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and Generative Physiological Modeling: A Case
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Abstract— Objective: Individual physiological experi-
ments typically provide useful but incomplete information
about a studied physiological process. As a result, inferring
the unknown parameters of a physiological model from
experimental data is often challenging. The objective of
this paper is to propose and illustrate the efficacy of a
collective variational inference (C-VI) method, intended to
reconcile low-information and heterogeneous data from a
collection of experiments to produce robust personalized
and generative physiological models. Methods: To derive
the C-VI method, we utilize a probabilistic graphical model
to impose structure on the available physiological data,
and algorithmically characterize the graphical model using
variational Bayesian inference techniques. To illustrate the
efficacy of the C-VI method, we apply it to a case study
on the mathematical modeling of hemorrhage resuscita-
tion. Results: In the context of hemorrhage resuscitation
modeling, the C-VI method could reconcile heterogeneous
combinations of hematocrit, cardiac output, and blood
pressure data across multiple experiments to obtain (i)
robust personalized models along with associated mea-
sures of uncertainty and signal quality, and (ii) a generative
model capable of reproducing the physiological behavior
of the population. Conclusion: The C-VI method facilitates
the personalized and generative modeling of physiological
processes in the presence of low-information and hetero-
geneous data. Significance: The resulting models provide a
solid basis for the development and testing of interpretable
physiological monitoring, decision-support, and closed-
loop control algorithms.

Index Terms— Collective Inference, Variational Inference,
Personalized Medicine, Digital Twin, In Silico Clinical Trials,
Virtual Patients, Hemorrhage, Fluid Resuscitation.

I. INTRODUCTION

AUTONOMOUS physiological monitoring and medical
intervention can potentially provide substantial improve-

ments to the safety and effectiveness of medical care by
making recommendations and/or performing interventions in
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a continuous, precise, and personalized manner [1]–[4]. In
recent years, this potential has motivated a considerable body
of research on the design and testing of decision-support and
closed-loop control systems for medical intervention [5]–[17].
Yet, regulatory approval and widespread real-world adoption
of these technologies necessitate further advancements in
the state of the art in terms of patient safety, physiological
interpretability, awareness of physiological context, and the
ability to coordinate multiple therapeutic objectives associated
with multiple physiological outputs [18], [19]. Arriving at
an interpretable, context-aware, and coordinated autonomous
medical care system is highly contingent upon representative
mathematical models of the relevant physiological mecha-
nisms [20]–[22]. These mathematical models, however, are
usually only determined up to a set of latent (i.e., unknown)
parameters that must be inferred from experimental data.

An array of versatile methods have been proposed in the
literature that can be utilized to infer the unknown parameters
of a mathematical model. Maximum-Likelihood Estimation
(MLE) is a popular technique that can be used to find point
estimates for model parameters by maximizing the likelihood
of observed data [23], while Bayesian inference techniques
can provide posterior beliefs about model parameters based
on prior beliefs and observed data. These posterior beliefs
can in turn be used to extract point estimates for model
parameters and quantify parameter uncertainties [24], [25].
Obtaining posterior beliefs for model parameters is in general
a non-trivial mathematical problem. However, many effective
numerical solutions have been proposed for this purpose: the
Markov Chain Monte Carlo (MCMC) class of algorithms
such as Metropolis-Hastings and Hamiltonian-Monte-Carlo
can provide high-fidelity samples from the posterior [24], [26],
[27], while approaches such as Approximate Bayesian Com-
putation can provide approximate samples from the posterior
[28], [29]. In recent years, statistics and machine learning
research has shown notable advances in Variational Inference
(VI) techniques, through which it is possible to obtain analyt-
ical approximations to the posterior using optimization [30],
[31]. VI algorithms tend to require fewer computations than
MCMC, while stochastic and amortized variants of VI provide
the opportunity to handle larger datasets and more complex
problem formulations [32], [33].

In addition to the method of inference, the formulation of
the inference problem has notable effects on the fidelity of the
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resulting mathematical models. For instance, in case experi-
mental data are obtained from multiple non-identical subjects,
the problem formulation must account for the existence of
inter-subject variability. The Empirical Bayes framework and
its closely related counterpart in Nonlinear Mixed-Effects
Modeling are effective problem formulations for this purpose,
where subject-level models (e.g., personalized models) are
augmented with a population-level model (e.g., a model of
inter-subject variability, or equivalently, an empirical prior) to
represent the conditions under which the data were obtained
[34]–[37]. In recent years, several interesting variants of such
a hierarchical problem formulation have been proposed, es-
pecially for dynamic systems modeling and machine learning
applications [33], [38]–[41]. More generally, the Probabilistic
Graphical Modeling (PGM) framework provides a rich set
of tools for formulating effective probabilistic dependence
structures for a given problem class according to problem-
specific challenges and objectives [42], [43].

Inferring the unknown parameters of a physiological model
from experimental data presents a unique set of challenges
that appear frequently in this area of research. Acquiring
data for the purpose of hemorrhage resuscitation modeling,
for example, involves applying stimuli (e.g., hemorrhage and
fluid infusions) to subjects while measuring their relevant
physiological variables such as hematocrit (HCT), cardiac
output (CO), and mean arterial pressure (MAP) over time.
Such physiological experiments tend to exhibit challenging
characteristics: First, each experiment provides low informa-
tion, in the sense that (i) stimuli only partially excite the
underlying physiological dynamics, (ii) insufficient physiolog-
ical measurements are available in each experiment, and (iii)
the measured signals are of relatively low quality (e.g., in
terms of noise and sampling rate). Second, the experiments
are heterogeneous, in the sense that there exist (i) variations
in experimental protocols (e.g., shape/timing of stimuli), (ii)
variations in the availability of measured variables (e.g., HCT
and CO may not be available in some subjects), and (iii)
variations in subject characteristics, including the possibility
of atypical responses to stimuli. These challenges, if not
explicitly addressed in the course of parameter inference, tend
to produce physiological models with unrealistic parameter
values and/or limited predictive capability [44]–[47].

