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Abstract

Motivation: Reconstruction of genome-scale networks from gene expression data is an actively studied problem. A
wide range of methods that differ between the types of interactions they uncover with varying trade-offs between
sensitivity and specificity have been proposed. To leverage benefits of multiple such methods, ensemble network
methods that combine predictions from resulting networks have been developed, promising results better than or
as good as the individual networks. Perhaps owing to the difficulty in obtaining accurate training examples, these
ensemble methods hitherto are unsupervised.

Results: In this article, we introduce EnGRaiN, the first supervised ensemble learning method to construct gene net-
works. The supervision for training is provided by small training datasets of true edge connections (positives) and
edges known to be absent (negatives) among gene pairs. We demonstrate the effectiveness of EnGRaiN using simu-
lated datasets as well as a curated collection of Arabidopsis thaliana datasets we created from microarray datasets
available from public repositories. EnGRaiN shows better results not only in terms of receiver operating characteris-
tic and PR characteristics for both real and simulated datasets compared with unsupervised methods for ensemble
network construction, but also generates networks that can be mined for elucidating complex biological
interactions.

Availability and implementation: EnGRaiN software and the datasets used in the study are publicly available at the
github repository: https://github.com/AluruLab/EnGRaiN.

Contact: aluru@cc.gatech.edu or maneesha.aluru@biology.gatech.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Reverse-engineering gene regulatory networks (GRNs) from gene
expression data are a grand challenge problem that facilitates nu-
merous applications in biology including discovery of complex gene
interactions and improving gene annotations. Owing to its import-
ance, a wide range of mathematical techniques and computational
methods have been proposed. This in turn spurred efforts to estab-
lish benchmark datasets and assess quality of the results (Marbach
et al., 2012; Pratapa et al., 2020). Such surveys highlighted signifi-
cant interaction biases, strengths and weakness of different inference
methods and underscored the need for ensemble gene networks to
improve overall prediction accuracy.

Ensemble networks are constructed by combining complemen-
tary gene–gene predictions inferred by several heterogeneous

methods into ‘community networks’. In a comprehensive review of
over 30 such methods, Marbach et al., (2012) show that rank aver-
aging predictions from various methods tend to disadvantage lower
ranked predictions inferred by one or a few methods, and conse-
quently generates more robust ensemble networks that perform bet-
ter than or as good as networks resulting from individual methods.
Furthermore, weighted averaging, by assigning higher weights to
methods with superior performance on simulated datasets, was
shown to provide only marginal improvements.

A recent analysis of unsupervised ensemble methods by Bellot
et al. (2019) provides a framework for such methods and evaluated
eight different approaches using benchmark simulated datasets. In
their study, ScaleLSum method generated the best results when com-
bining networks built on heterogeneous datasets. ScaleLSum per-
forms a neighborhood scaling via local z-score followed by an
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aggregation via summation. Neighborhood scaling of an edge be-
tween two genes uses only the neighbors of the two genes in the net-
work to normalize the predicted weight of the edge. For the

homogeneous case of multiple networks constructed from the same
dataset using different GRN methods, both ScaleSum and rank aver-

aging performed comparably.
Although ensemble network methods aggregate and improve

upon individual methods, current approaches suffer from the fol-
lowing deficiencies: (i) Results are just marginal improvement for
real datasets, (ii) For the aggregated predictions to be superior, pre-

dictions by the constituent methods are expected to follow strict dis-
tribution constraints and (iii) Performance and scalability to

construct GRNs by including more methods in the ensemble for
larger datasets is often limited.

In this article, we present EnGRaiN, the first supervised method
to construct ensemble GRNs from large datasets. EnGRaiN requires
only a small training dataset of positives and negatives (presence/ab-

sence of an edge in the true network). Moreover, it does not require
a specific distribution of predictions, and is able to produce
improved results from fewer GRN methods. We demonstrate the ef-

fectiveness of our method with predictions from 15 different net-
work inference methods using both simulated and real genome-scale

datasets. Using EnGRaiN, we report the construction and analysis
of a whole-genome ensemble network of the plant Arabidopsis thali-
ana, created from painstaking curation of heterogeneous microarray

datasets from multiple public repositories.

2 Materials and methods

EnGRaiN integrates interaction/co-expression predictions from

multiple gene network inference methods to generate a comprehen-
sive ensemble network of gene interactions. The overall workflow

we developed for constructing and evaluating ensemble networks is
shown in Figure 1.

