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Abstract—Differential privacy is emerging as an effective 

solution to achieve privacy protection for the Artificial Intelligence 

neural network (ANN). However, not only matrix calculations of 

a neural network but also random noise injection mechanisms for 

differential privacy consume large power and resources. 

Traditionally, most privacy protection technologies are software 

technologies using von Neumann architecture and hardware with 

extra noise generation circuit unit. In this paper, a memristor 

based crossbar in-memory computing system is proposed to 

enable energy efficient privacy preserving technology in ANN. We 

utilize inherent cycle-to-cycle variations of memristors and apply 

the proposed variation-based pulse pair method during the weight 

update process. As a result, the proposed methods realize a 

machine learning system with privacy protection and show up to 

29.24% recognition accuracy improvement with various privacy 

budget ε. 

Keywords—differential privacy, memristor based noise injection, 

neural network 

I. INTRODUCTION 

Artificial intelligence involves many sensitive data, such as 
private, corporate, and national privacy information, which 
urgently needs effective privacy protection technologies. 
Differential privacy [1] is a popular solution that can provide a 
quantifiable indicator for privacy protection. From the 
perspective of differential privacy, machine learning algorithms 
could be designed to perform privacy preserving learning by 
introducing random noise [2]. However, the great problem is 
existing: 1) Machine learning training involves massive 
calculation, which introduces a large workload for hardware, 
especially for some real time applications such as online 
learning. 2) When learning systems involve privacy protection, 
noise injection is needed in each training stage [3, 4]. Such a 
high-cost training application further challenges hardware 
technology as well as impedes the development of privacy 
protection in ANN.  

To decrease the cost, many algorithm level solutions are 
proposed, for example, binary neural networks (BNN) [5] and 
neural network compression [6]. In addition, various hardware 
accelerators, such as Field Programmable Gate Arrays (FPGA), 
Application Specific Integrated Circuit (ASIC), Graphics 
Processing Units (GPUs), and Tensor Processing Unit (TPU), 
are developed. Nevertheless, the memory wall always exists [7] 

because of traditional Von Neumann architecture. Thus, 
emerging notions such as resistive computing, quantum 
computing, molecular computing, neuromorphic computing, 
memristor devices, quantum dots, and spin-wave devices, are 
explored. Among those technologies, memristor-based in-
memory processing architecture is a promising candidate 
because memristors have desirable metrics and CMOS process 
compatibility [8]. The notion of memristor was predicted dozens 
of years ago and its physical realization was demonstrated by 
Hewlett-Packard Lab in 2008 [9], [10]. A memristor has a 
simple three-layer structure whose conductance value can be 
changed with the applied pulse, which can achieve multiple 
conductance states, small scale size (less than 2 nm), high 
switching speed (less than 1 ns), and low programming power 
consumption [7]. Because of these metrics, memristor-based 
crossbar architecture achieves fast dot-product operations [11], 
which have been applied to fabricate neural network circuits 
such as compression/filtering [12] and image classification [13], 
[14].  

As for privacy protection in ANN, in [15], low-voltage static 
random-access memory (SRAM) chips are used to add failure 
as noise for training data, but the noise only follows a uniform 
distribution and does not satisfy the differential privacy theory 
for Gaussian and Laplace distribution. In [16], [17], in order to 
generate random numbers with high randomness, dedicated 
random number generation modules, such as physical 
unclonable function (PUF) and random number generator, are 
designed. These modules are accurate but require significant 
additional circuitry. Also, all the above work is based on CMOS 
technology, and not compatible with memristor-based learning 
systems. In [18], an advanced learning system is implemented 
based on memristor arrays, but noise in training data for 
theoretical privacy guarantees use software methods to seriously 
complicate calculation.  

What is more, as for memristors, some researchers point out 
the existence of non-ideal properties that includes non-linearity, 
device-to-device variation, cycle-to-cycle variation, maximum 
conductance variation, and minimum conductance variation 
[18], [19], [20], [21]. These non-ideal properties degrade the 
accuracy of a memristor-based learning system, however, such 
variations can be also considered as inherent resources for noise 
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generation that is necessary for differentially private learning 
systems.  

