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ABSTRACT

Module networks (MoNets) are a parameter-sharing specializa-
tion of Bayesian networks that are used for reasoning about multi-
dimensional entities with concerted interactions between groups
of variables. Construction of MoNets is compute-intensive, with
sequential methods requiring months for learning networks with a
few thousand variables. In this paper, we present the first scalable
distributed-memory parallel solution for constructing MoNets by
parallelizing Lemon-Tree, a widely used sequential software. We
demonstrate the scalability of our parallel method on a key applica-
tion of MoNets — the construction of genome-scale gene regulatory
networks. Using 4096 cores, our parallel implementation constructs
regulatory networks for 5,716 and 18, 373 genes of two model or-
ganisms in 24 minutes and 4.2 hours, compared to an estimated 49
and 1561 days using Lemon-Tree for generating exactly the same
networks, respectively. Our method is application-agnostic and
broadly applicable to the learning of high-dimensional MoNets for
any of its wide array of applications.
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1 INTRODUCTION

Bayesian networks (BNs) use a directed acyclic graph (DAG) to
represent the joint probability distribution of a set of random vari-
ables and thereby provide a compact model for reasoning about
interactions in multi-dimensional entities. The capability of the BN
framework to reason about uncertainty has led to their successful
use in many different fields [9, 11, 62]. However, the deployment
of BNs in intricate domains with a large number of variables has
uncovered two major limitations - (a) it is difficult to interpret
complex interactions between groups of variables that may lead to
an emergent behavior of the entity from the BN models of such en-
tities [30, 37], and (b) confidence in learned BN models is low when
the data set does not have sufficient number of observations [48].
Specialization of BNs that rely on variations of parameter-sharing
have been proposed to overcome these limitations [44].

Introduced by Segal et al., module networks (MoNets) [51, 52]
are among the most commonly used parameter-sharing specializa-
tions of BNs. A learned MoNet can identify groups of variables
(or modules) that operate in a concerted fashion, possibly driven
by other groups of variables. The primary advantage of MoNets
over other parameter-sharing BN specializations - such as object-
oriented BNs [31], probabilistic relational models [30], hierarchical
BNs [19], etc. — is that, unlike these variations, MoNets can be
learned in an unsupervised manner, i.e., without requiring any
prior knowledge of relationships between variables. Due to their
unsupervised nature, MoNets have been utilized in a wide range of
applications in computational biology, e.g., gene regulatory stud-
ies [53], cancer genomics [34, 49, 50, 54], construction of cellular
networks [7, 39, 47], and integration of multi-omics data [1, 12, 13].
MoNets and other parameter-sharing specializations of BNs have
also found applications in diverse fields, e.g., medical diagnosis [32],
stock market analysis [52], traffic modeling [28], active learning us-
ing serious games [57], feature selection and feature extraction [23],
computational psychology [17, 18], and data mining [36].

Learning a MoNet from data requires learning of a module as-
signment function that maps each variable to a module, in addition
to learning the parent-child relationships between variables in the
form of a DAG. Therefore, the MoNet learning problem is at least
as hard as the problem of exactly learning BN structure, which is
NP-hard [15]. Consequently, approaches to construct MoNets resort
to heuristic methods. However, even using these heuristic methods,
learning MoNets from data sets with thousands of variables and
observations can take months sequentially.
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1.1 Related Work

Various score-based heuristic methods have been proposed for con-
structing MoNets from observed data [5, 13, 25, 40, 52]. The score
of a MoNet is a Bayesian metric that evaluates the fitness of both
the partition of variables into modules and the structure of the
underlying network, given observed data. Similar to the score-based
approaches used for BN structure learning [20], heuristics are used
in MoNet learning to traverse the space of all possible MoNets
and obtain a network with locally optimal score in the expectation
that it approximates the globally optimal network reasonably well.
In contrast to BN learning methods, though, the MoNet learning
methods also need to learn the conditional probability distribu-
tions (CPDs) for the modules as part of their structure learning
routine. The most popular software packages for MoNet learning
are GENOMICA [52] and Lemon-Tree [13]. In both these software,
the learned CPDs are represented using regression trees [14].

GENOMICA implements the iterative two-step algorithm pro-
posed by Segal et al. [51, 52] to construct MoNets. Lemon-Tree, on
the other hand, implements the approach outlined by Bonnet et
al. [13], that refined an earlier approach by Michoel et al. [40]. This
approach separates the learning of module assignments and parents
and CPDs into three distinct tasks which are described in detail
in Section 2.2. Previous studies that evaluated the two approaches
found Lemon-Tree to be more effective at constructing robust MoN-
ets from both synthetic as well as real-world data sets [25, 35, 40].
Further, Lemon-Tree software has been successfully used in multiple
recent works with potential for far-reaching impact. These include
studies intending to increase life expectancy by understanding com-
plex diseases such as glioblastoma [13], cholangiocarcinoma [43],
breast cancer [34], penile cancer [38], and rheumatoid arthritis [35].
The software has also been used in works aiming to enhance quality
of life by improving food production processes through studies on
stress-related immune response [10] and feed efficiency [2] of cattle,
analysis of early stage development of European sea bass [27], and
identification of genes critical for tomato ripening [4] and apple
edibility [6].

However, Lemon-Tree is computationally expensive, which has
limited its use for genome-wide gene regulatory network studies
to smaller micro-organisms. For organisms with tens of thousands
of genes, MoNet construction is possible only for a subset of genes
that are involved in specific pathways of interest [4, 60]. Even for
the single-celled Saccharomyces cerevisiae, with 5,716 genes, we
estimate that sequentially constructing a whole-genome network
using Lemon-Tree will take 49 days.

To mitigate the run-time issues in constructing MoNets, the
approach proposed by Segal et al. has been parallelized by multiple
groups. Liu et al. [33] parallelized the MoNet learning method using
a distributed-memory approach. They report a speedup of up to
29.3X using a maximum of 32 cores. Jiang et al. [24] developed a
shared-memory parallel solution and report a maximum speedup
of 3.5X using 4 threads. In addition to limited scaling, both these
parallelization strategies are specific to the approach by Segal et al.,
i.e., GENOMICA, and are not applicable for parallelizing Lemon-Tree.
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1.2 Contributions

In this paper, we introduce a parallel, distributed-memory based
approach for constructing large MoNets efficiently. We limit our fo-
cus to parallelizing Lemon-Tree, which is more widely used for this
purpose. We present distributed-memory parallel algorithms for
the tasks used in Lemon-Tree, both for learning the modules and the
CPD regression trees. To demonstrate that our implementation of
the parallel algorithms can scale to constructing networks for tens
of thousands of variables from thousands of observations, we con-
struct genome-scale gene networks for S. cerevisiae and Arabidopsis
thaliana with 5,716 and 18, 373 genes, respectively. Our parallel im-
plementation can construct a MoNet for S. cerevisiae in 25 minutes
and for A. thaliana in 4.2 hours using 4096 cores as compared to an
estimated 13.5 and 433.6 days, respectively, with our optimized C++
sequential implementation. The corresponding run-time estimates
when using Lemon-Tree are 48.6 and 1561 days for generating ex-
actly the same network. Our method is application-agnostic and is
broadly applicable to the learning of high-dimensional MoNets for
any of its wide array of applications.