2.1 The EnGRaiN method
2.1.1 Input

Consider ‘M’ GRN predictions generated by as many distinct GRN
recovery methods, each run independently of the others. GRNs may
have edge weights, denoting the confidence level in each predicted

edge. The collection of predicted networks is represented by an
jEj �M matrix, where E represents the set of edges such that each is
present in at least one input network.

2.1.2 Task

Given the M input networks, the goal is to design an efficient
method to combine them into an ensemble network with the follow-

ing desirable properties:

1. Quality better than or equal to the best input method.

2. Is robust to low performing models and noise.

3. Exhibits runtime and data size scalability.

4. Quality does not degrade if more methods are added to the

ensemble.

2.1.3 Supervision

To achieve these properties, we make use of the supervision avail-
able from known interactions. We gain access to some ground
truth edges of the GRN under consideration or find a ‘representa-

tive’ GRN which can resemble the properties of the GRN at-hand.
We collect both positive edges representing those that exist in the

true network, and negative edges indicating otherwise. We demon-
strate that very few ground truth edges are needed compared with

Fig. 1. Overall workflow for constructing and evaluating ensemble gene networks from simulated and real data: (a) Evaluation of individual network inference methods with

simulated data. Seven different types of gene network inference methods and 15 corresponding software(s) were used in this study. Those that could generate large GRN’s and

performed better than random chance were used for generating ensemble networks. (b) Collection and processing of A.thaliana microarray datasets. Microarray data were

downloaded from public repositories, subjected to quality control and categorized into tissue and conditions. The classified datasets were normalized, and genes/probesets

were filtered using IQR (inter-quartile range) filter and annotated. Raw expression values were converted to gene expression values and log transformed. (c) Gene expression

matrices from (b) were used to construct gene networks for each tissue and condition using 10 different network inference methods. These were then used as input to generate

genome-scale ensemble networks using both unsupervised and supervised ensemble learning methods. (d) Network performance was assessed using standard AUROC and

AUPR measures, and using experimentally validated biological networks (e.g. Arabidopsis ATRM and DFG (dyanamic factor graphs) networks)
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the size of the GRNs, making it feasible to develop supervised
techniques.

2.1.4 Our model

In EnGRaiN, we do not modify the individual methods participat-
ing in the ensemble as done in a ‘joint training’ process (Cheng
et al., 2016). Instead, all the networks in the input are created inde-
pendently by the respective methods without the knowledge of each
other. Based on this rationale, we can consider each row (weights of
an individual edge) of the input matrix to be independent of the
other rows. Using the knowledge of ground truth edges from a par-
tially known GRN as training data, we construct a scalable and ef-
fective supervised ensemble model as follows.

Figure 2 gives an overview of our ensemble technique setup.
Each row e 2 E represents the edge prediction scores for the M
methods fm1;m2; . . . ;mMg, upon which we want to fit a learning
model F , s.t.

ŷe ¼ Fðme
1;m

e
2; . . . ;me

MÞ (1)

Consider ‘ETr’, the set of known edges as our training data. We
define the following L2 loss function for learning our model:

L ¼ 1

jETrj
X

e2ETr

ðye � ŷeÞ2 (2)

where ye 2 f0; 1g, representing the probability of the occurrence of
an edge. In case of imbalanced training data where more negative
edges than positive or vice-versa are given, an appropriate cost-
sensitive class imbalance handling technique can be used while train-
ing, as addressed in some prior works (Bhattacharya et al., 2017;
Chawla et al., 2002; Shrivastava et al., 2015).

The supervised learning model F can be any desired traditional
machine learning (ML) or deep learning-based model. Some exam-
ples of traditional ML models are support vector machines (SVM),
decision tree-based methods like Random Forest and gradient boost-
ing-based methods like XGBoost. A simple multilayer Neural net-
work with input units equal to the number of methods ‘M’ and the
output layer consisting of a single sigmoid unit representing the edge
probability 2 ½0; 1�, can also be used in our case as an effective deep
learning-based model.

In our implementation, we use the sklearn Python pacakge to
first normalize input data using the standard scaler, and then con-
struct the ensemble models. In order to construct a robust model
that avoids overfitting, we use 10-fold cross validation during train-
ing. There are three key benefits of our approach in terms of compu-
tational efficiency. First, our model needs significantly less training
data as we are doing edge-wise predictions. Our ensemble model is
able to learn a weighing function over the input methods by using
the data of a few thousand edges. Second, this allows us to scale to
millions of edges in an efficient manner, as each of these edge-wise
predictions can be executed in parallel. Last, the edge-wise predic-
tion approach also facilitates fast inclusion of additional GRN re-
covery methods into the EnGRaiN framework. Including a new
GRN method will add a new column in the input score matrix
(Fig. 2). Though retraining is needed, it is not burdensome as the
size of our training data is significantly small and the number of
methods is <100.