The objective of this paper is to propose and illustrate the
efficacy of a collective variational inference (C-VI) method,
intended to reconcile low-information and heterogeneous data
from a collection of experiments to obtain robust personalized
and generative physiological models. The personalized model
aims to reproduce the physiological behavior of a specific
subject, while the generative model aims to reproduce the
physiological behavior of the population. To derive the C-
VI method, we compose a PGM to structurally represent
the scenario in which low-information and heterogeneous
experiments are conducted on a collection of non-identical
subjects. Given this problem formulation, obtaining person-
alized and generative models for a physiological process
boils down to inferring the latent parameters of this PGM
structure. For this purpose, we leverage recent advances in
stochastic VI to obtain an algorithmic procedure that com-
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Fig. 1. Formulation of the inference problem for personalized and
generative physiological modeling. (a) Schematic view of the generative
model structure for one experiment conducted on one subject sample,
where several physiological variables are measured. (b) Probabilistic
graphical representation of the dependencies between the latent pa-
rameters (white), the measured variables (blue), and the sometimes-
measured variables (striped blue) in the model structure.

putes approximate posteriors for the PGM parameters through
stochastic optimization. To illustrate the efficacy of the C-
VI method, we apply it to a practically important case study
on the mathematical modeling of hemodynamic responses to
hemorrhage resuscitation, and compare the models produced
by the C-VI method with those produced by a non-collective
method based on MLE. In this context, we demonstrate that
the C-VI method can reconcile heterogeneous combinations
of HCT, CO, and MAP data across multiple experiments to
obtain (i) robust personalized models along with associated
measures of uncertainty and signal quality, and (ii) a generative
model capable of reproducing the physiological behavior of the
population. Finally, we discuss how the resulting models may
provide basis for the development and testing of interpretable
physiological monitoring, decision-support, and closed-loop
control algorithms.

II. COLLECTIVE VARIATIONAL INFERENCE

In this section, we present the C-VI methodology, which
is intended to enable personalized and generative modeling
of physiological processes using low-information and hetero-
geneous data. This methodology formulates the physiological
modeling problem in such a way that multiple experiments can
collectively provide information to characterize a physiologi-
cal system, both at the level of each subject and the population
encompassing all subjects.

A. Generative Modeling for Physiological Data
In the first step toward deriving the C-VI method, we aim

to formulate a generative model of the processes underlying
the acquisition of low-information and heterogeneous physio-
logical data in multiple experiments. This generative model
is schematically shown in Fig. 1(a) for one representative
experiment. This model is a hierarchical model consisting of
three main levels. At the highest level, a subject generator
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model is tasked with generating virtual subjects with varying
physiological characteristics, which can be formalized as:

θi ∼ G(φ) (1)

where G is the subject generator model, φ is the vector of latent
parameters for the subject generator model, and θi denotes
a generated parameter vector representing the physiological
characteristics of a virtual subject. At the second level, a
virtual physiological experiment is conducted on each virtual
subject, whose response to the experiment is generated by a
physiological process model H:

xi(t) = H(θi,ui(t)) (2)

where ui(t) represents the physiological stimuli associated
with the experiment on subject i, and xi(t) represents the state
evolution of subject i during the course of the experiment. At
the third level, in each virtual experiment, one or several phys-
iological variables (e.g. blood pressure) are measured from
the state evolution xi(t) and recorded as virtual data. Thus,
for each measured variable j, we consider a physiological
measurement model Mj , which can be formalized as:

ymij =Mm
j (θi,xi(t)) (3)

yij ∼Mo
j(nij ,y

m
ij ) (4)

where ymij is a vector containing the model-generated outputs
for the physiological variable j in subject i, yij is a vector
containing the model-generated (and possibly noisy) virtual
data for this physiological variable, and nij is a latent pa-
rameter modulating the signal quality of the virtual data. In
summary, the generative model structure described by (1)-(4)
is built to (i) generate a virtual subject cohort of arbitrary
size, (ii) conduct virtual experiments on the generated cohort,
and (iii) generate virtual datasets by compiling the results of
the virtual experiments. Given this model structure, our aim
is to infer the parameters φ, θi, nij using real physiological
data, such that the nij’s capture the signal quality in each real
experiment, the θi’s capture the physiological characteristics
of the real subjects, and the subject generator with φ produces
virtual subjects that are representative of the population.

B. Collective Inference for Generative Modeling
The generative model presented in Section II-A imposes a

hierarchical relationship between the variables of interest in
the physiological modeling problem. A probabilistic graphical
representation of this relationship is shown in Fig. 1(b). In
this representation, the generator model parameters φ act as
global random variables that affect all subject characteristic
vectors θi. In addition, each subject characteristic vector θi
together with its corresponding stimuli ui act as local random
variables with respect to their own experiment. Finally, the
virtual data yij and the signal quality parameters nij act as
local random variables with respect to their own experiment
and measured variable. This hierarchical relationship can be
formalized using the following joint density:

p(φ,θ,n,u,y) = p(φ)p(θ|φ)p(y|θ,n,u)p(n)p(u) =
p(φ)

∏
i

[
p(θi|φ)p(ui)

]∏
i,j

[
p(yij |θi, nij ,ui)p(nij)

]
(5)

where the symbols θ, n, u, and y respectively denote the
collection of all random variables corresponding to θi, nij , ui,
and yij . The physiological stimuli u and the virtual data y are
observed random variables, while the parameters denoted by
φ, θ, n are latent random variables that need to be inferred
using their relationship to the observed random variables. This
inference objective can be expressed in probabilistic terms as
calculating the following conditional density:

p(φ,θ,n|u,y) = p(φ,θ,n,u,y)

p(u,y)
(6)

which is the exact posterior density, and represents the ulti-
mate objective of inference for the purpose of personalized and
generative physiological modeling in this work. Obtaining this
exact posterior is tantamount to utilizing the available data in a
collective manner to obtain personalized and generative physi-
ological models along with associated measures of uncertainty
and signal quality. However, computing this exact posterior is
mathematically intractable and computationally expensive for
many physiological applications, which motivates the deriva-
tion of an approximate posterior that can be computed with
reasonable accuracy and computational efficiency.