2 BACKGROUND
2.1 Module networks

For a set of n random variables X = {Xi, ..., Xp}, the corresponding
BN is a compact representation of the joint probability distribution
of the variables via a DAG such that the distribution decomposes
as P(X) = [1; P(Xi|Pa(X;)), where Pa(X;) is the set of parents of
X; in the DAG. We denote the children of a variable X; in the DAG
by Ch(Xj;).

MoNets are BNs with the variables partitioned into modules,
where a module consists of a set of variables that share the same
set of parents and the same CPD. We use K to denote the maximum
number of modules in the MoNet and represent each module by
a module variable (M1, Mg, etc.) and the set of all the modules
as M = {My,...,Mg}. A module assignment function, denoted

(a) Bayesian network

(b) Module network

Figure 1: An example BN for a set of eight random variables
{A,B,C,D,E,F,G,H} and the corresponding MoNet.
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by A, assigns each variable in X to one of the modules in M,
e.g., A(X;) = M; implies that the variable X; is an element of the
module M;. Each module has a set of parent variables, represented
by Pa(M;), where Pa(M;) C X. Given these definitions, a MoNet
is a DAG that has:

e avertex for every module variable in M, and

e adirected edge M; — M if and only if there exists a variable
X € X such that A(X) = Mj and X € Pa(My).

Figure 1a shows an example BN with a potential assignment of
variables to modules shown by dashed rectangles in which A(A) =
M;j, A(C) = My, etc. The MoNet structure corresponding to this
assignment of variables to modules is shown in Figure 1b. Note that,
the parents of a module should be a parent for all the variables in
the module, e.g., B € Pa(Mz) <= B € Pa(C) and B € Pa(D) in
the figure. However, the variables in a module may have different
sets of descendants, e.g., Ch(C) # Ch(D).

MoNets are learned from multiple (m) observations of the n
random variables, represented as an n X m matrix of either discrete
or continuous values. As the focus in this work is parallelization of
Lemon-Tree, learning of MoNets using the corresponding algorithm
is described in greater detail next.

2.2 The Lemon-Tree Algorithm

Lemon-Tree implements the MoNet learning method proposed by
Bonnet et al. [13]. This MoNet learning method consists of three
main tasks that are executed in the order they are described below.

2.2.1 GaneSH Co-Clustering. The first task constructs an ensemble
of variable clusters using a Gibbs sampler algorithm called GaneSH,
proposed by Joshi et al. [26]. The algorithm performs two-way clus-
tering of variables and observations to get a variable-observation
co-clustering. GaneSH scores a co-clustering using a decomposable
Bayesian scoring function (described in [26]) that can be computed
by aggregating the independently computed scores for all the vari-
able and observation clusters. The algorithm explores the space of
co-clustering solutions as follows:

(1) Random Initialization: The n variables are randomly assigned
to a user-provided number of variable clusters, or n/2 clusters if no
input is provided. In each variable cluster, the m observations are
randomly assigned to v/m observation clusters.

(2) Update Steps: The randomly initialized co-clustering is up-
dated multiple times, as per user input. In each update step of the
algorithm, the clustering of variables and observations is updated
as follows:

o Variable Clustering: For n iterations, the cluster assignment of
a randomly selected variable is evaluated while keeping the as-
signment of all the other variables and observations fixed. The
chosen variable is then randomly assigned to one of the existing
clusters or moved to its own separate cluster. The probability
of each choice for this random reassignment is proportional to
the corresponding change in the score. After n reassignment
iterations, each variable cluster is considered one at a time and
is merged with one of the other clusters or left as is, chosen at
random with the probability of each possible action weighted by
the corresponding score.
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o Observation Clustering: The variable cluster assignments are fixed
and for each variable cluster, updates to observation clustering
proceed similar to the variable clustering iteration. First, the clus-
ter assignment of m randomly selected observations is changed,
one at a time, similar to the random reassignment of variables
described above. Then, the merging of observation clusters pro-
ceeds similar to the merging of variable clusters.

The co-clustering algorithm simulates a Markov chain, i.e., the
probability to visit a particular co-clustering corresponds exactly to
its posterior probability given the data. In order to get the variable
clusters corresponding to high posterior probability, the algorithm
is run multiple times with different random initializations and vari-
able clusters are sampled at the end of each run.

Let K be the maximum number of variable clusters and L be
the maximum number of observation clusters in any variable clus-
ter. Then, variable and observation clustering phases in each sam-
pling step require O(nKLm + K?Lmn) and O(K(mLn + L?)) time,
respectively, for an asymptotic complexity of O(K?Lnm) per up-
date step. Therefore, in order to sample variable clusterings from
G runs of GaneSH with U update steps, the total time required is
O(GUK?Lnm).

2.2.2 Consensus Clustering. In the second task, a single consensus
variable clustering solution is constructed from the ensemble of
variable clusters sampled in the first task. This is done by creating
a symmetric co-occurrence frequency matrix A of size n X n. The
entry A(i, j) of the matrix is set to the number of times the variables
X; and X; occur in the same cluster in the ensemble, as a fraction
of the total number of sampled clusters. Note that A(i, j) is set to
zero if the co-occurrence weight is below a user-provided threshold.
The matrix A is then provided as an input to the spectral clustering
algorithm proposed by Michoel and Nachtergaele [41] to obtain the
consensus variable clusters. The time complexity of the complete
consensus clustering step is O(Gn?), where G is the number of
variable cluster samples from the first task.

2.2.3 Learning the Modules. The consensus variable clusters iden-
tified by the second task are defined as the modules (M) of the
MoNet and are provided as an input to the third task. In this task,
the parent variables and the corresponding CPDs are learned for
each module by first learning regression tree structures followed by
the assignment of the parent variables and split values, or parent
splits, to the nodes of the regression trees. The parent variables are
chosen from a list of candidate parent variables for all the modules
that can be provided as an input to this step. If no candidate list
is provided, then every variable is considered a candidate parent.
For each module M; € M, the third task proceeds through the
following three main steps:

(1) Learning Regression Tree Structures: For the module M;, an
ensemble of regression trees (denoted by 7 (M;)) are learned as
follows. First, the leaf nodes of the trees are built by learning multi-
ple different clusterings of observations. This is accomplished by
executing the GaneSH algorithm (described in Section 2.2.1) while
constraining the variable clusters to a single cluster containing the
variables assigned to the module M;, and sampling an ensemble
of likely observation clustering solutions for M;. Then, a binary
regression tree structure is constructed by initializing the leaf nodes
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with the observation clusters and merging them using Bayesian

hierarchical agglomerative clustering [21, 40], until all the nodes

are merged into one root node with all the observations.

If R sets of observation clusters are sampled in this step, then
GaneSH algorithm takes O(R(mLn+L?)) time, where L is the maxi-
mum number of observation clusters. Then, the hierarchical cluster-
ing for getting each regression tree structure requires O(Lnm + L?)
time. Therefore, this step requires a total of O(R(Lnm + L?)) time
that is bounded by O(RLnm), since L = O(m).

