 𝑘 = rank of processor do
3 V ← Randomly assign each variable 𝑋𝑖 ∈ X to 𝐾0

variable clusters

4 for 𝑉𝑖 ∈ V do
5 O(𝑉𝑖) ← Randomly assign observations D𝑗

∀𝑗 ∈ {1, . . . ,𝑚} to
√
𝑚 observation clusters

6 for 𝑢 ← 1 to𝑈 do // Update Steps

7 Reassign-Var-Cluster(X,V)

8 Merge-Var-Cluster(V)

9 for 𝑉𝑖 ∈ V do
10 Reassign-Obs-Cluster(𝑚, D, O(𝑉𝑖))
11 Merge-Obs-Cluster(O(𝑉𝑖))

observation cluster to another is shown in Reassign-Obs-Cluster()

function and that for merging observation clusters is shown in

Merge-Obs-Cluster() function. These functions proceed similar

to the two functions for variable clustering described earlier and

they require a total computation run-time of𝑂 (𝐾𝐿𝑛𝑚/𝑝+𝐾𝑚 log𝑝)
and communication run-time of𝑂 (𝐾𝑚(𝜏 + 𝜇) log𝑝) when running

on 𝑝 processors.

Algorithm 3 shows our parallel algorithm for the GaneSH task.

The algorithm starts by randomly initializing a set of variable clus-

tersV and, for each variable cluster 𝑉𝑖 ∈ V , a set of observation

clusters O(𝑉𝑖) (lines 3 – 5). Then, the algorithm proceeds to the

main loop of the update steps (lines 6 – 11). In each update step,

the parallel functions defined in Algorithm 1 update the variable

clusters (lines 7 – 8) and those defined in Algorithm 2 update the ob-

servation clusters (lines 9 – 11). The number of updates is controlled

by the input parameter𝑈 . Adding the parallel run-time complexity

of the constituent functions and simplifying, one run of GaneSH()

takes𝑂 (𝑈𝐾2𝐿𝑛𝑚/𝑝 +𝑈 (𝑛 +𝐾𝑚) log𝑝) computation run-time and

𝑂 (𝑈 (𝑛 + 𝐾𝑚) (𝜏 + 𝜇) log 𝑝) communication run-time. Notice that,

𝐺 runs of GaneSH can be executed in parallel on 𝑝/𝐺 processors

each, without any communication, to obtain 𝐺 samples ofV .

3.2.2 Consensus Clustering. The consensus clustering task takes

the𝐺 samples ofV generated by Algorithm 3 as input and outputs

the consensus variable clusters. In our experiments, described in

Section 5, executing the consensus clustering task requires less than

0.04% of the total sequential run-time in all the cases. Even for a data

set with 5, 716 variables and 1, 000 observations – the largest data

set that we used for learning the networks sequentially – consensus

clustering takes less than one second, while the other two tasks

take more than two days. Therefore, we do not focus on develop-

ing a parallel algorithm for the consensus clustering task. Instead,

we execute the sequential version of this task, using Consensus-

Clustering() implemented as described in Section 2.2.2, on all 𝑝

processors in our parallel solution.

3.2.3 Learning the Modules. Given the set of consensus variable

clusters that are used as modules (M), the final task of Lemon-Tree
constructs an ensemble of regression tree structures for each mod-

ule and then assigns parent splits to the nodes of the regression

trees. Algorithm 4 shows the pseudo-code for the construction of

an ensemble of regression tree structures for a module M𝑖 ∈ M.

The first part of the algorithm uses GaneSH to sample an ensemble

of observation clusters for the variable cluster corresponding to

M𝑖 and stores them in S(M𝑖) (lines 3 – 9). Unlike the GaneSH run

described in the section 3.2.1, the variable clusters are not updated.

Therefore, only the parallel GaneSH functions for observation clus-

tering, presented in Algorithm 2, are used here. Correspondingly,

getting S(M𝑖) in parallel takes 𝑂 (𝑈 (𝐾𝐿𝑛𝑚/𝑝 + 𝐾𝑚 log 𝑝)) time

for computation and 𝑂 (𝑈 (𝐾𝑚(𝜏 + 𝜇) log𝑝))) for communication.

The second part of the algorithm constructs the ensemble of regres-

sion tree structures by hierarchical clustering for each observation

clustering Q ∈ S(M𝑖) (lines 10 – 18). For 𝑅 observation clusters in

S(M𝑖), this part takes 𝑂 (𝑅𝐿𝑛𝑚/𝑝 + 𝑅𝐿 log𝑝) time in computation

and 𝑂 (𝑅𝐿(𝜏 + 𝜇) log 𝑝) time in communication. Since 𝑅 = 𝑂 (𝑈),
the time complexity of getting regression tree structures in parallel

is dominated by that of the first part.

The next phase of this task is the assignment of parent splits to

the non-leaf nodes of the ensemble of trees. This is the most time

consuming of all the phases in Lemon-Tree, accounting for more

than 90% of the sequential run-times in our experiments. It requires

Algorithm 4: Parallel Learning of Tree Structures

1 function Learn-Tree-Struct():
Input:𝑚, D, Module M𝑖 , Number of update steps 𝑈 ,

Number of burn-in steps 𝐵

Output: Ensemble of trees for M𝑖 – T (M𝑖)
2 parallel 𝑘 = rank of processor do
3 O(M𝑖) ← Randomly assign observations D𝑗

∀𝑗 ∈ {1, . . . ,𝑚} to
√
𝑚 observation clusters

4 S(M𝑖) ← ∅ // Sampled Observation Clusters

5 for 𝑢 ← 1 to𝑈 do // GaneSH Loop

6 Reassign-Obs-Cluster(𝑚, D, O(M𝑖))
7 Merge-Obs-Cluster(O(M𝑖))
8 if 𝑢 > 𝐵 then
9 Add the current O(M𝑖) to S(M𝑖)

10 for Q ∈ S(M𝑖) do // Build Tree Ensemble

11 Q𝑘 ← 𝑘th block of Q partitioned into 𝑝 blocks

12 subtrees𝑘 ← Trees with a node for all Q𝑖 ∈ Q𝑘
13 repeat
14 tm-scores𝑘 ← Scores for merging

consecutive trees in subtrees𝑘
15 max-tms←

all-reduce max
0≤𝑘<𝑝 tm-scores𝑘

16 Merge the trees corresponding to max-tms
17 until

∑
0≤𝑘<𝑝 |subtrees𝑘 | = 1

18 bcast the remaining tree in subtrees𝑘 to all the

processors and add it to T (𝑀𝑖)

Parallel Construction of Module Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

Algorithm 5: Parallel Assignment of Splits to Tree Nodes

1 function Learn-Tree-Splits():
Input: D, ModulesM, Ensemble of trees T , Candidate

parents P, Number of splits to choose 𝐽

Output: Weighted splits wr-splits,
2 Random splits ur-splits
3 parallel 𝑘 = rank of processor do
4 cand-splits← List of tuples ⟨M𝑖 ,𝑇 , 𝑁 , 𝑋𝑖 ,D𝑗 ⟩ for all

