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Abstract. Reconstructing Earth history during the Hadean defies the traditional rock-based
approach in geology. Given the extremely limited locality of Hadean zircons, some indirect ap-
proach needs to be employed to gain a global perspective on the Hadean Earth. In this review, two
promising approaches are considered jointly. One is to better constrain the evolution of continental
crust, which helps to define the global tectonic environment because generating a massive amount
of felsic continental crust is difficult without plate tectonics. The other is to better understand the
solidification of a putative magma ocean and its consequences, as the end of magma ocean solidifi-
cation marks the beginning of subsolidus mantle convection. On the basis of recent developments
in these two subjects, along with geodynamical consideration, a new perspective for early Earth
evolution is presented, which starts with rapid plate tectonics made possible by a chemically het-
erogeneous mantle and gradually shifts to a more modern-style plate tectonics with a homogeneous
mantle. The theoretical and observational stance of this new hypothesis is discussed in conjunction
with a critical review of existing proposals for early Earth dynamics, such as stagnant lid convec-
tion, sagduction, episodic and intermittent subduction, and heat pipe. One unique feature of the
new hypothesis is its potential to explain the evolution of nearly all components in the Earth sys-
tem, including the atmosphere, the oceans, the crust, the mantle, and the core, in a geodynamically
sensible manner.
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1 Introduction

The Hadean starts from the birth of a fully grown Earth at ~4.5 billion years ago (Ga) (e.g.,
Barboni et al. 2017; Thiemens et al. 2019) and ends at 4 Ga, which approximately coincides with
the age of the oldest dated rock (Bowring and Williams 1999). As such, reconstructing the history
of this eon using rock records, which is a traditional approach in geology, seems impossible. One
can still try to infer its surface conditions and tectonic environment from the geochemistry of
Hadean zircons (e.g., Wilde et al. 2001; Watson and Harrison 2005; Hopkins et al. 2008; Trail
et al. 2011, 2018; Turner et al. 2020). However, in addition to uncertainties associated with such
geochemical inferences, these efforts have so far relied on detrital zircon grains from a single
locality (Jack Hills in Western Australia), which makes it difficult to generalize to global situations.
This lack of an empirical backbone is particularly troublesome because the Hadean is the time
when Earth is expected to have gone through the most drastic changes in Earth history, i.e., the
formation of a magma ocean and its solidification, the appearance of oceans, and the transition
from a massive CO;-rich atmosphere to a more moderate one (e.g., Zahnle et al. 2007). These
events during the Hadean are responsible for the making of a habitable planet and set the stage for
its subsequent evolution.

To gain a global perspective on the Hadean Earth, we need to adopt some indirect approach,
and there are at least two different routes. One approach is to focus on a certain kind of geochem-
ical data that are sensitive to global processes in the early Earth. In particular, the geochemical
data that can constrain the growth of continental crust are invaluable because generating a massive
amount of felsic continental crust requires the prevalent operation of plate tectonics, thus defining
the global tectonic environment. The other approach is to better understand the solidification of a
magma ocean, which prescribes initial conditions for subsolidus mantle convection. If theoretical
predictions based on the aftermath of magma ocean solidification are consistent with what geo-
chemical observations suggest for the early Earth, then, it becomes possible to draw a coherent

picture for the Hadean Earth with some confidence. We may also require such characterization
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to have some connectivity to the Archean Earth, for which we now have a reasonably secured
understanding (e.g., Herzberg et al. 2010; Korenaga 2018a).

The purpose of this review is, therefore, to provide a new synthesis on the likely evolution of the
Hadean Earth, on the basis of recent developments in the studies of continental growth and magma
ocean solidification. As it may be too myopic to consider the Hadean in isolation, the implications
of the new synthesis for the early Archean are also discussed. Before presenting such a synthesis,
however, it is important to examine various existing ideas put forward for the evolution of the early
Earth. In recent years, a typical narrative of the early Earth starts with stagnant lid convection and
mafic crust, followed by the onset of global plate tectonics and the appearance of felsic continental
crust sometime in the mid-Archean (e.g., O’Neill et al. 2007; Shirey and Richardson 2011; Dhuime
et al. 2012; van Hunen and Moyen 2012; Debaille et al. 2013; Piper 2013; Moore and Webb 2013;
Tang et al. 2016; Cawood et al. 2018; Smit et al. 2019). At the same time, there is also a growing
literature that provides different views, i.e., the onset of plate tectonics in the Hadean (e.g., Hopkins
et al. 2008; Rosas and Korenaga 2018; Hyung and Jacobsen 2020) and the felsic early crust (e.g.,
Greber et al. 2017; Ptacek et al. 2020; Guo and Korenaga 2020; Keller and Harrison 2020), which
necessitates a critical look at the observational and theoretical foundations of the popular narrative.

The structure of this paper is the following. I begin with a review of major existing conjectures,
such as stagnant lid convection in the early Earth, the Archean onset of plate tectonics, and mafic
early crust. Then, I provide a brief review on the evolution of continental crust and follow with
a summary of previous studies on magma ocean solidification. There have been a fair number of
reviews written on these topics, so my attempt here focuses on the issues that are most relevant to
global Hadean geodynamics. Finally, I describe an emerging view on the dynamics of the early
Earth, covering from the Hadean to the early Archean. This view naturally contains a number
of assumptions and extrapolations, but care has been taken that they are consistent with available
observations as well as theoretical considerations. I close by discussing some possible future

directions to advance our understanding of this critical era of Earth history.
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In this article, the term ‘plate tectonics’ is used in a broad sense, referring to the mode of mantle
convection that allows the continuous, wholesale recycling of the top boundary layer. From the per-
spective of planetary evolution on a global scale, what is most important about mantle convection
is whether it is stagnant lid convection or plate tectonics. Whereas stagnant lid convection severely
limits the recycling of surface materials into the deep interior, plate tectonics encourages material
circulation from the interior to the surface and back to the interior, activating deep geochemical
cycles. The details of how such ‘plate tectonics’ operates, e.g., how closely it resembles modern-
style plate tectonics (e.g., Brown et al. 2020), are important when applying our understanding of
modern systems to interpret ancient geological records, but the continuous recycling of the surface
layer is what distinguishes plate tectonics from stagnant lid convection. Some intermediate modes
of convection may be possible, such as intermittent plate tectonics and sagduction, and they do
not fall into the category of ‘plate tectonics’ here. These intermediate modes have been proposed
based mainly on numerical simulation, and their theoretical standings are discussed in §2.

Furthermore, the term ‘continental crust’ is used to refer to a surface geochemical reservoir
that is more long-lived and more enriched in incompatible elements than the oceanic crust. The
relative enrichment of incompatible elements with respect to the oceanic crust implies that the
continental crust needs to involve more than a single-stage melting of the mantle. This definition
is in accord with how the continental crust is treated in geochemical box modeling; the oceanic
crust is recycled back to the mantle as part of subducting plates, so it is usually lumped together
with the convecting mantle in geochemical box modeling. This definition of continental crust
makes most sense in the presence of plate tectonics, but it can still be used in case of stagnant
lid convection. In stagnant lid convection, the crustal layer would be long-lived because of no
subduction, but being mostly the product of single-stage mantle melting, such crust would not be
as enriched in incompatible elements as the present-day continental crust. In other words, a planet
in the mode of stagnant lid convection is covered predominantly by oceanic crust equivalent, and

this is indeed the case for Venus and Mars. If there is a mechanism to process oceanic crust further
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and concentrate incompatible elements with stagnant lid convection, such evolved crust can be
called ‘continental crust’ in this context. Note that we are concerned with the average composition
of a long-lived surface reservoir. If part of continental growth owes to the accretion of oceanic
plateaus, for example, some fraction of continental crust would not be particularly enriched in
incompatible elements, but such regional variations would not negate the overall enrichment of
those elements in continental crust. The adopted definition of continental crust avoids to specify
physical characteristics or formation mechanisms, and this strategy may be useful when discussing
the putative continental crust in the most nebulous time of Earth history.

With regard to continental growth, it is also important to distinguish among ‘net crustal growth,’
‘crustal generation,” ‘crustal recycling,” and ‘crustal reworking.” Crustal generation refers to the
addition of new crustal materials from the mantle to the continental crust, and crustal recycling
refers to the loss of crustal materials to the mantle (via subduction or delamination). Net crustal
growth is a net change in the mass of continental crust, i.e., the difference between crustal genera-
tion and crustal recycling. Crustal reworking encompasses various intracrustal processes, such as

partial melting, that can modify the age of the original crustal generation event.

