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Recent studies on viscous streaming flows in two dimensions have elucidated the impact
of body curvature variations on resulting flow topology and dynamics, with opportunities
for microfluidic applications. Following that, we present here a three-dimensional
characterization of streaming flows as functions of changes in body geometry and
topology, starting from the well-known case of a sphere to progressively arrive at toroidal
shapes. We leverage direct numerical simulations and dynamical systems theory to
systematically analyse the reorganization of streaming flows into a dynamically rich set
of regimes, the origins of which are explained using bifurcation theory.
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1. Introduction
This paper investigates the role of body geometry and topology in three-dimensional
(3-D) viscous streaming settings. Viscous streaming, a consequence of the nonlinear
nature of the Navier–Stokes equations, refers to the time-averaged steady flows that
manifest when an immersed body of characteristic length a is driven periodically with
amplitude A ! a and frequency ω in a viscous fluid. Streaming, which finds application in
microfluidics for particle manipulation, trapping, sorting, assembly and passive swimming
(Liu et al. 2002; Lutz, Chen & Schwartz 2003; Nair & Kanso 2007; Chung & Cho
2009; Tchieu, Crowdy & Leonard 2010; Wang, Jalikop & Hilgenfeldt 2011; Chong et al.
2013; Klotsa et al. 2015; Thameem, Rallabandi & Hilgenfeldt 2016, 2017), has been
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extensively studied and characterized theoretically, experimentally and numerically for
constant curvature objects such as circular cylinders (Holtsmark et al. 1954; Riley 2001;
Lutz, Chen & Schwartz 2005; Bhosale, Parthasarathy & Gazzola 2020), infinite flat plates
(Glauert 1956; Yoshizawa 1974), and spheres (Lane 1955; Riley 1966; Kotas, Yoda &
Rogers 2007). Beyond these uniform-curvature geometries, streaming flows involving
objects of multiple curvatures received relatively little attention (Tatsuno 1974, 1975;
Badr 1994; Kotas et al. 2007), and studies have mostly focused on the observation and
description of such flows, without establishing a mechanistic connection between shape
geometry and flow reorganization. In the pursuit of such explanation, recently, a systematic
approach based on dynamical systems theory has been proposed in two-dimensional
(2-D) settings, revealing a rich set of novel flow topologies accessible via well-defined
bifurcations, controlled through objects’ local curvature and flow inertia (Bhosale et al.
2020). Expanded design space and rational design guidelines have then been elucidated
to enhance existing applications or enable new ones, such as drug transport and delivery
(Parthasarathy, Chan & Gazzola 2019) by miniaturized swimming robots (Park et al. 2016;
Ceylan et al. 2017; Aydin et al. 2019).
In this work, we seek to extend this understanding to 3-D settings. We first consider

simple axisymmetric flows, involving oscillating spheres and spheroids, to connect 2-D
insights to 3-D observations. We then depart from these simple cases and break flow
axisymmetry by inverting spheroids’ aspect ratios. Since these configurations no longer
have 2-D analogues to guide our intuition, we analyse emerging flow topologies solely
through a bifurcation theory perspective. Finally, we explore the effect of body topology on
streaming through the case of an oscillating torus and relate our observations to previously
investigated spheroids of comparable length scales.
Overall, our study elucidates the mechanisms at play when 3-D streaming flow topology

is manipulated through variations in objects’ geometry, topology and flow inertia, thus
providing physical intuition as well as design principles of potential use in microfluidics.
The work is organized as follows: governing equations and numerical methods are

summarized in § 2; streaming physics and flow topology classification are described in
§ 3; streaming flow characterization and transitions for axisymmetric flows and fully 3-D
flows are investigated in §§ 4 and 5, respectively; effects of body topology on viscous
streaming flows are discussed in § 6; finally, findings are summarized in § 7.

2. Governing equations and numerical method
Here we briefly describe the governing equations and numerical techniques used in our
simulations. We consider a solid body performing simple harmonic oscillations in an
incompressible Newtonian fluid within an unbounded domain Σ . We denote the support
and boundary of the density-matched solid with Ω and ∂Ω , respectively. The 3-D flow is
then described by the incompressible Navier–Stokes equations

∇ · u = 0,
∂u
∂t

+ (u · ∇)u = − 1
ρ

∇p+ ν ∇2u, x ∈ Σ \ Ω, (2.1)

where ρ, p, u and ν are the fluid density, pressure, velocity and kinematic viscosity,
respectively. Fluid–structure interaction is captured by solving equations (2.1) in their
velocity–vorticity form using a remeshed vortex method, coupled with Brinkmann
penalization to enforce the no-slip boundary condition u = us at ∂Ω , where us is the
solid body velocity (Gazzola et al. 2011). Our method has been validated across a
range of fluid–structure interaction problems, from flow past bluff bodies to biological
swimming and rectified flow phenomena (Gazzola et al. 2011, 2012a; Gazzola, van Rees
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& Koumoutsakos 2012b; Gazzola, Hejazialhosseini & Koumoutsakos 2014; Parthasarathy
et al. 2019; Bhosale, Parthasarathy & Gazzola 2021; Bhosale et al. 2020).

