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Abstract—Differential privacy is emerging as an effective
solution to achieve privacy protection for the Artificial Intelligence
neural network (ANN). However, not only matrix calculations of
a neural network but also random noise injection mechanisms for
differential privacy consume large power and resources.
Traditionally, most privacy protection technologies are software
technologies using von Neumann architecture and hardware with
extra noise generation circuit unit. In this paper, a memristor
based crossbar in-memory computing system is proposed to
enable energy efficient privacy preserving technology in ANN. We
utilize inherent cycle-to-cycle variations of memristors and apply
the proposed variation-based pulse pair method during the weight
update process. As a result, the proposed methods realize a
machine learning system with privacy protection and show up to
29.24% recognition accuracy improvement with various privacy
budget &.

Keywords—differential privacy, memristor based noise injection,
neural network

I. INTRODUCTION

Artificial intelligence involves many sensitive data, such as
private, corporate, and national privacy information, which
urgently needs effective privacy protection technologies.
Differential privacy [1] is a popular solution that can provide a
quantifiable indicator for privacy protection. From the
perspective of differential privacy, machine learning algorithms
could be designed to perform privacy preserving learning by
introducing random noise [2]. However, the great problem is
existing: 1) Machine learning training involves massive
calculation, which introduces a large workload for hardware,
especially for some real time applications such as online
learning. 2) When learning systems involve privacy protection,
noise injection is needed in each training stage [3, 4]. Such a
high-cost training application further challenges hardware
technology as well as impedes the development of privacy
protection in ANN.

To decrease the cost, many algorithm level solutions are
proposed, for example, binary neural networks (BNN) [5] and
neural network compression [6]. In addition, various hardware
accelerators, such as Field Programmable Gate Arrays (FPGA),
Application Specific Integrated Circuit (ASIC), Graphics
Processing Units (GPUs), and Tensor Processing Unit (TPU),
are developed. Nevertheless, the memory wall always exists [7]
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because of traditional Von Neumann architecture. Thus,
emerging notions such as resistive computing, quantum
computing, molecular computing, neuromorphic computing,
memristor devices, quantum dots, and spin-wave devices, are
explored. Among those technologies, memristor-based in-
memory processing architecture is a promising candidate
because memristors have desirable metrics and CMOS process
compatibility [8]. The notion of memristor was predicted dozens
of years ago and its physical realization was demonstrated by
Hewlett-Packard Lab in 2008 [9], [10]. A memristor has a
simple three-layer structure whose conductance value can be
changed with the applied pulse, which can achieve multiple
conductance states, small scale size (less than 2 nm), high
switching speed (less than 1 ns), and low programming power
consumption [7]. Because of these metrics, memristor-based
crossbar architecture achieves fast dot-product operations [11],
which have been applied to fabricate neural network circuits
such as compression/filtering [12] and image classification [13],
[14].

As for privacy protection in ANN, in [15], low-voltage static
random-access memory (SRAM) chips are used to add failure
as noise for training data, but the noise only follows a uniform
distribution and does not satisfy the differential privacy theory
for Gaussian and Laplace distribution. In [16], [17], in order to
generate random numbers with high randomness, dedicated
random number generation modules, such as physical
unclonable function (PUF) and random number generator, are
designed. These modules are accurate but require significant
additional circuitry. Also, all the above work is based on CMOS
technology, and not compatible with memristor-based learning
systems. In [18], an advanced learning system is implemented
based on memristor arrays, but noise in training data for
theoretical privacy guarantees use software methods to seriously
complicate calculation.

What is more, as for memristors, some researchers point out
the existence of non-ideal properties that includes non-linearity,
device-to-device variation, cycle-to-cycle variation, maximum
conductance variation, and minimum conductance variation
[18], [19], [20], [21]. These non-ideal properties degrade the
accuracy of a memristor-based learning system, however, such
variations can be also considered as inherent resources for noise
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generation that is necessary for differentially private learning
systems.