2 Major existing hypotheses for early Earth evolution

When examining various ideas proposed for early Earth processes, it is important to distinguish
between theoretical and observational inferences. The assessment of a theoretical inference can
generally be conclusive; we can decompose it into several components, such as assumption, ap-
proximation, and interpretation, each of which can be discussed solely on a theoretical basis. On
the other hand, the assessment of an observational inference, especially regarding the early Earth,
is less straightforward, because the paucity of relevant geological records is further compounded
by preservation bias. Preservation bias is a difficult issue to discuss because there is probably no
solution to alleviate the bias. Consider, for example, the East Pilbara Terrane in Western Aus-

tralia, which is often described as the oldest and best-preserved remnant of the Archean crust.
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Based on its geological history, Van Kranendonk and his colleagues have argued that Earth experi-
enced a major shift from plume-driven vertical tectonics to subduction-driven horizontal tectonics
at ~3.2 Ga (e.g., Van Kranendonk et al. 2004, 2007; Hickman 2012). The areal extent of this craton
is, however, approximately 200 %200 km?, covering only 0.02 % of the surface of the present-day
continental crust. Thus, we need to ask whether it is legitimate to infer a global tectonic regime
from such extremely local observations. The fact that the East Pilbara Terrane has survived for a
few billion years, despite the destructive nature of plate tectonics, can be interpreted in two con-
trasting ways. Cratons like the East Pilbara Terrane could have been ubiquitous in the early Earth,
and thanks to this, the characteristics of early crust are able to have survived to the present day
despite the billions of years of plate tectonic recycling. Alternatively, the survival of the craton
could also mean that it is unusual in a certain sense. It may have been supported from below by
highly depleted (and thus mechanically strong) lithospheric mantle that is expected from the high-
degree partial melting of mantle plumes (e.g., Jordan 1988; Doin et al. 1997). In this case, the
geological history of the East Pilbara Terrane may not be generalized to a global context. A third
possibility is that the craton is not representative of the early crust but is not special either; there
may have been a wide variety of Archean crust, and the preservation of this particular craton could
be a sheer random event. Field observations alone cannot distinguish between these possibilities.
For example, the Itsaq Gneiss Complex in Greenland has been suggested to exhibit some traces of
subduction in the early Archean (e.g., Komiya et al. 1999; Nutman et al. 2002), but this locale is
of even smaller spatial extent (~3000 km?). The scarcity of extant early Archean terranes prevents
to make statistically meaningful inferences for global tectonics.

Thus, theoretical considerations naturally play an important role in evaluating the significance
of a certain field area in the context of global tectonics. If theory suggests, for example, that the
early Earth must have started with stagnant lid convection, then the East Pilbara Terrane could
be recognized as the precious geological evidence that tells us when and how a transition from

stagnant lid to plate tectonics took place. If, on the other hand, theory suggests that plate tectonics
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has been possible throughout Earth history, it would be unwarranted to extrapolate the geology
of the East Pilbara Terrane to global tectonics. As mentioned above, the validity of theoretical
inferences can be assessed in a definitive manner, so I start this section by examining the notion of

stagnant lid convection in the early Earth.

2.1 Stagnant lid convection

If plate tectonics started sometime in the middle of Earth history, mantle convection has to have
operated in a different regime before. One of the popular choices for such a pre-plate-tectonics
regime is stagnant lid convection (e.g., Debaille et al. 2013; Piper 2013; Stern 2018; Cawood
et al. 2018). This idea has a certain narrative appeal. The early Earth could have been a very
different world morphed by an entirely different kind of mantle convection, and then the advent
of plate tectonics brought dramatic changes to everything. It provides a powerful storyline that
could stimulate people’s imagination. The only problem is that one has to specify what caused this
change in the mode of mantle convection in the middle of Earth history.

Most geologists who advocate stagnant lid convection for the early Earth refer to, as a theo-
retical justification, the numerical modeling of O’Neill et al. (2007), which suggests that higher
internal heating in the past results in a hotter mantle, reducing convective stress and making it
difficult to drive plate tectonics. It is yet to be widely appreciated, however, that their numerical
model suffers from several design issues, and that it cannot be used to discuss Earth evolution.
This fact has already been pointed out by Korenaga (2017b), but it is buried in a rather technical
tutorial aimed at geodynamicists, so its essence is summarized here. Some of the key numerical
results obtained by O’Neill et al. (2007) are reproduced in Figure 1a-d. They conducted a series
of numerical simulation by varying the amount of internal heating, and a higher amount of inter-
nal heating is seen to lead to a hotter interior. Correspondingly, convective stress decreases with
increasing temperature (Figure 1i, solid circles), confirming the argument put forward by O’Neill

et al. (2007). However, this effect of internal heating on convective stress is not relevant to Earth’s
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mantle convection. In the model of O’Neill et al. (2007), the bottom temperature is fixed to a
constant value, so their model mantle is heated from within as well as from below; this is the
so-called mixed heating mode. One important attribute of mixed heating is the internal heating
ratio, which quantifies the contribution to surface heat flux from internal heating. In the case of
no internal heating (Figure 1a), the internal heating ratio is zero, meaning that all of surface heat
flux is supported from heat flux from below (i.e., core heat flux). The three examples shown in
Figure 1a-c span the range of internal heating ratio from 0 to ~1, i.e., pure basal heating to almost
pure internal heating. Thus, even though the corresponding change in internal temperature is mod-
est (Figure 11; ~250 K), the influence of the bottom boundary varies substantially. In contrast, the
contribution of core heat flux to surface heat flux is limited on Earth (e.g., Lay et al. 2008), and the
internal heating ratio would not vary much through Earth history (Figure 1j). To understand how
much of the stress change seen in the mixed-heating model is caused by the change in basal heat
flux, Korenaga (2017b) ran another set of numerical simulation, which is identical to those shown
in Figure la-c except that the bottom was insulated to suppress basal heat flux (Figure le-g). A
similar change in the interior temperature is seen (compare Figure 1d and Figure 1h), but a change
in the convective stress is almost negligible in these purely internally heated cases (Figure 1i, open
circles). This is also consistent with the stress scaling of Solomatov (2004). The conjecture of
O’Neill et al. (2007), therefore, is not applicable to Earth. Additionally, the internal heating ratio
is likely to have been lower in the past, i.e., the contribution from basal heat flux was greater in-
stead of smaller (Figure 1j), despite higher radiogenic heating in the past. This is partly because
“internal heating” in steady-state convection simulation (as those shown in Figure 1) includes not
only radiogenic heating but also secular cooling (e.g., Daly 1980) and partly because core heat flux
is likely to have been higher in the past (e.g., Nimmo 2015; O’Rourke et al. 2017). In general,
modeling mantle convection with internal heat production needs great care, and Korenaga (2017b)
concluded his tutorial with a list of seven pitfalls to avoid: 1. using only radiogenic heating when

running a model for steady state, 2. using Turcotte & Schubert’s model of internal heat production,
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3. modifying more than one variable in a control experiment, 4. overlooking the viscosity contrast
across lithosphere, 5. neglecting to measure the internal heating ratio, 6. running complicated mod-
els without understanding simpler ones, and 7. running simulations with an unrealistic evolution
of the internal heating ratio. Falling into just one or two pitfalls usually constitutes a fatal error.
The work of O’Neill et al. (2007) falls into all of them.

The inconsistency between the work of O’Neill et al. (2007) and the scaling of Solomatov
(2004) was noted by Korenaga (2013) (see its section 2.2), but an in-depth discussion of design
issues in the former study was not available until 2017. In the meantime, the notion of stagnant
lid convection in the early Earth has become quite popular, though relevant arguments put forward
are of varying quality. For example, Debaille et al. (2013) argued that '*>Nd/!**Nd variations in
late Archean rocks were consistent with the operation of stagnant lid convection in the early Earth,
but as Roth et al. (2014) pointed out, their observations do not require stagnant lid convection if
one considers the effect of continental growth on the evolution of isotopic heterogeneities in the
mantle. Indeed, the same Nd isotope data can also be explained by the combination of rapid crustal
growth and efficient crustal recycling (Rosas and Korenaga 2018), which is recently corroborated
by the history of argon degassing (Guo and Korenaga 2020). A more recent example may be seen
in the work of Caro et al. (2017), who studied the formation history of Eoarchean supracrustal
rocks (3.6-3.8 Ga) from the Inukjuak domain in the Superior Province. They estimated that the
Eoarchean rocks were derived by a foundering of ~4.4 Ga mafic crust, and the time lag of 0.6-
0.8 Gyr between the formation of the Hadean mafic crust and its foundering was used to argue
for subdued lithospheric recycling, thus preferring stable lithosphere as in stagnant lid convection.
However, this argument is strange in two accounts. First, the crustal residence time of 0.6-0.8 Gyr
by itself does not immediately indicate subdued recycling. With the present-day continental mass,
for example, it corresponds to the recycling rate of 2.5-3.3x10?? kg Gyr~!, which is much higher
than the present-day recycling rate. Second, the time lag between formation and recycling is not

equal to the crustal residence time unless the area under consideration represents a substantial
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fraction of the then existing continental crust. This is clearly not the case for the study of Caro
et al. (2017), whose survey area is only ~2 km?. This point may be better appreciated by looking
at the formation age distribution of the continental crust (see §3.2); even with continuous recycling,
it is possible to preserve rocks originally formed at >4 Ga to the present, if their mass is not too
large.

Returning to the issue of what could possibly cause the transition from stagnant lid convection
to plate tectonics in the middle of Earth history, it is still premature to be conclusive about this,
because what makes plate tectonics possible on Earth is still under active debate (e.g., Bercovici
et al. 2015; Korenaga 2020). As I argued in my recent review on this matter (Korenaga 2020),
however, it is difficult to find a more efficient weakening mechanism than the thermal cracking
of oceanic lithosphere (Korenaga 2007), and in recent years, observational support for thermal
cracking is gradually accumulating as well (e.g., Korenaga 2017a; Chesley et al. 2019). The prime
requirement to activate this mechanism on terrestrial planets is the presence of surface water (Ko-
renaga 2010a). As the oxygen isotope data of Hadean zircons suggest that Earth was covered by
oceans at least back to 4.4 Ga (Wilde et al. 2001; Mojzsis et al. 2001), there is no impediment for
the operation of plate tectonics in the Hadean. Conversely, with the current understanding of rock
mechanics, the notion of stagnant lid convection in the early Earth could conflict with the likely

presence of surface water.

