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ABSTRACT

Physiological measurements are an integral part of many estab-
lished and emerging engineering and biomedical applications that
involve physiological modeling, physiological state estimation, and
physiological closed loop control. In practice, such measurements
exhibit a large degree of variability, which is apparent at multiple
levels, including disturbances acting on measured signals and unex-
pected physiological behavior in certain individuals. In this short
paper, we present an inference-based approach to estimating the
atypicality of an individual’s physiological data both at the level
of measurement and physiological behavior. For this purpose, we
use data from a cohort of subjects to infer, simultaneously, model
representations for measurement disturbances and atypicality of
physiological behavior. Using a case study on hematocrit (HCT),
cardiac output (CO), and mean arterial pressure (MAP) measure-
ments in response to hemorrhage and colloid infusions, we discuss
the merits of the presented approach in deriving reliable subject
atypicality and signal quality indicators for physiological data.
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1 INTRODUCTION

Physiological measurements play a fundamental role in building our
understanding of physiological dynamics in health and disease, and
physiological feedback signals are an integral part of emerging tech-
nologies in physiological state estimation and physiological closed-
loop control [1, 8, 13, 21, 25]. Naturally, real-world measurements
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are subject to noise, known artifacts, or unknown disturbances. This
is even more prominent in physiological measurements, where (i)
biological complexities and limitations of sensing often result in
measurement signals with a high degree of variability in quality
and information content, and (ii) a significant minority of individ-
uals tend to show atypical physiological behavior in response to
physiological stimuli. As a result, estimating the atypicality and
quality of physiological signals, both at the level of measurement
and physiological behavior, is a necessary step toward building
reliable models and designing safe and effective state estimators
and closed-loop controllers for physiological applications.

The design and estimation of signal quality indicators for physio-
logical signals has received considerable attention from the research
community. To this end, past researchers have typically divided
their solution into two major steps involving the extraction of ap-
propriate features, and leveraging those features to make decisions
about signal quality [14, 15, 19]. Feature extraction is performed
using a wide range of methods, including measuring aspects of the
morphological shape of the signal [5, 9], matching the signal to a
predefined set of templates [12, 26], or extracting the spectral and
statistical characteristics of the signal [4, 23]. Decisions about signal
quality are made using various discrimination techniques, includ-
ing thresholds on known physiological features [2, 23], black-box
machine learning techniques [16], and voting-based solutions that
combine multiple discriminators [26]. Based on these approaches,
many application-specific signal quality estimators have been pro-
posed in the literature, especially for PPG [5, 9, 16], ECG [4, 19],
EEG [23],and BCG/SCG [2, 26] signals. In addition, limited attempts
have been made to propose more generalized algorithms and frame-
works that can handle a wider category of signals [12, 20, 24].

Despite the sizable body of research on signal quality indicators
for physiological signals, several important challenges still remain
to be thoroughly resolved. First, most existing solutions are spe-
cialized to handle a specific type of signal (e.g. ECG), limiting their
applicability to broader classes of physiological signals. Second, in
addition to detecting and excluding poor-quality signals as a binary
decision, it is desirable for the solutions to provide a full picture
of the manner in which a signal is low-quality, which is often not
provided in existing work. Third, in addition to the artifacts acting
on physiological measurements, unexpected changes may arise in a
signal due to atypical physiological characteristics and/or behavior
in certain individuals, which is an important aspect that is rarely
distinguished in existing solutions.

In a first step toward addressing these challenges, in this short
paper, we present a potentially generalizable approach to estimating
the atypicality of an individual’s physiological data both at the level
of measurement and physiological behavior. For this purpose, we
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cast the signal quality estimation problem as an inference problem
on a generative model. The generative model is built to represent
the population, the individuals, and the disturbances in a given
physiological dataset. This approach enables us to use data from a
cohort of subjects to simultaneously infer model representations
for measurement disturbances and atypicality of physiological be-
havior. Using a case study on HCT, CO, and MAP measurements in
response to hemorrhage and colloid infusions, we discuss the merits
of the presented approach in deriving reliable subject atypicality
and signal quality indicators for physiological data.