C. Variational Inference for Generative Modeling
In this work, we employ a variational approach [30], [33] to

finding analytical approximations to the exact posterior in (6).
In this approach, a family of densities over the latent variables
q(φ,θ,n|ν) is formulated with each member (represented by
the variational parameter ν) acting as a candidate for the best
approximate posterior. To develop a procedure for finding the
best approximate posterior, we start from the Kullback-Leibler
(KL) divergence between the exact posterior and the candidate
approximate posterior:

DKL(ν) = Eq
[
log q(φ,θ,n|ν)− log p(φ,θ,n|u,y)

]
(7)

where the operator Eq represents expectation with respect to
samples from the approximate posterior. Substituting the exact
posterior equation (6) and the joint density (5) into (7), and
assuming that the stimuli u are observed accurately, we obtain
the following equation for the KL-divergence:

DKL(ν) = Eq
[
log q(φ,θ,n|ν)− log p(y|θ,n,u)

− log p(θ|φ)− log p(n)− log p(φ)
]
+ log p(y) (8)

In this equation, two inherently hard-to-compute terms are
present: (i) the DKL(ν) term, i.e., the dissimilarity between
the approximate and the exact posterior densities, which needs
to be minimized, and (ii) the p(y) term, i.e., the model
evidence, which depends only on the model definition. Putting
these two terms together, we obtain the following quantity:

L(ν) = log p(y)−DKL(ν) (9)

which is the evidence lower bound and needs to be maximized.
Combining equations (8) and (9), we obtain the following
expression for this objective:

L(ν) = Eq
[
log p(y|θ,n,u) + log p(θ|φ) + log p(n)

+ log p(φ)− log q(φ,θ,n|ν)
]

(10)
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Algorithm 1 Stochastic Optimization for C-VI
Input: ν0, β1, β2, α, δ {initial guess and constants}
Output: ν {optimized variational parameters}
t← 0
ν← ν0; mν ← 0; vν ← 0 {initialize}
loop
t← t+ 1
ε ∼ N (0, I)
gν ← ∇νL̃(ε,ν) {from objective}
mν ← [β1mν + (1− β1)gν]/(1− βt1)
vν ← [β2vν + (1− β2)g

2
ν]/(1− βt2)

ν← ν+ α[mν/(
√
vν + δ)] {see [48]}

end loop
return ν {optimized variational parameters}

which represents the main objective for the physiological
modeling problem addressed in this work.

D. Interpretation of the Objective and Special Cases

The objective shown in (10) is based on an expecta-
tion with respect to samples from the approximate posterior
q(φ,θ,n|ν), the shape of which can be modulated through
the variational parameters ν. The term log p(y|θ,n,u) is a
log-likelihood term that promotes similarity between observed
physiological data and the model-generated virtual data for
every experiment. The term log p(θ|φ) promotes personalized
models that are likely under the subject generator, and a sub-
ject generator that is likely to generate the personalized mod-
els. The terms log p(φ) and log p(n) represent prior densities
that can encode prior knowledge about the subject generator
and the physiological measurement model parameters. Finally,
the term log q(φ,θ,n|ν) promotes a diffuse approximate
posterior, acting as a mechanism for uncertainty quantification.
As a result of this formulation, special cases of the inference
problem can be obtained by removing a subset of terms from
the objective. Removing log q(φ,θ,n|ν) promotes a concen-
trated approximate posterior, resulting in a point estimation
problem over the unknown parameters φ, θ and n. Removing
the rest of the terms except for log p(y|θ,n,u) results in a
non-collective MLE problem over θ and n, promoting separate
estimation of model parameters for every subject.

E. Stochastic Optimization Algorithm

As presented in Section II-C, performing inference for the
purpose of personalized and generative physiological modeling
boils down to maximizing the evidence lower bound objective
shown in (10) over the variational parameters. In the absence
of further algorithm engineering, this maximization can turn
into a prohibitively expensive computational task due to the
presence of the expectation operator Eq . In this work, we
employ an approach based on stochastic gradients of the
objective [32], [33] to perform the desired maximization in a
computationally feasible manner. For this purpose, we assume
a function fq that takes as its input the variational parameters
ν, and a sample ε from the standard normal distribution (of

Algorithm 2 Evaluation of Stochastic Objective for C-VI
Input: ε,ν,u,yd {parameters, stimuli, and data}
Output: L̃(ε,ν)

zφ, zθ, zn ← fq(ε,ν) {sample posterior; see (27)}
pq ← log q(zφ, zθ, zn|ν) {see (28)}
for all i, j do
xi ← H(zθi ,ui) {run physiological model}
ymij ←Mm

j (zθi ,xi) {get model outputs}
end for
py ← log p(y|zθ, zn,u) {compare yd and ym; see (35)}
pθ ← log p(zθ|zφ) {see (30)}
pφ ← log p(zφ) {prior on φ; see (31)}
pn ← log p(zn) {prior on n; zero for no prior}
L̃← py + pθ + pφ + pn − pq
return L̃ {objective value}

appropriate dimension), and produces as its output samples
from the approximate posterior q(φ,θ,n|ν):

[zφ; zθ; zn] = fq(ε,ν), ε ∼ N (0, I) (11)

where zφ is a sampled subject generator model parameter,
zθ denotes sampled subject characteristic parameters, and zn
denotes sampled signal quality parameters. Substituting (11)
into (10), and taking the gradient of both sides yields an
equation of the form:

∇νL(ν) = Eε∼N (0,I)

[
∇νL̃(ε,ν)

]
(12)

where the operator Eε∼N (0,I) denotes expectation with respect
to samples from the standard normal distribution, and the
gradient operator ∇ν has been moved inside the expectation
since the expectation operator no longer depends on ν. The
term inside the expectation ∇νL̃(ε,ν) is a stochastic gradient
of the objective, which can be written in expanded form as:

∇νL̃(ε,ν) = ∇ν

[
log p(y|zθ, zn,u) + log p(zθ|zφ)

+ log p(zn) + log p(zφ)− log q(zφ, zθ, zn|ν)
]

(13)

According to (12), the stochastic gradient ∇νL̃(ε,ν) is an
unbiased noisy sample from the actual gradient ∇νL(ν).
Therefore, this stochastic gradient can be used along with a
stochastic optimization algorithm to maximize the objective
L(ν). Stochastic optimization with unbiased gradients has
been shown to exhibit favorable convergence properties in the-
ory and practice [48]–[50]. In addition, although convergence
results may apply only locally to non-convex objectives, the
randomized nature of stochastic optimization has been shown
to facilitate escapes from local extrema, resulting in state-of-
the art solutions in many practical applications [51].