M𝑖 ∈ M, 𝑇 ∈ T (M𝑖), 𝑁 ∈ internal-nodes(𝑇),
𝑋𝑖 ∈ P, D𝑗 ∈ observations(𝑁)

5 cand-splits𝑘 ← 𝑘th block of cand-splits partitioned
into 𝑝 blocks

6 for ⟨M𝑖 ,𝑇 , 𝑁 , 𝑋𝑖 ,D𝑗 ⟩ ∈ cand-splits𝑘 do
7 cand-probs𝑘 [⟨M𝑖 ,𝑇 , 𝑁 , 𝑋𝑖 ,D𝑗 ⟩] ← Posterior

probability of assigning the split ⟨𝑋𝑖 ,D𝑖 𝑗 ⟩ to
node 𝑁 of regression tree 𝑇 for module M𝑖

8 for M𝑖 ∈ M,𝑇 ∈ T (M𝑖), 𝑁 ∈ internal-nodes(𝑇) do
9 tnode-splits𝑘 ← Elements of cand-splits𝑘 in

which the first three elements are ⟨M𝑖 ,𝑇 , 𝑁 ⟩
10 tnode-probs𝑘 ← Computed probabilities for the

elements of tnode-splits𝑘 from cand-probs𝑘
11 for 𝑠 ← 1 to 𝐽 do
12 wr-splits[⟨M𝑖 ,𝑇 , 𝑁 , 𝑠⟩] ←

Select-Wtd-Rand(tnode-splits𝑘 ,
tnode-probs𝑘)

13 ur-splits[⟨M𝑖 ,𝑇 , 𝑁 , 𝑠⟩] ←
Select-Unif-Rand(tnode-splits𝑘)

the computation of posterior probabilities for every combination of

the following five components: module M𝑖 , tree 𝑇 in the ensemble

T (M𝑖), non-leaf node 𝑁 in the tree 𝑇 , variable 𝑋𝑖 in the list of

candidate parents P, and observation D𝑗 at node 𝑁 . Algorithm 5

depicts our parallel solution for this phase.

A simple parallelization scheme for this phase may assign all the

probability computations for a module, a tree, or a node to one pro-

cessor in order to reduce communication between the processors.

However, such a scheme is sub-optimal because the total number

of splits assigned to different processors will vary significantly,

thus leading to severe load imbalance. Therefore, to enable a more

fine-grained distribution of the computations across processors,

we first identify the total work required in this phase using a key

data structure – the list of all the candidate splits (line 4). All the

tuples corresponding to the candidate splits for a particular node,

i.e., tuples with the same first three elements ⟨M𝑖 ,𝑇 , 𝑁 ⟩, are ar-

ranged contiguously in the list. This list is partitioned into 𝑝 equal

chunks and assigned to the different processors for a more balanced

computation load (line 5). Then, the posterior probabilities for all

the local candidate splits are computed and stored on each pro-

cessor (lines 6 – 7). Finally, for each node, 𝐽 candidate splits are

selected randomly using the posterior probabilities as weights and

another 𝐽 splits are selected uniformly at random (lines 8 – 13). For

ease of presentation, we demonstrate the selection of splits using

previously defined oracle functions for random sampling. In the

Algorithm 6: Parallel Learning of Modules

1 function Learn-Module-CPDs():
Input:𝑚, D,M, P,𝑈 , 𝐵, 𝐽

2 parallel 𝑘 = rank of processor do
3 for M𝑖 ∈ M do
4 T (M𝑖) ← Learn-Tree-Struct(𝑚, 𝐷 , M𝑖 ,𝑈 , 𝐵)

5 Learn-Tree-Splits(D,M, T , P, 𝐽)
6 Learn-Parents(M, wr-splits, ur-splits)

actual implementation, the contiguous arrangement of candidate

splits for every node allows us to compute the split weights for

random sampling for all the nodes using a single segmented parallel

scan over the distributed cand-probs𝑘 . Then, the splits for all the
nodes in cand-splits𝑘 are selected independently on each processor,

followed by an all-gather call to collect all the chosen splits for all

the nodes on all the processors.

The size of cand-splits𝑘 , and therefore cand-probs𝑘 , is bounded
by𝑂 (𝐾𝑅𝐿𝑛𝑚/𝑝) and computing the posterior probability for a split

requires 𝑂 (𝑆𝑚) time. Choosing 𝐽 splits for every node in parallel,

using segmented parallel scan and all-gather, takes𝑂 (𝐽𝐾𝑅𝐿𝑛𝑚/𝑝 +
log 𝑝) computation time and 𝑂 (𝜏 log𝑝 + 𝜇𝐽𝐾𝑅𝐿) communication

time. Therefore, this phase takes 𝑂 (𝐾𝑅𝐿𝑆𝑛𝑚2/𝑝 + log𝑝) time for

computation and 𝑂 (𝜏 log 𝑝 + 𝜇𝐽𝐾𝑅𝐿) time for communication.

Our parallel algorithm for the last task is shown in Algorithm 6.

In the interest of space, we omit a detailed pseudo-code description

for the last phase in the task that computes scores for parents of

REASSIGN-VAR-CLUSTER
MERGE-VAR-CLUSTER

REASSIGN-OBS-CLUSTER
MERGE-OBS-CLUSTER

LEARN-TREE-STRUCT

LEARN-TREE-SPLITS

LEARN-PARENTS

REASSIGN-VAR-CLUSTER
MERGE-VAR-CLUSTER

REASSIGN-OBS-CLUSTER
MERGE-OBS-CLUSTER

LEARN-TREE-STRUCT

LEARN-TREE-SPLITS

LEARN-PARENTS

GANESH

Data set, Parameters

Set of variable clusters

CONSENSUS-CLUSTERING

LEARN-MODULE-CPDS

Modules

SELECT-*-RANDOM

Module network

p=0 p=1Communication

GANESH

Data set, Parameters

CONSENSUS-CLUSTERING

LEARN-MODULE-CPDS

Modules

Module network

SELECT-*-RANDOM

SELECT-*-RANDOM
bcast, all-reduce

Set of variable clusters

scan, all-gather

scan, all-gather

Figure 2: Schematic diagram showing the execution flow of
our parallel algorithm for learning module networks with
two processors, using the parallel functions developed in
Section 3.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Srivastava et al.

eachmodule from the selected node splits. The parallelization of this

phase is trivial and is implemented in Learn-Parents() function

using a segmented parallel scan followed by an all-gather call. This
phase requires 𝑂 (𝐽𝐾𝑅𝐿/𝑝 + log 𝑝) computation and 𝑂 (𝜏 log𝑝 +
𝜇𝐽𝐾𝑅𝐿) communication time in parallel. Summing up the run-times

of the phases and simplifying it in terms of the input parameters,

Learn-Module-CPDs() takes 𝑂 (𝑈𝐾𝐿𝑆𝑛𝑚2/𝑝 +𝑈𝐿 log 𝑝) time in

computation and 𝑂 (𝑈𝐾𝑚(𝜏 + 𝜇) log 𝑝) time in communication.