3. Streaming physics and flow topology classification

3.1. Viscous streaming and numerical validation in two and three dimensions
We first introduce and characterize viscous streaming via the classical cases of a circular
cylinder and a sphere of radii a. We consider a body immersed in a quiescent fluid of
viscosity ν that performs low-amplitude harmonic oscillations defined by x(t) = x(0)+
A sin(ωt), where A = εa (with ε ! 1) and ω are the dimensional amplitude and angular
frequency, respectively. The oscillatory motion then generates a Stokes layer of thickness
δAC ∼ O(

√
ν/ω) (commonly known as the AC boundary layer) around the solid body.

The velocity that persists throughout this layer drives a viscous streaming response in the
surrounding fluid (Batchelor & Batchelor 2000). Following Stuart (1966), we characterize
streaming response through the streaming Reynolds number Rs = A2ω/ν, based on the
AC boundary layer thickness (δAC = A/

√
Rs). Figure 1(a,b) illustrates a comparison of

time-averaged streamline patterns between our simulations and experiments (Van Dyke
1982; Kotas et al. 2007) for a circular cylinder at Rs = 0.628 (or δAC/a = 0.126) and a
sphere at Rs = 1.6 (or δAC/a = 0.158). The interplay between viscous and second-order
inertial effects, for both the circular cylinder and the sphere, results in two classic flow
topologies. At high Rs (or low δAC/a), we encounter the double-layer regime characterized
by a finite-thickness (δDC) inner recirculating region (commonly known as the DC layer)
and an outer driven flow extending to infinity (figure 1a,b). As Rs decreases (or δAC/a
increases), the inner region becomes thicker until it eventually diverges (figure 1c),
extending to infinity and giving rise to the single-layer (or Stokes-like) regime. For these
simple shapes, there exist semi-analytical relations between the normalized AC layer
(δAC/a) and DC layer (δDC/a) thicknesses (Holtsmark et al. 1954; Lane 1955; Bertelsen
et al. 1973). We then compare and validate our 3-D simulations with theory, experiments
and previous numerical investigations in figure 1(c). As can be seen, both in this case
as well as against experiments involving oscillating spheroids (figure 1d), a quantitative
match is obtained, thus verifying our 3-D solver’s accuracy. We note that while in
the simplest settings streaming dynamics is completely described by δAC/a, this is not
generally true when more complex shapes with multiple length scales are considered, and
thus a more general approach becomes necessary.

3.2. Flow topology characterization: dynamical systems theory
Motivated by the need for a more generic approach to characterize streaming flows, we
turn to dynamical systems theory, as previously proposed for 2-D settings in Bhosale
et al. (2020). This approach offers a sparse yet complete representation of the underlying
flow topology and its dynamics, and generalizes to three dimensions (Chong, Perry &
Cantwell 1990; Theisel et al. 2003). We first identify the zero velocity, critical points
of the streaming field and classify these points based on their local flow properties,
characterized through the eigenvalues/eigenvectors of the Jacobian Ju associated with the
velocity field (Chong et al. 1990). We recall that for a critical point, real components
of the eigenvalues indicate local flow trajectories towards/away from (depending on the
sign) the critical point, along the corresponding eigenvectors. Imaginary components
instead indicate rotational flows around the critical point, in the plane spanned by the
corresponding eigenvectors. For incompressible flows, where the trace of the Jacobian is
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Figure 1. Streaming physics: Comparison of time-averaged streamline patterns depicting regions of clockwise
(blue) and counter-clockwise (orange) recirculating fluid for an oscillating (a) circular cylinder (Rs = 0.628,
δAC/a = 0.126) and (b) sphere (Rs = 1.6, δAC/a = 0.158) in the finite-thickness DC layer regime against
experiments by Van Dyke (1982) and Kotas et al. (2007), respectively. The centre of the inner vortex (pink
marker) is observed at 45◦ and 54.7◦ from the axis of oscillation for the cylinder and sphere, respectively,
consistent with the theory of Lane (1955). Quantitative comparison with experiments and theory in which
we relate the normalized DC layer thickness δDC/a and normalized AC boundary layer thickness δAC/a is
illustrated in (c) for an oscillating cylinder (Bertelsen, Svardal & Tjotta 1973; Lutz et al. 2005; Parthasarathy
et al. 2019) and (d) for oscillating spheroids of varying aspect ratios AR (Kotas et al. 2007). For spheroids,
the DC layer thickness (marked in red in inset) is defined as the average distance from the body surface
to the stagnation points (saddles) perpendicular to the oscillation direction. The body length scale aeq for a
spheroid is defined as the radius of an equivalent sphere of the same volume. The two-headed arrows in all
subfigures indicate the direction of oscillation. (e–j) Critical points and corresponding local flow patterns in
3-D incompressible flows. Simulation details: adaptive domain size with uniform grid spacing h = 1/2048
(body length scale a = 0.02); penalization factor λ = 104; mollification length εmoll = 2