The stochastic optimization procedure used in this work is
shown in Algorithm 1. This procedure operates by sampling
the stochastic gradient of the objective in each iteration,
and producing corresponding increments to the variational
parameters through adaptive moment estimation [48]. Within
each iteration, the stochastic objective is computed according
to Algorithm 2 based on (11)-(13). This procedure computes
the objective by considering a sample from the approximate
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Fig. 2. A schematic representation of the hemorrhage resuscitation
model. The model consists of four main components: (i) the blood
circulation model, (ii) the tissue fluid exchange model, (iii) the systemic
vascular resistance model, and (iv) the cardiac output model.

posterior, and evaluating the consistency of the sample both
with respect to the available data and the structure of the
generative model. In this way, the proposed iterative procedure
searches for a generative model that is consistent with the
available physiological data as a whole, and additionally
produces signal quality estimates, personalized models, and
uncertainty quantification as byproducts.

III. THE HEMORRHAGE RESUSCITATION MODEL

In this work, we use a hemorrhage resuscitation modeling
case study to illustrate the efficacy of the C-VI method in the
context of personalized and generative physiological modeling.
In this modeling problem, the aim is to obtain interpretable
mathematical models that can reproduce and predict the hemo-
dynamic effects of hemorrhage and fluid resuscitation, both
in specific subjects and in a given population. In addition to
illustrating the efficacy of C-VI, the knowledge encoded in
these models may be leveraged and extended to complement
and further advance the state of the art in the development
and testing of physiological monitoring [52], [53], decision
support, and closed-loop control algorithms [10], [18] for
hemorrhage resuscitation. In this section, we build upon our
previous work [44], [54], [55] to derive a mathematical model
of the main physiological phenomena in hemorrhage resusci-
tation, and specify the stimuli, states, and model parameters
for this problem. A schematic representation of this model is
shown in Fig. 2. The model consists of four main components
that are described in the following subsections.

A. Blood Circulation Model

In order to model the effects of hemorrhage and fluid
resuscitation on the physiological state of a subject, a blood
circulation model must be formulated that accounts for the
volume and composition of blood in relevant circulatory
spaces. A macro-state realization of such a model is described

by the following differential equations:

v̇a = Q− (Pa − Pv)/R− JH − JF (14)
v̇v = −Q+ (Pa − Pv)/R+ JI (15)
v̇r = −JHH (16)

where the states va and vv respectively denote the arterial and
venous blood volumes, and vr denotes the total red blood cell
volume. The changes in these volumes are driven by several
flow-rate terms. The term Q denotes CO, which is the flow-rate
of blood pumped by the heart. The term (Pa − Pv)/R is the
flow-rate of blood moving through the vascular system, where
Pa is the MAP, Pv is the central venous pressure (CVP), and R
is the systemic vascular resistance (SVR). The terms JH and
JI respectively denote the flow-rates of hemorrhage and fluid
resuscitation, while JF is the net rate of fluid exchange with
the tissue space. Finally, the term JHH is the flow-rate for red
blood cell loss due to hemorrhage, where H = vr/(va + vv)
denotes the blood HCT. Prior to any perturbation, the system
described by (14)-(16) is set up to be in equilibrium, with
baseline arterial, venous, and red blood cell volumes at va0,
vv0, and vr0, respectively, and:

Q0 = (Pa0 − Pv0)/R0 (17)

where Q0 is the baseline CO, Pa0 and Pv0 denote baseline
MAP and CVP, and R0 is the baseline SVR. Changes in MAP
and CVP are modeled to depend on changes in arterial and
venous blood volume as follows:

Pa = Pa0 +Ka(va − va0) (18)
Pv = Pv0 +Kv(vv − vv0) (19)

where Ka is the arterial elastance, and Kv is the venous
elastance. The model described by equations (14)-(19) is
determined except for the responses of JF , R, and Q, which
are addressed in the the next three subsections.

B. Tissue Fluid Exchange Model

Circulating blood interacts with the fluid in the surrounding
tissues (i.e., interstitial fluid) through lymphatic and micro-
vascular exchange systems. By virtue of this interaction, the
body can regulate the blood volume in the event of external
perturbations such as hemorrhage and fluid resuscitation. This
is achieved through shifting excess fluid from the blood to
the tissue space, or compensating for a dearth of blood by
drawing fluid from the tissue space into the blood [54], [56].
The net rate of fluid exchange with the tissue space JF is
thus an important quantity to model. For this purpose, we use
a blood volume controller formulation of the form:

JF = Kp(v − v0 − rF
)

(20)

where v = va+vv is the total blood volume, v0 = va0+vv0 is
the baseline total blood volume, Kp is the proportional gain of
the controller, and rF is the reference signal for the controller.
The reference signal rF determines the final value of blood
volume change long after a blood volume perturbation (i.e.,
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hemorrhage and/or fluid resuscitation), and is defined based
on the history of blood volume perturbations as follows:

ṙF = 1
1+αI

JI − 1
1+αH

JH (21)

where the parameter αI determines the fraction of the resusci-
tation fluid that will remain in the blood after the exchange of
fluid with the tissue space, and the parameter αH determines
the fraction of hemorrhaged blood that will remain uncom-
pensated after the exchange of fluid with the tissue space (see
[54], [57] for more details on this modeling approach).

C. Systemic Vascular Resistance Model
The SVR (R) is the resistance of the vascular system to

blood flow. In hemorrhage resuscitation scenarios, the SVR
is affected by two main mechanisms: (i) the constriction and
dilation of the blood vessels, and (ii) the viscosity of the blood
moving through the blood vessels. The control mechanisms
in the body (e.g., the baro-reflex mechanism) modulate SVR
through vasoconstriction and vasodilation in order to maintain
adequate MAP and tissue perfusion [58]. In addition, changes
in blood HCT cause changes in blood viscosity, which in
turn disturb the SVR [59]. To model these mechanisms, we
formulate the SVR in the following form:

R = R0 +Kh(H −H0) + sR (22)

where H0 = vr0/(va0+vv0) is the baseline blood HCT, Kh is
a parameter representing the sensitivity of the SVR to changes
in HCT, and sR is a state representing the amount of SVR
change prompted by the control mechanisms in the body. The
state equation for sR is therefore formulated as follows:

ṡR = − 1
τR
sR − KR

τR
(Pa − Pa0) (23)

where KR is the controller gain, and τR is the time constant of
the control system. Equations (22) and (23) together describe a
control system whose objective is to maintain adequate MAP
by changing SVR, while the SVR is disturbed by viscosity
changes resulting from variations in blood HCT.