A schematic diagram for the execution flow of our parallel algo-

rithm for learning MoNets, when using two processors, is shown

in Figure 2. The schematic demonstrates the interactions between

the different tasks as well as between the different phases within

each task. Further, it shows the communications required by the

parallel functions for the different phases during the execution of

the algorithm.

4 IMPLEMENTATION
4.1 Sequential Implementation
Lemon-Tree software uses Java to implement the approach outlined

by Bonnet et al. [13]. Even though any software written in Java re-
quires compilation, it is referred to as an interpreted language [16].

This is because the byte-code produced by the compilation is in-

terpreted and executed by a platform-independent virtual machine

(VM), thus trading performance for portability. Consequently, mul-

tiple studies have shown that the performance of Java is inferior
to that of C++ for in-memory tasks [16, 22, 56]. We implemented

the approach by Bonnet et al. using C++, adhering to the C++14
standard, and optimized it for improved sequential run-time per-

formance as shown in Section 5.2.1.

As discussed in Section 1, Lemon-Tree is a popular software that
has been used in multiple studies for learning MoNets. Therefore,

we used Lemon-Tree as the baseline for our implementation and

ensured that our implementation produces exactly the same out-

put as Lemon-Tree, given the same input data set and execution

parameters. We had to modify the Lemon-Tree implementation to

achieve this because of the following reasons. First, the execution

of the learning algorithm requires generation of random numbers,

which is accomplished in the original Lemon-Tree by a Java pseudo-
random number generator (PRNG) library that is not available for

C++. Therefore, we modified the Lemon-Tree code to use the same

PRNG as the one used by our implementation via Java Native In-
terface. Then, we observed that some of the calls to the PRNG were

superfluous and we eliminated them in both our implementation

as well as Lemon-Tree. Finally, we discovered a bug in the imple-

mentation of the GaneSH algorithm in Lemon-Tree that we fixed
and submitted to the maintainers of Lemon-Tree. We have provided

this modified version of Lemon-Tree as an artifact and use it for the

performance results presented in Section 5.2.1.

4.2 Parallel Implementation
We implemented the parallel algorithms proposed in Section 3

using MPI conforming to the MPI 3.1 standard. For generating

random numbers in parallel, we use the TRNG library that provides

multiple parallelizable PRNGs [8]. We used a multiple recursive

generator [29] with 3 feedback terms and a Sophie-Germain prime

modulus for the experiments reported in Section 5. Note that our

implementation can use any parallel PRNG supported by the library.

In order to implement the distributed random sampling func-

tions described in Section 3.1, Select-Wtd-Rand() and Select-

Unif-Rand(), same random number should be generated on all

the parallel processors in a call to these functions. We accomplish

this by initializing the PRNG with the same seed on all the pro-

cessors and ensuring that the state of the PRNG is the same on all

the processors before the calls to these functions. We also need to

match the block distribution of work with the block distribution of

the corresponding stream of random numbers between the execut-

ing processors, in order to generate the same output when using

different numbers of processors. This is achieved in our parallel

implementation by block splitting the parallel PRNGs which takes

𝑂 (1) time [8].

5 EXPERIMENTS AND RESULTS
We performed our experiments on the Phoenix cluster at Georgia

Tech [46], where each node has a 2.7 GHz 24-core Intel Xeon Gold

6226 processor and main memory of 192 GB or more. The nodes

run RHEL 7.6 operating system and are connected via HDR100

(100 Gbps) InfiniBand. We compiled the source code, implemented

with C++14 andMPI, using gcc v10.1.0 with -O3 -march=native
optimization flags and MVAPICH2 v2.3.3 implementation of MPI.

For our experiments reported in this section, we assign 24 MPI

processes per node by binding one MPI process to each core.

5.1 Data sets
In order to test the scalability of our implementation, we use gene

regulatory networks as the target application area. Since gene reg-

ulatory networks have a hierarchical structure and data sets for

studying these are typically sparse, MoNets have been successfully

applied in numerous gene regulatory studies for various organisms

spanning a wide range of complexity – from viruses and bacte-

ria [51, 55, 61] to plants and animals [45, 60]. In this section, we

demonstrate the use of our parallel implementation to learn genome-

scale gene regulatory networks from two real gene expression data

sets with thousands of observations for tens of thousands of genes.

The first gene expression data set that we use is generated from

the organism S. cerevisiae, colloquially known as Brewer’s yeast.

Tchourine et al. [59] created this data set by aggregating data from

multiple RNA-seq studies and it contains 5, 716 genes and 2, 577

observations for the genes. To further demonstrate the parallel

scalability of our implementation on tens of thousands of variables,

we used a second data set for the model plant A. thaliana. This data
set contains 5, 102 observations for 18, 373 genes and is generated

from multiple microarray experiments that studied the development
process in the plant [3].

For the experiments in this section, we only report the minimum

run-time required for learning MoNets from the data sets, i.e., we

execute a single GaneSH run with one update step and construct

only one regression tree structure for each module in the last task.

We use all the genes in the data sets as the candidate regulators,

i.e., all the variables are treated as candidate parents for all the

modules. As noted in Section 2.2, this may lead to cyclic structures

in the learned MoNet. The acyclicity constraint can be enforced as

Parallel Construction of Module Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

a post-processing step in parallel using the methods developed in

the previous works on BN structure learning [42], and is outside

the scope of this work. All the runs are repeated three times with

different random seeds and the average run-times are reported.

5.2 Sequential Performance
We compiled Lemon-Tree with OpenJDK v1.8.0_262 and executed

it using the corresponding server VM for the run-times reported

here.

5.2.1 Comparison with Lemon-Tree. We compared the run-time

of the modified Lemon-Tree with that of our optimized sequential

implementation (both described in Section 4.1) for constructing

MoNets. Both Lemon-Tree as well as our implementation did not

finish learningMoNet for the complete S. cerevisiae data set in seven
days. Therefore, we created smaller data sets for these experiments

using subsamples of 𝑛 = {1000, 2000, 3000} variables and 𝑚 =

{125, 250, 500, 750, 1000} observations chosen from the complete

data set. The performance of our implementation is compared with

that of Lemon-Tree in Table 1 on these data sets. Our optimized

sequential implementation shows a 3.6–3.8X speedup over Lemon-
Tree for constructing MoNets from all the data sets. We also verified

that our implementation learns the exact same MoNets as the ones

learned by Lemon-Tree in all the cases.