2.2 Archean onset of plate tectonics

In addition to the work of O’Neill et al. (2007), a few other studies helped to popularize the late
onset of plate tectonics, and the continental growth model of Dhuime et al. (2012) is one of them.
However, the work of Dhuime et al. (2012) is affected by three major issues.

The first issue is that their way of estimating crustal growth does not yield an estimate on crustal
growth. They basically followed the procedure proposed by Belousova et al. (2010), and how it

works is illustrated in Figure 3, using four different synthetic examples. We first calculate two age
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distributions from a detrital zircon database, one for U-Pb crystallization ages, and the other for
depleted mantle model ages based on Hf isotopes. Then, we take the ratio of the depleted mantle
model age distribution over the sum of these two age distributions, and this ratio is assumed to
be the new crust generation rate. Finally, by taking the cumulative sum of this crust generation
rate, we obtain a new growth curve. To understand whether this approach actually works or not,
let us apply it to synthetic zircon age data, for which we know the true answer. The first row of
Figure 3 presents the simplest case, in which the continental crust grows linearly (Figure 3d), so
the crust generation rate is constant through time (Figure 3a; gray histogram). Because the crystal-
lization ages of old zircon grains tend to be reset by more recent crust generation events, the U-Pb
crystallization age distribution is skewed toward recent ages (Figure 3a; yellow line). Note that
this resetting of crystallization ages does not refer to age-resetting by Pb loss, but to age-resetting
caused by dissolving zircon during intracrustal melting under appropriate temperatures and com-
positions. The latter type of age-resetting is also assumed by Belousova et al. (2010); in their
model, the pairwise interaction of old and new zircon grains results in adopting the crystallization
age of the new grain and the average of their depleted mantle model ages for both grains (see also
Figure 1 of Korenaga (2018b)). Because of this mixing of old and new grains, the depleted mantle
model age distribution takes a maximum in the middle of Earth history (Figure 3a; magenta line),
which reflects the average age of continental crust. The sum of these two age distributions has
greater population at younger ages (Figure 3b; orange line), an attribute inherited from the U-Pb
crystallization age distribution. If we divide the model age distribution by this aggregated one, the
resulting distribution, which is supposed to be the new crust generation rate, has greater population
at older ages (Figure 3c; blue line). This is at odds with the true distribution, which is constant
through time (Figure 3c; gray histogram). The reason for this discrepancy is simply that the ratio
of the model age distribution over the sum of the two age distributions always has greater values
at older ages than at younger ages, no matter what the true distribution of crust generation rate

is, because the U-Pb crystallization ages, which occupy the half of the denominator, are always
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biased toward younger ages, and the depleted mantle model ages, which occupy the other half, do
not reverse this bias. This fact is perhaps best appreciated with the second example, in which the
true crust generation rate is biased toward the present (Figure 3e; gray histogram). The method
of Belousova et al. (2010) still yields a result that is biased toward older ages (Figure 3g; blue
line). As a result, the cumulative distribution is concave down (Figure 3h; blue line), though it
should be concave up in this example (Figure 3h; gray histogram). The method of Belousova et al.
(2010) can give an apparently successful solution only when the true distribution is similar to the
artifact it produces, i.e., a distribution skewed toward older ages, as shown in the third example
(Figure 3i-1). The fourth example concerns a more complicated distribution with multiple peaks
in crust generation (Figure 3m; gray histogram). The method of Belousova et al. (2010) again
provides a distribution skewed toward older ages (Figure 30; blue line) and thus a concave-down
cumulative distribution (Figure 3p; blue line). These four examples should be sufficient to demon-
strate the point made earlier; the method of Belousova et al. (2010) always produces a distribution
skewed toward older ages regardless of input data, simply because the U-Pb crystallization age
distribution, which can be reset by recent melting events, has always greater population at younger
ages than the depleted mantle model age distribution. As pointed out by Korenaga (2018b), the
method of Belousova et al. (2010) does not provide an estimate on the crust generation rate because
there is no logical connection between their procedure and crustal growth. Their method can only
produce a smooth curve that may look like a growth curve, and it always produces a concave-down
curve even for synthetic input data made by an entirely different growth curve. Belousova et al.
(2010) themselves tested the performance of their method using two synthetic examples, which
are similar to the first and third examples shown here, but the outcome of the first example did not
prevent them to proceed. For comparison, the performance of the unmixing method of Korenaga
(2018b) is also shown in Figure 3 (red line).

Second, Dhuime et al. (2012) not only adopted the method of Belousova et al. (2010) but

also added data screening using oxygen isotope data. Whereas oxygen isotope data could provide
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important information on the nature of host rocks, their implementation of data screening is prob-
lematic. Because only a fraction of zircon age data have oxygen isotope data measured, they first
focused on this small fraction of the global zircon database (the number of data ~ 1400) to cal-
culate the fraction of data to be rejected as a function of depleted mantle model age; for example,
~80 % and ~40 % of data would be rejected if the model age is 2 Ga and 3 Ga, respectively. Then,
they applied this age-based rejection criterion to the original global database (the number of data ~
7000). In doing so, they discarded over 50 % of data irrespective of their potential oxygen isotope
information.

Third, detrital zircon ages cannot be used to estimate net crustal growth. By using crustal
samples that have been preserved to the present, we can only hope to reconstruct the formation
age distribution, not net crustal growth (§3.1). Nevertheless, Dhuime et al. (2012) presented their
result as a new growth model, and because their ‘growth model’ shows a reduction in growth rate
at ~3 Ga, they suggested that this reduction might be linked to the onset of plate tectonics. This
suggestion is problematic in two aspects: (1) as demonstrated above, their model is an artifact
and does not correspond to either net crustal growth or formation age distribution, and (2) net
crustal growth and the onset of plate tectonics are not uniquely related. Net crustal growth reflects
a balance between crustal generation and recycling (§3), so a change in net growth rate simply
indicates a concurrent change in the rate of crustal generation or crustal recycling or both. It
cannot be ascribed solely to a change in the recycling rate, as assumed by Dhuime et al. (2012).

Other arguments for the Archean onset of plate tectonics include those based on mineral in-
clusions in diamonds (Shirey and Richardson 2011; Smit et al. 2019) and the Nd isotope data
of magmatic zircons (Fisher and Vervoort 2018), and these studies deserve careful consideration.
Shirey and Richardson (2011) suggested the onset of plate tectonics at 3 Ga, based on the following
observation: the temporal distribution of eclogitic diamonds found in mantle xenoliths, which are
likely to have originated in subducted oceanic crust, are sharply truncated at ~3 Ga, whereas that

of peridotitic diamonds do not show such a behavior. Smit et al. (2019) followed up this hypoth-
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esis by analyzing the sulfur isotope signature of sulfide inclusions in diamonds and showed that
mass-independently fractionated sulfur, which can be generated only before the Great Oxidation
Event at ~2.5 Ga (Farquhar et al. 2000; Gumsley et al. 2017), is observed for inclusions younger
than 2.9 Ga but not for those with an age of 3.5 Ga. These important observations, however, do
not necessarily contradict with the early onset of plate tectonics. Because those diamonds are all
sampled from continental lithosphere, they may reflect how the preservation potential of conti-
nental lithosphere, with regard to subducted oceanic crust, has changed through time, instead of

subduction process itself (Luo and Korenaga 2021).

Fisher and Vervoort (2018) analyzed the Hf isotope signature of magmatic zircons from Eoarchean

rocks in southern West Greenland, and because these zircons were found to be undepleted in terms
of Hf isotopes before 3.8 Ga, they suggested that continental growth started only after 3.8 Ga. This
directly conflicts with the suprachondritic '**Nd/'**Nd isotope signature reported from Eoarchean
rocks (e.g., Moorbath et al. 1997; Bennett et al. 2007). One explanation for this discrepancy is that
the Nd isotope data of whole rock are subject to greater disturbances than the Hf isotope data of
zircon grains (e.g., Vervoort et al. 1996). Such relative fragility of whole-rock isotope data should
be at least partly responsible for the scattered nature of '**Nd data in the early Archean (Figure 2a).
Another way to reconcile their Hf isotope observation with the Nd isotope records is to suppose
that the Lu-Hf isotope system was decoupled from the Sm-Nd isotope system in the early Earth.
These two isotope systems are known to be usually well correlated (Vervoort et al. 1999), but it
is possible to decouple them by the unique partitioning behavior of lower mantle minerals, which
could take effect during the solidification of a magma ocean (Caro et al. 2005). Although Fisher
and Vervoort (2018) did not favor this possibility, by noting that “it does require a mantle melting
process that is no longer dominant on Earth,” the solidification of a magma ocean is the process
that can only happen in the very early Earth. As the existence of a magma ocean is difficult to
reject (§4.1), pursuing the possibility of Lu-Hf and Sm-Nd decoupling appears a worthy effort. It

could potentially provide important constraints on magma ocean solidification as well as the early
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phase of subsolidus mantle convection.