√
2h; Lagrangian

Courant–Friedrichs–Lewy number LCFL = 0.01; viscosity ν and oscillation frequency ω set according to
prescribed δAC/a; and non-dimensional oscillation amplitude ε = 0.05. The above values are used throughout
the text, unless stated otherwise. For more details on these parameters, we refer to Gazzola et al. (2011).

always zero (tr(Ju) = ∇ · u = 0), only saddles (real eigenvalues of equal magnitude and
opposite sign – figure 1e) and centres (imaginary eigenvalues of equal magnitude and
opposite sign – figure 1h) exist in 2-D settings. In three dimensions, however, in-plane

933 A53-4

�%
%"
$

��
�!
��!
#�
��
��
��
��
���
�
��
��
��
��
��

�
!(

 �
!�
��
��
�#
!�

��
%%
"$

��
(
(
(
��
��

�#
��
��
�!
#�
��
!#
��
��
 �
'�
#$
�%)
�!
���
���
 !
�$
��
%��

#�
� 
��
��

��
"�
��
 �
��
�#
�#
)�
�!
 �
��
��
��
��
��
��
�%
��
	

	�

�

�
�$
&�
��
�%
�%!
�%�

��
��
�
�#
��
��
��
!#
��
%�
#�

$�
!�
�&
$�
���
'�
���
��
��
�%
��
%%
"$

��
(
(
(
��
��

�#
��
��
�!
#�
��
!#
��
%�
#�

$�



Three-dimensional geometry and topology effects in viscous streaming

saddles and centres are accompanied by an out-of-plane component, which corresponds to
the additional eigenvalue. This allows for the existence of in-plane nodes (real eigenvalues
of equal sign – figure 1f ) and in-plane foci (complex-conjugate eigenvalues – figure 1i),
both of which can be unstable/repelling or stable/attracting in nature, depending on the
signs of the eigenvalues. Under the incompressibility constraint, admissible combinations
of local in-plane flows result in node–saddle–saddle (NSS, repelling example in figure 1g)
and focus–saddle–saddle (FSS, repelling example in figure 1j) critical points (Chong et al.
1990; Theisel et al. 2003).
Following this characterization, we can then understand streaming flow reorganizations

via bifurcation theory (Strogatz 2018), by analysing the appearance and disappearance
of critical points as shape features and flow inertia are modified. Additionally, we can
compute local flow trajectories in the vicinity of these points to further our intuition
of the underlying flow and topological skeleton. However, while this approach provides
insight into complex 3-D streaming dynamics, limitations exist due to its local nature. In
particular, the outlined methodology does not account for global bifurcation phenomena,
which cannot be detected by critical points alone (Strogatz 2018) and instead require the
construction of higher-dimensional manifolds or separatrices (Brøns, Voigt & Sørensen
1999; Krauskopf et al. 2006; Brøns et al. 2007; Bujack et al. 2021). We note that these
undetected instances may render the systems investigated here sensitive to symmetry
perturbations. For example, imperfections in the set-up may render leaky otherwise
perfectly enclosed flow regions. Nonetheless, our approach does provide key steps towards
the characterization of the 3-D flow skeleton, with the benefit of being visually intuitive
(high-dimensional manifolds are significantly harder to interpret and visualize due to
the cluttering and occlusion of multiple, nested surfaces). The methodology chosen here
then allows us to gain initial insights into complex 3-D streaming dynamics, map main
flow topologies and transitions, and elucidate mechanisms at play, to enable the rational
manipulation of these systems while setting the stage for more formal global-manifold
techniques.

4. Axisymmetric flows
In order to understand the effects of geometry and topology variations on streaming
dynamics in three dimensions, we consider first axisymmetric flows, which can be related
back to more familiar 2-D settings (Bhosale et al. 2020). This allows us to build intuition
for interpreting more complex geometries and flows in later sections. In axisymmetric
cases, 3-D flow structures can be fully captured in a 2-D manner via the Stokes stream
function (Batchelor & Batchelor 2000), and subsequently rendered in three dimensions
using iso-surfaces for complete visual representation. We note that while this approach
provides natural intuition, it is available only under the condition of flow axisymmetry. An
alternative, compact and informative representation entails the extraction of critical points
in combination with tracer particles. These tracers can be seeded in the neighbourhood of
the critical points and then advected to reveal local flow features and connecting orbits,
to further our physical intuition. In the following, we analyse streaming flow structures
through these two different perspectives, providing a comparison between a dense yet
intuitive and a sparse yet complete flow representation.