𝑛 𝑚
Run-time (s) Speedup

Lemon-Tree Ours

1, 000

125 416.0 110.3 3.8

250 1, 609.9 428.3 3.8

500 6, 307.9 1, 686.2 3.7

750 13, 441.5 3, 574.5 3.8

1, 000 25, 253.6 6, 680.7 3.8

2, 000

125 1, 407.5 392.8 3.6

250 5, 747.2 1, 562.7 3.7

500 23, 258.4 6, 202.3 3.7

750 52, 606.2 14, 038.7 3.7

1, 000 91, 202.7 24, 327.0 3.7

3, 000

125 2, 942.8 792.0 3.7

250 11, 962.1 3, 193.4 3.7

500 50, 838.0 13, 553.9 3.8

750 108, 545.5 28, 942.3 3.8

1, 000 197, 493.4 52, 709.6 3.8

Table 1: Comparison of the time taken by Lemon-Tree and
our sequential implementation in constructing MoNets us-
ing the first 𝑛 variables and𝑚 observations of the yeast data
set, measured in seconds, and the corresponding speedup.

5.2.2 Sequential Run-time Estimates for Large Data sets. Both the

sequential implementations are not able to construct a MoNet from

the complete S. cerevisiae data set within a week. Therefore, we

estimated the sequential run-time of the two implementations for

learning from large data sets based on the growth rate of the se-

quential run-time of our implementation observed on smaller data

sets. To this end, we measured the run-time of our implementation

1 2 4 6 8

1

20

40

60

80

Run-time = Θ(𝑚2)

Growth rate of𝑚

G
r
o
w
t
h
r
a
t
e
o
f
r
u
n
-
t
i
m
e

𝑛 = 1000

𝑛 = 2000

𝑛 = 3000

𝑛 = 4000

𝑛 = 5000

𝑛 = 5716

Figure 3: Plots of sequential run-time growth rate as the
number of observations grow for data sets with different
number of variables.

for constructing MoNets using 30 smaller data sets constructed

from the complete S. cerevisiae data set by choosing combinations

of the first 𝑛 = {1000, 2000, 3000, 4000, 5000, 5716} variables and the
first𝑚 = {125, 250, 500, 750, 1000} observations in the data set.

Figure 3 shows the plots of run-time growth rate as a function

of 𝑛, while keeping𝑚 fixed. For a given 𝑛, the rate of increase is

computed with respect to the smallest data set, i.e., compared to𝑚 =

125. The plots for six different values of 𝑛 show close to quadratic

growth rate of run-time for a linear increase in𝑚, indicated by the

dashed black line in the figure. We also plot the run-time growth

rate as 𝑛 is increased for five different values of 𝑚, in Figure 4,

with 𝑛 = 1, 000 as the baseline. The quadratic growth rate is again

denoted by the dashed black line in the figure. However, we observe

that the run-time growth rate with increasing 𝑛 is slower than

quadratic for all the different values of𝑚. We also plot 𝑛1.8 growth

rate in the figure, shown with dashed gray line, that seems to be a

lower bound for the growth rate. From the two plots, we estimate

the sequential run-time growth rate of our implementation to be

Θ(𝑚2) for a fixed 𝑛 and bounded between 𝑂 (𝑛2) and Ω(𝑛1.8) for a
fixed𝑚. Comparing these empirical estimates with the sequential

1 2 3 4 5 5.716
1

10

20

30

40

Run-time = 𝑂 (𝑛2)

Run-time = Ω(𝑛1.8)

Growth rate of 𝑛

G
r
o
w
t
h
r
a
t
e
o
f
r
u
n
-
t
i
m
e

𝑚 = 125

𝑚 = 250

𝑚 = 500

𝑚 = 750

𝑚 = 1000

Figure 4: Plots of sequential run-time growth rate as the
number of variables grow for data sets with different num-
ber of observations.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Srivastava et al.

run-time complexity (Equation 1), we observe that the growth rate

with increasing𝑚 corresponds well to the complexity. The super-

linear growth in run-time with increasing 𝑛, on the other hand, can

be attributed to a corresponding increase in the number of modules

(𝐾) from 28–39 for 𝑛 = 1, 000 to 111–170 for 𝑛 = 5, 716.

The average sequential run-time of our implementation for learn-

ing MoNets from the data set with 𝑛 = 5, 716 and 𝑚 = 1, 000 is

175, 932.7 seconds. Using the growth rate of Θ(𝑚2) for a fixed 𝑛, we
estimate the run-time of our implementation for learning MoNet

from the complete S. cerevisiae data set as 175, 932.7×(2, 577/1, 000)2
seconds or 324.5 hours which is about 13.5 days. We were able to

verify that this estimate is reasonably accurate using a single se-

quential run for one random seed that took 325.1 hours. Further, our

implementation provides a minimum sequential speedup of 3.6X

over Lemon-Tree. Therefore, we estimate that Lemon-Tree would
require a minimum of 48.6 days in order to construct a MoNet for

the complete S. cerevisiae data set. Similarly, we also estimate the

lower bound on the run-time of our sequential implementation for

the complete A. thaliana data set as 175, 932.7 × (5, 102/1, 000)2 ×
(18, 373/5, 716)1.8 seconds which is 433.6 days or more than 14

months. The corresponding estimated lower bound on the run-time

of Lemon-Tree is 1561 days which is more than 4 years.

5.3 Parallel Scalability
Our parallel implementation begins the construction of MoNets

by reading the given data set in parallel. This is accomplished by

block distributing the variables in the data set to the MPI processes

– one process per core. Then, every process reads the observations

for the variables assigned to it. Finally, the observations for all the

variables are communicated to all the processes so that each process

has the complete data set. Note that, while this causes duplication

of data within the same node, it avoids the use of hybrid shared-

memory and distributed-memory programming. This duplication

is a non-issue because the problem is compute-bound due to its NP-

hard nature, and the data sets are relatively small compared to the

available memory size. For example, the size of the largerA. thaliana
data set is still only 785 MB. During the parallel execution, any

intermediate files and the final MoNet structure in XML format are

written to the disk by the process with rank 0. In our experiments,

we observed that the time for I/O is much smaller than the time

required for learning the network, e.g., reading the complete S.
cerevisiae data set in parallel takes 0.6–6.8 seconds and writing

the output takes 1.4–20.8 seconds. We therefore disregard the time

required for reading and writing files and only report the time

required for learning the network in this section.

We evaluate the scalability of our parallel implementation by

conducting strong scaling experiments because our primary mo-

tivation is to construct MoNets for specific use cases which are

beyond the reach of sequential computing. Understanding the com-

promise between run-time and computational resources for solving

these problems will help biologists choose the optimal trade-off for

their specific needs. We use the following metrics for the scalability

discussions:

Strong Scaling Speedup =
𝑇1

𝑇𝑝
and Efficiency (%) =

𝑇1

𝑝 ·𝑇𝑝
× 100%

where𝑇1 is the run-time of the best sequential implementation and

𝑇𝑝 is the run-time of the parallel implementationwhen using 𝑝 cores.