2.3 Mafic early crust

The early continental crust is commonly thought to be more mafic than the present continental
crust (e.g., Taylor and McLennan 1985, 1995; Kemp and Hawkesworth 2003), although how much
more mafic it was differs among existing estimates. In this section, to make discussion concrete
and concise, I focus on the major element composition in terms of SiO;, MgO, and K,O. In their
classic work, Taylor and McLennan (1985) estimated, on the basis of the geochemistry of shales,
the composition of present-day upper crust as 66 wt% SiO», 2.2 wt% MgO, 3.4 wt% K,O, and
that of Archean upper crust as 60 wt% SiO, 4.7 wt% MgO, 1.8 wt% K;O. Their estimate of
the Archean composition corresponds to a 2:1 mixture of basalt and TTG, i.e., a predominantly
mafic continental crust. On the other hand, Condie (1993) suggested, on the basis of the geologic
mapping of the exposed continental crust, a much reduced secular evolution even after correcting
for the effect of erosion: 67 wt% SiO», 1.9 wt% MgO, 3.1 wt% K,O for present, and 65 wt% SiO;,
4.1 wt% MgO, 2.5 wt% K;O for >3.5 Ga (Figure 4). Correspondingly, the proportion of mafic
and ultramafic components varies from 9 % in the Phanerozoic to only 21 % in the early Archean
(Figure 4).

A recent analysis of the global compilation of terrigenous sediments (Ptacek et al. 2020) cor-
roborates the secular compositional change of Taylor and McLennan (1985) with 66 wt% SiO,,
2.4 wt% MgO, 3.2 wt% KO for present, and 61 wt% SiO,, 6.1 wt% MgO, 1.8 wt% K,O for
3.3 Ga. However, the lithologic decomposition of Ptacek et al. (2020) shows that the felsic com-
ponent has to occupy >50 % persistently for the last 3.5 Gyr, because the compositions of end-
member components (felsic, mafic, and komatiite) also change with time. In their decomposition,
the mafic component occupies ~20 % at present and ~30 % at 3.5 Ga, with the komatiite compo-
nent appearing at ~1.8 Ga and reaching ~10 % at 3.5 Ga. This is more comparable to the estimate

of Condie (1993) than that of Taylor and McLennan (1985).
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Another approach to estimating the major element composition of early continental crust is to
use trace element ratios as proxies, e.g., Ni/Co and Cr/Zn for MgO (Tang et al. 2016), Cr/U for
SiO, (Smit and Mezger 2017), and Cu/Ag for MgO and SiO, (Chen et al. 2019). These studies
tend to provide greater secular variations than mentioned above. For example, Tang et al. (2016)
estimated that MgO decreased from ~15 wt% at 3.2 Ga to ~4 wt% at 2.6 Ga, and Chen et al.
(2019) estimated that SiO, increased from 50-55 wt% at 3 Ga to 65 wt% at 2.4 Ga. As pointed out
by Keller and Harrison (2020), however, these suggested transitions in major element composition
may simply reflect a redox change in surface environment brought by the Great Oxidation Event at
~2.5 Ga, because the solubilities of these metallic elements are highly sensitive to their oxidation
states. As a null hypothesis, Keller and Harrison (2020) suggest that the SiO; content of continental
crust could have been remain nearly constant at ~59 wt% since 4 Ga, though MgO and K;O still
exhibit secular change (6 wt% MgO and 1.5 wt% K,O at 4 Ga and 4 wt% MgO and 2.5 wt% K,0O
at present) in their model.

Rollinson (2017) offers a different angle to the question of early crustal composition. He
argues that, if large volumes of felsic continental crust existed in the early Earth and were lost
to the mantle by subduction, they should manifest in the isotope signature of ocean island basalts
(OIB). Referring to the work of Stracke (2012), which shows that the contribution of recycled upper
continental crust to OIB is subordinate to that of recycled oceanic crust, Rollinson (2017) questions
the presence of massive felsic crust in the early Earth. However, one cannot apply the geochemistry
of OIB to the problem of continental evolution in this way. In the geochemical literature, the
contribution of the continental crust to the sources for mid-ocean ridge basalts (MORB) and ocean
island basalts is usually discussed using the isotopic composition of the present-day continental
crust (e.g., Hofmann 1997). Because the present-day continental crust is isotopically quite distinct
and is also enriched in those isotopes, one only has to add a small amount of it to change the
isotope composition of a source mantle. This does not preclude the possibility of recycling a

substantial amount of continental crust in the past. For example, what is shown in Figure 2a is the
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143Nd/!'*Nd evolution of the depleted MORB source mantle according to the continental growth
model of Rosas and Korenaga (2018), which is characterized by efficient crustal recycling in the
early Earth (§3.2). In other words, the present-day isotopic composition of the convecting mantle
(including both MORB and OIB sources) reflects the time-integrated effect of crustal generation
and recycling, and one cannot deduce the long-term contribution of crustal recycling from the

isotopic variance of present-day igneous products.

2.4 Sagduction

As a pre-plate-tectonics regime, some authors have proposed something less rigid than stagnant lid
convection. In the so-called ‘sagduction’ regime, the base of thick oceanic crust can delaminate and
sink. If such delaminated crust is originally hydrated, its partial melting can create felsic magma,
so sagduction can potentially contribute to continental growth in the absence of plate tectonics.
Quite a few numerical models have been published to support the possibility of this hypothetical
geodynamic process, but they all involve questionable model assumptions. The dissection of some
representative studies is conducted below.

Johnson et al. (2014) considered the gravitational stability of a 45-km-thick magnesium-rich
crust. Based on thermodynamic modeling, they showed that the lowermost part of the crust could
become denser than the underlying mantle, and their numerical simulation indicates that the dense
layer can delaminate on a time scale of a few Myr. They used, however, the rheology of dry dia-
base when calculating crustal viscosity, which is inconsistent with the fact that the densification of
the lowermost crust is caused by phase change, with increasing modal proportions of garnet and
pyroxenes, which are considerably stronger than diabase (Karato 2008). Mondal and Korenaga
(2018) showed that, if we instead use the rheology of eclogite for the densified layer, the time scale
of crustal delamination would become on the order of 1-10 Gyr, i.e., delamination is virtually im-
possible. More recently, Roman and Arndt (2020) pointed out that fractional crystallization during

crustal accretion would leave olivine-rich cumulates in the lower crust with little aluminum, thus
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being unlikely to yield garnet to begin with. They also noted that crustal accretion with repeated
extrusion and intrusion would result in too hot a thermal structure to retain hydrous minerals in the
lower crust. Although thermal cracking can still hydrate the lower crust after crust emplacement,
such hydration would be highly localized as deep thermal cracks can form only with an interval of
a few tens of kilometers (Korenaga 2007, 2017a). Thus, a pervasive hydration of lowermost crust
as assumed by Johnson et al. (2014) is difficult to achieve.

Sizova et al. (2015) considered a similar dynamic problem, but with a different initial condi-
tion. Their model starts with a 40-km-thick basaltic crust, with the top 20 km being hydrated,
and the crustal layer is underlain by a ~200-km-thick layer of melt-bearing peridotite. Their sim-
ulation results exhibit highly dynamic features, starting with lithospheric mantle delamination,
then lower crustal delamination and crustal overturn, followed by oceanic plate subduction, slab
breakoff, and even back arc spreading. Their model is, however, set up to become unrealistically
unstable. First of all, their initial thermal structure is superheated. They set 0 °C at the surface,
1200 °C at the Moho, 1590 °C at 80 km depth, and 2040 °C at the bottom boundary (500 km
depth). The asthenospheric mantle thus initially has a thermal gradient of ~1 K km~!, which is
twice as high as the adiabatic gradient of the solid mantle (e.g., Turcotte and Schubert 1982). This
high heat content prescribed by the initial condition allows a prolonged period of extensive melting
in their model. Second, their model consistently exhibits a >100-km-thick layer of melt-bearing
peridotite, because they assume that the melt porosity in peridotite can become as high as 5 % be-
fore being extracted by melt migration. Dihedral angles in the olivine-basalt system are, however,
lower than 60°, so melt can be interconnected and be extracted even with less than 0.5 % porosity
(e.g., von Bargen and Waff 1986; Daines and Richter 1988). Geochemical observations suggest
similarly low residual melt porosities: 0.1-0.5 % from the rare earth element chemistry of abyssal
peridotites (Johnson and Dick 1992), and ~0.1 % from the U-series activity ratios of MORB
(McKenzie 2000). The presence of a thick melt-bearing peridotite layer in the model of Sizova

et al. (2015) is particularly problematic because they assume a reference density of 2900 kg m—3
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for the melt-bearing phase, which is much more buoyant than solid peridotite with a reference den-
sity of 3300 kg m—>. This thick, unrealistically buoyant melt-bearing peridotite layer facilitates
the delamination of the lower crust. Third, they assume that, when melt extraction happens in
their model, the yield strength of a lithology in the column between the source of the melt and the
surface is decreased by three orders of magnitude (for example, down to ~1 MPa at 50 km depth).
This essentially voids the effects of rock friction and temperature-dependent viscosity and prepares
the otherwise strong cold surface layer for intense deformation and delamination. The superheated
nature of their model also helps to sustain the feedback of delamination and melting.