2.2 Datasets
2.2.1 Simulated datasets

Fifteen different network inference methods were evaluated
(Table 1) using a yeast simulated dataset of 2000 samples and 2000
genes (Bellot et al., 2015) to assess their quality and scalability. We
added local noise and global noise to the dataset following the vi-
gnette available with NBM package (Balaji et al., 2006). A brief de-
scription of each inference method is provided in Supplementary
File S1. Our motivation for using simulated datasets from artificial
networks is (i) to evaluate the accuracy of gene networks generated
by each method, when a known reference network is available as
the ‘ground truth’, and (ii) to assess whether a given method could
scale to large GRNs. For the latter, we randomly selected 15 subsets
of the yeast benchmark dataset with varying number of genes/sam-
ples in each set, and in increments of 250 genes/samples.

All software were run on a system with four 18 core 2.10 GHz
Intel Xeon E7-8870 CPUs and 1TB of main memory. We used a
maximum of 64 cores in the system, and a time limit of 24 h for all
parallel methods (WGCNA, FastGGM, ARACNe-AP, CLR,
TINGe, TIGRESS, Banjo, CATNET, GENIE3, GRNBoost and
Inferelator) and 72 h for the sequential methods (PCC, GeneNet,
MRNET and iRAFNet). We also developed docker containers for
these methods in order to bundle together all the dependencies of
the software, and to enable ease of reproducibility (Supplementary
Table S1). For fair comparison, only default parameters were used
as suggested in relevant papers (Table 1). For those methods that
successfully completed their runs, the output of the edge weights of
all the possible undirected edges (e.g. 1 999 000 edges for a dataset
of 2000 genes) were provided as input for evaluating EnGRaiN.

We did not consider directionality of edges because many of the
methods (e.g. MI-based methods, correlation-based methods) from
which the supervised ensemble is constructed are not capable of pre-
dicting directionality of interactions. In order to include such meth-
ods in ensemble learning with ENGRAIN, we ignored directionality
for methods that can predict it (e.g. GRN Boost, Inferelator,
TIGRESS). However, the EnGRain model itself can generate a direc-
tional ensemble network provided such information is present in all
of the individual networks. We would also need directionality infor-
mation in the ground truth network for further performance
assessment.

2.2.2 Arabidopsis microarray datasets

We collected �20 000 non-redundant A.thaliana microarray data-
sets from public repositories. These contain information from a
whole gamut of tissues, treatments and environmental conditions
and hence can be used collectively to generate networks at the
whole-genome level. After removal of duplicate CEL files, data were
classified into 9 different tissues and 11 different conditions
(Table 2). We then processed microarray data according to Aluru
et al. (2013) and Chockalingam et al. (2016). A total of 16 889 CEL
files remained after this process (Supplementary Table S2). For
matching Affymetrix probesets to corresponding gene identifiers, we

Input edge score matrix

Edges Method 1 Method 2 ----- Method M

---

---

---       ---       --- ---         ---

---

Each edge of GRN

Ensemble model setup

Fig. 2. The model F can be any appropriate ML- or DL-based model. The input is

the row vector containing the edge scores for all the individual methods. The output

ŷe is the probability of the existence of the edge e
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used the TAIR10 genome annotation. All probesets matching to
more than one transcript ID were removed from consideration.
Together, we obtained a total of 21 429 probesets, of which 20 463
remained for network construction after processing (Table 2 and
Supplementary Table S3). We used the topGO module in R package
to confirm tissue/condition-specificity of genes, and selected the top
50 gene ontology terms based on Fisher’s exact test (Alexa et al.,
2006).

2.3 Reconstruction of Arabidopsis ensemble network
We initially reconstructed individual tissue and condition networks
with each network inference method from microarray data assigned
to that specific classification. Multiple ensemble networks were then
constructed with three different methods—EnGRaiN, Rank
Average and ScaleLSum using features (20 tissue/condition net-
works) from each of the individual methods as input. All software
were run on a cluster of 64 nodes connected by EDR Infiniband,
with each node having two 2.4 GHz 14-Core Intel E5-2680 V4 pro-
cessors and 256 GB of main memory and running RedHat

Enterprise Linux 7.0 operating system. In order to limit the total
time required for reconstructing individual networks from 10 infer-
ence algorithms and 20 different datasets (200 networks in total),
the runtime was constrained to 3 days for inferring networks with
smaller data sizes (<1500 expression profiles, such as stress-light
and flower etc.), and 8 days for networks with larger data sizes. For
methods that could run in parallel, we used 128 distributed cores for
TINGe, 28 shared-memory cores for WGCNA and ARACNe-AP
and 8–16 shared memory cores for GRNBoost. We used fewer cores
for GRNBoost to avoid ‘Out of Memory’ errors when run on larger
number of cores.