In this paper, we take the cycle-to-cycle variation as an 
advantage to realize hardware-based Gaussian noise injection. 
As a consequence, this paper explores differentially private 
learning systems and proposes a hardware-based solution by 
utilizing the non-ideal properties of memristors. Also, 
optimization methods are proposed to improve the utility of 
neural networks. The proposed methods add Gaussian noise 
distribution to a system without adding computational 
complexity and introducing extra hardware, which greatly 
improves the power and computation efficiency. 

 

II. PRELIMINARIES 

A. Differential Private Machine Learning Algorithm  

Differential privacy protection technology is recognized as a 
rigorous and robust protection model. The basic idea of the 
protection model is to achieve the privacy protection effect by 
adding noise mechanism on the original data, the conversion of 
the original data, or the statistical results. This protection method 
ensures that inserting or deleting a record in a dataset does not 
affect any calculated output. Differential privacy pro-vides 
provable guarantees of privacy, mitigating the risk of exposing 
sensitive training data in machine learning [2]. The definition of 
ε-differential privacy and equation is given below [1], [2]. A 
randomized mechanism A satisfies ε-differential privacy when 
any adjacent input d and d’, and any output S of A hold that 

Pr [A(d) = S]  ≤  eε · Pr [A(d’) = S]                     (1) 

where d and d’ represent neighboring (adjacent) datasets. In our 
study, each training dataset is a set of image-label pairs. The 
parameter ε is the privacy budget, which evaluates the privacy 
guarantee of the randomized mechanism A, thereby privacy 
preservation can be calculated and evaluated through ε. DP-
SGD (differential private Stochastic Gradient Descent) is a 
popular algorithm that obtains provable privacy guarantees for 
machine learning algorithm [22]. 

At each step of the DP-SGD, it computes the gradient for a 
random subset of examples, clips each gradient, computes the 
average, adds noise in order to protect privacy, and takes a step 
in the opposite direction of this average noisy gradient. Two 
operations are needed to ensure that stochastic gradient descent 
is a differentially private algorithm. The first is to clip gradient 
computed on each training image that is used to limit how much 
each training image can impact model parameters. The 
algorithm clips each gradient by a clipping threshold C. In this 
paper, we use L2 norm of gt(xi) to represent ||gt(xi)||2, which is 
shown in Fig. 1 and is explained in detail in [22]. The second is 
to sample and add random noise that is used to randomize the 
algorithm’s behavior. Thus, it is statistically impossible to 
identify whether a particular sample is included in the training 
set.  

 

Fig. 1. Outline of DP-SGD [22]. 

B. Memristors and Cycle-to-cycle Variation 

Memristors in crossbar array structure can carry out matrix 
multiplication operations in parallel within the analog domain, 
which can enable learning systems with high throughput at low 
energy and cost consumption. On-chip learning with a 
memristor crossbar array empowers the learning system with 
online learning ability [23]. A neural network is inspired by the 
biological systems that transform inputs to desired outputs by 
feed-forward actions. As shown in Fig. 2, in the hardware 
implementation, the neural network can be directly mapped into 
a crossbar structure where the multiplication of vector and 
matrix can be conducted by applying input voltages to each row 
and reading currents from each column. Memristors lo-cate in 
cross points. Their desirable properties support the memristor-
based crossbar circuit to be a promising substitute technology to 
traditional ones. Also, many peripheral circuits are required for 
the complete functionality of the on-chip learning system. Write 
and read circuits are used to program the memristor cell and read 
the output, respectively. Digital-to-analog converter (DAC) and 
analog-to-digital converter (ADC) transfer signal between the 
analog domain and the digital do-main. Additional circuits are 
required for the activation function and the timing controller.  

 
Fig. 2. Hardware implementation of neural networks using memristor crossbar. 
Vi, Gi,j, and Ij represent the input signal in the ith row, the conductance of the 

memristor in the jth column and ith row, and the output current that represent 

the dot product result of V and G, respectively. 

 
Memristors can achieve multiple conductance states. In our 

learning system, the conductance of each memristor represents 
the weight of each synapse. As shown in Fig. 3, positive and 
negative input voltage pulses that are larger than threshold 
voltages can switch a memristor gradually from Gmin to Gmax or 
from Gmax to Gmin, where Gmin and Gmax represent minimum 
conductance and maximum conductance, respectively. Thus 
conductance/weight increase processes are called long-term 
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potentiation (LTP) and the conductance/weight decrease 
processes are called long-term depression (LTD) [24].   