We use the run-time of our optimized sequential implementation

as 𝑇1 in all the cases, since it has been established as the faster

one in the previous section. In cases where running with 𝑝 = 1 is

infeasible, we also refer to relative speedup and efficiency between

parallel execution using 𝑝1 and 𝑝2 (≥ 𝑝1) cores, defined as:

Relative Speedup =
𝑇𝑝1

𝑇𝑝2
and Efficiency (%) =

𝑝1 ·𝑇𝑝1
𝑝2 ·𝑇𝑝2

× 100%

where 𝑇𝑝1 and 𝑇𝑝2 are run-times when using 𝑝1 and 𝑝2 cores.

5.3.1 Strong Scaling for Small Data sets. Since the sequential run-
time of our implementation for the complete S. cerevisiae data set
is estimated to be about two weeks, we conducted strong scaling

experiments using smaller data sets from which MoNets can be

learned sequentially in a more reasonable time. We created five data

sets by selecting a subset of observations (𝑚 = {125, 250, 500, 750,
1000}) for all the variables in the complete data set (𝑛 = 5, 716). The

time required for learning MoNets from these data sets using our

optimized sequential implementation is shown in Figure 5a with the

125 250 500 750 1000

1

6

12

24

48
2 days

1 day

Number of observations (𝑚)

T
o
t
a
l
r
u
n
-
t
i
m
e
(
h
o
u
r
s
)

Modules

Consensus

GaneSH

(a) Sequential run-times

1 2 4 8 16 32 64 128 256 512 1024

1

2

4

8

16

32

64

128

256

400

Number of cores (𝑝)

S
p
e
e
d
u
p

𝑚 = 125

𝑚 = 250

𝑚 = 500

𝑚 = 750

𝑚 = 1000

(b) Strong scaling speedups

125 250 500 750 1000

1

5

10

Number of observations (𝑚)

T
o
t
a
l
r
u
n
-
t
i
m
e
(
m
i
n
u
t
e
s
)

Modules

Consensus

GaneSH

(c) Run-times using 1024 cores

Figure 5: Plots showing the scalability of our implementation for data sets with different number of observations subsampled
from the complete S. cerevisiae data set.

Parallel Construction of Module Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

time taken by different tasks indicated by different colors. The total

sequential run-time for the five data sets varies from 43 minutes for

𝑚 = 125 to more than two days for𝑚 = 1000. Further, the majority

of the sequential run-time is spent in learning the modules. The

fraction of the total run-time spent in the task increases from 94.7%

for𝑚 = 125 to 99.4% for𝑚 = 1000. The consensus clustering task

takes less than one second in all the cases.

We learned MoNets from these five data sets in parallel by vary-

ing the number of cores (𝑝) from 2 to 1024. Figure 5b shows the

strong scaling speedup plots for these data sets. Our parallel im-

plementation scales well for all the data sets when using smaller

number of cores. However, for the𝑚 = 125 data set, the plot di-

verges from that for the other data sets for larger number of cores.

This is explained by the comparatively meager amount of work

required for this data set, as is evident from the corresponding total

run-time of less than 60 seconds when using 64 cores or more.

Our implementation achieves close to 48X speedup for the four

larger data sets when using 64 cores, corresponding to a 75% ef-

ficiency. However, the scaling tapers off as the number of cores

is increased because of the load imbalance in the most time con-

suming phase of the last task – the loop for computing posterior

probabilities for all the candidate splits (lines 6 – 7 in Algorithm 5).

The posterior probabilities for the splits are computed by discrete

sampling for a maximum of 𝑆 steps. Therefore, the time required

for this phase cannot be estimated a priori and varies significantly

across splits. As a measure of the load imbalance in this loop across

processes, we computed the deviation of the maximum run-time

of the loop on any process from the average run-time of the loop

across all the processes, normalized by the average run-time. For

the largest of the five data sets, the measured load imbalance is less

than 0.3 when 𝑝 ≤ 64, indicating a reasonably good balance, and

then the imbalance steadily increases from 0.5 using 𝑝 = 128 to 2.6

using 𝑝 = 1024. Consequently, the four bigger data sets achieve

similar speedups in the range of 273.9–288.3X when 𝑝 = 1024.

The time required for learning MoNets from the five data sets

using 1024 cores is shown in Figure 5c. Our parallel implementation

reduces the run-time for the two larger data sets from 26.9 and 48.9

hours to 5.8 and 10.7 minutes, respectively, while the learning is

completed in less then 60 seconds for the two smaller data sets.

Even though Figure 5c shows a higher percentage of run-time in

the GaneSH task on 1024 cores, when compared to Figure 5a, more

than 90% of the run-time is still spent in learning the modules from

the three larger data sets.

5.3.2 Scaling for the complete S. cerevisiae data set. We used our

parallel implementation to construct MoNets from the complete

S. cerevisiae data set. In order to limit the time required for the

experiments, we used a minimum of 4 cores for these experiments

and discuss relative speedup and efficiencywith respect to𝑇4 for this

data set. We learned the networks from the data set by repeatedly

doubling the number of cores used from 4 to 4096 and plot the

relative speedup in Figure 6a.

We show the run-times obtained from the executions using 128

cores and fewer in Figure 6b and those using 128 to 4096 cores in

Figure 6c, to accommodate the differences in the scales of the run-

times. Our parallel implementation scales well when the number

of cores is increased from 4 to 128, reducing the time required for

learning the network from close to 4 days using 𝑝 = 4 to about

4 hours using 𝑝 = 128 with a relative speedup of 22.6 and more

than 70% relative efficiency. The GaneSH task takes less than 0.38%

of the total run-time on these cores and is therefore not a visible

component of the run-time. The consensus clustering step, even

though it is run sequentially, takes less than one second.

Our parallel implementation is able to learn a network from the

complete data set in 23.5 minutes using 4096 cores, down from

an estimated two weeks sequentially. Due to the comparatively

lower work required by the GaneSH task – it takes about a minute

when using 128 cores or more – and the load imbalance in the

computations for candidate parent splits as discussed in 5.3.1, the

relative speedup from 𝑝 = 4 to 𝑝 = 4096 is 239.3X corresponding to

a relative efficiency of 23.4%. Nevertheless, to construct a MoNet

in a computational biology pipeline, a run-time of 23.5 minutes

presents a significant saving of computation time as compared

to more than 13 days for a sequential run. Further, the difference

between a run-time of 24 minutes and the ideal possible run-time

of 6 minutes (at 100% relative efficiency) for MoNet learning from

4 8 16 32 64 128 256 512 1024 4096

1

2

4

8

16

32

64

128

256

Number of cores (𝑝)

S
p
e
e
d
u
p
r
e
l
a
t
i
v
e
t
o
𝑇
4

(a) Relative speedup

4 8 16 32 64 128

4

12

24

48

96

4 days

2 days

1 day

Number of cores (𝑝)

T
o
t
a
l
r
u
n
-
t
i
m
e
(
h
o
u
r
s
)

Modules

Consensus

GaneSH

(b) Run-times using fewer cores

256 512 1024 2048 4096

0.5

1

2

3

30 mins

Number of cores (𝑝)

T
o
t
a
l
r
u
n
-
t
i
m
e
(
h
o
u
r
s
)

Modules

Consensus

GaneSH

(c) Run-times using more cores

Figure 6: Plots showing the run-times of our implementation for the complete S. cerevisiae data set using different number of
cores and the corresponding relative speedup.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Srivastava et al.

data sets created by wet-lab biological experiments is immaterial,

given that conducting these wet-lab experiments can take days.