(2) Node Parent Split Assignments: In this step, for all the regres-
sion tree structures learned for M, i.e., all the trees in 7 (M;), the
assignment of parent splits to every internal node is accomplished
as follows:

(i) Scoring Candidate Splits: Given the set of candidate parents P,
all the (Xj, D;;j) pairs are considered as candidate parent splits
for the given internal node, where X; is a candidate parent and
D;j is a value of X; in D corresponding to the observations
at the node. The maximum posterior probability of assigning
every such candidate parent split to the node is computed by
sampling from a discrete distribution, as described in [25], and
the candidate splits with zero posterior probability are discarded.
Since all the n variables may be candidate parents in this stage,
the number of splits at every node is bounded by O(nm). If S is
the maximum number of discrete sampling steps for any split,
then computing the posterior probability for a split requires
O(Sm) time for a total time of O(Snm?) for this stage.

(ii) Assigning Parent Splits: In this stage, a user supplied number
of splits are chosen from all the candidate splits retained in
the previous stage, using weighted random sampling with the
corresponding posterior probabilities as weights. Additionally,
the same number of splits are selected using uniform random
sampling. Both these sets of selected splits are assigned to the
internal node. This stage performs a linear scan through the list
of candidate splits, for weighted sampling, in O(nm) time.

The total number of non-leaf nodes in every binary regression tree

is bounded by O(L) as the total number of leaf nodes is bounded

by O(L). Therefore, the assignment of splits to all the nodes of the

R regression trees of M; requires a total of O(RLSnm?) time.

(3) Learning Module Parents: For a module M;, the parents of
the module include all the variables corresponding to all the splits
assigned to all the nodes of all the regression trees learned for M;.
The score for a parent variable X; is computed as the average of
the posterior probabilities for the splits containing X;, weighted by
the number of observations at the node that the splits are assigned
to. Further, the scores of the parents from splits chosen uniformly
at random for every node are also computed. The computed scores
for both the sets of parents, chosen using weighted sampling as
well as uniform random sampling, are used for further downstream
analysis, e.g., to assess the significance of the parent variables [13,
25]. If J splits are chosen in the previous step, the parent weights
for every module can be learned in O(JRL) time.

The time complexity of the third task for one module is O(RLnm +
RLSnm? + JRL), where J is bounded by the total number of possible
splits O(nm) and R = O(U). Therefore, the run-time of this task
for K modules is O(UKLSnm?). The total time complexity of the
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three tasks of Lemon-Tree is
O(GUK?Lnm + Gn? + UKLSnm?) (1)

where G is the number of GaneSH runs, U is the number of update
steps in each GaneSH run, K = O(n) is the maximum number of
variable clusters, L = O(m) is the maximum number of observa-
tion clusters, and S is the maximum number of sampling steps for
computing the split probabilities. Since G, U, K, and L are much
smaller than n and m for large data sets, the time taken by the last
task dominates the total run-time of Lemon-Tree as observed in the
experiments reported in Section 5.

Note that, a network learned using the Lemon-Tree approach
may not satisfy the formal definition of MoNets because of the
following two reasons. First, multiple regression trees for every
module are learned when R > 1. This can be easily addressed by
changing the corresponding input parameter to sample only one
observation cluster in the third task. Second, the algorithm does not
enforce the acyclicity constraint. Therefore, the MoNets learned
by the algorithm may need to be post-processed using an existing
method to get the DAG for the learned network.

3 OUR PARALLEL ALGORITHM

We design our parallel algorithm for learning MoNets to ensure
consistency of results with the sequential Lemon-Tree implemen-
tation for all data sets. Since the sequential version of Lemon-Tree
has been proven to be successful in many applications, this ensures
ready adoption of our parallel software, while providing the needed
scalability.

3.1 Assumptions

We develop the proposed parallel algorithms for execution using
p processors assuming the networked distributed memory model.
The processors in the model have their own local memory and
communicate with the other processors using a communication
network. While a processor in the model can only communicate
with one other processor at a time, the network is assumed to be
capable of supporting communication between multiple distinct
pairs of processors concurrently. The communication time of the
algorithms designed for this model is estimated by assuming 7 time
to setup communication and p time per word to send a message
between any two processors. Note that the model is consistent
with the widely used Message Passing Interface (MPI) programming
standard. We assume that the complete data set D is available on
all the processors.

Random sampling is required in the different tasks of the Lemon-
Tree algorithm. In our description of the parallel algorithm, we as-
sume the availability of two oracle functions that facilitate uniform
and weighted random sampling in parallel. SELECT-UNIF-RAND()
accepts as input a distributed list 8, and returns an element b € 8
chosen at random with a probability 1/|8B|. SELECT-WTD-RAND()
accepts two inputs — a distributed list 8 and a corresponding list
of real numbers, W, with the weights of all the elements in 8. It
chooses an element b € |B| with the probability W(b) /Y eg W (x),
where W (x) is the weight corresponding to the element x. When
sampling using p processors, SELECT-UNIF-RAND() requires O(1)
computation time and O((7 + p) log p) time for communicating the
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chosen element to all the processors, while SELECT-WTD-RAND()
requires O(|B|/p+log p) computation and O((z+y) log p) commu-
nication time, in order to compute the probability of picking each
element from W. Notice that the calls to these sampling functions
are collective communication calls, i.e., all the processors participate
in the sampling calls. We discuss the implementation of distributed
random sampling in Section 4.2.

3.2 Parallelizing Lemon-Tree

The sequential Lemon-Tree algorithm executes three different tasks
for the construction of MoNets. In this section, we parallelize Lemon-
Tree by developing parallel algorithms for the different tasks. We
present pseudo-codes for the proposed algorithms from the per-
spective of an arbitrary processor with rank k (0 < k < p). The data
structures local to the processor are identified by the subscript k. We
use standard parallel primitives such as bcast, all-reduce, all-gather,
and scan, in the design of these algorithms.

3.2.1 GaneSH Co-Clustering. The sequential GaneSH task samples
an ensemble of variable clusters by performing variable-observation
co-clustering as described in Section 2.2.1. We denote a cluster of
variables by V' and the cluster of the observations for the variable
cluster V; € V by O(V;). We also denote the j-th observation in
the data set D as Dj.

Algorithm 1: Parallel Update of Variable Clusters

1 function REASSIGN-VAR-CLUSTER():
Input: Variables X

Input/Output: Set of variable clusters V

2 parallel k = rank of processor do

3 fori «— 1to|X|do

4 r « SELECT-UNIF-RAND({1, ..., |X|})

5 V; « Cluster assignment of X, in V

6 Vi — k™ block of V' U {empty cluster}
partitioned into p blocks

7 for V; € V. do

8 L vu-scoresy (V) < Score for moving X to V;

if Vj # V;, else for keeping X; in V;

9 Vs <= SELECT-WTD-RAND(V, vu-scoresy)

10 if V. # V5 then

11 L Move X, to Vs and update V

12 function MERGE-VAR-CLUSTER():
Input/Output: Set of variable clusters V

13 parallel k = rank of processor do
14 for V; € V do
15 Vi — k™ block of V partitioned into p blocks
16 for V; € V. do
17 vm-scoresy (Vi) < Score for merging V;
L with V; if V; # Vj, else for retaining V;
18 Vs <= SELECT-WTD-RAND(V, vm-scoresy.)
19 if V; # V5 then
20 L Merge V; and Vs and update V
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We parallelize this task by developing parallel algorithms for
the four key functions used by GaneSH. The first two functions are
used in the variable clustering phase, and therefore modify only
the variable clusters V while keeping O the same. Algorithm 1
describes the pseudo-code for our parallel algorithm for these func-
tions. For n iterations, REASSIGN-VAR-CLUSTER() selects a variable
X, and computes the change in score for moving X;- from its cur-
rent assignment to every other variable cluster. It randomly selects
a cluster Vs with probability in proportion to the reassignment
scores and reassigns X, to V (lines 3 — 11) . MERGE-VAR-CLUSTER()
evaluates, for each variable cluster V;, the score changes for merg-
ing it with every other variable cluster. Then, it merges V; with
a randomly chosen cluster with probability proportional to the
merge scores (lines 14 — 20). The computation of scores is done in
parallel in both the functions. Therefore, using p processors, the
variable clustering phase requires a total of O(K2Lnm/p + nlog p)
computation time and O(n(z + p) log p) communication time.