In this paper, we take the cycle-to-cycle variation as an
advantage to realize hardware-based Gaussian noise injection.
As a consequence, this paper explores differentially private
learning systems and proposes a hardware-based solution by
utilizing the non-ideal properties of memristors. Also,
optimization methods are proposed to improve the utility of
neural networks. The proposed methods add Gaussian noise
distribution to a system without adding computational
complexity and introducing extra hardware, which greatly
improves the power and computation efficiency.

II. PRELIMINARIES

A. Differential Private Machine Learning Algorithm

Differential privacy protection technology is recognized as a
rigorous and robust protection model. The basic idea of the
protection model is to achieve the privacy protection effect by
adding noise mechanism on the original data, the conversion of
the original data, or the statistical results. This protection method
ensures that inserting or deleting a record in a dataset does not
affect any calculated output. Differential privacy pro-vides
provable guarantees of privacy, mitigating the risk of exposing
sensitive training data in machine learning [2]. The definition of
e-differential privacy and equation is given below [1], [2]. A
randomized mechanism A4 satisfies e-differential privacy when
any adjacent input d and d’, and any output S of 4 hold that

Pr[Ad) =S] < e -Pr[Ad’) =S5] 1)

where d and d’ represent neighboring (adjacent) datasets. In our
study, each training dataset is a set of image-label pairs. The
parameter ¢ is the privacy budget, which evaluates the privacy
guarantee of the randomized mechanism A, thereby privacy
preservation can be calculated and evaluated through e¢. DP-
SGD (differential private Stochastic Gradient Descent) is a
popular algorithm that obtains provable privacy guarantees for
machine learning algorithm [22].

At each step of the DP-SGD, it computes the gradient for a
random subset of examples, clips each gradient, computes the
average, adds noise in order to protect privacy, and takes a step
in the opposite direction of this average noisy gradient. Two
operations are needed to ensure that stochastic gradient descent
is a differentially private algorithm. The first is to clip gradient
computed on each training image that is used to limit how much
each training image can impact model parameters. The
algorithm clips each gradient by a clipping threshold C. In this
paper, we use L2 norm of gt(xi) to represent ||gt(xi)||2, which is
shown in Fig. 1 and is explained in detail in [22]. The second is
to sample and add random noise that is used to randomize the
algorithm’s behavior. Thus, it is statistically impossible to
identify whether a particular sample is included in the training
set.
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Fig. 1. Outline of DP-SGD [22].

B. Memristors and Cycle-to-cycle Variation

Memristors in crossbar array structure can carry out matrix
multiplication operations in parallel within the analog domain,
which can enable learning systems with high throughput at low
energy and cost consumption. On-chip learning with a
memristor crossbar array empowers the learning system with
online learning ability [23]. A neural network is inspired by the
biological systems that transform inputs to desired outputs by
feed-forward actions. As shown in Fig. 2, in the hardware
implementation, the neural network can be directly mapped into
a crossbar structure where the multiplication of vector and
matrix can be conducted by applying input voltages to each row
and reading currents from each column. Memristors lo-cate in
cross points. Their desirable properties support the memristor-
based crossbar circuit to be a promising substitute technology to
traditional ones. Also, many peripheral circuits are required for
the complete functionality of the on-chip learning system. Write
and read circuits are used to program the memristor cell and read
the output, respectively. Digital-to-analog converter (DAC) and
analog-to-digital converter (ADC) transfer signal between the
analog domain and the digital do-main. Additional circuits are
required for the activation function and the timing controller.

Metal intcrconnects

&
A
&
N - V2
J;L , Memristor
i
...... I=E (VG

Fig. 2. Hardware implementation of neural networks using memristor crossbar.
Vi, Gij, and I; represent the input signal in the i, row, the conductance of the
memristor in the j,; column and ith row, and the output current that represent
the dot product result of V and G, respectively.

Menmristors can achieve multiple conductance states. In our
learning system, the conductance of each memristor represents
the weight of each synapse. As shown in Fig. 3, positive and
negative input voltage pulses that are larger than threshold
voltages can switch a memristor gradually from Gy t0 Gax OF
from Gyax t0 Guin, where Gy and Gmax represent minimum
conductance and maximum conductance, respectively. Thus
conductance/weight increase processes are called long-term
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potentiation (LTP) and the conductance/weight decrease
processes are called long-term depression (LTD) [24].