5.3.3 Scaling for the complete A. thaliana data set. We estimated,

in Section 5.2.2, that our optimized sequential implementation will

require approximately 14 months for learning a MoNet for the

complete A. thaliana data set, a significant impediment in practice.

Using our scalable parallel method, genome-scale regulatory net-

works can be learned in a reasonable time from large data sets for

multi-cellular organisms with tens of thousands of genes.

Table 2 shows the time required for learning networks for the

complete A. thaliana data set. Since learning of MoNets from the

data set using smaller number of cores will require prohibitively

long time, we learned MoNets from the data set by varying the num-

ber of cores from 256 to 4096 cores. Our parallel implementation

reduces the run-time from almost two days using 256 cores to about

4 hours using 4096 cores. The table also shows relative speedup

and efficiency compared to the run-time using 256 cores. While the

scaling efficiency relative to 256 cores for the S. cerevisiae data set
is close to 47% on 4096 cores in Section 5.3.2, the corresponding

relative scaling efficiency for the A. thaliana data set increases to
almost 70%.

Number of

Cores (𝑝)
Run-time (s)

Relative to 𝑇256
Speedup Efficiency (%)

256 168, 775.6 1.0 100.0

512 91, 349.6 1.8 92.4

1024 54, 099.1 3.1 78.0

2048 28, 529.3 5.9 73.9

4096 15, 097.6 11.2 69.9

Table 2: Parallel run-times for the completeA. thaliana data
set using large number of cores and the corresponding rela-
tive speedup and efficiency.

6 CONCLUSIONS AND FUTUREWORK
We presented the first distributed-memory parallel approach for

the construction of MoNets that scales to a large number of cores.

Our parallel implementation learns genome-scale gene regulatory

networks for two model organisms – S. cerevisiae and A. thaliana,
in 24 minutes and 4.2 hours using 4096 cores, as compared to an

estimated 49 and 1561 days, respectively, using the previous state-of-

the-art sequential implementation. The proposed method is general

and can enable learning of high-dimensional MoNets for analy-

ses of big data in any of its wide array of applications, e.g., single

cell genomics [58] where a data set can include hundreds of thou-

sands of observations. We hope that it can also help the adoption

of MoNets in novel domains, such as applications that use other

parameter-sharing variations of BNs, where the untenable time

required for sequentially learning MoNets from large data sets has

been a deterrent thus far.

Potential future works can further improve the scalability of

our proposed parallel method by implementing a dynamic load

balancing scheme for computing the posterior probabilities for all

the candidate parent splits. The proposed parallel components can

also be extended to develop a parallel solution for GENOMICA that

scales to thousands of cores.

ACKNOWLEDGEMENT
This research is supported in part by the National Science Founda-

tion under OAC-1828187, OAC-1854828, and CCF-1718479.

REFERENCES
[1] Ashar Ahmad and Holger Fröhlich. 2016. Integrating heterogeneous omics data

via statistical inference and learning techniques. Genomics and Computational
Biology 2, 1 (2016), e32–e32.

[2] Pamela A Alexandre, Lisette JA Kogelman, Miguel HA Santana, Danielle Pas-

sarelli, Lidia H Pulz, Paulo Fantinato-Neto, Paulo L Silva, Paulo R Leme, Ricardo F

Strefezzi, Luiz L Coutinho, et al. 2015. Liver transcriptomic networks reveal main

biological processes associated with feed efficiency in beef cattle. BMC genomics
16, 1 (2015), 1–13.

[3] Maneesha Aluru and Sriram Chockalingam. 2021. A. thaliana Gene Expression
Dataset for Development Processes. https://doi.org/10.5281/zenodo.4672797

[4] Stilianos Arhondakis, Craita E Bita, Andreas Perrakis, Maria E Manioudaki,

Afroditi Krokida, Dimitrios Kaloudas, and Panagiotis Kalaitzis. 2016. In silico

transcriptional regulatory networks involved in tomato fruit ripening. Frontiers
in plant science 7 (2016), 1234.

[5] Elham Azizi, Edoardo Airoldi, and James Galagan. 2014. Learning modular

structures from network data and node variables. In International conference on
machine learning. PMLR, 1440–1448.

[6] Yang Bai, Laura Dougherty, Lailiang Cheng, Gan-Yuan Zhong, and Kenong Xu.

2015. Uncovering co-expression gene network modules regulating fruit acidity

in diverse apples. BMC genomics 16, 1 (2015), 1–16.
[7] Alexis Battle, Eran Segal, and Daphne Koller. 2005. Probabilistic discovery of

overlapping cellular processes and their regulation. Journal of Computational
Biology 12, 7 (2005), 909–927.

[8] Heiko Bauke and Stephan Mertens. 2007. Random numbers for large-scale

distributed Monte Carlo simulations. Physical Review E 75, 6 (2007), 066701.

[9] Kelli Crews Baumgartner, Silvia Ferrari, and C Gabrielle Salfati. 2005. Bayesian

network modeling of offender behavior for criminal profiling. In Proceedings of
the 44th IEEE Conference on Decision and Control. IEEE, 2702–2709.

[10] Elham Behdani and Mohammad Reza Bakhtiarizadeh. 2017. Construction of

an integrated gene regulatory network link to stress-related immune system in

cattle. Genetica 145, 4 (2017), 441–454.
[11] A Beresniak, E Bertherat, W Perea, G Soga, R Souley, D Dupont, and S Hugonnet.

2012. A Bayesian network approach to the study of historical epidemiological

databases: modelling meningitis outbreaks in the Niger. Bulletin of the World
Health Organization 90 (2012), 412–417a.

[12] Bonnie Berger, Jian Peng, and Mona Singh. 2013. Computational solutions for

omics data. Nature reviews genetics 14, 5 (2013), 333–346.
[13] Eric Bonnet, Laurence Calzone, and Tom Michoel. 2015. Integrative multi-omics

module network inference with Lemon-Tree. PLoS Comput Biol 11, 2 (2015),

e1003983.

[14] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984.

Classification and regression trees. CRC press.

[15] David Maxwell Chickering, David Heckerman, and Christopher Meek. 2004.

Large-sample learning of Bayesian networks is NP-hard. Journal of Machine
Learning Research 5, Oct (2004), 1287–1330.

[16] Luca Gherardi, Davide Brugali, and Daniele Comotti. 2012. A java vs. c++ per-

formance evaluation: a 3d modeling benchmark. In International Conference on
Simulation, Modeling, and Programming for Autonomous Robots. Springer, 161–
172.