The other two functions are used in the observation clustering
phase to update the observation clusters O while keeping V the
same. Our proposed parallel algorithms for these two functions are
shown in Algorithm 2. Similar to the functions for updating variable
clusters, the pseudo-code for reassigning data instances from one

Algorithm 2: Parallel Update of Observation Clusters

1 function REASSIGN-OBS-CLUSTER():
Input: Number of observations m, Data set D

Input/Output: Set of observation clusters O(V;)

2 parallel k = rank of processor do

3 fori «— 1tomdo

4 r « SELECT-UNIF-RAND({1, ..., m})

5 O, « Cluster assignment of D, in O(V;)

6 O « k™ block of O(V;) U {empty cluster}
partitioned into p blocks

7 for Oj € Oy do

8 L ou-scoresy.(O;) « Score for moving D, to

0; if Oj # O, else for keeping Dy in Oy

9 Os « SELECT-WTD-RAND(O (V;), ou-scoresy.)

10 if O, # O then

11 L Move D, to Og and update O(V;)

12 function MERGE-OBs-CLUSTER():
Input/Output: Set of observation clusters O(V;)

13 parallel k = rank of processor do

14 for O; € O(V;) do

15 Oy — k™ block of O(V;) partitioned into p

blocks

16 for O € Oy do

17 L om-scoresy(O}) < Score for merging O;
with Oj if O; # Oj, else for retaining O;

18 Og « SELECT-WTD-RAND(O(V;), om-scoresy.)

19 if O; # Og then

20 L Merge O; and Os and update O(V;)
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Algorithm 3: Parallel GaneSH Co-Clustering

1 function GANESH():
Input: X, m, D, Initial number of variable clusters Ky,

Number of update steps U
Output: V,0(V;) VV; € V

2 parallel k = rank of processor do

3 V « Randomly assign each variable X; € X to Ky
variable clusters

4 for V; € V do

5 O(V;) < Randomly assign observations D

Vj € {1,...,m} to Vm observation clusters

6 for u < 1to U do // Update Steps

7 REASSIGN-VAR-CLUSTER(X, V)

8 MERGE-VAR-CLUSTER(V)

9 for V; € V do

10 REASSIGN-OBs-CLUSTER(m, D, O (V;))

1 L MERGE-OBs-CLUSTER(O (V;))

observation cluster to another is shown in REASSIGN-OBS-CLUSTER()
function and that for merging observation clusters is shown in
MERGE-OBs-CLUSTER() function. These functions proceed similar
to the two functions for variable clustering described earlier and
they require a total computation run-time of O(KLnm/p+Kmlog p)
and communication run-time of O(Km(z + p1) log p) when running
on p processors.

Algorithm 3 shows our parallel algorithm for the GaneSH task.
The algorithm starts by randomly initializing a set of variable clus-
ters V and, for each variable cluster V; € YV, a set of observation
clusters O(V;) (lines 3 - 5). Then, the algorithm proceeds to the
main loop of the update steps (lines 6 — 11). In each update step,
the parallel functions defined in Algorithm 1 update the variable
clusters (lines 7 - 8) and those defined in Algorithm 2 update the ob-
servation clusters (lines 9 — 11). The number of updates is controlled
by the input parameter U. Adding the parallel run-time complexity
of the constituent functions and simplifying, one run of GANESH()
takes O(UK?Lnm/p + U (n+ Km) log p) computation run-time and
O(U(n+ Km)(t + p) log p) communication run-time. Notice that,
G runs of GaneSH can be executed in parallel on p/G processors
each, without any communication, to obtain G samples of V.

3.2.2 Consensus Clustering. The consensus clustering task takes
the G samples of ‘V generated by Algorithm 3 as input and outputs
the consensus variable clusters. In our experiments, described in
Section 5, executing the consensus clustering task requires less than
0.04% of the total sequential run-time in all the cases. Even for a data
set with 5,716 variables and 1, 000 observations — the largest data
set that we used for learning the networks sequentially - consensus
clustering takes less than one second, while the other two tasks
take more than two days. Therefore, we do not focus on develop-
ing a parallel algorithm for the consensus clustering task. Instead,
we execute the sequential version of this task, using CONSENsUS-
CLUSTERING() implemented as described in Section 2.2.2, on all p
processors in our parallel solution.
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3.2.3 Learning the Modules. Given the set of consensus variable
clusters that are used as modules (M), the final task of Lemon-Tree
constructs an ensemble of regression tree structures for each mod-
ule and then assigns parent splits to the nodes of the regression
trees. Algorithm 4 shows the pseudo-code for the construction of
an ensemble of regression tree structures for a module M; € M.
The first part of the algorithm uses GaneSH to sample an ensemble
of observation clusters for the variable cluster corresponding to
M; and stores them in S(M;) (lines 3 - 9). Unlike the GaneSH run
described in the section 3.2.1, the variable clusters are not updated.
Therefore, only the parallel GaneSH functions for observation clus-
tering, presented in Algorithm 2, are used here. Correspondingly,
getting S(M;) in parallel takes O(U(KLnm/p + Kmlogp)) time
for computation and O(U(Km(r + p) log p))) for communication.
The second part of the algorithm constructs the ensemble of regres-
sion tree structures by hierarchical clustering for each observation
clustering Q € S(M;) (lines 10 - 18). For R observation clusters in
S(M;), this part takes O(RLnm/p + RL log p) time in computation
and O(RL(7 + p) log p) time in communication. Since R = O(U),
the time complexity of getting regression tree structures in parallel
is dominated by that of the first part.