In the backpropagation phase of the DP-SGD algorithm, the
weight update values (Aw) will be translated to the number of
LTP or LTD pulses and applied to the synaptic array. The
amount of conductance change should be linearly proportional
to the number of write pulses, however, this linear change is
broken by variations of memristors. Among all variations of
memristors, instead of caused by manufacturing process
variation, the cycle-to-cycle variation is caused by intrinsically
stochastic resistance switching mechanisms that can be
approximated as Gaussian [25], [26], [27], [28], [29], [30].

In each weight update step for each memristor, the cycle-to-
cycle variation that subjects to standard normal distribution N
(0, 0) and the conductance variation (Gvar) that is caused by
cycle-to-cycle variation after memristor’s Num P pulses
applied is illustrated as [17], [30],

Gvar = N (0, 0) x (Num_P)"” )
where Num_P represents the applied pulse number [31], [32].

Mcem rislo#

Conductance

Number of pulse

Fig. 3. Long-term potentiation process (LTP) and long-term decrease
process (LTD).

In this paper, we make use of cycle-to-cycle variation and
achieve the algorithm behavior of DP-SGD based on a
memristor-based neural network, which is discussed in Section
III. Thus, we realize a privacy-preserving memristor-based
learning system without introducing extra computing processing
and noise generation units.

III. METHODOLOGY AND OPTIMIZATION

A. Positive and Negative Pulse Pair (PN) Method

A memristor-based methodology to complete random noise
injection of privacy preserving neural network consists of
memristor crossbar structure and peripheral circuits. In a
memristor-based neural network, each weight can be
represented by a memristor whose conductance changes with
input pulses. A privacy preserving neural network needs
introducing random Gaussian noise to each memristor. We
propose a Positive and Negative Pulse Pair (PN) method that
applies positive and negative pulses pair to each memristor. As
shown in Fig. 3, positive pulse and negative pulse make
conductance increase and decrease, respectively. Cycle-to-cycle

variation exists when one or more pairs of pulses applied, which
brings Gaussian noise to a target memristor. When the amount
of change in conductance caused by such positive and negative
pulses counteract each other, it is equivalent to adding a
Gaussian noise, which is illustrated by Equations. (2), (3), and
(4). First, we apply i positive pulses, the conductance of the
memristor (G) changes from Gy to Gy,

G; = Go+ ((Gmax-Gmin)/Niever) X i + Gvar 3)
After applying j negative pulses, it changes from G; to G,
G> = G- ((Gmax-Gmin)/Niever ) % j + Gvar 4
If i=, from (2), (3), and (4), we get
G>:=Gy+N(0,0) x(2i)” %)

Thus, Gaussian noise is added to the target memristor
without introducing extra circuits, only using one or more pairs
of positive and negative pulses. The scale of injected noise is
decided by the number of the added PN pulse pair and the pulse
width of the added PN pulse pair. In our simulations in Section
IV, the pulse-width of the PN method is equal to the pulse-width
of normal weight updating. Each time, the injected noise of a
memristor is

Gvar =N (0, 6) x (n + 2m )" (6)

where o represents the noise scale of cycle-to-cycle variation
introduced by each input pulse for a memristor. n represents the
number of pulses that are used to update weight, and m reflect
the noise requirement of privacy protection of the PN method.
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Fig. 4. Workflow of the PN method, where BP represents backpropagation of
SGD, n represents the number of pulses that are used to update weight and m
represents the number of positive and negative pulse pairs. Example: After
applying PN method, for memristor A n=i, m=n’, and for memristor B, n=j,
m=n’.
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B. Implementation of DP-SGD by PN Method

As illustrated in Fig. 1, two modifications (clip gradient and
add noise) are needed to ensure that stochastic gradient descent
(SGD) is a differentially private algorithm. For the first
modification, in order to constrain how much each training
sample can influence the resulting gradient computation (model
parameters), the sensitivity of each gradient needs to be
bounded. For the second modification, it is necessary to
randomize the behavior of the algorithm to make it statistically
impossible to identify whether a particular training sample is
included in the training dataset, which can be achieved by
adding random noise to the clipped gradients.