[17] Thomas L Griffiths. 2004. Causes, coincidences, and theories. Ph.D. Dissertation.
stanford university.

[18] Thomas L Griffiths and Joshua B Tenenbaum. 2009. Theory-based causal induc-

tion. Psychological review 116, 4 (2009), 661.

[19] Elias Gyftodimos and Peter A Flach. 2004. Hierarchical Bayesian networks: an

approach to classification and learning for structured data. In Hellenic Conference
on Artificial Intelligence. Springer, 291–300.

[20] David Heckerman. 2008. A tutorial on learning with Bayesian networks. Innova-
tions in Bayesian networks (2008), 33–82.

[21] Katherine A Heller and Zoubin Ghahramani. 2005. Bayesian hierarchical clus-

tering. In Proceedings of the 22nd international conference on Machine learning.
297–304.

[22] Hugo Heyman and Love Brandefelt. 2020. A Comparison of Performance &

Implementation Complexity of Multithreaded Applications in Rust, Java and

C++.

[23] Zena MHira and Duncan F Gillies. 2015. A review of feature selection and feature

extraction methods applied on microarray data. Advances in bioinformatics 2015

https://doi.org/10.5281/zenodo.4672797

Parallel Construction of Module Networks SC ’21, November 14–19, 2021, St. Louis, MO, USA

(2015).

[24] Hongshan Jiang, Chunrong Lai, Wenguang Chen, Yurong Chen, Wei Hu, Weimin

Zheng, and Yimin Zhang. 2006. Parallelization of module network structure

learning and performance tuning on SMP. In Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium. IEEE, 8–pp.

[25] Anagha Joshi, Riet De Smet, Kathleen Marchal, Yves Van de Peer, and Tom

Michoel. 2009. Module networks revisited: computational assessment and priori-

tization of model predictions. Bioinformatics 25, 4 (2009), 490–496.
[26] Anagha Joshi, Yves Van de Peer, and Tom Michoel. 2008. Analysis of a Gibbs sam-

pler method for model-based clustering of gene expression data. Bioinformatics
24, 2 (2008), 176–183.

[27] Elisavet Kaitetzidou, Jenny Xiang, Efthimia Antonopoulou, Constantinos S

Tsigenopoulos, and Elena Sarropoulou. 2015. Dynamics of gene expression pat-

terns during early development of the European seabass (Dicentrarchus labrax).

Physiological Genomics 47, 5 (2015), 158–169.
[28] Dietmar Kasper, Galia Weidl, Thao Dang, Gabi Breuel, Andreas Tamke, Andreas

Wedel, and Wolfgang Rosenstiel. 2012. Object-oriented Bayesian networks for

detection of lane change maneuvers. IEEE Intelligent Transportation Systems
Magazine 4, 3 (2012), 19–31.

[29] Donald Ervin Knuth. 1997. The art of computer programming. Vol. 3. Pearson
Education.

[30] Daphne Koller. 1999. Probabilistic relational models. In International Conference
on Inductive Logic Programming. Springer, 3–13.

[31] Daphne Koller and Avi Pfeffer. 1997. Object-Oriented Bayesian Networks. In

Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intel-
ligence. 302–313.

[32] Pieter Kraaijeveld, Marek J Druzdzel, Agnieszka Onisko, and Hanna Wasyluk.

2005. Genierate: An interactive generator of diagnostic bayesian network models.

In Proc. 16th Int. Workshop Principles Diagnosis. Citeseer, 175–180.
[33] Long Liu, Wei Hu, Chunrong Lai, Hong-shan Jiang, Wenguang Chen, Weimin

Zheng, and Yimin Zhang. 2005. Parallel module network learning on distributed

memory multiprocessors. In 2005 International Conference on Parallel Processing
Workshops (ICPPW’05). IEEE, 129–134.

[34] Xinguo Lu, Xing Li, Ping Liu, Xin Qian, Qiumai Miao, and Shaoliang Peng. 2018.

The integrative method based on the module-network for identifying driver

genes in cancer subtypes. Molecules 23, 2 (2018), 183.
[35] Youtao Lu, Xiaoyuan Zhou, and Christine Nardini. 2017. Dissection of the module

network implementation “LemonTree”: enhancements towards applications in

metagenomics and translation in autoimmune maladies. Molecular BioSystems
13, 10 (2017), 2083–2091.

[36] Saisai Ma, Jiuyong Li, Lin Liu, and Thuc Duy Le. 2016. Mining combined causes

in large data sets. Knowledge-Based Systems 92 (2016), 104–111.
[37] Suzanne M Mahoney and Kathryn B Laskey. 1996. Network Engineering for

Complex Belief Networks. In Proceedings of the Twelfth international conference
on Uncertainty in artificial intelligence. 389–396.

[38] Fabio Albuquerque Marchi, David Correa Martins, Mateus Camargo Barros-

Filho, Hellen Kuasne, Ariane Fidelis Busso Lopes, Helena Brentani, Jose Car-

los Souza Trindade Filho, Gustavo Cardoso Guimarães, Eliney F Faria, Cristovam

Scapulatempo-Neto, et al. 2017. Multidimensional integrative analysis uncovers

driver candidates and biomarkers in penile carcinoma. Scientific reports 7, 1
(2017), 1–11.

[39] Florian Markowetz and Rainer Spang. 2007. Inferring cellular networks–a review.

BMC bioinformatics 8, 6 (2007), 1–17.
[40] TomMichoel, Steven Maere, Eric Bonnet, Anagha Joshi, Yvan Saeys, Tim Van den

Bulcke, Koenraad Van Leemput, Piet Van Remortel, Martin Kuiper, Kathleen

Marchal, et al. 2007. Validating module network learning algorithms using

simulated data. BMC bioinformatics 8, 2 (2007), 1–15.
[41] Tom Michoel and Bruno Nachtergaele. 2012. Alignment and integration of

complex networks by hypergraph-based spectral clustering. Physical Review E
86, 5 (2012), 056111.

[42] Sanchit Misra, Md Vasimuddin, Kiran Pamnany, Sriram P Chockalingam, Yong

Dong, Min Xie, Maneesha R Aluru, and Srinivas Aluru. 2014. Parallel bayesian

network structure learning for genome-scale gene networks. In SC’14: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 461–472.

[43] AnuradhaMoirangthem, XueWang, Irene K Yan, and Tushar Patel. 2018. Network

analyses–based identification of circular ribonucleic acid–related pathways in

intrahepatic cholangiocarcinoma. Tumor Biology 40, 9 (2018), 1010428318795761.

[44] Radu Stefan Niculescu, Tom M Mitchell, R Bharat Rao, Kristin P Bennett, and

Emilio Parrado-Hernández. 2006. Bayesian Network Learning with Parameter

Constraints. Journal of machine learning research 7, 7 (2006).

[45] Noa Novershtern, Zohar Itzhaki, Ohad Manor, Nir Friedman, and Naftali Kamin-

ski. 2008. A functional and regulatory map of asthma. American journal of
respiratory cell and molecular biology 38, 3 (2008), 324–336.