The sagduction model of Rozel et al. (2017) is more reasonably set up than that of Sizova
et al. (2015), although the strong nature of eclogite rheology (Jin et al. 2001) is still not taken into
account. As such, their model prediction for felsic crust (or more precisely, TTG) production may
be regarded as the upper limit we can expect from sagduction. TTG is produced in their model
in two stages, first by initial eclogite dripping, which lasts 100-200 Myr, and later by resurfacing,
which takes place after a few hundred Myrs of stagnant lid convection, and most of felsic crust
production occurs in the initial dripping stage. They tested a number of different cases by varying
the brittle strength and the ratio of extrusive and intrusive magmatism, and they were able to show
that their model can produce up to 1.5 x 10° km? of TTG, which translates to ~0.4 x 10>? kg with
a density of 2900 kg m—3. Citing the work of Dhuime et al. (2012), Rozel et al. (2017) argued
that this was sufficient to explain early continental growth. As explained in §2.2, however, one
cannot read off new crust generation rate from a net growth curve (see also §3.2), and the model of
Dhuime et al. (2012) is not a net growth model to begin with. For comparison, the crustal evolution
model of Guo and Korenaga (2020) suggests that ~5 x 10?? kg of felsic rocks had to be produced
in the Archean. More critically, TTG production in the model of Rozel et al. (2017) is quite short-
lived, with the majority of production confined in the first 100-200 Myr, whereas TTG is observed
throughout the Archean (e.g., Moyen and Laurent 2018). Similar comments apply to the work of

Piccolo et al. (2019), which is a more recent take on sagduction.
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2.5 Episodic and intermittent Archean subduction

When assessing various numerical models of sagduction in the previous section, the importance of
using eclogite rtheology was noted. Rheology dictates how quickly instabilities can grow, so it is
always worth examining an adopted rheological setup. In this regard, existing numerical studies
tend to be oblivious to upper mantle rheology, which plays a decisive role in controlling the stability
of lithosphere. As indicated by the deep water cycle and the continental freeboard (Korenaga et al.
2017), the convecting mantle is likely to have been drier in the past, probably almost dry in the
early Archean. Because of this, the early mantle does not necessarily have a lower viscosity than
the present-day mantle. The effect of decreasing water content can compensate for the effect of
increasing temperature (e.g., Korenaga 2008a; Crowley et al. 2011). Nevertheless, it is common to
see wet olivine rheology being used for the asthenospheric mantle in deep time.

Figure 5 compares the yield strength of the suboceanic mantle beneath a 100-Myr-old seafloor,
for the cases of the potential temperature of 1350 °C (present) and 1650 °C (Archean). Because
the wet asthenospheric mantle at present starts to dehydrate at ~110 km depth by partial melting,
dry rheology is used for shallower depths (for a more realistic treatment of dehydration, see, for
example, Katz et al. (2003)). As can be seen here, the yield strength is determined by the weakest
deformation mechanism, which varies with depth. At present, the asthenosphere is dominated
by wet diffusion creep, the lower half of lithosphere by dry dislocation creep, and the upper half
of lithosphere by brittle failure assisted by thermal-cracking. Without thermal cracking, the yield
strength of the coldest part of lithosphere would be controlled mostly by low-temperature plasticity
and be as high as ~1 GPa, which is high enough to inhibit the operation of plate tectonics (e.g.,
Moresi and Solomatov 1998; Richards et al. 2001; Stein et al. 2004). With the potential temperature
raised to 1650 °C, but with a dry asthenosphere, the yield strength of the suboceanic mantle does
not change much (Figure 5b). This is partly because, when compared at the same seafloor age, the
shallow part of the lithosphere is similarly cold owing to cooling from above. The largest difference

is thus expected in the asthenosphere, but the effects of water and temperature are almost canceled
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out there. It should be noted that upper mantle rheology is still not well understood, and the yield
strength profiles in Figure 5 are subject to large uncertainty. Whereas many simulations studies use
the flow-law parameters compiled by Karato and Wu (1993) or Hirth and Kohlstedt (2003), most
of those flow-law parameters are not well constrained, as a series of reanalysis of experimental
studies have demonstrated (Jain et al. 2017, 2018, 2019). Figure 5 is based on just one of possible
flow-law parameter combinations sampled from the statistical representation of Jain et al. (2019).
Despite this uncertainty in flow law parameters, we should acknowledge the possibility that a hotter
mantle is not guaranteed to develop weaker lithosphere, if we are to understand the evolution of the
Earth system as a whole, in which surface environment and mantle dynamics can interact through
deep water cycle.

With this understanding of lithospheric strength, I now turn to discuss the possibility of episodic
and intermittent subduction in the Archean (van Hunen and van den Berg 2008; van Hunen and
Moyen 2012; Moyen and van Hunen 2012). van Hunen and van den Berg (2008) built a numerical
model to study how the style of subduction might change with different mantle potential temper-
atures, and their modeling results indicate that slab breakoff would take place more frequently in
a hotter mantle, preventing continuous subduction. In their model, Archean subduction events are
short-lived, lasting only 5-10 Myrs, and Moyen and van Hunen (2012) noted that such short-term
episodicity was consistent with the intermittent arc signatures seen in the Abitibi greenstone belt.
As explained above, however, the Archean convecting mantle is not necessarily weaker than the
present-day mantle, even though the former is certainly hotter. Positive net water flux from the
surface to the mantle has long been suggested by the present-day budget of water fluxes (Ito et al.
1983; Jarrard 2003) and is also supported by theoretical modeling (e.g., van Keken et al. 2011;
Magni et al. 2014; Karlsen et al. 2019). Though large net water influx has commonly been thought
to contradict with the constancy of continental freeboard (or equivalently, the constancy of sea
level) (e.g., Ito et al. 1983; Parai and Mukhopadhyay 2012), it is actually required to satisfy the

freeboard constraint if one considers the secular evolution of hypsometry (Korenaga 2008a; Kore-
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naga et al. 2017). A drier mantle in the Archean is a corollary of this deep water cycle, and it must
always be considered in conjunction with the secular cooling of the mantle.

The aforementioned arc signatures within the Abitibi greenstone belt have been questioned by
Bedard (2018), who argues that calc-alkaline volcanics in the belt are not arc-related but were
instead formed through intermittent melting at the base of a thick basaltic crust. As geological
inferences are largely empirical, it is not easy to secure a unique interpretation, especially when
invoking a process with no modern analogue. Early Archean plate tectonics could have very differ-
ent petrological and geochemical consequences, even if its kinematics is similar to that of modern
plate tectonics. Because of higher radiogenic heating in the past, the continental crust would cer-
tainly be hotter and thus weaker (e.g., Rey and Houseman 2006; Rey and Coltice 2008). Also, the
continental mantle lithosphere would be more easily influenced by convective currents (see §5), so
continental tectonics in the deeper time is expected to be generally more dynamic, characterized by
more mobile crust. This should not be confused with the strength of oceanic lithosphere, which can
remain strong as already discussed above. Higher mantle potential temperature results in thicker
oceanic crust with higher MgO content and thicker and more deplete oceanic mantle lithosphere
(Davies 1992; Korenaga 2006). In addition, the age of subducting slab tends to be older in the past
because of more sluggish plate tectonics (e.g., Korenaga 2003; Bradley 2008; Herzberg et al. 2010;
Condie et al. 2015; Pehrsson et al. 2016). The combination of greater chemical differentiation and
greater age would lead to a thicker subducting slab characterized by a larger radius of curvature,
which in turn affects the geometry of the wedge mantle (§5). The volume of the oceans was greater,
so there would be little stable dry landmass yet (Rosas and Korenaga 2021), limiting the amount
of terrigenous sediments. Because continents could have been more easily deformed, however, the
continental crust can subduct as slivers, which may undergo partial melting. There are a number
of possibilities to explore by modeling, and such theoretical efforts would be crucial to interpret
Archean igneous rock records with some confidence (e.g., Moyen and Laurent 2018).

In contrast to the episodic subduction hypothesis of van Hunen and Moyen (2012), which is
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characterized by a relatively short interval (~10 Myr), some authors have advocated intermittent
plate tectonics with long-term episodicity. The work of O’Neill et al. (2007) is one of them, and
as discussed in §2.1, their numerical modeling does not apply to Earth evolution. On the basis of
the structure of dynamical equilibria in terrestrial mantle convection, Sleep (2000) once speculated
that, if early plate tectonics could not release high radiogenic heat efficiently, a magma ocean
could reappear, and that a cycle of plate tectonics and a magma ocean may have repeated in the
early Earth. Moore and Lenardic (2015) made a similar claim. As pointed out by Korenaga (2016),
however, these arguments based on dynamical equilibria are incorrect, because they do not take
into account the thermal inertia of Earth’s mantle. Observational support for long-term episodicity,
including crustal age distribution, apparent polar wander velocities, and geochemical proxies for
subduction flux (O’Neill et al. 2007; Silver and Behn 2008), is rather weak, as already reviewed by
Korenaga (2013). Korenaga (2013) noted, however, that the possibility of a widespread magmatic
shutdown between 2.45 and 2.2 Ga (Condie et al. 2009) warranted further consideration, because
it was based on a rare coincidence of multiple proxies, such as no arc-type greenstones or TTG
suites, major unconformities on most cratons, and a gap in deposition of banded iron formation. A
more recent global compilation shows that the 250-Myr gap in magmatic activity shrinks to only
~50 Myr, from 2.26 Ga to 2.21 Ga (Spencer et al. 2018). Interestingly, their compilation also
shows that this period is enclosed by a ~130-Myr gap in passive margin sedimentation. Given the
presence of stable dry landmasses back then (Korenaga et al. 2017), the cessation of plate tectonics
would not prevent passive margin sedimentation. Thus, this 50-Myr gap in magmatic activity, even
if it is real, probably requires an explanation that does not invoke the absence of plate tectonics; it

may well be simply a preservation issue.

2.6 Heat pipe

The heat pipe model was originally proposed to explain why Jupiter’s Moon Io could have both

high heat flow and thick lithosphere (O’Reilly and Davies 1981). Moore and Webb (2013) pro-
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posed that this model might also be applicable to the Hadean and early Archean Earth when ra-
diogenic heat production was higher. Based on numerical simulation, they also suggested that
declining heat production over time could lead to an abrupt transition to plate tectonics.