The PN method achieves adding random noise by extra input
pulses to memristors. For hardware implementation, the selected
cells to be written will be on the same row, and programming
pulses or biases are provided from columns, allowing the
selected cells to be tuned differently in parallel. Since the weight
increase and decrease need different programming voltage
polarities, the weight update process (writing process for the
model parameter) requires two steps with positive and negative
voltages, respectively. In each step, extra pairs of input pulses
are added to each memristor, thereby random noises are added
to the conductance of memristors. Fig. 4 shows the hardware
implementation flow of the PN method, which we adopt in
Section I'V.

C. Clipping Method and Optimization Strategies

By the PN method, the noise added of DP-SGD can be
implemented by hardware solution, however, Fig. 1 shows that
the gradient clipping process needs to calculate the L2 norm of
the gradient matrix. These processes inevitably increase the
computational load of the system. Therefore, we propose a
clipping method that uses a simple hardware unit to meet the
requirement of clipping without coping with matrix calculation,
as shown in Fig. 5.

This method uses comparators to compare gradient value
with a reference gradient value and makes sure the L2 norm
values of the gradient are all less than 1. When the gradient is
clipped, the maximum number of weight update pulses is fixed.
Accordingly, the system saves the cost to make matrix
calculation and ensures that how much each training sample can
influence model parameters is bounded.
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Fig. 5. Workflow of the Clipping method, where BP represents
backpropagation of SGD, n represents the number of pulses that are used to
update weight and m represents the number of positive and negative pulse pairs.
Example: After applying Clipping method, for memristor A n= Nc¢, m=0 and
for memristor B, n=j, m=0.

Due to the cycle-to-cycle wvariation is the inherent
characteristics of the memristor, even in a routine weights
update process, parameters in the model of a memristor-based
hardware system suffer from random noise addition.
Accordingly, we propose an Equivalent Substitution (ES)
strategy that considers random noise from the routine weights
update process as random noise injection. In this way, the
amount of pulses pair of PN method for privacy protection can
be reduced because certain random noise is already introduced
by the routine weights update. The Equivalent Substitution (ES)
method decreases the amount of noise added by the PN method
so that the accuracy of the differentially private learning systems
can be improved. That is, we take advantage of the inherent
variation of memristors to equivalent substitute partial noise
injected by privacy-preserving mechanism, accordingly, greatly
reducing the negative effect of the cycle-to-cycle variation and
making the cycle-to-cycle variation in weight update process to
be a part of a privacy-preserving mechanism.

IV. CASE STUDY AND ANALYSIS

Simulations are conducted to verify our proposed methods
including PN method, Clipping method as well as combinational
methods of them. To verify the effectiveness of proposed
methods and to illustrate the performance of each method, a
comprehensive suite of simulations has been conducted. We
adopt the neural network hardware platform, NeuroSim+, to
train privacy-preserving multi-layer neural networks with the
DP-SGD algorithm [28]. This simulator is a circuit model of
neuro-inspired architectures to emulate the circuit behavior of
an online leaning recognition scenario with Modified National
Institute of Standards and Technology (MNIST) [44] dataset
based on memristors. The neural network topology includes 400
neurons as an input layer, 100 neurons as a hidden layer, and 10
neurons as an output layer. The simulator emulates the hardware
to train the network with images randomly chosen from the
training dataset MNIST that includes 60,000 images and classify
the testing dataset with 10,000 images. The training process has
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two parts, the feed-forward propagation and the
backpropagation, which includes weighted sum operation,
neuron activation operation, recognition, and deviation
calculation. The deviations are used to update the conductance
of memristors using identical positive input pulses or identical
negative input pulses. We integrate our proposed methods into
this simulator, where memristors are set to have one hundred
states.