The next phase of this task is the assignment of parent splits to
the non-leaf nodes of the ensemble of trees. This is the most time
consuming of all the phases in Lemon-Tree, accounting for more
than 90% of the sequential run-times in our experiments. It requires

Algorithm 4: Parallel Learning of Tree Structures

1 function LEARN-TREE-STRUCT():
Input: m, D, Module M;, Number of update steps U,

Number of burn-in steps B
Output: Ensemble of trees for M; — 7 (M;)

2 parallel k = rank of processor do
3 O(M;) < Randomly assign observations D
Vj € {1,...,m} to Vm observation clusters

4 S(M;) < 0 // Sampled Observation Clusters

5 for u < 1to U do // GaneSH Loop

6 REASsIGN-OBs-CLUSTER(m, D, O (M;))

7 MERGE-OBs-CLUSTER(O (M;))

8 if u > B then

9 L Add the current O(M;) to S(M;)
10 for Q € S(M;) do // Build Tree Ensemble

11 Q. — k™ block of Q partitioned into p blocks
12 subtrees;. «— Trees with a node for all Q; € Q.
13 repeat

14 tm-scoresy. < Scores for merging

consecutive trees in subtrees.
15 max-tms <
all-reduce maxg<g<p tm-scores

16 Merge the trees corresponding to max-tms
17 until Yo <<y |subtrees| =1

18 bceast the remaining tree in subtreesy to all the

processors and add it to 7 (M;)
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Algorithm 5: Parallel Assignment of Splits to Tree Nodes

Algorithm 6: Parallel Learning of Modules

1 function LEARN-TREE-SPLITS():
Input: D, Modules M, Ensemble of trees 7-, Candidate

parents £, Number of splits to choose |
Output: Weighted splits wr-splits,

2 Random splits ur-splits
3 parallel k = rank of processor do
4 cand-splits < List of tuples (M;, T, N, X;, D;) for all

M; e M, T € T(M;), N € internal-nodes(T),
X; € P, Dj € observations(N)

5 cand-splitsy. k™" block of cand-splits partitioned
into p blocks

6 for (M;, T, N, X;,Dj) € cand-splits;. do

7 cand-probs; [{M;, T, N, Xj, D;)] « Posterior

probability of assigning the split (Xj, D;;) to
node N of regression tree T for module M;

8 for M; € M, T € T(M;), N € internal-nodes(T) do

9 tnode-splits; < Elements of cand-splits. in
which the first three elements are (M;, T, N)

10 tnode-probs;. < Computed probabilities for the
elements of tnode-splits; from cand-probs;

1 fors «— 1to J do

12 wr-splits[(M;, T, N, s)] «

SELECT-WTD-RAND(tnode-splitsy,
tnode-probs;.)

13 ur-splits[(M;, T, N, s)] «
SELECT-UNIF-RAND(tnode-splits;.)

the computation of posterior probabilities for every combination of
the following five components: module M;, tree T in the ensemble
7 (M;), non-leaf node N in the tree T, variable X; in the list of
candidate parents #, and observation D; at node N. Algorithm 5
depicts our parallel solution for this phase.

A simple parallelization scheme for this phase may assign all the
probability computations for a module, a tree, or a node to one pro-
cessor in order to reduce communication between the processors.
However, such a scheme is sub-optimal because the total number
of splits assigned to different processors will vary significantly,
thus leading to severe load imbalance. Therefore, to enable a more
fine-grained distribution of the computations across processors,
we first identify the total work required in this phase using a key
data structure — the list of all the candidate splits (line 4). All the
tuples corresponding to the candidate splits for a particular node,
i.e., tuples with the same first three elements (M;, T, N), are ar-
ranged contiguously in the list. This list is partitioned into p equal
chunks and assigned to the different processors for a more balanced
computation load (line 5). Then, the posterior probabilities for all
the local candidate splits are computed and stored on each pro-
cessor (lines 6 — 7). Finally, for each node, J candidate splits are
selected randomly using the posterior probabilities as weights and
another J splits are selected uniformly at random (lines 8 — 13). For
ease of presentation, we demonstrate the selection of splits using
previously defined oracle functions for random sampling. In the

1 function LEARN-MoDULE-CPDs():

Input: m, D, M, P, U, B, ]
2 parallel k = rank of processor do
3 for M; € M do
4 L T (M;) < LEARN-TREE-STRUCT(M, D, M;, U, B)
5 LEARN-TREE-SpLITS(D, M, T, P, J)
6 LEARN-PARENTS(M, wr-splits, ur-splits)

actual implementation, the contiguous arrangement of candidate
splits for every node allows us to compute the split weights for
random sampling for all the nodes using a single segmented parallel
scan over the distributed cand-probs;.. Then, the splits for all the
nodes in cand-splits;. are selected independently on each processor,
followed by an all-gather call to collect all the chosen splits for all
the nodes on all the processors.

The size of cand-splits;, and therefore cand-probsy, is bounded
by O(KRLnm/p) and computing the posterior probability for a split
requires O(Sm) time. Choosing J splits for every node in parallel,
using segmented parallel scan and all-gather, takes O(JKRLnm/p +
log p) computation time and O(zlog p + uJKRL) communication
time. Therefore, this phase takes O(KRLSnm?/p + log p) time for
computation and O(z log p + uJKRL) time for communication.

Our parallel algorithm for the last task is shown in Algorithm 6.
In the interest of space, we omit a detailed pseudo-code description
for the last phase in the task that computes scores for parents of

p=0 Communication p=1

Data set, Parameters Data set, Parameters

GANESH

GANESH

REASSIGN-VAR-CLUSTER SELECT-*-RANDOM [ REASSIGN-VAR-CLUSTER

MERGE-VAR-CLUSTER MERGE-VAR-CLUSTER
) 1 ) t

REASSIGN-OBS-CLUSTER SELECT-*-RANDOM REASSIGN-OBS-CLUSTER

MERGE-OBS-CLUSTER MERGE-OBS-CLUSTER

Set of variable clusters
A4 AV 4

Set of variable clusters

[ CONSENSUS-CLUSTERING ] [ CONSENSUS-CLUSTERING ]

Modules Modules

LEARN-MODULE-CPDs LEARN-MODULE-CPDs

_*_R AN
LEARN-TREE-STRUCT SELECT DOM LEARN-TREE-STRUCT
bcast, all-reduce

¥ !

LEARN-TREE-SPLITS LEARN-TREE-SPLITS

¥ i

LEARN-PARENTS LEARN-PARENTS

scan, all-gather

scan, all-gather

Module network Module network

Figure 2: Schematic diagram showing the execution flow of
our parallel algorithm for learning module networks with
two processors, using the parallel functions developed in
Section 3.
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each module from the selected node splits. The parallelization of this
phase is trivial and is implemented in LEARN-PARENTS() function
using a segmented parallel scan followed by an all-gather call. This
phase requires O(JKRL/p + log p) computation and O(zrlogp +
p#JKRL) communication time in parallel. Summing up the run-times
of the phases and simplifying it in terms of the input parameters,
LEARN-MoDULE-CPDs() takes O(UKLSnm? /p + UL log p) time in
computation and O(UKm(z + p) log p) time in communication.

A schematic diagram for the execution flow of our parallel algo-
rithm for learning MoNets, when using two processors, is shown
in Figure 2. The schematic demonstrates the interactions between
the different tasks as well as between the different phases within
each task. Further, it shows the communications required by the
parallel functions for the different phases during the execution of
the algorithm.

4 IMPLEMENTATION

4.1 Sequential Implementation

Lemon-Tree software uses Java to implement the approach outlined
by Bonnet et al. [13]. Even though any software written in Java re-
quires compilation, it is referred to as an interpreted language [16].
This is because the byte-code produced by the compilation is in-
terpreted and executed by a platform-independent virtual machine
(VM), thus trading performance for portability. Consequently, mul-
tiple studies have shown that the performance of Java is inferior
to that of C++ for in-memory tasks [16, 22, 56]. We implemented
the approach by Bonnet et al. using C++, adhering to the C++14
standard, and optimized it for improved sequential run-time per-
formance as shown in Section 5.2.1.