In the backpropagation phase of the DP-SGD algorithm, the 

weight update values (∆w) will be translated to the number of 

LTP or LTD pulses and applied to the synaptic array. The 

amount of conductance change should be linearly proportional 

to the number of write pulses, however, this linear change is 

broken by variations of memristors. Among all variations of 

memristors, instead of caused by manufacturing process 

variation, the cycle-to-cycle variation is caused by intrinsically 

stochastic resistance switching mechanisms that can be 

approximated as Gaussian [25], [26], [27], [28], [29], [30].  

In each weight update step for each memristor, the cycle-to-

cycle variation that subjects to standard normal distribution N 

(0, σ) and the conductance variation (Gvar) that is caused by 

cycle-to-cycle variation after memristor’s Num_P pulses 

applied is illustrated as [17], [30], 

 Gvar = N (0, σ) × (Num_P)1/2                 (2) 

where Num_P represents the applied pulse number [31], [32]. 

 

 

Fig. 3. Long-term potentiation process (LTP) and long-term decrease 
process (LTD). 

In this paper, we make use of cycle-to-cycle variation and 
achieve the algorithm behavior of DP-SGD based on a 
memristor-based neural network, which is discussed in Section 
III. Thus, we realize a privacy-preserving memristor-based 
learning system without introducing extra computing processing 
and noise generation units. 

 

III. METHODOLOGY AND OPTIMIZATION 

A. Positive and Negative Pulse Pair (PN) Method 

A memristor-based methodology to complete random noise 
injection of privacy preserving neural network consists of 
memristor crossbar structure and peripheral circuits. In a 
memristor-based neural network, each weight can be 
represented by a memristor whose conductance changes with 
input pulses. A privacy preserving neural network needs 
introducing random Gaussian noise to each memristor. We 
propose a Positive and Negative Pulse Pair (PN) method that 
applies positive and negative pulses pair to each memristor. As 
shown in Fig. 3, positive pulse and negative pulse make 
conductance increase and decrease, respectively. Cycle-to-cycle 

variation exists when one or more pairs of pulses applied, which 
brings Gaussian noise to a target memristor. When the amount 
of change in conductance caused by such positive and negative 
pulses counteract each other, it is equivalent to adding a 
Gaussian noise, which is illustrated by Equations. (2), (3), and 
(4). First, we apply i positive pulses, the conductance of the 
memristor (G) changes from G0 to G1, 

G1 = G0 + ((Gmax-Gmin)/NLevel )× i + Gvar            (3) 

After applying j negative pulses, it changes from G1  to G2, 

G2 = G1 - ((Gmax-Gmin)/NLevel )× j + Gvar              (4) 

If i=j, from (2), (3), and (4), we get 

G2 = G0  + N (0, σ) × ( 2i )1/2                    (5) 

Thus, Gaussian noise is added to the target memristor 

without introducing extra circuits, only using one or more pairs 

of positive and negative pulses. The scale of injected noise is 

decided by the number of the added PN pulse pair and the pulse 

width of the added PN pulse pair. In our simulations in Section 

IV, the pulse-width of the PN method is equal to the pulse-width 

of normal weight updating. Each time, the injected noise of a 

memristor is 

Gvar = N (0, σ) × ( n + 2m )1/2                (6) 

where σ represents the noise scale of cycle-to-cycle variation 

introduced by each input pulse for a memristor. n represents the 

number of pulses that are used to update weight, and m reflect 

the noise requirement of privacy protection of the PN method.  

 

 
(a) 

 

 

 
(b) 

Fig. 4. Workflow of the PN method, where BP represents backpropagation of 

SGD, n represents the number of pulses that are used to update weight and m 

represents the number of positive and negative pulse pairs. Example: After 
applying PN method, for memristor A n=i, m=n’, and for memristor B, n=j, 

m=n’. 
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B. Implementation of DP-SGD by PN Method 

As illustrated in Fig. 1, two modifications (clip gradient and 
add noise) are needed to ensure that stochastic gradient descent 
(SGD) is a differentially private algorithm. For the first 
modification, in order to constrain how much each training 
sample can influence the resulting gradient computation (model 
parameters), the sensitivity of each gradient needs to be 
bounded. For the second modification, it is necessary to 
randomize the behavior of the algorithm to make it statistically 
impossible to identify whether a particular training sample is 
included in the training dataset, which can be achieved by 
adding random noise to the clipped gradients. 