2 METHODS

In this section, we present our inference-based approach to subject
atypicality and signal quality estimation for physiological data. The
overarching idea is to (i) infer a generative model of the physio-
logical data, and (ii) leverage the inference results to indicate the
atypicality of the data, both in terms of measurement disturbances
and the physiological behavior of the individuals. Details follow.

2.1 A Generative Model of Physiological Data

In this subsection, we describe our methodology for inferring a
generative model for a given physiological dataset, with model
elements that represent the population, the individuals, and the
measurement disturbances present in the dataset.

For this purpose, we consider the following generative model of
the physiological dataset:

9i=,[1¢+0'¢,®6 (1
Yyi = M(0i,ui) +ni O w @

Equation (1) is a generative model of the population, where the
output 6; is a parameter vector representing the physiological char-
acteristics of an individual (indexed by i), j14 is the mean of the
generator, oy is the standard deviation of the generator, and €
is a random vector drawn from a standard Gaussian distribution.
Equation (2) is a generative model for physiological dynamics and
measurements, where M denotes the physiological model (which
may include mechanistic or black-box dynamics), u; is a signal
representing the known physiological stimuli received by the in-
dividual, and y; denotes the model outputs corresponding to the
individual. Furthermore, n; is a parameter vector representing the
output noise/disturbance characteristics, w denotes a white Gauss-
ian noise signal, and © denotes element-wise multiplication.

Given the generative model in (1)-(2), the objective is to identify
the parameters of the model, maximizing the similarity between
model generations and real physiological data. For this purpose,
we start from computing the following posterior density [6] for
individual characteristics:

Pn, (yil03, ui) Py (0;)
P(yilu;)
where Py, (yi|6;, u;) is the likelihood of the individual’s physiolog-
ical data with respect to the model in (2), which also depends on
the disturbance characteristics n;, and Py (6;) is the density asso-
ciated with the model in (1), which depends on ¢ = {14, 0 }. The

denominator P(y;|u;) denotes the model evidence. Next, we follow
a variational approach [3, 11] to computing the posterior in (3). This

P(Oilyi, ui) = ®)
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approach approximates the true posterior P(6;|y;, u;) by searching
over a family of approximate posteriors Q;(6;). In this work, we
use approximate posteriors of the diagonal Gaussian form:

Qi(0:) = N (pg,, diag(ap,)°) )
where pg, represents the most-likely value for the individual’s
physiological characteristics, and oy, represents the uncertainty
associated with the individual’s physiological characteristics. Hav-
ing this family of approximate posteriors, it can be shown that the
best approximate posterior is the one that maximizes the following
evidence lower bound:

L; =log P(yilui) — D1 [Qi(0:)[|P(0ilyi, ui)] ©)

= EQ, | log Pn, (yi10;, u;) +log P (6;) —log Qi(6:)]  (6)

where D denotes the Kullback-Leibler divergence, Eg, denotes

expectation with respect to samples from the approximate poste-

rior, and L; denotes the evidence lower bound (ELBO) associated

with an individual. Having this individual-specific ELBO, the prob-

lem of inferring a generative model for the entire dataset can be
summarized as the following optimization problem:

Q" 0", ¢ = argmax 3; L; 7)

Qn,¢
where Q denotes the set of all Q;’s (each parameterized by iy, and
0g,), n denotes the set of all n;’s, and the superscript * denotes
optimized parameters. The optimization problem in (7) is solved
numerically by applying the “reparameterization trick” [11, 18] to
the expectation operator in (6), and maximizing the objective using
stochastic gradients of the terms inside the expectation [7, 10].

Overall, the presented optimization scheme uses data from a
cohort of individuals to infer model representations for the severity
of noises and artifacts acting on each signal (n}’s), the likely phys-
iological characteristics demonstrated by each individual (Q}"s),
and the occurrence density of each individual in the population
(characterized by Py« (0;)). Next, we leverage these results to define
several useful signal quality indicators for the physiological data.