D. Cardiac Output Model
The CO (Q) is the flow-rate of blood pumped into cir-

culation by the heart. In hemorrhage resuscitation scenarios,
the changes in CO stem from two main mechanisms. First,
perturbations in CVP directly affect the right atrial pressure
and subsequently the left ventricular preload. According to the
Frank-Starling law, a higher preload results in higher cardiac
muscle tension which in turn results in a more forceful stroke
and higher CO. Second, the control mechanisms in the body
modulate the heart rate and cardiac contractility in order to
maintain adequate CO [58]. To model these mechanisms, we
formulate the CO equation in the following form:

Q = Q0 + βv(Pv − Pv0) + sQ (24)

where βv is a parameter representing the sensitivity of the CO
to changes in CVP, and sQ is a state representing the amount
of CO change prompted by the control mechanisms in the
body. The state equation for sQ is formulated as follows:

ṡQ = −KQ(Q−Q0) (25)

where KQ is the controller gain. Equations (24) and (25)
together describe a control system whose objective is to
maintain adequate CO through changing sQ, while the CO
is disturbed by changes in CVP.

E. Physiological Model Summary
The presented hemorrhage resuscitation model corresponds

to the physiological process model H defined in (2). For
subject i, the physiological stimuli can be summarized as
ui(t) = {JI(t), JH(t)}i, and the physiological characteristics
of the subject can be summarized as:

θi =
[
v0 H0 Q0 Pa0 Kv Ka/Kv Kp αI αH

Kh τR KR βv KQ

]
i

(26)

Given θi, the rest of the physiological parameters in the model
are determined as follows: the baseline arterial and venous
blood volumes are nominally set to va0 = 0.3v0, and vv0 =
0.7v0; the baseline CVP is set to a nominal value Pv0 from
measured data; and the initial SVR is calculated from R0 =
(Pa0 − Pv0)/Q0. Given these parameters, the state evolution
of the physiological system xi(t) is obtained by numerically
solving the differential equations described by (14)-(25).

IV. METHODS

In this section, we present the details of applying the C-VI
method presented in Section II to the hemorrhage resuscitation
modeling problem presented in Section III. In addition, we
present the details pertaining to the available physiological
data and the methods used for data analysis to illustrate the
efficacy of C-VI in the context of personalized and generative
physiological modeling, especially in the presence of low-
information and heterogeneous data. Further details follow.

A. The Approximate Posterior
As presented in Sections II-C and II-E, variational inference

is performed by leveraging a family of densities that act as
candidates for the best approximate posterior. In this work,
we employ a family of diagonal Gaussian densities for this
purpose, which can be written in function form as:

[zφ; zθ; zn] = νµ + diag(νσ)ε, ε ∼ N (0, I) (27)

where νµ = [νµ:φ;νµ:θ;νµ:n] is the mean vector of
the approximate posterior, which represents most-likely val-
ues for the model parameters (φ, θ, and n), and νσ =
[νσ:φ;νσ:θ;νσ:n] is the standard deviation vector of the
approximate posterior, which represents the uncertainty as-
sociated with the model parameters. Thus, the variational
parameters for this choice of approximate posterior can be
summarized as ν = {νµ,νσ}. Given this formulation, the ap-
proximate posterior density associated with a sample generated
by (27) can be computed from:

log q(zφ, zθ, zn|ν) =∑
k[− 1

2ε
2
k − log(νσ)k − 1

2 log(2π)] (28)

where the sum
∑
k is computed over the elements of the

vectors ε and νσ . The density in (28) is used in Algorithm 2
as part of the stochastic objective.
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B. The Subject Generator Model
As presented in Section II-A, the proposed modeling scheme

includes a subject generator model G(φ). In this work, we
employ a full-covariance Gaussian generator for this purpose,
which can be written in function form as:

θi = φµ + φLε, ε ∼ N (0, I) (29)

where φµ is the mean vector of the subject generator, which
represents the most typical subject, and φL is a lower-
triangular matrix denoting the Cholesky decomposition of the
covariance matrix of the subject generator. The covariance
matrix itself can be computed from φΣ = φLφ

T
L . Thus, the

subject generator model parameters can be summarized as φ =
{φµ, φL}. Given this formulation, the subject generator density
associated with a sample from the approximate posterior (as
in (27)) can be computed from the following equation:

log p(zθ|zφ) =
∑
i[− 1

2 (zθi − zφµ)
T z−1

φΣ
(zθi − zφµ)

− 1
2 log(|zφΣ |)− dθ

2 log(2π)] (30)

where zθi is the sample associated with the physiological
model parameters for subject i, zφµ is the sample associated
with the mean vector of the subject generator, zφΣ

is the
sample associated with the covariance matrix of the subject
generator, and dθ is the dimension of physiological model
parameters (and also the dimension of zθi and zφµ ). Equation
(30) is used in Algorithm 2 as part of the stochastic objective.

The full-covariance subject generator in (29) is a relatively
expressive model that may capture inter-subject variabilities in
the form of a covariance matrix φΣ. However, effective char-
acterization of this covariance matrix from data is contingent
on the availability of a sufficient number of subjects in the
dataset. In many physiological modeling applications, only a
limited number of subjects are available for experimentation,
which may in turn result in an “over-fitted” covariance matrix.
To create a balance between generator model complexity and
subject availability, we utilize regularization on the generator
model parameters according to the following function:

log p(zφ) = −λ‖zφΣ
‖∗ (31)

where ‖.‖∗ denotes the nuclear norm of the matrix, and λ is a
scalar hyper-parameter. The nuclear norm ‖zφΣ

‖∗ promotes a
compressed subject generator in the sense of the sum of singu-
lar values for its covariance matrix, while the hyper-parameter
λ can be used to modulate the rate of compression. Equation
(31) is used in Algorithm 2 as part of the stochastic objective.
The hyper-parameter λ is selected using a method conceptually
similar to the L-curve approach [60]: λ is increased from zero
while the likelihood in (35) (which represents the goodness of
fit to the available data) is evaluated. λ is chosen as the value
at which the likelihood starts to exhibit large deterioration.
Such a choice of λ can achieve an adequate balance between
generator complexity and subject availability [44], [60].