The PN method achieves adding random noise by extra input 
pulses to memristors. For hardware implementation, the selected 
cells to be written will be on the same row, and programming 
pulses or biases are provided from columns, allowing the 
selected cells to be tuned differently in parallel. Since the weight 
increase and decrease need different programming voltage 
polarities, the weight update process (writing process for the 
model parameter) requires two steps with positive and negative 
voltages, respectively. In each step, extra pairs of input pulses 
are added to each memristor, thereby random noises are added 
to the conductance of memristors. Fig. 4 shows the hardware 
implementation flow of the PN method, which we adopt in 
Section IV. 

C. Clipping Method and Optimization Strategies 

By the PN method, the noise added of DP-SGD can be 
implemented by hardware solution, however, Fig. 1 shows that 
the gradient clipping process needs to calculate the L2 norm of 
the gradient matrix. These processes inevitably increase the 
computational load of the system. Therefore, we propose a 
clipping method that uses a simple hardware unit to meet the 
requirement of clipping without coping with matrix calculation, 
as shown in Fig. 5. 

This method uses comparators to compare gradient value 
with a reference gradient value and makes sure the L2 norm 
values of the gradient are all less than 1. When the gradient is 
clipped, the maximum number of weight update pulses is fixed. 
Accordingly, the system saves the cost to make matrix 
calculation and ensures that how much each training sample can 
influence model parameters is bounded. 

 

 

 
 

(a) 

 

 
(b) 

 

Fig. 5. Workflow of the Clipping method, where BP represents 
backpropagation of SGD, n represents the number of pulses that are used to 

update weight and m represents the number of positive and negative pulse pairs. 

Example: After applying Clipping method, for memristor A n= Nc, m=0 and 

for memristor B, n=j, m=0. 

 
Due to the cycle-to-cycle variation is the inherent 

characteristics of the memristor, even in a routine weights 
update process, parameters in the model of a memristor-based 
hardware system suffer from random noise addition. 
Accordingly, we propose an Equivalent Substitution (ES) 
strategy that considers random noise from the routine weights 
update process as random noise injection. In this way, the 
amount of pulses pair of PN method for privacy protection can 
be reduced because certain random noise is already introduced 
by the routine weights update. The Equivalent Substitution (ES) 
method decreases the amount of noise added by the PN method 
so that the accuracy of the differentially private learning systems 
can be improved. That is, we take advantage of the inherent 
variation of memristors to equivalent substitute partial noise 
injected by privacy-preserving mechanism, accordingly, greatly 
reducing the negative effect of the cycle-to-cycle variation and 
making the cycle-to-cycle variation in weight update process to 
be a part of a privacy-preserving mechanism. 

IV. CASE STUDY AND ANALYSIS 

Simulations are conducted to verify our proposed methods 
including PN method, Clipping method as well as combinational 
methods of them. To verify the effectiveness of proposed 
methods and to illustrate the performance of each method, a 
comprehensive suite of simulations has been conducted. We 
adopt the neural network hardware platform, NeuroSim+, to 
train privacy-preserving multi-layer neural networks with the 
DP-SGD algorithm [28]. This simulator is a circuit model of 
neuro-inspired architectures to emulate the circuit behavior of 
an online leaning recognition scenario with Modified National 
Institute of Standards and Technology (MNIST) [44] dataset 
based on memristors. The neural network topology includes 400 
neurons as an input layer, 100 neurons as a hidden layer, and 10 
neurons as an output layer. The simulator emulates the hardware 
to train the network with images randomly chosen from the 
training dataset MNIST that includes 60,000 images and classify 
the testing dataset with 10,000 images. The training process has 
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two parts, the feed-forward propagation and the 
backpropagation, which includes weighted sum operation, 
neuron activation operation, recognition, and deviation 
calculation. The deviations are used to update the conductance 
of memristors using identical positive input pulses or identical 
negative input pulses. We integrate our proposed methods into 
this simulator, where memristors are set to have one hundred 
states. 