4.1. Fully symmetric body: sphere
We start by observing the streaming flows generated by an oscillating sphere (fully
symmetric body) of radius a, initially in a quiescent fluid.
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representation

δAC/a = 0.35
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Figure 2. Streaming flow for a fully symmetric body (sphere of radius a) in the (a,b) Stokes-like (δAC/a =
0.35) regime and (c,d) finite-thickness DC layer (δAC/a = 0.18) regime. The visualization of the flow
field is presented using two different methods: Stokes stream function (left column) and dynamical system
representation (right column). The 2-D in-plane centres, 2-D in-plane saddles, stable and unstable NSS
(half-saddles/NSS on solid boundaries) are marked as pink, yellow, blue and red circles, respectively.
Colour contours on the presented plane indicate regions of clockwise (blue) and counter-clockwise (orange)
recirculating fluid. The 3-D surfaces are generated from the Stokes stream function ψ , while colour coding is
mapped to three dimensions asψ sinφ, where φ is the azimuthal angle, consistent with Lane (1955). Simulation
details: normalized uniform grid spacing h/a = 0.03.

At high δAC/a (or low Rs), we encounter the Stokes-like regime. The corresponding
Stokes stream function is illustrated in figure 2(a), where we observe the characteristic
single-layer recirculating flow, highlighted via 3-D iso-surfaces renderings. The flow
is organized around three types of critical points: centres (pink), saddles (yellow) and
unstable NSS (red), marked here using circles. We note that in this case both centres and
saddles are 2-D degenerate critical points (Strogatz 2018), since the surrounding local flow
has no out-of-plane (i.e. azimuthal) component. These critical points, when mapped to 3-D
space, form continuous rings as illustrated in figure 2(b), resulting in a flow skeleton that
characterizes the system from a dynamical perspective.
As we decrease δAC/a (or increase Rs), we encounter the finite-thickness DC layer

regime. In figure 2(c), we observe the characteristic double-layer recirculating flow, while
in figure 2(d) we note the appearance of two additional outer centre-rings (pink) as well as
a saddle-ring (yellow), complemented by two new stable NSS (blue) that lie at a distance
δDC away from the sphere surface. Tracer trajectories further highlight the existence of
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Three-dimensional geometry and topology effects in viscous streaming

heteroclinic orbits (trajectories connecting two different critical points) between the stable
NSS and the degenerate saddle-ring, collectively forming a continuous spherical surface
that cleanly separates the DC layer from the external driven fluid.
We note that due to axisymmetry, the transition between the single- and double-layer

regimes observed here in three dimensions for a sphere relies on mechanisms similar to
the 2-D circular cylinder (Bhosale et al. 2020). In the latter, the transition is mediated
by higher-order reflecting umbilic bifurcations (Bhosale et al. 2020) for which, at a
critical δAC/a, saddles that are located at infinity split apart, eventually forming the
outer centres as well as the saddles that delineate the DC layer (such a process can be
visualized in periodic domains, as demonstrated in Bhosale et al. 2020). The details of
the mechanisms through which critical points of various natures emerge from infinity are
rather involved, and not particularly relevant to the remainder of our analysis. Hence, for
brevity, throughout the rest of the paper we refer this discussion to the supplementary
material available at https://doi.org/10.1017/jfm.2021.1106, while we focus instead on
novel flow reorganizations observed in the proximity of the streaming body.
After briefly introducing our analysis procedure for the well-known case of the sphere,

we proceed by progressively breaking symmetry.

4.2. Axisymmetric body: spheroid
Following a fully symmetric body, we morph the sphere into a spheroid with axis of
symmetry aligned with the oscillation direction, thus introducing multiple curvatures
while retaining flow axisymmetry. We consider a spheroid of radii ax = 0.4a and ay =
az = a oscillating along the x-axis (axes defined at the bottom-right of figure 3b). We
note that the 2-D equivalent of this system is an oscillating ellipse. The latter has
been previously shown (Bhosale et al. 2020) to give rise to a new flow regime, not
attainable by circular cylinders, between the single-layer (Stokes-like) and double-layer
(finite-thickness) regimes. This new flow topology, characterized by closed recirculating
pockets of fluid on both sides of the ellipse, can be accessed in two dimensions either by
varying ax/a < 1 at constant δAC/a, or by fixing ax/a < 1 and changing δAC/a. Here we
seek confirmation of this behaviour in a 3-D context, by systematically spanning δAC/a.
We start by considering high δAC/a (low Rs), where we encounter the Stokes-like

regime. The associated Stokes stream function is illustrated in figure 3(a), and while
the flow is distorted relative to the case of the sphere (figure 2a), on account of the
modified shape geometry, topologically they are equivalent, as confirmed by the dynamical
representation of figure 3(b). Indeed, we can recognize similar structures, whereby 2-D
degenerate centres and saddles make up the rings around which the single-layer flow
organizes.
Upon decreasing δAC/a to a critical value, we observe that the lateral horizontal

streamlines (highlighted in figure 3a) are vertically pulled apart and split, locally
producing two degenerate centres, a stable NSS (blue) and an unstable NSS (red) that
together give rise to neatly enclosed pockets of fluid on both sides of the body (figure 3c).
In the 3-D dynamical representation (figure 3d), these structures manifest as outer rings
contained within the heteroclinic orbits that connect the stable NSS to the unstable ones,
collectively forming the surfaces that separate the fluid within the pockets from the
external flow. Thus, in keeping with 2-D observations, a new intermediate flow regime –
unattainable in spheres – is identified in three dimensions. Such a regime is found to
form through mechanisms consistent with 2-D explanations. Indeed, the simultaneous
appearance of two new centres and two new saddles in the absence of pre-existing
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(c) (d )