As discussed in Section 1, Lemon-Tree is a popular software that
has been used in multiple studies for learning MoNets. Therefore,
we used Lemon-Tree as the baseline for our implementation and
ensured that our implementation produces exactly the same out-
put as Lemon-Tree, given the same input data set and execution
parameters. We had to modify the Lemon-Tree implementation to
achieve this because of the following reasons. First, the execution
of the learning algorithm requires generation of random numbers,
which is accomplished in the original Lemon-Tree by a Java pseudo-
random number generator (PRNG) library that is not available for
C++. Therefore, we modified the Lemon-Tree code to use the same
PRNG as the one used by our implementation via Java Native In-
terface. Then, we observed that some of the calls to the PRNG were
superfluous and we eliminated them in both our implementation
as well as Lemon-Tree. Finally, we discovered a bug in the imple-
mentation of the GaneSH algorithm in Lemon-Tree that we fixed
and submitted to the maintainers of Lemon-Tree. We have provided
this modified version of Lemon-Tree as an artifact and use it for the
performance results presented in Section 5.2.1.

4.2 Parallel Implementation

We implemented the parallel algorithms proposed in Section 3
using MPI conforming to the MPI 3.1 standard. For generating
random numbers in parallel, we use the TRNG library that provides
multiple parallelizable PRNGs [8]. We used a multiple recursive
generator [29] with 3 feedback terms and a Sophie-Germain prime

Srivastava et al.

modulus for the experiments reported in Section 5. Note that our
implementation can use any parallel PRNG supported by the library.

In order to implement the distributed random sampling func-
tions described in Section 3.1, SELECT-WTD-RAND() and SELECT-
UNIF-RAND(), same random number should be generated on all
the parallel processors in a call to these functions. We accomplish
this by initializing the PRNG with the same seed on all the pro-
cessors and ensuring that the state of the PRNG is the same on all
the processors before the calls to these functions. We also need to
match the block distribution of work with the block distribution of
the corresponding stream of random numbers between the execut-
ing processors, in order to generate the same output when using
different numbers of processors. This is achieved in our parallel
implementation by block splitting the parallel PRNGs which takes
O(1) time [8].

5 EXPERIMENTS AND RESULTS

We performed our experiments on the Phoenix cluster at Georgia
Tech [46], where each node has a 2.7 GHz 24-core Intel Xeon Gold
6226 processor and main memory of 192 GB or more. The nodes
run RHEL 7.6 operating system and are connected via HDR100
(100 Gbps) InfiniBand. We compiled the source code, implemented
with C++14 and MPI, using gcc v10.1.0 with -03 -march=native
optimization flags and MVAPICH2 v2.3. 3 implementation of MPI.
For our experiments reported in this section, we assign 24 MPI
processes per node by binding one MPI process to each core.

5.1 Data sets

In order to test the scalability of our implementation, we use gene
regulatory networks as the target application area. Since gene reg-
ulatory networks have a hierarchical structure and data sets for
studying these are typically sparse, MoNets have been successfully
applied in numerous gene regulatory studies for various organisms
spanning a wide range of complexity — from viruses and bacte-
ria [51, 55, 61] to plants and animals [45, 60]. In this section, we
demonstrate the use of our parallel implementation to learn genome-
scale gene regulatory networks from two real gene expression data
sets with thousands of observations for tens of thousands of genes.

The first gene expression data set that we use is generated from
the organism S. cerevisiae, colloquially known as Brewer’s yeast.
Tchourine et al. [59] created this data set by aggregating data from
multiple RNA-seq studies and it contains 5,716 genes and 2,577
observations for the genes. To further demonstrate the parallel
scalability of our implementation on tens of thousands of variables,
we used a second data set for the model plant A. thaliana. This data
set contains 5,102 observations for 18,373 genes and is generated
from multiple microarray experiments that studied the development
process in the plant [3].

For the experiments in this section, we only report the minimum
run-time required for learning MoNets from the data sets, i.e., we
execute a single GaneSH run with one update step and construct
only one regression tree structure for each module in the last task.
We use all the genes in the data sets as the candidate regulators,
i.e., all the variables are treated as candidate parents for all the
modules. As noted in Section 2.2, this may lead to cyclic structures
in the learned MoNet. The acyclicity constraint can be enforced as
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a post-processing step in parallel using the methods developed in
the previous works on BN structure learning [42], and is outside
the scope of this work. All the runs are repeated three times with
different random seeds and the average run-times are reported.

5.2 Sequential Performance

We compiled Lemon-Tree with OpenJDK v1.8.0_262 and executed
it using the corresponding server VM for the run-times reported
here.

5.2.1 Comparison with Lemon-Tree. We compared the run-time
of the modified Lemon-Tree with that of our optimized sequential
implementation (both described in Section 4.1) for constructing
MoNets. Both Lemon-Tree as well as our implementation did not
finish learning MoNet for the complete S. cerevisiae data set in seven
days. Therefore, we created smaller data sets for these experiments
using subsamples of n = {1000, 2000,3000} variables and m =
{125, 250, 500, 750, 1000} observations chosen from the complete
data set. The performance of our implementation is compared with
that of Lemon-Tree in Table 1 on these data sets. Our optimized
sequential implementation shows a 3.6-3.8X speedup over Lemon-
Tree for constructing MoNets from all the data sets. We also verified
that our implementation learns the exact same MoNets as the ones
learned by Lemon-Tree in all the cases.

" m Run-time (s) Speedup
Lemon-Tree Ours

125 416.0 110.3 3.8

250 1,609.9 428.3 3.8

1,000 500 6,307.9 1,686.2 3.7
750 13,4415  3,574.5 3.8

1,000 25, 253.6 6,680.7 3.8

125 1,407.5 392.8 3.6

250 5,747.2 1,562.7 3.7

2,000 500 23,258.4 6,202.3 3.7
750 52,606.2 14,038.7 3.7

1,000 91,202.7 24,327.0 3.7

125 2,942.8 792.0 3.7

250 11,962.1  3,1934 3.7

3,000 500 50,838.0 13,553.9 3.8
750 108,545.5 28,942.3 3.8

1,000 197,493.4 52,709.6 3.8

Table 1: Comparison of the time taken by Lemon-Tree and
our sequential implementation in constructing MoNets us-
ing the first n variables and m observations of the yeast data
set, measured in seconds, and the corresponding speedup.