[46] PACE. 2017. Partnership for an Advanced Computing Environment (PACE). http:

//www.pace.gatech.edu

[47] Dana Pe’er, Amos Tanay, Aviv Regev, and Tommi Jaakkola. 2006. MinReg: A

scalable algorithm for learning parsimonious regulatory networks in yeast and

mammals. Journal of Machine Learning Research 7, 2 (2006).

[48] Dana Pe’er, Aviv Regev, Gal Elidan, and Nir Friedman. 2001. Inferring subnet-

works from perturbed expression profiles. Bioinformatics 17, suppl_1 (2001),

S215–S224.

[49] Eran Segal, Nir Friedman, Naftali Kaminski, Aviv Regev, and Daphne Koller. 2005.

From signatures to models: understanding cancer using microarrays. Nature
genetics 37, 6 (2005), S38–S45.

[50] Eran Segal, Nir Friedman, Daphne Koller, and Aviv Regev. 2004. A module map

showing conditional activity of expression modules in cancer. Nature genetics 36,
10 (2004), 1090–1098.

[51] Eran Segal, Dana Pe’er, Aviv Regev, Daphne Koller, and Nir Friedman. 2003. Learn-

ing Module Networks. In Proceedings of the Nineteenth Conference on Uncertainty
in Artificial Intelligence. 525–534.

[52] Eran Segal, Dana Pe’er, Aviv Regev, Daphne Koller, Nir Friedman, and Tommi

Jaakkola. 2005. Learning module networks. Journal of Machine Learning Research
6, 4 (2005).

[53] Eran Segal, Michael Shapira, Aviv Regev, Dana Pe’er, David Botstein, Daphne

Koller, and Nir Friedman. 2003. Module networks: identifying regulatory modules

and their condition-specific regulators from gene expression data. Nature genetics
34, 2 (2003), 166–176.

[54] Eran Segal, Claude B Sirlin, Clara Ooi, Adam S Adler, Jeremy Gollub, Xin Chen,

Bryan K Chan, George R Matcuk, Christopher T Barry, Howard Y Chang, et al.

2007. Decoding global gene expression programs in liver cancer by noninvasive

imaging. Nature biotechnology 25, 6 (2007), 675–680.

[55] Sagi D Shapira, Irit Gat-Viks, Bennett OV Shum, Amelie Dricot, Marciela M

de Grace, Liguo Wu, Piyush B Gupta, Tong Hao, Serena J Silver, David E Root,

et al. 2009. A physical and regulatory map of host-influenza interactions reveals

pathways in H1N1 infection. Cell 139, 7 (2009), 1255–1267.
[56] Suraj Sharma. 2019. Performance comparison of Java and C++ when sorting

integers and writing/reading files.

[57] Valerie J Shute, Matthew Ventura, Malcolm Bauer, and Diego Zapata-Rivera. 2009.

Melding the power of serious games and embedded assessment to monitor and

foster learning. Serious games: Mechanisms and effects 2 (2009), 295–321.
[58] Oliver Stegle, Sarah A Teichmann, and John C Marioni. 2015. Computational and

analytical challenges in single-cell transcriptomics. Nature Reviews Genetics 16, 3
(2015), 133–145.

[59] Konstantine Tchourine, Christine Vogel, and Richard Bonneau. 2018. Condition-

specific modeling of biophysical parameters advances inference of regulatory

networks. Cell reports 23, 2 (2018), 376–388.
[60] Vanessa Vermeirssen, Inge De Clercq, Thomas Van Parys, Frank Van Breusegem,

and Yves Van de Peer. 2014. Arabidopsis ensemble reverse-engineered gene

regulatory network discloses interconnected transcription factors in oxidative

stress. The Plant Cell 26, 12 (2014), 4656–4679.
[61] Vanessa Vermeirssen, Anagha Joshi, Tom Michoel, Eric Bonnet, Tine Casneuf,

and Yves Van de Peer. 2009. Transcription regulatory networks in Caenorhabditis

elegans inferred through reverse-engineering of gene expression profiles consti-

tute biological hypotheses for metazoan development. Molecular BioSystems 5,
12 (2009), 1817–1830.

[62] Jing Xu and Christian R Shelton. 2010. Intrusion detection using continuous time

Bayesian networks. Journal of Artificial Intelligence Research 39 (2010), 745–774.

http://www.pace.gatech.edu
http://www.pace.gatech.edu

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We utilized the Phoenix cluster at Georgia Tech for our exper-
iments, using a maximum of 171 nodes of the cluster for the
results reported in the paper. We compiled the source code,
implemented with C++14 and MPI, using gcc v10.1.0 with
-O3 -march=native optimization flags and MVAPICH2 v2.3.3
implementation of MPI. We measure the run-times by assigning
24 MPI processes per node and binding one MPI process to each
core. We ran all the experiments for three different random seeds
and reported the average run-times in all cases. A stepwise guide
to running the experiments reported in the paper can be found at
https://github.com/asrivast28/ParsiMoNe/blob/main/EXPERIMENTS.md

Author-Created or Modified Artifacts:

Persistent ID: https://doi.org/10.5281/zenodo.5144438
Artifact name: ParsiMoNe

Persistent ID:
https://github.com/asrivast28/lemon-tree/commit/ ⌋

5c5b91a7dc24b8c092f45c19ab7961b7d9b4598a
↩→

↩→

Artifact name: Lemon-Tree

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Each node on the Phoenix cluster has
a 2.7 GHz 24-core Intel Xeon Gold 6226 processor and a minimum
of 192 GB of main memory. The nodes are connected via HDR100
(100 Gbps) InfiniBand. The data sets are stored on a GPFS filesystem,
which is accessible from all the nodes.

Operating systems and versions: RHEL 7.6 running Linux kernel
3.10.0

Compilers and versions: gcc v10.1.0

Libraries and versions: MVAPICH2 v2.3.3, Boost v1.74.0, TRNG
v4.22, Armadillo v9.800.3, SCons v3.1.2

Input datasets and versions: Yeast Microarray Dataset (DOI:
10.5281/zenodo.3355524), A. thaliana Gene Expression Dataset for
Development Processes (DOI: 10.5281/zenodo.4672797)

URL to output from scripts that gathers execution environment
information.
https://github.com/asrivast28/ParsiMoNe/blob/f653f48 ⌋

a854bf5cd619bf55c6a4741c9072b9c5a/phoenix_envir ⌋

onment.log
↩→

↩→

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background
	2.1 mn
	2.2 The lemont Algorithm

	3 Our Parallel Algorithm
	3.1 Assumptions
	3.2 Parallelizing lemont

	4 Implementation
	4.1 Sequential Implementation
	4.2 Parallel Implementation

	5 Experiments and Results
	5.1 Data sets
	5.2 Sequential Performance
	5.3 Parallel Scalability

	6 Conclusions and Future Work
	References