Trajectories around
unstable NSS

(2-D, in-plane) centre (2-D, in-plane) saddle Stable NSS Unstable NSS

Stokes stream function
representation

Dynamical system
representation

(a) (b)

Trajectories
around
center

Axis of
symmetry

(e) ( f )

Trajectories around
stable NSS

Trajectories
around
centre

x
z

y

Heteroclinic
orbit

δAC /a = 0.076

δAC /a = 0.065

δAC /a = 0.053

∞ ∞

∞

∞

Figure 3. Streaming from an axisymmetric body (spheroid of radii ratio ax : ay : az = 0.4a : a : a, where
a = 0.05): starting from the (a,b) Stokes-like regime (δAC/a = 0.076), decreasing δAC/a transitions the flow
topology into (c,d) a new phase (δAC/a = 0.065) where regions of recirculating fluid are encapsulated between
pairs of stable–unstable NSS (shaded boxes). Further decrease in δAC/a transitions the flow topology into
the (e, f ) finite-thickness DC layer regime (δAC/a = 0.053). Flow fields are represented using two different
methods: Stokes stream function (a,c,e) and dynamical system representation (b,d, f ). Colour contours on
the presented plane indicate regions of clockwise (blue) and counter-clockwise (orange) recirculating fluid.
The 3-D surfaces are generated from the Stokes stream function ψ , while colour coding is mapped to three
dimensions as ψ sinφ, where φ is the azimuthal angle, consistent with Lane (1955). Simulation details:
normalized uniform grid spacing h/a = 0.02.

critical points is the hallmark of a hyperbolic reflecting umbilic bifurcation (Bosschaert
& Hanßmann 2013), as identified in two dimensions in Bhosale et al. (2020).
Thus, by varying flow inertia, the system can be forced to bifurcate, injecting additional

topological elements (critical points) that cause the flow to reorganize around newly
formed lateral and sealed recirculating regions. Such pockets can then be of practical

933 A53-8

�%
%"
$

��
�!
��!
#�
��
��
��
��
���
�
��
��
��
��
��

�
!(

 �
!�
��
��
�#
!�

��
%%
"$

��
(
(
(
��
��

�#
��
��
�!
#�
��
!#
��
��
 �
'�
#$
�%)
�!
���
���
 !
�$
��
%��

#�
� 
��
��

��
"�
��
 �
��
�#
�#
)�
�!
 �
��
��
��
��
��
��
�%
��
	

	�

�

�
�$
&�
��
�%
�%!
�%�

��
��
�
�#
��
��
��
!#
��
%�
#�

$�
!�
�&
$�
���
'�
���
��
��
�%
��
%%
"$

��
(
(
(
��
��

�#
��
��
�!
#�
��
!#
��
%�
#�

$�



Three-dimensional geometry and topology effects in viscous streaming

utility (subject to the considerations of § 3.2) as they provide a mechanism at intermediate
flow inertia regimes to, for example, trap, concentrate, manipulate and eventually release
microparticles (Parthasarathy et al. 2019).
Finally, at low δAC/a (high Rs), we encounter the finite-thickness layer regime. As

we decrease δAC/a, the unstable NSS (red) move away from the body along the axis
of oscillation (figure 3c), thus unfolding the pockets. Eventually, at a critical δAC/a,
the unstable NSS diverge to infinity, opening up the flow laterally. Concurrently, new
2-D degenerate saddles (yellow) approach the body radially from infinity (supplementary
material) within the yz-plane (figure 3e, f ), ultimately sealing the DC layer by means of
heteroclinic orbit connections with the stable NSS (blue). These degenerate saddles make
up the outer yellow ring of figure 3( f ), leading to a flow topology equivalent to the classic
double-layer structure of figure 2(d).
We note that the same set of bifurcations and flow regimes, here captured by fixing

the spheroid geometry ax/a and modifying δAC/a, can be obtained alternatively upon
variations on ax/a < 1 at constant δAC/a (supplementary material), consistent with 2-D
predictions (Bhosale et al. 2020).

5. Non-axisymmetric flows
We proceed to investigate shape curvature variation effects in a fully 3-D (i.e.
non-axisymmetric) setting (figure 4). We achieve this by considering a spheroid
characterized by an inverse aspect ratio (ax = ay = a, az = 0.25a) relative to the case
considered above. This is equivalent to flipping the spheroid of figure 3 horizontally, thus
rendering the axis of oscillation (x-axis) perpendicular to the object’s axis of symmetry
(z-axis). Since in this set-up the flow is no longer axisymmetric, the Stokes stream function
is not available and our analysis can rely on only a dynamical representation, underscoring
its utility. For physical intuition, we henceforth highlight orbits and local flow features by
means of passive tracers whose trajectories are coloured based on the type of the critical
point in the neighbourhood of which they are seeded. For example, if particles are seeded
in the vicinity of a stable NSS (blue), then the corresponding trajectories will be blue.
When spanning flow conditions from high to low δAC/a (low to high Rs), we observe

a rich dynamic behaviour. Figure 4 provides an overview of the system’s evolution,
transitioning from a single-layer (Stokes-like) to a double-layer (finite-thickness) regime
over seven topologically distinct phases described in the following.