2.2 Inference-Based Subject Atypicality and
Signal Quality Indicators

In this subsection, we derive several indicators, aimed at quantifying
(i) atypical physiological behavior at the level of the individual, (ii)
specific atypical physiological characteristics, and (iii) the noises
and artifacts acting on each measurement signal.

To define an indicator that measures atypical physiological be-
havior in individual i, we consider our model representation of the
population, which is characterized by Py: (6;), and measure the
cumulative density of all the individuals that are more likely to
occur in the population than individual i. For a Gaussian density,
this quantity can be calculated as follows:

ri =y, = p)T ding(o}) 2y, — 113) ®)
i ((do=2)/2,-t/2

Aj =F(ri,dg) = ———dt

(rs.do) /0 240/2T (dp2)

where r; is the (Mahalanobis) distance of the individual y, with

©)

respect to the population Py« (6;), dg is the dimension of 6;, and Aj
is the atypicality index for the individual. This atypicality index is
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a number in the range A; € [0, 1]. In the extremes, if A; = 0, no
other individual is more likely to occur than individual i, indicating
typical behavior. If A; = 1, all other individuals are more likely to
occur than individual i, indicating highly atypical behavior.

To define indicators for specific atypical physiological charac-
teristics in individual i, we follow a procedure similar to the one
above, but for each element j of the physiological characteristics
vector (0;);, which yields the following element-wise parameter
atypicality index for the individual:

rig = L5 = (3,110 (10)
Ai]’ :F(r,-j,l) (11)

The index A;; is a number in the range A;; € [0, 1], and measures
the atypicality of the physiological characteristic j in individual i.

Finally, estimates for the severity of disturbances on individual
i’s measured signals are directly read from n}, which contains
standard deviation values for disturbances acting on each measured
variable. Overall, the indices A;, A;;, and n;‘ can be used to assess
the atypicality of an individual’s physiological data both at the level
of measurement and physiological behavior. In the next step, we
present a case study to demonstrate the merits of this approach in
subject atypicality and signal quality estimation.

2.3 Case Study on Hemorrhage Resuscitation

To demonstrate the performance of the subject atypicality and sig-
nal quality indicators, we apply the proposed approach to a case
study on HCT, CO, and MAP measurements in individuals subjected
to hemorrhage and colloid infusions. Toward this goal, in this sec-
tion we present (i) an overview of the experimental protocol and
the specifications of the physiological dataset, and (ii) an overview
of the physiological model (M in (2)) used for this case study.

The studied physiological dataset is a dataset from our previous
work [17], which contains N = 5 animal (sheep) subjects undergo-
ing an initial large hemorrhage and two subsequent smaller hem-
orrhages. Each subject is then resuscitated with colloid infusions
according to a rule-based algorithm. The total study duration for
each subject is 180 minutes, and HCT, CO, and MAP measurements
are performed at 5-minute intervals. Examples of the protocol and
the measured values can be viewed in Figure 4.

The model M(6;, u;) for this case study is a mechanistic physio-
logical model of the hemodynamic responses to hemorrhage and
fluid resuscitation, described in our previous work [22]. In this
model, the physiological characteristic vector 6; consists of 14 phys-
iological parameters (11 structural parameters and 3 initial condi-
tions), and the input signal u; consists of hemorrhage and infusion
rates recorded in the experiments. Given these inputs, simulating
the model produces predictions for HCT, CO, and MAP. Please refer
to [22] for a detailed description of the model structure.

3 RESULTS AND DISCUSSION

This section presents the results of applying generative modeling,
subject atypicality, and signal quality estimation (presented in Sec-
tions 2.1-2.2) to the hemorrhage resuscitation case study (presented
in Section 2.3).
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Figure 1: Individual-level atypicality index values (4;) for
the N = 5 subjects in the physiological dataset.
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Figure 2: Parameter-level atypicality index values (4;;) for
the most atypical (S1, top panel) and the least atypical (S4,
bottom panel) subjects in the dataset.
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Figure 3: Signal-level disturbance severity estimates (n;) for
the N = 5 subjects in the physiological dataset.