2.4 Performance assessment of ensemble networks
The quality and performance of various network reconstruction
methods were evaluated using the receiver operating characteristic
(ROC) and precision-recall (PR) curves plotted by comparing recon-
structed network(s) against the reference network. We report aver-
age and the SD of the 10-fold cross-validated AUROC (area under
ROC curve) and AUPR (area under PR curve) measures for both
simulated and real datasets. For supervised learning of networks
from simulated data, the training and testing dataset consisted of
472 positives and 20 000 negatives and 4724 positives and 200 000
negatives, respectively. In case of the A.thaliana gene networks, the
AUROC and AUPR measures reflect the average and the SD of val-
ues from ten different runs of EnGRaiN, each of which used a ran-
dom subset of interactions from the reference network(s) as training
dataset.

2.5 Reference set
Networks constructed from simulated data are compared against
the known true network to compute the necessary performance met-
rics. To evaluate the accuracy of Arabidopsis network(s), we used
the following two networks as ‘ground truths’: (i) Arabidopsis
Transcriptional Regulatory Map (ATRM) constructed by Jin et al.
(2015). This was generated from mining of published literature, and
hence contains high confidence verified interactions mainly from de-
velopmental and stress response processes. It includes a total of
1359 non-redundant regulatory interactions between 388 transcrip-
tion factors and target genes. (ii) N-response DFG network is a net-
work constructed using dynamic factor graphs with time-series data
from Nitrogen-treatment experiments (Brooks et al., 2019). We
included the top 295 of the high confidence edges predicted in this
network for performance assessment. The interactions from these
two given networks can be considered as true positives (TPs), i.e.
interactions that are expected to be highly weighted edges in any
predicted network. However, for assessing large networks recon-
structed from real data, true negatives (TNs) indicating the absence
of any interaction between a given pair of genes, are harder to

Table 1. List of gene network inference methods

Type of the method Method/software Notes/references

Correlation measures PCC Pearson correlation coefficient

WGCNA Langfelder and Horvath (2008)

Gaussian graphical models GeneNet Opgen-Rhein and Strimmer (2007)

FastGGM Wang et al. (2016)

Information theoretic measures ARACNe-AP Lachmann et al. (2016)

CLR Faith et al. (2007)

MRNET Meyer et al. (2008)

TINGe Aluru et al. (2013)

Regression models TIGRESS Haury et al. (2012)

Regression trees GRNBoost Aibar et al. (2017)

GENIE3 Huynh-Thu et al. (2010)

iRAFNet Petralia et al. (2015)

Differential equations Inferelator Bonneau et al. (2006)

Bayesian networks Banjo Hartemink (2005)

CATNET Salzman and Almudevar (2006)

Table 2. Classification of Arabidopsis microarray datasets into tis-

sues and conditions

Tissue/condition No. CEL files No. probesets

Flower 920 17 608

Leaf 3564 16 887

Root 2948 17 303

Rosette 1311 17 236

Seed 787 19 120

Seedling (1 week) 2822 16 298

Seedling (2 weeks) 1841 17 003

Shoot 1690 16 164

Whole plant 987 16 930

Chemical 605 17 486

Development 5102 18 373

Hormone (ABA, IAA, GA and BR) 1708 17 753

Hormone (JA, SA and ethylene) 1323 16 714

Light condition 1304 16 414

Nutrient condition 1375 17 766

Stress (light) 596 16 924

Stress (pathogen) 1636 17 483

Stress (salt drought) 935 17 611

Stress (temperature) 1514 16 004

Stress (other) 545 18 854

Note: The number of CEL files and genes/probesets remaining after data

normalization and IQR filter are as given.

EnGRaiN supervised ensemble 1315

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/5/1312/6458321 by G
eorgia Institute of Technology user on 24 February 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab829#supplementary-data


know. Therefore, we generated a set of 4347 interaction pairs be-
tween chloroplast-encoded and mitochondria-encoded genes
(Supplementary Table S4), based on the assumption that a direct

interaction at the transcriptional level between such genes is
expected to be highly unlikely in A.thaliana tissues (Woodson and
Chory, 2008). We further assume that a robust GRN method would

place these ‘negatives’ at the bottom of their ranked list of
predictions.