5.1. Phase I → II → III
We begin by considering high δAC/a, where the single-layer regime (Phase I) is usually
encountered. In non-axisymmetric, fully 3-D settings, degenerate centres and saddles
no longer exist, so that the single layer regime manifests in a topologically distinct
form. Indeed, we observe (Phase I) that the rings made of degenerate critical points in
figures 2(b) and 3(b) are replaced by new ring-like structures, made of four critical points
– two stable (purple) and two unstable (green) FSS – connected by heteroclinic orbits
(figure 4). These new rings are effectively the 3-D counterparts of the degenerate rings
discussed previously, and similarly constitute the skeleton around which recirculating flow
regions organize.
As we decrease δAC/a, we observe that a pair of stable NSS (blue) first approaches

the body from infinity (supplementary material) along the y-axis (Phase II), and are
subsequently replaced (Phase III) by an unstable NSS (red) and a pair of stable FSS
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x
z

y

Stokes-like
regime

Stable NSS approach
body along y-axis

Unstable NSS
approach

body along
x-axis

Stable NSS
approach

body along
z-axis

Finite
thickness
DC layer
regime

Stable NSS pass by stable
FSS resulting in reorientation

(see figure 5)

Supercritical
pitchfork

bifurcation

Unstable
NSS

Stable

FSS

Stable
NSS(–)

(–)

(–)

(+)
FSS

Stable
Unstable

NSS
Stable
NSS(+)

(–)

(–)

(–)

UnstableFSS

FSSUnstable

Subcritical
pitchfork

bifurcation

Stable FSS Unstable FSSStable NSS Unstable NSS

V

VI

II

IV

I III

VII

δAC /a = 0.408
∞

∞

∞

∞

∞

∞

δAC /a = 0.5

δAC /a = 0.383

δAC /a = 0.284

δAC /a = 0.222

δAC /a = 0.216 δAC /a = 0.183

Figure 4. Evolution of streaming flow topology for an oscillating spheroid (with radii ratio ax : ay : az =
a : a : 0.25a, where a = 0.05). We observe seven distinct phases, classified based on critical points and
local flow trajectories, from Stokes-like regime (Phase I) to finite-thickness layer regime (Phase VII).
Bifurcation diagrams in the insets summarize the transition from one phase to another, tracking stable/unstable
(solid/dashed lines) branches as well as type of involved critical points, as a function of the bifurcation
parameter δAC/a. Axes are indicated at the bottom right, where the orange x-axis represents the axis of
oscillation. Simulation details: normalized uniform grid spacing h/a = 0.03 (used throughout § 5).
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Three-dimensional geometry and topology effects in viscous streaming

(purple), on both sides of the body. This Phase II → III transition is the result of a two-step
process, for which first the stable NSS undergoes a supercritical pitchfork bifurcation
(Strogatz 2018) and gives rise to an unstable NSS (red) and a pair of stable NSS (blue),
followed by a change in nature of the new stable NSS (blue) into a stable FSS (purple).
This mechanism is confirmed by examining the eigenvalues of the involved critical points,
relative to the direction along which the bifurcation occurs (i.e. the z-direction; the x- and
y-directions are sign-invariant throughout the process). This reveals first a sign change in
the real components from (−) to (−,+,−), which, in the absence of imaginary parts,
denotes the transition from stable NSS to stable NSS, unstable NSS and stable NSS,
respectively. Following the bifurcation, we observe that the eigenvalues of the stable NSS
begin to develop imaginary components, marking the initiation of a rotational local flow,
thus a change in type from NSS to FSS. In figure 4, this is illustrated as a bifurcation
diagram where we indicate the nature of the critical point (NSS/FSS) and the stability
of the branches along which they lie, as we vary the bifurcation parameter δAC/a. A full
illustration of this two-step process can be found in the supplementary material.

5.2. Phase III → IV → V
In Phase III, a further decrease in δAC/a draws the two unstable NSS (red) closer towards
the body along the y-axis, and pushes the adjacent pairs of stable FSS (purple) farther
apart from each other in the yz-plane, as shown in figure 4. At a critical δAC/a value, a pair
of unstable NSS (red) appears (Phase IV) along the x-axis from infinity (supplementary
material). This sets the stage for the formation of the outer ring structures eventually
expected in the finite-thickness layer regime.
When considering the Phase IV → V transition, we observe that the two new unstable

NSS (red) each split into a stable NSS (blue) and a pair of unstable FSS (green), through
a two-step process similar to Phase II → III, except that the transition here is mediated by
a subcritical pitchfork bifurcation (Strogatz 2018). The appearance of these unstable FSS
causes a drastic remodelling of the flow. Indeed, the simultaneous presence of unstable
FSS (green) in the xy-plane and of stable FSS (purple) in the yz-plane forces the flow
to form heteroclinic connections which altogether define a pair of outer ring structures.
Nonetheless, this flow topology does not correspond to the classic double-layer regime yet:
indeed, the outer rings are orthogonal to the inner ones! This makes up a complex flow
structure for which inner and outer regions are characterized by perpendicular cross-flows.