Their model is not described with sufficient details, so its assessment has to involve some de-
tective work. For example, the snapshots of temperature field for their convection simulation (their
Figure 1) show very thick lithosphere, occupying the top 10-40 % of the model domain. It is
tempting to think that their model domain corresponds to the upper mantle; if so, the thickness
of their model lithosphere varies from ~60 km to ~260 km, which is reasonable. However, they
state that dimensionless internal heating rate (H*), defined as o.HD? /k, where « is thermal expan-
sivity, H is volumetric heat production, D is the system depth, and k is thermal conductivity, is
~2 for the present-day Earth (their Figure 2). Using the present-day radiogenic heat production
of 4 x 10712 W kg=! (or 1.3 x 1078 W m~3 with mantle density of 3300 kg m~3) for the bulk
silicate Earth (Lyubetskaya and Korenaga 2007) and typical mantle values (& = 3 x 107> K~!
and k =2 W K~! m~!), one would get H* ~ 0.085 if we assume D = 660 km, and H* ~ 1.64
for D = 2900 km. Thus, their model domain actually corresponds to the whole mantle, and their
model lithosphere has a thickness of ~300 km to ~1200 km, which is too thick for stagnant lid
convection on Earth and would hardly allow mantle melting. The Rayleigh number used in their
simulation is likely to be too low to simulate an Earth-like situation. They state that they varied the
internal-heating Rayleigh number from 10° to 3 x 108, but they did not specify which viscosity was
used when calculating the Rayleigh number. When viscosity is spatially variable (as in the case
of stagnant lid convection), one needs to specify which viscosity (e.g., surface viscosity, internal
viscosity, and bottom viscosity) is actually used for the Rayleigh number, and without this infor-
mation, the quoted range of the Rayleigh number carries little meaning. In any case, it is a common
practice to use relatively low Rayleigh number for numerical simulation for various computational
reasons, but to apply such numerical results to terrestrial planets, we usually develop a scaling rela-

tion so that low-Rayleigh-number results can be adequately extrapolated to high-Rayleigh-number
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situations (e.g., Solomatov and Moresi 2000). Such an effort on scaling is absent in the work of
Moore and Webb (2013).

When they ran a model with a decaying heat production, they started with a dimensionless
internal heating rate of 30, which is 18 times higher than the present-day value. With the present-
day abundance ratio of radiogenic isotopes (U:Th:K = 1:4:(1.27 x 10%), 28U/U = 0.9927, 23°U/U
=0.0072, all Th is 2*?>Th, and *°K/K = 1.28 x 10~%), radiogenic heat production is only ~5 times
greater even at 4.5 Ga, and to expect a 30-hold increase in heat production, the age of Earth has to
be extended to ~7 Ga. Their model exhibits the first plate-breaking event (i.e., onset of subduction)
at a dimensionless time of 0.125 (their Figure 4). Their method description states that the time scale
is nondimensionalized by the diffusion time scale, D> /x, where K is thermal diffusivity. With k
of 107% m? s~ ! and D of 2900 km, the diffusion time scale is 267 Gyr, so the dimensionless time
of 0.125 for subduction initiation is equivalent to ~33 Gyr. Even if we start the history of Earth
at 7 Ga, this subduction initiation corresponds to an event in the far distant future, at 26 Gyr from
now. In comparison, it takes only ~5 Gyr from now for our Sun to turn into a red giant and engulf
Earth (Schroder and Smith 2008). One possible way to keep their study relevant to Earth history,
though not technically correct, is to make use of the fact that the dimensionless internal heating
rate 1s varied from 30 to 10 in their model during a dimensionless period of 0.15 (their Figure 4),
which indicates a dimensionless half-life of ~0.095. Because the effective half-life of the relevant
radiogenic isotopes is ~2.6 Gyr, it may be possible to interpret a dimensionless time of 0.15 as
~4.1 Gyr. With the age of Earth of 4.5 Ga, the model of Moore and Webb (2013) would then
imply incipient plate tectonics in the Devonian. Nevertheless, the heat pipe model of Moore and
Webb (2013) has been cited as an early Earth process by the proponents of the mid-Archean onset
of plate tectonics (e.g., Cawood et al. 2018) as well as the Neoproterozoic onset of plate tectonics
(e.g., Stern 2018). It is difficult to further examine their model because some basic information
on the assumed mantle rheology is missing, including the degree of temperature dependence of

viscosity (the so-called Frank-Kamenetskii parameter) and the yield stress.
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The heat-pipe model is essentially stagnant lid convection with magmatism, and such dynamics
had already been studied by others (e.g., Reese et al. 1999, 2007). In particular, Korenaga (2009)
developed a scaling of stagnant lid convection with mantle melting, and this scaling has been used
to study the evolution of Mars (Fraeman and Korenaga 2010) as well as terrestrial planets at large
(O’Rourke and Korenaga 2012). In those models, mantle rheology, internal heating, and mantle
melting are treated in a self-consistent manner to solve the coupled crust-mantle-core evolution,
and one representative result for an Earth-sized planet is shown in Figure 6. As the initial mantle
potential temperature in this example is relatively low (1700 K), it takes ~0.7 Gyr for the mantle
to warm up and start melting extensively; for a hotter initial condition, one can simply imagine
that extensive mantle melting starts from the beginning. The basaltic crust grows to a thickness of
~70 km over a period of ~0.5 Gyr, and because heat-producing elements are all highly incompat-
ible elements, they are mostly partitioned into the crust, leaving the mantle severely depleted in
those elements. Because of this high internal heating in the crust, the crust experiences repeated
melting for ~3 Gyr (until the Moho temperature starts to decline; Figure 6b). The mantle is largely
insulated by this hot crust, so it cools down only slowly. In other words, the declining internal heat-
ing has little to do with the thermal state of the mantle, and it does not bring a drastic change to
mantle temperature and thus to convective stress as well, contrary to the suggestion made by Moore
and Webb (2013). More important, because of the high internal heating within the crust, the crust
retains a high geotherm for ~3 Gyr. A heat-pipe Earth, if modeled correctly, does not yield a
low geothermal gradient across the bulk of the lithosphere, failing to satisfy perhaps the most im-
portant observation among the geological evidence considered by Moore and Webb (2013). This
is critical, because other cited observations, such as rapid volcanic resurfacing, contractional de-
formation, and burial of hydrated crust, can also be explained by plate tectonics, especially when
relevant geological records are spatially limited (recall the issue of preservation bias discussed at
the beginning of §2).

As mentioned in §2.1, if the condition for plate tectonics is determined by the presence of
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surface water, it is difficult to expect the onset of plate tectonics in the middle of Earth history,
because Earth is supposed to have been covered by oceans for most of its history. The persistent
operation of plate tectonics, not just one-time subduction initiation, must involve similarly persis-
tent weakening of strong oceanic lithosphere. A likely secular change in the convective stress by
declining internal heat production would be too minute in the real mantle to affect the mechanical
stability of lithosphere (Figure 11); numerical studies claiming differently (e.g., O’Neill et al. 2007;
Moore and Webb 2013) are compromised by oversight in their model setup. As reviewed by Ko-
renaga (2020), grain-size reduction (e.g., Bercovici and Ricard 2014; Foley 2018) does not affect
the strongest part of lithosphere, underlining the critical role of thermal cracking in activating plate
tectonics. With surface water, thermal cracking can reduce the yield strength of lithosphere down
to ~100 MPa, regardless of mantle potential temperature (Figure 5). If this weakening mechanism
is important for the current operation of plate tectonics, then, it would also allow plate tectonics in

the early Earth (e.g., Korenaga 2011).

3 Evolution of continental crust through Earth history

As reviewed in the previous section, the popular notion of mid-Archean onset of plate tectonics,
with stagnant lid convection in the early Earth, is not built on careful theoretical studies nor robust
geological evidence. In particular, the lack of theoretical requirement for stagnant lid convection
in the early Earth (§2.1) undermines the generality of field-based suggestions for the mid-Archean
onset of plate tectonics (e.g., Van Kranendonk et al. 2007), as the spatial extent of the relevant
field area is trivial (§2). The very paucity of geological data in deep time, therefore, highlights
the importance of the two approaches mentioned in §1, i.e., focusing on the geochemical data that
are sensitive to the growth of continental crust, which could inform us of the likely geodynamic
regime in the Hadean, and understanding the consequences of magma ocean solidification, which
would constrain how subsolidus mantle convection started on Earth. The preservation issue is still

problematic for the first approach with geochemical data, as the number of relevant localities is
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limited, but by using geochemical modeling, we can at least attempt to consider them simultane-
ously in a global framework. As such, the role of modeling is paramount. Just as the interpretation
of geochemical data always involves a certain set of assumptions, the reliability of modeling re-
sults depends on modeling assumptions. Furthermore, as regard to continental growth, no single
kind of geochemical probe would provide a decisive answer, and it would be important to combine
different kinds of geochemical data by appreciating their relative strengths and weaknesses.