2.6 Functional validation of Arabidopsis ensemble

network
We collected a set of genes related to ‘photosynthesis’, ‘cell-wall or-
ganization and biogenesis’ and ‘carbohydrate metabolism’ from
TAIR (arabidopsis.org) and Araport (araport.org) to assess biologic-

al significance of the Arabidopsis ensemble network (AEN;
Supplementary Table S5). We also downloaded 14 genes related to

‘heat stress’ and used them as seed genes to run the network analysis
tool GeNA (Aluru et al., 2013). GeNA analyzes the ensemble net-
work to rank other genes with respect to the seed genes, and outputs

the minimum sized connected component containing the seed genes
and the highest ranked genes in relation to these.

2.7 EnGRaiN for cross-tissue prediction
Our method is useful in applications beyond generating large ensem-
ble networks. Specifically, our method can extract interactions that

are present in a given tissue, based on training data/networks gener-
ated from a small collection of other biologically related tissues. For
example, we expect a supervised method to predict most or all of

the interactions that are present in the ‘shoot’ tissue based on the
interactions learned only from the ‘flower’ and the ‘leaf’ tissues.

To setup our experiment, we chose 8 different tissues, namely
‘Leaf’, ‘Flower’, ‘Root’, ‘Rosette’, ‘Shoot’, ‘Seed’, ‘Seedling

(1 week)’ and ‘Seedling (2 weeks)’. From these, we prepare different
combinations of training and testing subsets for our experiments.
For evaluation of these ensembles, we constructed tissue-specific ref-

erence subnetworks of TPs based on the reference networks com-
piled in Section 2.5. Only the highest confidence edges as predicted

by the construction methods are included in the tissue-specific refer-
ence subnetworks. Note that these reference subnetworks are unique
with respect to the positives, while negatives remain as discussed in

Section 2.5. We compute the AUROC/AUPR measures for the en-
semble networks and compare against those of the individual meth-
ods tissue networks.

3 Results and discussion

3.1 In silico assessment of network inference methods
We selected varied network inference methods which have open-
source implementations for quality evaluation with yeast simulated
data (Table 1). As our goal is to reverse engineer genome-scale net-
works of higher organisms (e.g. humans, plants), we also assessed
whether a given software could scale to large number of datasets
and thousands of genes.

We included several heterogeneous methods in our study to ex-
ploit their strengths and diversity of predictions. Of the 15 different
inference methods analyzed, 12 were able to infer the yeast network
in a relatively short amount of time (Table 3). The two Bayesian
methods BANJO and CATNET, as well as iRAFNet, failed to infer
even a smaller network of 250 nodes from 2000 samples
(Supplementary Table S6). Network quality evaluation measures
show that both AUROC and AUPR values for all of the network
models except GeneNet and FastGGM are markedly better than by
random chance. Nonetheless, we used network predictions from all
12 inference methods to construct the yeast ensemble network with
ENGRaiN. As mentioned previously in Section 2.1, the supervised
learning model F can be any appropriate ML-based model. We
compared EnGRaiN’s performance using XGBoost and four other
classifying functions: (i) neural network, (ii) random forest, (ii) SVM
and (iv) logistic regression, to assess the performance of these five
different models in constructing robust ensemble gene networks.
Results shown in Table 4 demonstrate that XGBoost performs bet-
ter than other supervised learning models. We therefore performed
further studies using XGBoost as the classifying function for con-
structing ensemble gene networks.

To further evaluate EnGRaiN’s performance, we generated three
other ensemble networks using previously published unsupervised
learning methods—the Rank Average, ScaleLSum and ScaleSum
(Bellot et al., 2019) and assessed these networks in comparison to
EnGRaiN. EnGRaiN outperforms all previous individual as well as

Table 3. Performance assessment of GRN methods using AUROC

and AUPR measures

GRN method AUROC AUPR Runtime(s)

CLR 0.8452 0.4387 535

TINGe 0.8359 0.3749 117

MRNET 0.8312 0.4657 70

PCC 0.8308 0.3552 41

WGCNA 0.8308 0.3552 38

ARACNe-AP 0.8184 0.3822 365

GRNBoost 0.8162 0.4038 423

GENIE3 0.7216 0.3842 3902

TIGRESS 0.6920 0.2999 2925

Inferelator 0.6530 0.3091 499

FastGGM 0.5258 0.0263 518

GeneNet 0.4973 0.0706 139

Note: Runtime reports the time (in seconds) to construct a GRN from a

yeast simulated dataset of 2000 samples and 2000 genes.