A. Simulation Results

Since lots of types of memristors exist, the proposed
methods are explored with various configurations include three
levels of cycle-to-cycle variation and three levels of m (in
Equation. (6)) that are explained, which is shown in Table 1.

TABLE 1
PARAMETERS
Level 1 2 3
6/(Gmax-Gmin) 0.1% 0.2% 0.3%
2m 0.2 0.4 0.6

Table 2 shows the recognition accuracy of MNIST
handwriting digits under various variation levels and noise
levels through the memristor-based fully connected neural
network. It shows that for a different combination of ¢ and m,
the method that combines PN, Clipping, and ES always shows
higher accuracy as compared to other methods. As a result, the
proposed optimization methods are quite effective to increase
the recognition accuracy of the neural network under the same
noise injection (privacy protection) level.

TABLE 2
RECOGNITION ACCURACY UNDER VARIOUS VARIATION AND NOISE
m/o level PN Combination _Accuracy Privacy
improved budget
1/1 86.77% 92.07% 5.30% 53.13
1/2 70.40% 90.56% 20.16% 26.57
1/3 58.30% 67.98% 9.68% 17.71
2/1 59.19% 86.16% 26.97% 26.56
2/2 52.21% 63.58% 11.37% 13.28
2/3 49.61% 60.44% 10.83% 8.85
3/1 56.52% 85.76% 29.24% 17.71
32 47.88% 58.19% 10.31% 8.85
3/3 40.81% 55.52% 14.71% 5.90
Average 57.97% 73.36% 15.40% N/A

In this paper, the 0,4, of noise injection is obtained by

(7

where o4y, 2m, and learning_rate represent the o of noise for
differential privacy protection that is illustrated in Fig. 1, the
parameter of noise requirement that is illustrated in Equation.
(6), and the learning rate of DP-SGD algorithm, respectively.

O4p = 0 * 2m /[ learning_rate

Accordingly, for optimization methods based on parameters
in Table 1, the results in Table 2 indicate 5.3% to 29.24%
recognition accuracy improvement when the privacy budget ¢
ranges from 5.9 to 53.13. The average accuracy is increased by
15.40%.
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B. Comparison with Existing Work

Instead of implementing the DP-SGD algorithm for privacy
preservation by a traditional computing system, the proposed PN
method is simple and feasible to add random Gaussian noise by
memristor-based hardware. As compared with the state-of-art
[15], [17], [18], the PN method realizes hardware-based privacy
protection by using cycle-to-cycle variation. In this way, the
memristor-based machine learning system does not need an
extra random noise generator unit. The scale of injected noise is
adjustable by changing the number of the PN pulse pair or the
PN pulse’s duration. The Clipping method limits the impact of
each training data on model parameters, which saves the cost of
the L2 norm of the matrix’s calculation. The PN method is a
universal method that works for all memristor-based hardware
that needs noise injection. Accordingly, the PN method is an
effective technique to achieve a hardware-based privacy
protection system.

V. CONCLUSIONS

In this paper, the PN (Positive and Negative Pulse Pair
method) is proposed to realize the hardware-based noise
injection, thereby realizing privacy protection with hardware
implementation. Instead of adopting the traditional algorithm-
based technology, the PN method focuses on hardware
implementation to enable the differentially private learning
systems. We add extra random noise to memristor’s
conductance/weight by positive pulses and negative pulses
together, where the impact of LTP and LTD process can
counteract each other. Proposed methods avoid complex
peripheral circuits. Models with various noise circumstances
using the PN method are established to investigate the
effectiveness of the proposed methods. With the method that
combines PN, Clipping, and ES, simulation results indicate
5.3% to 29.24% average recognition accuracy improvement
when the privacy budget € ranges from 5.9 to 53.13. In addition,
the proposed methods can be adapted to many other memristor-
based hardware systems. Consequently, the PN method is
proved to be an effective technique that can provide hardware
solutions of the differentially private learning systems and to
prevent accuracy loss that is caused by privacy-preserving noise
injection.
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