C. The Physiological Measurement Model
As presented in Section II-A, the proposed modeling ap-

proach includes physiological measurement models Mj in-
tended to represent the measurement processes used to obtain

a real dataset. For the hemorrhage resuscitation problem, we
consider three potential types of measurement: HCT, CO, and
MAP. We model each of these measurements as the output of
a process that observes the model outputs H , Q, and Pa, while
the observations are corrupted by additive white Gaussian
noise. This can be formulated as:

yi,H = {H(t) + ni,H .ε | t ∈ Ti,H , ε ∼ N (0, 1)} (32)
yi,Q = {Q(t) + ni,Q.ε | t ∈ Ti,Q, ε ∼ N (0, 1)} (33)
yi,Pa = {Pa(t) + ni,Pa .ε | t ∈ Ti,Pa , ε ∼ N (0, 1)} (34)

where yi,H , yi,Q, and yi,Pa respectively denote the model-
generated virtual data for HCT, CO, and MAP in subject
i. The sets Ti,H , Ti,Q, Ti,Pa contain the time points at
which observations are made for subject i, and the latent
parameters ni,H , ni,Q, ni,Pa denote the standard deviations of
the Gaussian noises corrupting the observations of HCT, CO,
and MAP in subject i. For inference purposes, the likelihood
associated with the physiological data can be obtained from:

log p(y|zθ, zn,u) =∑
i

∑
j

[
− 1

2z2
nij

(ymij − ydij)
T (ymij − ydij)

− dij log(znij )− dij
2 log(2π)

]
(35)

where j ∈ {H,Q,Pa} is and index for the measured variables
in the hemorrhage resuscitation problem, ymij represents the
(uncorrupted) physiological model outputs, ydij denotes real
data, znij is an approximate posterior sample associated with
the signal quality parameter nij , and dij denotes the length
of the data vector ydij . The likelihood (35) is substituted into
its place in Algorithm 2 to complete the formulation of the
stochastic objective. Furthermore, in this work, we do not
assume further prior knowledge of the noise, which can be
reflected in Algorithm 2 by setting log p(zn) to zero.

D. The Physiological Data

The physiological data used in this work are derived from a
series of hemorrhage resuscitation experiments conducted on
sheep subjects (N = 23) in an array of previous work [61]–
[63]. In each experiment, the animal is subjected to a large
initial hemorrhage and two subsequent smaller hemorrhages.
To counter the physiological effects of hemorrhage over time,
the subject is resuscitated using Ringer’s Lactate infusions.
The infusions are performed according to pre-determined
closed-loop control laws designed to restore and regulate MAP.
See Fig. 3 for hemorrhage and resuscitation profiles received
by two example subjects. During each experiment, the HCT,
CO, and MAP responses of the subject are measured and
recorded as data. These measurements are performed at ∼ 5-
minute intervals over the course of 180 minutes. These animal
experiments are useful for physiological modeling purposes, as
(i) they can provide informative physiological measurements
that are not commonly available in clinical settings, and (ii) the
exact timing and amount of hemorrhages and fluid infusions
applied to each subject are known [44], [54], [57].
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E. Data Analysis

In the case study on hemorrhage resuscitation modeling, our
aim is to illustrate the efficacy of the C-VI method in inferring
personalized and generative physiological models from low-
information and heterogeneous data. For this purpose, we
consider four inference scenarios: (i) C-VI given full data, (ii)
C-VI given partial data, (iii) non-collective MLE given full
data, and (iv) non-collective MLE given partial data. The full
data scenarios were created by presenting all available data
to the methods, which allowed us to obtain highly-informed
physiological models. The partial data scenarios were created
by random exclusion of measured variables from data, which
allowed us to evaluate the methods against low-information
and heterogeneous data. Further details follow.

C-VI versus Non-Collective MLE: To perform C-VI, we used
the (partially or fully) available HCT, CO, and MAP data
as inputs to the stochastic objective shown in Algorithm 2
and maximized this objective using Algorithm 1 to obtain
the optimized variational parameters ν. According to the
approximate posterior formulation in (27), the most-likely
personalized physiological model parameters can be obtained
from νµ:θ, while their associated uncertainties can be obtained
from νσ:θ. In addition, the most-likely subject generator
model parameters can be obtained from νµ:φ, and additional
virtual subjects can be generated using the generator in (29)
with φ set to νµ:φ.

To perform non-collective MLE, we modified the stochastic
objective shown in Algorithm 2 by setting the non-likelihood
terms (i.e., pq , pθ, pφ, and pn) to zero. We maximized this
objective using Algorithm 1, and obtained the estimates for the
personalized physiological model parameters from νµ:θ. To
generate virtual subjects in this case, we calculated the mean
and standard deviation of the estimated personalized values for
each physiological parameter, and generated additional virtual
subjects by sampling from a Gaussian distribution with the
same mean and standard deviation.

Full Data, Partial Data, and Method Evaluation: To study
and compare the effects of information scarcity and data
heterogeneity on the fidelity of the personalized models and
the generated virtual subjects, we performed inference in two
data availability cases. In the full data case, we used the
available HCT, CO, and MAP data across all subjects to
perform C-VI and non-collective MLE. In the partial data case,
we randomly excluded two out of the three measured variables
(HCT, CO, and MAP) for each subject. The resulting partial
dataset thus consisted of 8 subjects with only HCT measure-
ments, 8 subjects with only CO measurements, and 7 subjects
with only MAP measurements. We used this partial dataset
to perform inference in both C-VI and non-collective MLE
cases. To evaluate the fidelity of the personalized physiological
models, we computed the mean-absolute error of the model
predictions with respect to the excluded data for each subject.
To determine significance in difference between C-VI and
non-collective MLE cases, we utilized the Wilcoxon signed-
rank test. To evaluate the fidelity of the subject generator
models, we computed the likelihood of the excluded data in

the generated virtual subjects, which can be written as:

p(yE |n,u) = Eθi∼G
[
p(yE |θi,n,u)

]
(36)

where yE denotes the space of excluded data, p(yE |θi,n,u)
denotes the likelihood of the excluded data given a generated
subject θi, and p(yE |n,u) denotes the likelihood of the
excluded data under the subject generator G.

V. RESULTS AND DISCUSSION

In this section, we present the results of applying the C-VI
method presented in Section II to the hemorrhage resuscitation
modeling problem presented in Section III, and discuss the
effectiveness of C-VI in the context of personalized and
generative physiological modeling. Further details follow.