Table 4. Performance assessment of EnGRaiN with different learn-

ing models using yeast simulated data

Ensemble method AUROC AUPR

XGBoost 0.8654 (0.0330) 0.5808 (0.0599)

Neural network 0.8568 (0.0383) 0.5521 (0.0515)

Random forest 0.8583 (0.0462) 0.4728 (0.0655)

SVM 0.7845 (0.0273) 0.4703 (0.0609)

Logistic regression 0.7294 (0.1009) 0.4735 (0.0918)

Note: The average (and the SD in parentheses) AUROC and AUPR values

of the 10-fold cross-validation are reported with the best performing method

highlighted in bold.

Table 5. Performance assessment of ensemble gene networks

reconstructed from yeast simulated data

Ensemble method AUROC AUPR

Rank average 0.8324 0.3050

ScaleLSum 0.7100 0.0176

ScaleSum 0.7940 0.1503

EnGRaiN 0.8654 (0.0330) 0.5808 (0.0599)

Rank average (top seven) 0.8361 0.4172

ScaleLSum (top seven) 0.7934 0.0265

ScaleSum (top seven) 0.8229 0.1231

EnGRaiN (top seven) 0.8532 (0.0339) 0.5556 (0.0653)

Note: AUROC and AUPR values for the EnGRaiN ensemble network re-

port the average (and the SD in parentheses) of the 10-fold cross-validation.

The SD is always zero for unsupervised methods as training data are not

required for such methods, and hence they do not produce varying results in

the 10-fold cross-validation experiments.
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ensemble methods with respect to both AUROC and AUPR measures
(Tables 3 and 5 and Supplementary Table S7). This is also true for en-
semble networks generated using predictions from only the top seven
best performing methods (Table 3, CLR -> GRNBoost). The Rank
averaging or other unsupervised ensemble methods make implicit as-
sumption on the distribution (weights) of their individual methods
which limits their performance. On the other hand, EnGRaiN uses
small ground truth data to learn the underlying distribution over dif-
ferent individual methods and is thus able to identify positives and
negatives with significantly better performance. Furthermore, while
the AUROC values for networks generated by unsupervised methods
are mostly on par with ENGRaiN generated network, their AUPR
values are significantly poor. This is because aggregation of

predictions from multiple networks for ensemble network generation
without supervision can at best provide a mean approximation of the
constituent GRNs. With only minimal supervision (given a few TPs
and TNs), the EnGRaiN ensemble model shows significantly better
AUPR compared with both the individual methods and other unsuper-
vised ensemble methods. Our results also demonstrate that the
EnGRaiN method works well even with smaller training data, and
eliminates the need for a large number of ground truths for supervised
learning. Note that for simulated datasets, AUPR provides a better
measure of the network quality because of the imbalance in the under-
lying network (4724 TPs versus 200 000 TNs).

3.2 Evaluation of the A.thaliana ensemble network
We next applied EnGRaiN to reconstruct the genome-scale ensem-
ble network of the model plant A.thaliana, and to determine its
performance on real-world data. A standard practice when reverse-
engineering gene networks is to apply network reconstruction meth-
ods to the entire compendium of microarray datasets, whether small
or large. However, our studies (Chockalingam et al., 2016), along
with others (Hurley et al., 2012) suggest that merely increasing the
number of samples does not necessarily improve network perform-
ance. One key reason for this failure could be the spatiotemporal ex-
pression of genes. As the gene expression profiles for network
construction are derived from many different tissues and conditions,
those genes that are specifically expressed at certain times or cellular
states are perhaps filtered from the network model as a result of the
‘averaging out’ effect which occurs during collective analysis of the
entire dataset. Therefore, we first separated datasets based on differ-
ent tissues and conditions and subsequently reconstructed individual
networks from the corresponding datasets. Classification enabled us
to capture more context-specific gene expression patterns and gene
co-expressions (Supplementary Table S8). For instance, genes that
were highly expressed in the flower dataset, but not in the root data-
set, are enriched for the terms floral organ development (P-value ¼
8:8� 10�3), floral whorl development (P-value ¼ 7:7� 10�4) and
pigment biosynthesis (P-value ¼ 1:8� 10�7), whereas in the case
of root dataset enriched terms include root only nitrate transport
(P-value ¼ 2:4� 10�14), response to nitrate (P-value ¼
1:8� 10�14) and response to auxin (P-value ¼ 1:9� 10�4) etc.