5.2.2 Sequential Run-time Estimates for Large Data sets. Both the
sequential implementations are not able to construct a MoNet from
the complete S. cerevisiae data set within a week. Therefore, we
estimated the sequential run-time of the two implementations for
learning from large data sets based on the growth rate of the se-
quential run-time of our implementation observed on smaller data
sets. To this end, we measured the run-time of our implementation
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Figure 3: Plots of sequential run-time growth rate as the
number of observations grow for data sets with different
number of variables.

for constructing MoNets using 30 smaller data sets constructed
from the complete S. cerevisiae data set by choosing combinations
of the first n = {1000, 2000, 3000, 4000, 5000, 5716} variables and the
first m = {125, 250, 500, 750, 1000} observations in the data set.
Figure 3 shows the plots of run-time growth rate as a function
of n, while keeping m fixed. For a given n, the rate of increase is
computed with respect to the smallest data set, i.e., compared tom =
125. The plots for six different values of n show close to quadratic
growth rate of run-time for a linear increase in m, indicated by the
dashed black line in the figure. We also plot the run-time growth
rate as n is increased for five different values of m, in Figure 4,
with n = 1,000 as the baseline. The quadratic growth rate is again
denoted by the dashed black line in the figure. However, we observe
that the run-time growth rate with increasing n is slower than
quadratic for all the different values of m. We also plot n!'® growth
rate in the figure, shown with dashed gray line, that seems to be a
lower bound for the growth rate. From the two plots, we estimate
the sequential run-time growth rate of our implementation to be
O(m?) for a fixed n and bounded between O(n?) and Q(n!-®) for a
fixed m. Comparing these empirical estimates with the sequential
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Figure 4: Plots of sequential run-time growth rate as the
number of variables grow for data sets with different num-
ber of observations.
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run-time complexity (Equation 1), we observe that the growth rate
with increasing m corresponds well to the complexity. The super-
linear growth in run-time with increasing n, on the other hand, can
be attributed to a corresponding increase in the number of modules
(K) from 28-39 for n = 1,000 to 111-170 for n = 5, 716.

The average sequential run-time of our implementation for learn-
ing MoNets from the data set with n = 5,716 and m = 1,000 is
175, 932.7 seconds. Using the growth rate of @(m?) for a fixed n, we
estimate the run-time of our implementation for learning MoNet
from the complete S. cerevisiae data set as 175, 932.7x(2, 577/1, 000)2
seconds or 324.5 hours which is about 13.5 days. We were able to
verify that this estimate is reasonably accurate using a single se-
quential run for one random seed that took 325.1 hours. Further, our
implementation provides a minimum sequential speedup of 3.6X
over Lemon-Tree. Therefore, we estimate that Lemon-Tree would
require a minimum of 48.6 days in order to construct a MoNet for
the complete S. cerevisiae data set. Similarly, we also estimate the
lower bound on the run-time of our sequential implementation for
the complete A. thaliana data set as 175,932.7 x (5, 102/1,000)? x
(18,373/5,716) 1% seconds which is 433.6 days or more than 14
months. The corresponding estimated lower bound on the run-time
of Lemon-Tree is 1561 days which is more than 4 years.

5.3 DParallel Scalability

Our parallel implementation begins the construction of MoNets
by reading the given data set in parallel. This is accomplished by
block distributing the variables in the data set to the MPI processes
— one process per core. Then, every process reads the observations
for the variables assigned to it. Finally, the observations for all the
variables are communicated to all the processes so that each process
has the complete data set. Note that, while this causes duplication
of data within the same node, it avoids the use of hybrid shared-
memory and distributed-memory programming. This duplication
is a non-issue because the problem is compute-bound due to its NP-
hard nature, and the data sets are relatively small compared to the
available memory size. For example, the size of the larger A. thaliana
data set is still only 785 MB. During the parallel execution, any
intermediate files and the final MoNet structure in XML format are
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written to the disk by the process with rank 0. In our experiments,
we observed that the time for I/O is much smaller than the time
required for learning the network, e.g., reading the complete S.
cerevisiae data set in parallel takes 0.6-6.8 seconds and writing
the output takes 1.4-20.8 seconds. We therefore disregard the time
required for reading and writing files and only report the time
required for learning the network in this section.

We evaluate the scalability of our parallel implementation by
conducting strong scaling experiments because our primary mo-
tivation is to construct MoNets for specific use cases which are
beyond the reach of sequential computing. Understanding the com-
promise between run-time and computational resources for solving
these problems will help biologists choose the optimal trade-off for
their specific needs. We use the following metrics for the scalability
discussions:

X 100%

“ip

where T is the run-time of the best sequential implementation and
T is the run-time of the parallel implementation when using p cores.
We use the run-time of our optimized sequential implementation
as Ty in all the cases, since it has been established as the faster
one in the previous section. In cases where running with p = 1 is
infeasible, we also refer to relative speedup and efficiency between
parallel execution using p; and p2(> p1) cores, defined as:

T;
Strong Scaling Speedup = T—l and Efficiency (%) = »
P

T LT
Relative Speedup = % and Efficiency (%) = i Pl % 100%
P2 27 4p2

where Tp, and T, are run-times when using p; and p; cores.

5.3.1 Strong Scaling for Small Data sets. Since the sequential run-
time of our implementation for the complete S. cerevisiae data set
is estimated to be about two weeks, we conducted strong scaling
experiments using smaller data sets from which MoNets can be
learned sequentially in a more reasonable time. We created five data
sets by selecting a subset of observations (m = {125, 250, 500, 750,
1000}) for all the variables in the complete data set (n = 5,716). The
time required for learning MoNets from these data sets using our
optimized sequential implementation is shown in Figure 5a with the
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Figure 5: Plots showing the scalability of our implementation for data sets with different number of observations subsampled

from the complete S. cerevisiae data set.



Parallel Construction of Module Networks

time taken by different tasks indicated by different colors. The total
sequential run-time for the five data sets varies from 43 minutes for
m = 125 to more than two days for m = 1000. Further, the majority
of the sequential run-time is spent in learning the modules. The
fraction of the total run-time spent in the task increases from 94.7%
for m = 125 to 99.4% for m = 1000. The consensus clustering task
takes less than one second in all the cases.

We learned MoNets from these five data sets in parallel by vary-
ing the number of cores (p) from 2 to 1024. Figure 5b shows the
strong scaling speedup plots for these data sets. Our parallel im-
plementation scales well for all the data sets when using smaller
number of cores. However, for the m = 125 data set, the plot di-
verges from that for the other data sets for larger number of cores.
This is explained by the comparatively meager amount of work
required for this data set, as is evident from the corresponding total
run-time of less than 60 seconds when using 64 cores or more.

Our implementation achieves close to 48X speedup for the four
larger data sets when using 64 cores, corresponding to a 75% ef-
ficiency. However, the scaling tapers off as the number of cores
is increased because of the load imbalance in the most time con-
suming phase of the last task — the loop for computing posterior
probabilities for all the candidate splits (lines 6 — 7 in Algorithm 5).
The posterior probabilities for the splits are computed by discrete
sampling for a maximum of S steps. Therefore, the time required
for this phase cannot be estimated a priori and varies significantly
across splits. As a measure of the load imbalance in this loop across
processes, we computed the deviation of the maximum run-time
of the loop on any process from the average run-time of the loop
across all the processes, normalized by the average run-time. For
the largest of the five data sets, the measured load imbalance is less
than 0.3 when p < 64, indicating a reasonably good balance, and
then the imbalance steadily increases from 0.5 using p = 128 to 2.6
using p = 1024. Consequently, the four bigger data sets achieve
similar speedups in the range of 273.9-288.3X when p = 1024.

The time required for learning MoNets from the five data sets
using 1024 cores is shown in Figure 5c. Our parallel implementation
reduces the run-time for the two larger data sets from 26.9 and 48.9
hours to 5.8 and 10.7 minutes, respectively, while the learning is
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completed in less then 60 seconds for the two smaller data sets.
Even though Figure 5c shows a higher percentage of run-time in
the GaneSH task on 1024 cores, when compared to Figure 5a, more
than 90% of the run-time is still spent in learning the modules from
the three larger data sets.