The persistent generation of felsic continental crust on a substantial scale requires the continu-
ous subduction of water into the mantle (e.g., Campbell and Taylor 1983), for which plate tectonics
is essential. Other mechanisms have been proposed to generate felsic magma, such as the melting
of hydrated crust by reheating (e.g., Petford and Gallagher 2001; Annen et al. 2006) or delami-
nation (e.g., Sizova et al. 2015; Rozel et al. 2017; Piccolo et al. 2019), but these mechanisms are
incapable of generating a sizable amount of felsic magma. Some numerical studies suggest that
the delamination mechanism can account for a large fraction of early continental crust (e.g., Rozel
et al. 2017), but as discussed in §2.4, a closer look at these studies reveals that the efficacy of de-
lamination is likely to have been exaggerated. The history of continental growth, therefore, could
directly constrain when plate tectonics started on Earth, and such a constraint is invaluable for a
better understanding of Hadean geodynamics. In this section, I will first touch on some persistent
confusions in the study of continental growth; this is important because knowing what went wrong
in the past helps to avoid repeating the same mistakes. I will then discuss recent growth models
and their implications for the composition of early continental crust as well as the possible regimes

of Hadean geodynamics.

3.1 Some remarks on the history of crustal growth research

Whereas continental growth has always been a controversial topic, discussion was mostly reason-
able until the 1990s. In particular, there are quite a few seminal papers published in the 1980s

(e.g., Armstrong 1981b; Nelson and DePaolo 1985; Patchett and Arndt 1986; Jacobsen 1988), and
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there was little confusion about the difference between “net crustal growth” and “formation age
distribution” back then. It is vital to understand this difference. The former refers to how the mass
of the continental crust has changed through time, whereas the latter describes the present-day
distribution of the formation ages of the extant continental crust. These two can coincide only if
no crust has been lost to the mantle, and any difference between them reflects the time-integrated
effect of crustal recycling by subduction or delamination (Figure 7a).

It may be too obvious a statement that net crustal growth and formation age distribution are
two different things, but this distinction has been largely absent in the literature since the 1990s,
i.e., when zircon-based studies on crustal evolution started to become popular. Because each zir-
con grain provides its own crystallization age, and because detrital zircons represent some broad
region of upper continental crust, a considerable amount of geochronological and geochemical
information can be extracted from detrital zircons. Apparently, the advent of this fascinating ge-
ological probe gave some people an impression that zircon can address net crustal growth as well
(e.g., Rino et al. 2004; Condie and Aster 2010), though it is only the formation age distribution of
the extant continental crust, not net crustal growth, that can be inferred from detrital zircons (see,
for example, Figure 12 of Hawkesworth et al. (2010)). Then, Belousova et al. (2010) proposed a
new method to estimate a crustal growth curve using both the U-Pb crystallization age distribu-
tion and the Hf model age distribution of detrital zircons. As demonstrated in §2.2, their method
can produce only an artifact, but this reality escaped the notice of most geologists (the work of
Payne et al. (2016) appears to be a rare exception). On the contrary, their method was promoted by
Dhuime et al. (2012), with some modification to incorporate oxygen isotope data, and the model of
Dhuime et al. (2012) has been repeatedly advertised by a series of review papers written by these
authors (Cawood et al. 2013; Kemp and Hawkesworth 2014; Hawkesworth et al. 2016; Dhuime
et al. 2017; Hawkesworth et al. 2017; Cawood et al. 2018; Hawkesworth et al. 2019). They often
try to corroborate the model of Dhuime et al. (2012) by citing other similar growth models (e.g.,

Campbell 2003; Pujol et al. 2013), but there are a wide variety of different looking growth models
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in the literature (see Korenaga (2018a) for the strengths and weaknesses of these models). The
model of Dhuime et al. (2012) has been widely cited, and it has affected a large number of pa-
pers that relied on their crustal growth model. One recent example is the work of Dhuime et al.
(2018), who attempted to estimate the rates of generation and destruction of continental crust by
box modeling. Their approach suffers from the assumption that the model of Dhuime et al. (2012)
represents net crustal growth. They also do not distinguish between the formation age distribution
and the surface age distribution (Figure 7a), thereby neglecting the important difference between
crustal recycling (loss of crustal materials to the mantle) and crustal reworking (intracrustal pro-
cesses). Such a misunderstanding of fundamentals would prevent a sensible estimate on the rates

of generation and destruction of continental crust.

3.2 New models of continental growth

Continental growth models can be categorized into three groups: (1) crust-based, (2) mantle-based,
and (3) others (Korenaga 2018a). Crust-based models are based on the formation age (or its proxy)
distribution of the continental crust that has been preserved to the present, and they can serve as the
lower bound on net crustal growth. Though it is not about net growth, it is still important to properly
estimate the formation age distribution, which can constrain the extent of crustal recycling, once net
crustal growth is independently obtained, and also the extent of crustal reworking when combined
with the surface age distribution (Figure 7a). In this regard, zircon-based models directly use the U-
Pb crystallization ages of zircons (e.g., Rino et al. 2004) are unsatisfactory because crystallization
ages can be reset by intracrustal melting processes, thereby being more relevant to the surface age
distribution. The (igneous) formation age of a crustal rock refers to the time when the rock was first
extracted from the mantle by partial melting. Ancient zircons could experience many episodes of
crustal reworking (e.g., lizuka et al. 2010), so crystallization ages, which can be reset by remelting,
tend to be biased to younger ages. Belousova et al. (2010) tried to correct for this bias by utilizing

the Hf model ages of zircons, but they did not succeed (see §2.2). Korenaga (2018b) proposed a
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new method to estimate the formation age from the pair of the U-Pb crystallization age and the Hf
model age of zircon (Figure 3, red lines), and he estimated the formation age distribution based on
the database of detrital zircon ages compiled by Roberts and Spencer (2015) (Figure 8b).
Mantle-based models aim to constrain net crustal growth by tracking the depletion history of
the mantle, on the basis of the complementary nature of the continental crust and the depleted
mantle. That is, if the mantle at a certain time in the past was similarly depleted in some incom-
patible elements as the present-day mantle, it indicates that the mass of continental crust at that
time should be similar to the present-day mass, assuming that the continental crust back then was
similarly enriched in these elements. The coupled 4°Sm-'4>Nd and '4’Sm-'43Nd system is a par-
ticularly convenient tracer because of the vastly different half-lives of these two parent-daughter
pairs; '“°Sm decays to ¥2Nd with a half-life of ~103 Myr, whereas '*’Sm decays to '*3Nd with
a half-life of ~106 Gyr. The former is sensitive to crustal growth in the early Earth, and the latter
constrains the long-term depletion history. This coupled isotope system has been used to discuss
continental growth (e.g., Jacobsen and Harper 1996; Caro et al. 2006), but in recent years, the
interpretation of '¥?Nd data in terms of mantle mixing (with or without the effect of continent ex-
traction) has become more popular (e.g., Bennett et al. 2007; Debaille et al. 2013; Rizo et al. 2013;
Roth et al. 2014; Saji et al. 2018). Although some authors argued for the operation of stagnant
lid convection in the early Earth based on such a mixing-based interpretation (e.g., Debaille et al.
2013), such an interpretation has been suggested to suffer from nonuniqueness if one considers the
effect of continent extraction (Roth et al. 2014). More important, the mixing model of Roth et al.
(2014), which is a generalization of the box model of Caro et al. (2006), points to the possibility of
rapid crustal growth and recycling in the early Earth. This is because, in their box model, the sizes
of the crust and mantle reservoirs do not change with time (probably just for the sake of simplic-
ity), which is equivalent to the instantaneous formation of the continental crust with the present-day
mass at the beginning of Earth history, and because their estimate of the crustal residence time is

as short as 500 Myr, which translates to the crustal recycling rate of 4 x 10?> kg Gyr~!. This recy-
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cling rate is several times higher than the present-day recycling rate based on sediment subduction
(Scholl and von Huene 2007; Stern and Scholl 2010).

Intrigued by this possibility, Rosas and Korenaga (2018) revisited this coupled isotope sys-
tem with a more flexible parameterization of continental evolution and found that the available
142N d/'4Nd and '**Nd/!**Nd data are indeed consistent with the scenario of rapid crustal growth
and recycling in the early Earth (Figure 8). The crustal generation rate and the crustal recycling rate
both have to be sufficiently high to explain the '#*Nd/'**Nd data in the Archean, and they should
then decline with time to explain the long-term trend of '43Nd/'4*Nd data over Earth history. It is
noted that the model of Rosas and Korenaga (2018) successfully reproduces the aforementioned
estimates on the present-day recycling rate without being forced to do so. Such rapid crustal growth
is similar to what Armstrong suggested a few decades ago (Armstrong 1981a, b) (Figure 8a). The
Armstrong model has long been regarded as an unlikely end-member (the status of his model de-
scribed in his valedictory paper (Armstrong 1991) has remained mostly the same), and one of the
main reasons behind this unpopularity is the nearly total absence of Hadean crust in the geological
record. Such criticism, however, does not appreciate that net crustal growth is maintained by a
dynamic balance between crustal generation and recycling (Figure 7b). In the presence of crustal
recycling, no net growth does not mean that the once produced crust remains intact; quite the
contrary, to maintain zero net growth, the continental crust has to be kept generated and thus reju-
venated. To place this argument on a quantitative ground, Rosas and Korenaga (2018) calculated
the present-day formation age distribution corresponding to their estimate of crustal generation and
recycling rates, which happens to be in good agreement with the formation age distribution esti-
mated from detrital zircons (Korenaga 2018b) (Figure 8b). This level of agreement is unexpected
because the Nd isotope modeling of Rosas and Korenaga (2018) is not designed to fit the formation
age distribution.