Table 6. Comparison of the A.thaliana ensemble gene networks generated using unsupervised and supervised ensemble learning methods

Network No. features AUROC AUPR

ARACNe-AP rank average 20 0.5465 0.4366

CLR rank average 20 0.5866 0.4660

GRNBoost rank average 20 0.5547 0.4570

MRNET rank average 20 0.4851 0.4346

TINGe rank average 20 0.5463 0.4364

WGCNA rank average 20 0.5249 0.4487

Rank average of all features 120 0.5334 0.4554

ARACNe-AP ScaleSum 20 0.5466 0.4386

CLR ScaleSum 20 0.5829 0.4786

GRNBoost ScaleSum 20 0.5554 0.4665

MRNET ScaleSum 20 0.5377 0.4968

TINGe ScaleSum 20 0.5464 0.4376

WGCNA ScaleSum 20 0.6553 0.5834

ScaleSum of all features 120 0.5878 0.50691

ARACNe-AP EnGRaiN 20 0.5365 (0.0073) 0.4230 (0.0070)

CLR EnGRaiN 20 0.9647 (0.0040) 0.9512 (0.0058)

GRNBoost EnGRaiN 20 0.5980 (0.0099) 0.4911 (0.0084)

MRNET EnGRaiN 20 0.9510 (0.0036) 0.9282 (0.0057)

TINGe EnGRaiN 20 0.5303 (0.0061) 0.4140 (0.0071)

WGCNA EnGRaiN 20 0.9676 (0.0030) 0.9551 (0.0030)

EnGRaiN with all features 120 0.9806 (0.0082) 0.9719 (0.0108)

Note: Features denote individual tissue and/or condition networks. For the Arabidopsis ensemble gene network constructed using EnGRaiN, the AUROC and

AUPR values reflect the average and the SD of 10 runs. The SD is always zero for unsupervised methods as training data are not required for such methods, and

hence they do not produce varying results in the 10-fold cross-validation experiments.

Fig. 3 Functional analysis of the A.thaliana ensemble network. A connected subnet-

work of 36 genes extracted from the EnGRaiN generated AEN by GeNA software.

The subnetwork contains 22 genes highly ranked with respect to potential interac-

tions with the 14 seed genes (red) involved in ‘heat stress’. Genes shown in green are

known to be involved in stress response including temperature stress. Yellow repre-

sents genes with unknown function

EnGRaiN supervised ensemble 1317

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/5/1312/6458321 by G
eorgia Institute of Technology user on 24 February 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab829#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab829#supplementary-data


Only six methods—ARACNe-AP, CLR, GRNBoost, MRNET,
TINGe and WGCNA were able to successfully infer large networks
within the time constraints. A total of 49.02, 7.23, 20.83, 4.79 days,
5.09 and 2.86 h, respectively, was required to construct all the 20
tissue/condition networks for each method. GeneNet was excluded
due to its poor performance, and PCC although similar in perform-
ance to WGCNA, was also excluded as it takes a slightly longer run-
time when compared with WGCNA. FastGGM, TIGRESS, GENIE3
and Inferlator were not able to complete their runs even for the
smallest of the datasets.

We constructed multiple AENs using three ensemble learning
methods—Rank Average, ScaleSum and EnGRaiN (Table 6). Due
to the limited number of positives and negatives in the reference net-
work, we evaluated the reference network with respect only to the
induced subnetwork of the genome-scale ensemble networks. Since
some of the edges included in the subnetwork have no other neigh-
bors, the ScaleLSum computations are not applicable. These net-
works included predictions from either 20 tissue/condition
networks, i.e. 20 features for each individual method, or from all
120 (6�20) networks generated by the six individual inference
methods. Similar to the results from simulated data, EnGRaiN en-
semble network(s) outperform both Rank Average- and ScaleSum-
generated networks, with the exception of those constructed using
ARACNe-AP and TINGe. Furthermore, a comparison of all ensem-
ble networks shows that the EnGRaiN network generated from
combining all 120 features is the best performing network. Note
that for A.thaliana networks, AUROC and AUPR values are closer
to each other in magnitude because the reference network is relative-
ly balanced (1347 positives and 2233 negatives). EnGRaiN lever-
ages the ground truth to learn optimal distribution over its various
features, which explains its superior performance. Learning also
helps it in extracting useful information from features which are not
good predictors if considered as a standalone input.

Although for this study genome-scale ensemble gene networks
were constructed from bulk microarray data, the EnGRaiN super-
vised learning model can also be applied to GRNs constructed from
bulk RNA-seq data or single-cell data. With single-cell data however,
known cell-type specific ‘ground truth’ interactions are not as readily
available for supervised learning as for whole tissues or organisms.
Therefore, the method might be less effective for constructing ensem-
ble GRNs from single-cell data than doing so from bulk data.