5.3. Phase V → VI → VII
Finally, as we further decrease δAC/a, we recover the expected double-layer regime. From
Phase V, we first observe the appearance of a new pair of stable NSS (blue) approaching
from infinity along the z-axis (Phase VI). These are drawn towards the body and thus
towards the pairs of stable FSS (purple) in the outer rings. In doing so, the stable NSS
(blue) deform the outer rings inwards, causing top and bottom FSS (purple) to come
closer together. Eventually, the stable NSS (blue) pass through the FSS (purple) pairs,
at which point the outer rings ‘kiss’ and reorient orthogonally, reorganizing the flow into
the double-layer regime of Phase VII.
This qualitative dynamic portrait can be analysed rigorously in terms of bifurcations

by projecting the involved critical points on the grey planes, parallel to the xy-plane,
illustrated in figure 5. We can observe (insets) how the two stable FSS approach each
other along the y-axis, collide with the stable NSS, and then move away from one another
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Stable NSS
move past
stable FSS

Reoriented
stable FSS
move apart

VI VII VII

(a) (b) (c)

Stable FSS Unstable FSSStable NSS Unstable NSS

x
z

y

Point of view Point of view

δAC/a = 0.215 δAC/a = 0.204 δAC/a = 0.183

Figure 5. Phase VI → VII: streaming flow structures (a) before and (b) after transition. The corresponding
steady-state flow trajectories on the highlighted planes are shown in the insets, illustrating critical points coming
together on one axis, and splitting away on another – a feature characteristic of higher-order elliptic reflecting
umbilic bifurcations (Bosschaert & Hanßmann 2013). (c) Flow converges to the finite-thickness layer regime
upon further decrease in δAC/a.

along the x-axis. In this characteristic orthogonal rearrangement of critical points, we can
recognize a higher-order elliptic reflecting umbilic bifurcation (Bosschaert & Hanßmann
2013) at work. As a consequence, the heteroclinic orbits between the stable and unstable
FSS in the outer rings break up and orthogonally reconnect, forming new rings that are
now consistently oriented with the inner ones. This final topology can be appreciated even
more clearly as we further decrease δAC/a in figure 5(c). We see that the outer rings
make up the core of a recirculating flow region that extends from infinity down to the
stable/unstable NSS (blue/red). These in turn, together with their connecting orbits, define
the surface that separates outer from inner flows, with the latter recirculating around the
inner rings, tightly fit to the body. The overall flow architecture of Phase VII is then found
to be consistent with the finite-thickness layer regime of figures 2(c,d) and 3(e, f ).
Finally, we note that the flow topological rearrangements observed in the investigations

above can also be achieved via geometrical variations alone (i.e. by changing az/a <
1 while keeping δAC/a constant), as demonstrated in the supplementary material and
consistent with the axisymmetric case of figure 3.

6. Topologically distinct body
After investigating streaming flows in terms of body geometry and flow inertia variations,
we finally begin to probe the effects of shape topological changes. The inextricable
connection between topology and geometry provides a vast manipulation space that
can hardly be systematically explored. Hence, here we narrow down the scope of our
investigation and consider a single topological defect – a hole – in a spheroid similar
to figure 4. We thus transition from a genus-0 spheroid (body with no holes) to a
genus-1 torus (body with one hole) of comparable length scales. We then consider four
representative δAC/a values between the Stokes-like and the finite-thickness DC layer
regimes, as shown in figure 6. This gives us the opportunity to begin to understand how
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Figure 6. Streaming flow topology at different δAC/a for a torus, with axis of symmetry aligned along the
z-axis, oscillating along the x-axis. The torus has tube radius atube = 0.25a and core radius acore = 0.75a, so
that the overall body length scale is a = atube + acore. We highlight here that the torus has major (amax = a)
and minor (amin = atube = 0.25a) length scales comparable to those of the 3-D spheroid in § 5, essentially
presenting equivalent width and thickness. Simulation details: normalized uniform grid spacing h/a = 0.03.

flow structures pertinent to the spheroid remodel due to the interaction with the flow within
the topological defect.
When considering high δAC/a, we encounter the streaming flow topology representative

of the Stokes-like regime as depicted in figure 6(a). In this regime, we observe the presence
of two rings, fit to the body and made of two stable (purple) and unstable (green) FSS
connected by heteroclinic orbits, similar to those encountered in figure 4. These rings
are unaffected by the topological defect. Indeed, due to the proximity to the body, the
flow effectively detects only the object’s outer curvature, which is similar to the spheroid.
Within the topological defect, we observe a collection of critical points (one unstable NSS