A. Simulation Results 

Since lots of types of memristors exist, the proposed 
methods are explored with various configurations include three 
levels of cycle-to-cycle variation and three levels of m (in 
Equation. (6)) that are explained, which is shown in Table 1.  

TABLE 1 

PARAMETERS 

Level 1 2 3 

σ/(Gmax-Gmin) 0.1% 0.2% 0.3% 

2m 0.2 0.4 0.6 

 
Table 2 shows the recognition accuracy of MNIST 

handwriting digits under various variation levels and noise 
levels through the memristor-based fully connected neural 
network. It shows that for a different combination of σ and m, 
the method that combines PN, Clipping, and ES always shows 
higher accuracy as compared to other methods. As a result, the 
proposed optimization methods are quite effective to increase 
the recognition accuracy of the neural network under the same 
noise injection (privacy protection) level.  

TABLE 2  

RECOGNITION ACCURACY UNDER VARIOUS VARIATION AND NOISE 

m/σ level PN Combination 
Accuracy 

improved 

Privacy 

budget 

1/1 86.77% 92.07% 5.30% 53.13 

1/2 70.40% 90.56% 20.16% 26.57 

1/3 58.30% 67.98% 9.68% 17.71 

2/1 59.19% 86.16% 26.97% 26.56 

2/2 52.21% 63.58% 11.37% 13.28 

2/3 49.61% 60.44% 10.83% 8.85 

3/1 56.52% 85.76% 29.24% 17.71 

3/2 47.88% 58.19% 10.31% 8.85 

3/3 40.81% 55.52% 14.71% 5.90 

Average 57.97% 73.36% 15.40% N/A 

 

In this paper, the σdp of noise injection is obtained by 

 σdp = σ * 2m / learning_rate                           (7) 

where σdp, 2m, and learning_rate represent the σ of noise for 
differential privacy protection that is illustrated in Fig. 1, the 
parameter of noise requirement that is illustrated in Equation. 
(6), and the learning rate of DP-SGD algorithm, respectively. 

Accordingly, for optimization methods based on parameters 
in Table 1, the results in Table 2 indicate 5.3% to 29.24% 
recognition accuracy improvement when the privacy budget ε 
ranges from 5.9 to 53.13. The average accuracy is increased by 
15.40%.  

B. Comparison with Existing Work 

Instead of implementing the DP-SGD algorithm for privacy 
preservation by a traditional computing system, the proposed PN 
method is simple and feasible to add random Gaussian noise by 
memristor-based hardware. As compared with the state-of-art 
[15], [17], [18], the PN method realizes hardware-based privacy 
protection by using cycle-to-cycle variation. In this way, the 
memristor-based machine learning system does not need an 
extra random noise generator unit. The scale of injected noise is 
adjustable by changing the number of the PN pulse pair or the 
PN pulse’s duration. The Clipping method limits the impact of 
each training data on model parameters, which saves the cost of 
the L2 norm of the matrix’s calculation. The PN method is a 
universal method that works for all memristor-based hardware 
that needs noise injection. Accordingly, the PN method is an 
effective technique to achieve a hardware-based privacy 
protection system.  

V. CONCLUSIONS 

In this paper, the PN (Positive and Negative Pulse Pair 
method) is proposed to realize the hardware-based noise 
injection, thereby realizing privacy protection with hardware 
implementation. Instead of adopting the traditional algorithm-
based technology, the PN method focuses on hardware 
implementation to enable the differentially private learning 
systems. We add extra random noise to memristor’s 
conductance/weight by positive pulses and negative pulses 
together, where the impact of LTP and LTD process can 
counteract each other. Proposed methods avoid complex 
peripheral circuits. Models with various noise circumstances 
using the PN method are established to investigate the 
effectiveness of the proposed methods. With the method that 
combines PN, Clipping, and ES, simulation results indicate 
5.3% to 29.24% average recognition accuracy improvement 
when the privacy budget ε ranges from 5.9 to 53.13. In addition, 
the proposed methods can be adapted to many other memristor-
based hardware systems. Consequently, the PN method is 
proved to be an effective technique that can provide hardware 
solutions of the differentially private learning systems and to 
prevent accuracy loss that is caused by privacy-preserving noise 
injection. 
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