3.3 AEN is functionally modular
Co-expression networks are built on the ‘guilt by association’
principle, and one feature of network architecture is that the
strength of interactions vary considerably between individual
gene pairs. Nevertheless, genes involved in similar biological proc-
esses are expected to have higher interaction strength and cluster
closely in the network. Therefore, to assess biological relevance of
the AEN (Supplementary Table S9), we collected a set of genes
mediating three well-known biological processes/pathways from

TAIR and determined the nature of their associations in the AEN
(Supplementary Table S5 and Fig. S1). Of the 128 genes involved
in the ‘photosynthesis’ process, 123 are closely connected in the
AEN and form a single connected component. The remaining five
genes are connected via six additional node(s), many of which
also function in photosynthesis-related processes. Similarly, 238
of the 275 genes belonging to the ‘cell-wall organization and bio-
genesis’, and 305 of the 351 genes from ‘carbohydrate metabol-
ism’ show direct connections forming coherent modules. We
further applied GeNA using 14 seed genes related to ‘heat stress’
and extracted a connected subnetwork of 36 genes to determine
which of the other genes in the subnetwork show higher inter-
action strength (ranked highly) with respect to the 14 seed genes
(Fig. 3). Of the 22 additional genes in the subnetwork, 20 genes
are involved in response to temperature stress, and other stress
responses (Boyko et al., 2010; Krishnakumar et al., 2015;
Omidbakhshfard et al., 2012; Staiger and Brown, 2013; Zhang
et al., 2017). The remaining two (AT3G12050 and AT3G50370)
genes have no known function, and thus form potential candi-
dates for hypothesis testing. Taken together, our results show sig-
nificant functional modularity of the AEN.

3.4 Cross-tissue comparison
Table 7 shows performance of the EnGRaiN ensemble model on
different training/testing combinations of various tissues. This helps
identify certain key tissues whose GRN can be used as training data
for the ensemble model in order to recover the underlying GRNs for
the other tissues. Additionally, these experiments are useful to evalu-
ate the performance of the ensemble model. We consider the
EnGRaiN ensemble network to be unsatisfactory (denoted by £) if
it does not perform better or equivalent to the best performing
model in its ensemble.

As expected, the EnGRaiN model constructed from only one tis-
sue [either ‘Flower’ or ‘Leaf’ or ‘Seedling (1 week)’] does not gener-
alize well to the entire spectrum of tissues. However, ensemble
models constructed from pairs of tissues such as ‘Flower and Leaf’
and ‘Flower and Seedling (1 week)’, are able to effectively recover
the underlying GRNs of all the other tissues. Interestingly, the
EnGRaiN model of ‘Flower and Root’ covers all the tissues except
for the ‘Leaf’. We speculate that this is due to significant differences
between the physiological processes of the respective tissues.

4 Conclusions

The primary contributions of this work are the design of the super-
vised ML ensemble network method EnGRaiN, its validation
against prior ensemble as well as standalone methods, end-to-end
methodology to reconstruct robust genome-scale networks ranging
from data classification to ensemble network generation with the
plant model A.thaliana as case-study, and the usage of such

Table 7. Cross-tissue GRN comparison based on AUROC and AUPR

Only flower Only leaf Only SD (1 week) Flower and leaf Flower and root Flower and SD

(1 week)

Leaf � Tr £ Tr £ �

Flower Tr £ £ Tr Tr Tr

Root � £ � � Tr �

Rosette � £ £ � � �

Shoot £ £ � � � �

Seed � £ £ � � �

SD (1 week) � � Tr � � Tr

SD (2 weeks) � � � � � �

Note: Rows list various tissues under consideration. ‘Seedling’ is abbreviated as ‘Sd’. Each column describes the setting of an experiment. For instance, column 5

specifies that training (indicated by ‘Tr’) was done on the combined data of ‘Flower’ and ‘Root’ tissues and the remaining tissues were used for testing. A � indicates

that EnGRaiN outperformed every individual GRN recovery method, and the denotes an individual method performed better (e.g., ‘Leaf’ row in column 5).
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networks to predict gene function. EnGRaiN is the first supervised
ensemble network learning method, to which we credit its quality
advantages over the prevailing unsupervised methods. We presented
techniques to generate training datasets through prior biological
knowledge of known interactions (positive examples), estimating ex-
tremely unlikely interactions through domain knowledge (negative
examples), and utilizing EnGRaiN predicted gene networks them-
selves as training data when appropriate. Taken together, we expect
this work to facilitate improvement in overall accuracy of inter-
action predictions and analysis of large genome-scale gene
networks.
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