A. Personalized Physiological Modeling
Fig. 3 shows the personalized hemorrhage resuscitation

model responses in two representative subjects. The model
responses in the rest of the subjects are provided in the
supplementary material. These models were obtained by pre-
senting the full dataset to the C-VI method. For each subject
in Fig. 3, the most-likely physiological models (shown as
solid blue lines) reproduced the trends in measured data
for HCT, CO, and MAP. Among the N=23 subjects in the
dataset, these physiological models reproduced the trends in
measured data with an average mean-absolute error of 0.51
% for HCT, 0.36 L/min for CO, and 7.77 mmHg for MAP.
Furthermore, sampling the approximate posterior yielded other
likely physiological models that also reproduced the trends in
measured data. This is shown in Fig. 3 using shaded blue areas
representing the 2σ interval for the likely physiological model
responses. In addition, for each subject, the measurement mod-
els captured the unexplained variations in measured data for
HCT, CO, and MAP. This is shown in Fig. 3 using dashed blue
lines representing the 2σ interval for the measurement model
responses. Overall, these results suggest that (i) the proposed
hemorrhage resuscitation model can adequately reproduce the
trends in the physiological data despite its relatively simple
structure, and (ii) the C-VI method can infer personalized
physiological models that capture the trends in measured data
as well as personalized measurement models that capture the
extent of unexplained variations in measured data.

Fig. 4 shows the 2σ intervals for the personalized physi-
ological model parameters, which are plotted against the 2σ
intervals for the parameters generated by the subject generator.
The full set of parameter intervals is provided in the supple-
mentary material. These intervals were obtained by presenting
the full dataset to the C-VI method. Naturally, the size of
the personalized intervals varied across different physiological
model parameters. For some parameters (e.g., the pair shown
on the right hand side of Fig. 4), the personalized intervals
were smaller, and traveled further into the parameter space.
For others (e.g., the pair shown on the left hand side of
Fig. 4), the personalized intervals were larger, and resided
closer to each other in the parameter space. This phenomenon
is a consequence of the C-VI formulation. In case the data
provides strong information about a parameter, the likelihood
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Fig. 3. Personalized physiological model and measurement model responses to hemorrhage and fluid resuscitation for two example subjects.
Each row corresponds to a subject. The first column shows the stimuli received by each subject, and the second to fourth columns respectively
show hematocrit (HCT), cardiac output (CO), and mean arterial pressure (MAP) responses for each subject against measured physiological data.
Shaded blue areas show the 2σ intervals associated with personalized physiological model responses, and dashed blue lines show the 2σ intervals
associated with the measurements generated by the measurement model.
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Fig. 4. Personalized physiological model parameters versus the subject
generator model for two example parameter pairs associated with weak
information (left) and strong information (right) availability. Blue ellipses
show 2σ intervals for personalized physiological model parameters,
and the red ellipse shows the 2σ interval associated with the subjects
generated by the subject generator model.

term p(y|zθ, zn,u) in (13) dominates the objective, causing
the personalized intervals to shrink, move away toward their
appropriate values, and alter the shape of the subject generator
so that it can reproduce these parameter variations. Conversely,
if the data provides weak information about a parameter, the
p(zθ|zφ), p(zφ), and q(zφ, zθ, zn|ν) terms in (13) dominate
the objective, causing the personalized intervals to expand and
the subject generator to shrink, gathering the personalized
invervals together. Arguably, this provides opportunity for
the personalized intervals to share their weak information
in order to reach a consensus about appropriate values for
the parameter. Overall, these results suggest that the C-VI
method can utilize data across multiple experiments to (i) find
personalized physiological model parameters for the subjects
in a dataset and provide a measure of confidence about
their values, and (ii) provide the opportunity to collectively
determine plausible values for weakly-informed parameters by
aggregating information across different experiments.

Table I shows the mean-absolute prediction errors for the
personalized physiological models inferred from partial data.
The partial dataset was constructed by randomly excluding

TABLE I
MEAN-ABSOLUTE PREDICTION ERRORS FOR PERSONALIZED MODELS

INFERRED FROM PARTIAL DATA [MEDIAN (INTER-QUARTILE RANGE)]

HCT [%] CO [L/min] MAP [mmHg]

Non-Collective MLE 5.10 (6.00) 1.88 (1.65) 35.2 (31.0)

C-VI 3.27 (3.93) 1.04 (1.04)* 9.98 (3.65)*

* Significant with respect to non-collective MLE (p < 0.05).

two out of three measured variables (HCT, CO, and MAP)
from each subject, simulating a case of low-information and
heterogeneous data. The prediction errors (associated with
excluded data) were computed against the excluded data for
both C-VI and non-collective MLE methods (see Section IV-
E for details). As presented in Table I, using C-VI on partial
data resulted in lower HCT prediction error, and significantly
lower CO and MAP prediction errors when compared to
using the non-collective MLE method. This advantage can
be attributed to the collective formulation of C-VI, in which
the variables form an interconnected tree-like structure (as
in Fig. 1(b)). As a result, a loss of observation on some
variables (in this case, a random subset of yij’s) is partially
counteracted by the information coming from other observed
variables (in this case, information from observed yij’s travels
up to θi’s, φ, and back down to unobserved yij’s), giving
the personalized models superior prediction performance in
the face of low-information and heterogeneous data. Overall,
these results suggest that the C-VI method can reconcile data
from a collection of experiments to produce superior (more
predictive) personalized models when compared to a non-
collective MLE method, especially when only low-information
and heterogeneous data are available.

B. Generative Physiological Modeling
Fig. 5 shows the HCT, CO, and MAP responses of the

virtual subjects generated by two subject generators, obtained
from applying C-VI to full and partial datasets. In the first row,
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Fig. 5. Generative physiological model responses to hemorrhage and fluid resuscitation: First row shows the physiological model responses of 100
virtual subjects generated by each subject generator model. Second row shows physiological and measurement responses of one example virtual
subject. The first column shows the stimuli received by the subjects, and the second to fourth columns respectively show hematocrit (HCT), cardiac
output (CO), and mean arterial pressure (MAP) responses.
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Fig. 6. Histogram plots for post-hemorrhage (at 20 min in Fig. 5)
hematocrit (HCT), cardiac output (CO), and mean arterial pressure
(MAP) in generated virtual subjects. First row corresponds to generation
results given full data, while second row corresponds to generation
results given partial data. Blue and purple histograms correspond to the
collective (C) approach to generation while red histograms correspond
to a non-collective (NC) approach to generation.