933 A53-13

�%
%"
$

��
�!
��!
#�
��
��
��
��
���
�
��
��
��
��
��

�
!(

 �
!�
��
��
�#
!�

��
%%
"$

��
(
(
(
��
��

�#
��
��
�!
#�
��
!#
��
��
 �
'�
#$
�%)
�!
���
���
 !
�$
��
%��

#�
� 
��
��

��
"�
��
 �
��
�#
�#
)�
�!
 �
��
��
��
��
��
��
�%
��
	

	�

�

�
�$
&�
��
�%
�%!
�%�

��
��
�
�#
��
��
��
!#
��
%�
#�

$�
!�
�&
$�
���
'�
���
��
��
�%
��
%%
"$

��
(
(
(
��
��

�#
��
��
�!
#�
��
!#
��
%�
#�

$�



F.K. Chan, Y. Bhosale, T. Parthasarathy and M. Gazzola

(red), two stable NSS (blue) and four unstable FSS (green) – inset). Additionally, a pair of
stable NSS is found along the z-axis, off the xy-plane. This particular pair, as we will see,
plays a significant role in remodelling the flow relative to the genus-0 spheroid. Indeed, it
extends the influence zone of the topological defect, providing opportunities for structures
exterior to the torus to eventually interact.
As we decrease δAC/a, we see an interesting mechanism play out. At first the flow

exterior to the torus evolves in accordance to the spheroid case (Phase I → III), whereby
two stable NSS approach from infinity along the y-axis, and then undergo a pitchfork
bifurcation forming the unstable NSS (red) and pairs of stable FSS (purple), on both
sides of the torus (figure 6b). This process is thus still governed by the object’s outer
curvature. Nonetheless, after the pitchfork bifurcation takes place, the pair of purple FSS
progressively fans out in the yz-plane and approaches the defect’s zone of influence,
represented by the two stable NSS along the z-axis. The result of this interaction manifests
in the first departure from the flow evolution depicted in figure 4. Indeed, the stable FSS
(purple) now further bifurcate into a pair of stable FSS and an unstable NSS (figure 6c).
We note that here we encounter again a two-step mechanism: first we have a supercritical
pitchfork bifurcation (stable FSS → 2 stable FSS + 1 unstable FSS) followed by a change
in nature from FSS to NSS on the unstable branch. Concurrently, on the xy-plane we
observe the appearance of the two unstable FSS (green) and stable NSS (blue) already
seen in Phase III → V of the spheroid (figure 4, § 5.2). This is consistent with the intuition
that external flow structures, especially in the xy-plane, are insensitive to the topological
defect and primarily respond to the object’s outer curvature. Overall, this process sets the
stage for a dramatic reconfiguration of the finite-thickness regime, relative to the spheroid.
Indeed, in the outer flow region, there are now eight stable and only four unstable FSS.
Thus these critical points no longer have the opportunity to form the pair of outer rings
(each made of two stable and two unstable FSS) of figure 4. Instead, they are forced to
connect in a new structure capable of accommodating the four extra stable FSS. The
solution is offered by a clover-like ring structure running through the midpoint of the
topological defect (figure 6d). This meeting point also has the effect of ‘locking’ the rings
in, preventing any further re-orientation, unlike those observed for the spheroid (Phases V
and VI in figure 4). The resulting flow now fundamentally differs from previously observed
finite-thickness regimes. In fact, although we can still identify a DC layer organized around
the smaller rings fit to the body, this recirculating flow region is now confined by an outer
flow that both extends to infinity and permeates the centre of the domain by merging
through the hole of the torus. This unique configuration may offer novel microfluidic
opportunities (subject to the considerations of § 3.2), whereby the easily accessible outer
flow now provides a natural mechanism to transport particles from the top and bottom
of the torus to the topological defect, thus focusing them for self-assembly or mixing
applications.

7. Conclusion
Towards the goal of extending our understanding of streaming flow dynamics in 3-D
settings, we start by revisiting the classical case of the oscillating sphere and present
observed flow structures and transitions through the lens of dynamical systems theory
(Bhosale et al. 2020). We further demonstrate the utility and extensibility of this approach
to understand streaming flows in more general, but still axisymmetric 3-D cases. We
then systematically investigate streaming in a fully 3-D setting by oscillating a spheroid
perpendicular to its axis of symmetry, revealing a rich dynamic behaviour that we
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Three-dimensional geometry and topology effects in viscous streaming

understand using bifurcation theory. Finally, we present a first foray into streaming induced
by a topologically distinct body. Thus a torus of length scales comparable with the
previously investigated spheroid is analysed, revealing intriguing flow organizations of
potential utility for microparticle concentration, self-assembly and mixing. Altogether,
these results provide physical intuition, principles and analysis tools to manipulate 3-D
streaming flows based on body geometry, topology and flow inertia, with potential
applications in microfluidics and microrobotics.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.1106.
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