Figure 1 shows the individual-level atypicality indices (A;) for
the subjects in the physiological dataset. The red line represents a
threshold (at A; = 0.8) that flags high subject atypicality. Subjects



MCPS-2021, May 18, 2021, CPS-loT Week

Subject-1 (Atypical) Subject-4 (Typical)

< 20 = 20
E o ? — £ [,
| r\ 4
£ 20 Colloid Infusion E 20 Colloid Infusion
Q 4o Q 4o
o e}
E -60 \ Hemorrhage U_:_S -60 \ Hemorrhage
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Time (min) Time (min)
30 Atypical 30 « Data
_ \’\/\- = Model
& v X
€ -\k - 20
? il
10 At / 10
ypical
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Time (min) Time (min)

0 0
0 30 60 90 120 150 180 0 30 60 90 120 150 180
Time (min) Time (min)
100 —_
(o)) [*))
: E
E gl N E
o Atypical o
< <<
= =
0 0
0 30 60 90 120 150 180 0 30 60 90 120 150 180

Time (min) Time (min)

Figure 4: Physiological stimuli, measurements, and model
responses for the most atypical (S1, left column) and the
least atypical (S4, right column) subjects in the dataset.

that pass this threshold are less likely to occur than at least 80% of
the population. According to these indices, S1 is the most atypical
subject, while S4 is the least atypical subject in the dataset. The
difference in behavior between these two subjects can be observed
visually by inspecting Figure 4. Typically, MAP and CO measure-
ments should drop dramatically in response to a large hemorrhage,
and HCT measurements should decrease in response to both hemor-
rhage and colloid infusions. However, according to the data shown
in Figure 4, MAP in S1 does not drop dramatically in response to
the large hemorrhage, and HCT in S1 shows two “bumps” that are
not explainable by the hemorrhage and infusion profiles. These
results suggest that the proposed method has correctly assigned a
high atypicality index to S1.

Figure 2 shows the parameter-level atypicality indices (A;;) for
the most atypical (S1) and the least atypical (S4) subjects in the
dataset. When inspecting these atypicality indices for S1, it can be
observed that the subject shows highly abnormal characteristics in
parameters associated with blood volume kinetics (e.g., a;, ), and
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Figure 5: Inferred individual characteristics (O] (0;), black)
vs. population characteristics (Py-(6;), red) for the most atyp-
ical (S1, top panel) and the least atypical (S4, bottom panel)
subjects in the dataset. Vertical lines show 20 confidence.

the regulation mechanisms that modulate cardiac output (e.g., Sy,
K.) and total peripheral resistance (e.g., 7, K;). Further inspection
of the parameter values in Figure 5 confirms that many of the S1’s
characteristics reside at the edges of the population characteristics.
Overall, these results suggest that parameter-level atypicality in-
dices (A;j) may be used to gain further insight into the manner in
which a subject shows atypical behavior.

Figure 3 shows the signal-level disturbance severity estimates
(n;) for the subjects in the physiological dataset. These estimates
represent the standard deviation of the disturbances acting on each
measured signal. For example, inspecting Figure 4 reveals that
HCT measurements in S1 are affected by artifacts, while MAP
measurements in S1 appear to have low noise. This is reflected in
Figure 3 as a high index for HCT in S1 and a low index for MAP in
S1. These results suggest that the signal-level disturbance severity
indices (n;) are useful representations of the noises/disturbances
acting on the physiological measurements.

CONCLUSION

In this short paper, we proposed an inference-based approach to
defining and quantifying the atypicality of an individual’s physi-
ological data both at the level of measurement and physiological
behavior. In a case study on HCT, CO, and MAP measurements
in response to hemorrhage and colloid infusion, we demonstrated
that the proposed method can be utilized to obtain individual-level,
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parameter-level, and signal-level atypicality indicators for physio-
logical data. Given the promise of these initial results, future efforts
should be devoted to generalizing and assessing this inference-
based approach in a wider class of physiological signals.
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