TABLE II
NEGATIVE LOG-LIKELIHOOD OF THE EXCLUDED DATA UNDER SUBJECT

GENERATORS INFERRED FROM PARTIAL DATA (LOWER IS BETTER)

Negative Log-Likelihood [− log p(yE |n,u)]

Non-Collective MLE 2.09× 1010

C-VI 6.06× 102

we show the physiological responses of one hundred virtual
subjects to an example hemorrhage resuscitation profile. In
the second row, we show an instance of virtual data produced
from a virtual subject in response to the same hemorrhage re-
suscitation profile. From visual inspection, the virtual subjects
exhibited a reasonable range of behavior for HCT, CO and
MAP, and did not show any objectively unrealistic behavior
(e.g., responses that are out of a physiologically meaningful
range). In addition, the generated virtual data appeared reason-
able and visually similar to data acquired from a hemorrhage
resuscitation experiment. In the following paragraph, we aim
to analyze and discuss these observations more concretely.

Fig. 6 shows histogram plots of post-hemorrhage (at 20 min
in Fig. 5) HCT, CO, and MAP responses in the generated
virtual subjects. The first row in Fig. 6 corresponds to virtual
subject generation given full data, while the second row
corresponds to virtual subject generation given partial data.
Blue and purple histograms correspond to generation using the
results of C-VI, while red histograms correspond to generation
using the results of non-collective MLE (see Section IV-E for
details). With full data availability, the non-collective MLE
approach resulted in scattered (and occasionally unrealistic)
virtual subject responses especially for CO and MAP. With
partial data availability, the non-collective MLE approach
produced even more scattered responses for HCT, CO, and
MAP, including many objectively unrealistic responses (e.g.,
MAP’s above 100 mmHg, and CO’s above 5 L/min post-
hemorrhage). In contrast, the C-VI approach produced a more
realistic range of post-hemorrhage behavior in the case of full
data availability, and also retained its generation performance
in the case of partial data availability. Furthermore, in the case
of partial data availability, the negative log-likelihood of the
excluded data (Table II) was lower for the C-VI approach,
indicating superior quality for the virtual subjects generated
by this method. This can be attributed to the formulation
of the C-VI method, which is built to simultaneously infer
both the personalized parameters (θi’s and nij’s) and the
generator parameters (φ) in a consistent manner based on
all available measured data. In contrast, in the non-collective
MLE approach, we generated virtual subjects by mimicking
parametric variations across separately inferred personalized
parameters, which are sensitive to a lack of information in
the data. Overall, these results suggest that the C-VI method
can reconcile low-information and heterogeneous data from
multiple experiments to obtain a robust generative model of
the studied physiological process. This generative model can
in turn be used to create new virtual subjects not already in
the population in the form of data, but distributed according
to the population of real subjects in the dataset.
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C. Potential Applications

As discussed, the C-VI method can be used to reconcile
low-information and heterogeneous data from a collection
of experiments to obtain robust personalized and generative
physiological models. In the following paragraphs, we discuss
several potential applications of these results.

In Silico Clinical Trials: In silico clinical trial is an emerging
field of research concerned with the use of qualified math-
ematical/computational models and simulations to perform
clinical trials [64]–[67]. As discussed in our case study, C-VI
produces a generative physiological model that can generate
cohorts of virtual subjects, compute their dynamic responses to
given stimuli, and produce virtual data by mimicking specific
measurement processes. In addition, C-VI produces person-
alized physiological models that can serve as “digital twins”
of specific subjects in a dataset. Together, these physiological
models provide a rich set of representations that may be used
in conjunction with recent in silico clinical trial methodologies
[64]–[66] to build credible systems and methodologies for sys-
tematic testing of physiological monitoring, decision-support,
and closed-loop control algorithms.

Monitoring and Control with Limited Measurements: As pre-
sented in Introduction, a lack of sufficient information in
experimental data is a long-standing challenge in physio-
logical modeling. This challenge is expected to be even
more pronounced in clinical settings, where invasive and/or
expensive measurements (e.g., HCT and CO) are available
only occasionally. This presents a potential use case for the
C-VI method in clinical settings. Arguably, in a procedure
similar to the partial data results presented in this work,
the C-VI method can be used to reconcile limited clinical
measurements with past information (e.g., measurements from
past patients and/or from past lab experiments) to derive high-
quality models of new patients. These results may in turn be
leveraged to build model-based algorithms that can monitor
and control the physiological states of the patient using limited
clinical measurements.

D. Limitations

The presented study has limitations. First, the inference
problem addressed is in general a non-convex problem. While
stochastic optimization, as employed, is known to provide
robust solutions for such problems in practice [51], theoretical
guarantees are limited to local optimality [48]–[50]. Second,
C-VI is built to produce a subject generator that follows
the distribution of the real subjects in the dataset. Therefore,
in case the dataset consists of homogeneous subjects and/or
subjects biased toward a specific application, this tendency
will likely be reflected in the generated virtual subjects. Thus,
the resulting virtual subjects are most suited to contexts
that are close to that of the original dataset. In our case
study, the data were collected in the context of closed-loop
control for hemorrhage resuscitation. Therefore, the resulting
physiological models may be primarily suited to the design
and in silico testing of hemorrhage resuscitation algorithms.
In this regard, we expect that additional data gathering and

physiological modeling efforts may be needed in order to
extend the utility of the presented physiological models to
applications beyond hemorrhage resuscitation.

CONCLUSION

In this paper, we proposed the C-VI method to facilitate
the personalized and generative modeling of physiological
systems given low-information and heterogeneous data. To
illustrate the effectiveness of the C-VI method, we applied
it to a practically important case study on modeling the
hemodynamic effects of hemorrhage and fluid resuscitation.
In the context of this case study, we demonstrated that the C-
VI method can reconcile heterogeneous combinations of HCT,
CO, and MAP data across multiple experiments to produce
robust personalized and generative physiological models. In
addition, we demonstrated that the C-VI method produces
superior (more predictive) physiological models when com-
pared to a non-collective MLE method, especially when only
low-information and heterogeneous data are available. Future
efforts should be devoted to the study of approaches that
incorporate the collective inference perspective into the design
and testing of interpretable physiological monitoring, decision
support, and closed-loop control algorithms.
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