5.3.2  Scaling for the complete S. cerevisiae data set. We used our
parallel implementation to construct MoNets from the complete
S. cerevisiae data set. In order to limit the time required for the
experiments, we used a minimum of 4 cores for these experiments
and discuss relative speedup and efficiency with respect to T for this
data set. We learned the networks from the data set by repeatedly
doubling the number of cores used from 4 to 4096 and plot the
relative speedup in Figure 6a.

We show the run-times obtained from the executions using 128
cores and fewer in Figure 6b and those using 128 to 4096 cores in
Figure 6c, to accommodate the differences in the scales of the run-
times. Our parallel implementation scales well when the number
of cores is increased from 4 to 128, reducing the time required for
learning the network from close to 4 days using p = 4 to about
4 hours using p = 128 with a relative speedup of 22.6 and more
than 70% relative efficiency. The GaneSH task takes less than 0.38%
of the total run-time on these cores and is therefore not a visible
component of the run-time. The consensus clustering step, even
though it is run sequentially, takes less than one second.

Our parallel implementation is able to learn a network from the
complete data set in 23.5 minutes using 4096 cores, down from
an estimated two weeks sequentially. Due to the comparatively
lower work required by the GaneSH task - it takes about a minute
when using 128 cores or more — and the load imbalance in the
computations for candidate parent splits as discussed in 5.3.1, the
relative speedup from p = 4 to p = 4096 is 239.3X corresponding to
a relative efficiency of 23.4%. Nevertheless, to construct a MoNet
in a computational biology pipeline, a run-time of 23.5 minutes
presents a significant saving of computation time as compared
to more than 13 days for a sequential run. Further, the difference
between a run-time of 24 minutes and the ideal possible run-time
of 6 minutes (at 100% relative efficiency) for MoNet learning from
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Figure 6: Plots showing the run-times of our implementation for the complete S. cerevisiae data set using different number of

cores and the corresponding relative speedup.
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data sets created by wet-lab biological experiments is immaterial,
given that conducting these wet-lab experiments can take days.

5.3.3  Scaling for the complete A. thaliana data set. We estimated,
in Section 5.2.2, that our optimized sequential implementation will
require approximately 14 months for learning a MoNet for the
complete A. thaliana data set, a significant impediment in practice.
Using our scalable parallel method, genome-scale regulatory net-
works can be learned in a reasonable time from large data sets for
multi-cellular organisms with tens of thousands of genes.

Table 2 shows the time required for learning networks for the
complete A. thaliana data set. Since learning of MoNets from the
data set using smaller number of cores will require prohibitively
long time, we learned MoNets from the data set by varying the num-
ber of cores from 256 to 4096 cores. Our parallel implementation
reduces the run-time from almost two days using 256 cores to about
4 hours using 4096 cores. The table also shows relative speedup
and efficiency compared to the run-time using 256 cores. While the
scaling efficiency relative to 256 cores for the S. cerevisiae data set
is close to 47% on 4096 cores in Section 5.3.2, the corresponding
relative scaling efficiency for the A. thaliana data set increases to
almost 70%.

Number of Run-time (s) Relative to Tys¢
Cores (p) Speedup Efficiency (%)
256 168,775.6 1.0 100.0
512 91,349.6 1.8 92.4
1024 54,099.1 3.1 78.0
2048 28,529.3 5.9 73.9
4096 15,097.6 11.2 69.9

Table 2: Parallel run-times for the complete A. thaliana data
set using large number of cores and the corresponding rela-
tive speedup and efficiency.

6 CONCLUSIONS AND FUTURE WORK

We presented the first distributed-memory parallel approach for
the construction of MoNets that scales to a large number of cores.
Our parallel implementation learns genome-scale gene regulatory
networks for two model organisms — S. cerevisiae and A. thaliana,
in 24 minutes and 4.2 hours using 4096 cores, as compared to an
estimated 49 and 1561 days, respectively, using the previous state-of-
the-art sequential implementation. The proposed method is general
and can enable learning of high-dimensional MoNets for analy-
ses of big data in any of its wide array of applications, e.g., single
cell genomics [58] where a data set can include hundreds of thou-
sands of observations. We hope that it can also help the adoption
of MoNets in novel domains, such as applications that use other
parameter-sharing variations of BNs, where the untenable time
required for sequentially learning MoNets from large data sets has
been a deterrent thus far.

Potential future works can further improve the scalability of
our proposed parallel method by implementing a dynamic load
balancing scheme for computing the posterior probabilities for all
the candidate parent splits. The proposed parallel components can

Srivastava et al.

also be extended to develop a parallel solution for GENOMICA that
scales to thousands of cores.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We utilized the Phoenix cluster at Georgia Tech for our exper-
iments, using a maximum of 171 nodes of the cluster for the
results reported in the paper. We compiled the source code,
implemented with C++14 and MPL, using gcc v10.1.0 with
-O3 -march=native optimization flags and MVAPICH2 v2.3.3
implementation of MPI. We measure the run-times by assigning
24 MPI processes per node and binding one MPI process to each
core. We ran all the experiments for three different random seeds
and reported the average run-times in all cases. A stepwise guide
to running the experiments reported in the paper can be found at
https://github.com/asrivast28/ParsiMoNe/blob/main/EXPERIMENTS.md

Author-Created or Modified Artifacts:

Persistent ID: https://doi.org/10.5281/zenodo.5144438
Artifact name: ParsiMoNe

Persistent ID:

— https://github.com/asrivast28/lemon-tree/commit/
— 5c5b91a7dc24b8c092f45¢c19ab7961b7d9b4598a
Artifact name: Lemon-Tree

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Each node on the Phoenix cluster has
a 2.7 GHz 24-core Intel Xeon Gold 6226 processor and a minimum
of 192 GB of main memory. The nodes are connected via HDR100
(100 Gbps) InfiniBand. The data sets are stored on a GPFS filesystem,
which is accessible from all the nodes.

Operating systems and versions: RHEL 7.6 running Linux kernel
3.10.0

Compilers and versions: gcc v10.1.0

Libraries and versions: MVAPICH2 v2.3.3, Boost v1.74.0, TRNG
v4.22, Armadillo v9.800.3, SCons v3.1.2

Input datasets and versions: Yeast Microarray Dataset (DOI:
10.5281/zenodo.3355524), A. thaliana Gene Expression Dataset for
Development Processes (DOI: 10.5281/zenodo.4672797)

URL to output from scripts that gathers execution environment
information.
https://github.com/asrivast28/ParsiMoNe/blob/f653f48
— a854bf5cd619bf55c6a4741c9072b9c5a/phoenix\_envir
— onment.log



	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background
	2.1 mn
	2.2 The lemont Algorithm

	3 Our Parallel Algorithm
	3.1 Assumptions
	3.2 Parallelizing lemont

	4 Implementation
	4.1 Sequential Implementation
	4.2 Parallel Implementation

	5 Experiments and Results
	5.1 Data sets
	5.2 Sequential Performance
	5.3 Parallel Scalability

	6 Conclusions and Future Work
	References