It is important to understand, however, that Nd isotope data alone, even with both 142N d/144Nd

and '3 Nd/'**Nd, do not uniquely constrain crustal evolution. The parameterization of Rosas and
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Korenaga (2018) is flexible enough to cover most of existing growth models, but it is still limited
to monotonic temporal variations in crustal growth and recycling (see Hyung and Jacobsen (2020)
for an example of non-monotonic crustal evolution). It thus becomes essential to test whether any
suggested scenario of crustal evolution conforms to other observational constraints. The formation
age distribution is one such constraint. For example, if we calculate the formation age distribu-
tion corresponding to the non-monotonic growth model of Hyung and Jacobsen (2020) (i.e., their
“modified Jabobsen & Harper” model, in which instantaneous growth at 4.5 Ga is followed by 0.5
Gyr of no crustal generation and recycling), we would find that ~6 % of the present-day conti-
nental crust should have a formation age of 4.5 Ga. As the total of exposed and buried Archean
crust occupies only ~8 % of the present-day continental crust (Goodwin 1996), their model indi-
cates that the majority of the preserved Archean crust would have originally formed right at the
beginning of Earth history. Checking with the formation age distribution thus helps to eliminate
unrealistic scenarios. Another important constraint is the secular evolution of continental basalt
chemistry. The work of Keller and Schoene (2018) suggests that the source mantle has been simi-
larly depleted over the past 3.8 Gyr, which is equivalent to the mass of the continental crust being
roughly at the present-day level over that period. The net growth model of Rosas and Korenaga
(2018) is consistent with this observation as well.

The importance of constraining crustal evolution from a variety of angles naturally leads us
to the third kind of growth models. Models in this category also aim at net crustal growth, but
using less direct inference than mantle-based models. As reviewed by Korenaga (2018a), most of
such indirect inferences are problematic. The model of Reymer and Schubert (1984), for example,
depends critically on their assumption on the thermal evolution of Earth, which has since been
shown to be inconsistent with a number of observations, such as the thermal budget of Earth
(Lyubetskaya and Korenaga 2007), the cooling history of the upper mantle (Herzberg et al. 2010),
and the atmospheric budget of radiogenic xenon (Padhi et al. 2012). An exception is the model of

Pujol et al. (2013), which is based on the degassing history of radiogenic argon. Argon degassing,
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however, depends not only on the generation of continental crust and its recycling, but also on
other processes such as crustal reworking and mid-ocean-ridge magmatism. To make use of the
available argon data, therefore, we need to be able to model the coupled atmospheric-crust-mantle
system in a holistic manner. To this end, Guo and Korenaga (2020) constructed a new geochemical
box model in which the thermal evolution of Earth, crustal evolution, and argon degassing were
combined self-consistently. We now have reasonably sufficient observations to deconvolve those
processes, such as the potential temperature evolution of the mantle during the Proterozoic and the
Archean (Herzberg et al. 2010) for mid-ocean ridge magmatism and the distributions of surface
age and crustal formation age (Roberts and Spencer 2015; Korenaga 2018b) for crustal recycling
and reworking. The net growth model of Guo and Korenaga (2020) is also similar to the Armstrong
model, characterized by rapid crustal growth and recycling in the early Earth (Figure 8). Argon
degassing has been modeled repeatedly in the literature (e.g., Schwartzman 1973; Hamano and
Ozima 1978; Sleep 1979; Allegre et al. 1987; Tajika and Matsui 1993; Pujol et al. 2013; Stuart et al.
2016), but the full effect of crustal evolution, including both crustal recycling and reworking, on
argon degassing was not considered before. To assess the extent of crustal recycling and reworking,
a proper estimate on the formation age distribution is essential (Figure 7), which was not available
until recently.

The growth models of Rosas and Korenaga (2018) and Guo and Korenaga (2020) are both
similar to the Armstrong model, but they differ considerably in details (Figure 8). In terms of
the middle 50 % of their successful solutions, the start of crustal growth is tightly constrained
to 4.5-4.4 Ga in the former, whereas it is shifted to ~4.1-4.3 Ga in the latter (Figure 8a). They
are both characterized by high crustal generation and recycling rates in the early Earth, but the
crustal generation rate in the model of Rosas and Korenaga (2018) is twice as high as that in the
model of Guo and Korenaga (2020) (Figure 8c), and the opposite is the case for the crustal recy-
cling rate (Figure 8d). Both models are consistent with the present-day formation age distribution

(Figure 8b), the present-day crustal recycling rate (Scholl and von Huene 2007; Stern and Scholl
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2010), and the secular evolution of continental basalt chemistry over the past 3.8 Gyr (Keller and
Schoene 2018), but the above differences indicate substantially different tectonics for >3 Ga. This
discrepancy between the two models is not unexpected because how crust-mantle differentiation
is treated differs between them. For example, in the model of Rosas and Korenaga (2018), only a
fraction of the whole mantle participates in differentiation, with the rest of the mantle remaining
primitive, and this is what has long been done for the geochemical modeling of Nd isotopes. On
the other hand, the whole mantle is prone to degassing in the model of Guo and Korenaga (2020),
which is an attribute inherited from the classic work of Hamano and Ozima (1978). To reconcile
the differences between these models, it will be important to evaluate each of modeling assump-
tions, and to build a more versatile model that can treat multiple isotope systems simultaneously.
In the model of Rosas and Korenaga (2018), the fraction of the depleted mantle is time-invariant,
but it may be more realistic to assume that it grows with time (e.g., McCulloch and Bennett 1994).
In the model of Guo and Korenaga (2020), the mode of degassing changes from sudden degassing
to continuous degassing, and this change is supposed to coincide with the Moon-forming giant
impact. However, relatively large bolides (>1500 km in diameter) probably continued to bombard
Earth even after the giant impact (Marchi et al. 2018). Furthermore, both models start with a homo-
geneous primitive mantle, but it is difficult to justify such an initial condition if one considers how
a magma ocean would solidify (§4). The consideration of these realistic complications may help to
assimilate different geochemical constraints into a unifying model of crust-mantle differentiation.
An attempt to interpret geochemical data in a manner consistent with relevant geophysical and
geological observations has begun only recently, and it will probably take at least a few revisions

before we arrive at a fully satisfactory model of crustal evolution.

3.3 Composition of the early continental crust

The composition of early continental crust has been as controversial as the net growth of conti-

nental crust. One prevailing view is that the early continental crust is much more mafic than the



921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

044

945

946

38

present-day crust (e.g., Taylor and McLennan 1985). This view is based primarily on the observed
difference in trace element chemistry between Archean and post-Archean sedimentary rocks. As
noted by Harrison (2009), however, fine-grained Archean sediments were mostly derived from
greenstone belts, and the difference between Archean and post-Archean sediment chemistry may
represent an environmental, rather than temporal, difference. Interestingly, it is known that the
exposed continental crust itself does not exhibit a notable secular change in chemical composition
(Condie 1993). As discussed in §2.3, more recent analyses on the global database of sedimentary
rocks suggest that the continental upper crust in the Archean is not so mafic as commonly believed
(Greber and Dauphas 2019; Ptacek et al. 2020).

Previous studies on the composition of early continental crust, whether they are based on sed-
iment chemistry or exposed continental crust, are necessarily restricted to the upper continental
crust. Here I would like to take a broader view and consider possible secular changes in the com-
position of the entire continental crust. One popular notion is that the Archean continental crust was
less internally differentiated than the modern continental crust (e.g., Taylor and McLennan 1985;
Kemp and Hawkesworth 2003), and internal differentiation can enrich the upper crustal composi-
tion with incompatible elements while keeping the same bulk composition. The net growth models
discussed in the previous section provide some insights into this matter. This is because, in the
model of Rosas and Korenaga (2018), the crustal enrichment factors for Nd and Sm, which can
be regarded as the effective partition coefficients for these elements, are treated as time-varying
parameters to be determined by inversion. The successful solutions of Rosas and Korenaga (2018)
show that these enrichment factors are nearly constant through time, indicating that the crustal
composition also does not change with time, at least in terms of Nd and Sm. Admittedly, this is
not a particularly strong constraint because Nd and Sm are only moderately incompatible elements
with their partition coefficients being on the order of 0.1. However, a similar conclusion can be
drawn even from the argon degassing modeling of Guo and Korenaga (2020), which is sensitive to

the crustal concentration of potassium. Potassium is a highly incompatible element, with a parti-
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tion coefficient of ~0.01, and a high potassium content is an important indicator for felsic rocks.
In the model of Guo and Korenaga (2020), the crustal concentration of potassium is assumed to be
constant through time, and yet, their net growth model shows that the mass of continental crust is
already at the present-day level by the mid-Archean (Figure 8a). This means that if the Archean
crust were less felsic, its mass had to be greater than present. Though such a possibility is oc-
casionally entertained in the literature (e.g., Fyfe 1978; McCoy-West et al. 2019), it would lead
to a unrealistic surface environment. The present-day potassium concentration of the continental
crust is estimated to be ~1.5 wt% (Rudnick and Gao 2003), and if its concentration in the early
continental crust is, for example, only 0.5 wt%, then, the Earth’s surface would be occupied almost
fully by the continental crust in the Archean, because the continental crust is unlikely to have been
much thicker in the past (Galer and Mezger 1998). This is a self-contradictory situation; a plane-
tary surface mostly covered by continents would not allow the operation of plate tectonics, which
is essential for the generation of continental crust and its recycling. Parenthetically, the existence
of continental mass even at the present-day level in the Proterozoic and the Archean is already
troublesome for the geologists who work on continental reconstruction (e.g., Evans 2013). The
present-day formation age distribution shows that the amount of the continental crust preserved to
present decreases to ~60 % of the present-day mass when evaluated at 2 Ga and to only ~20 % at

3 Ga (Figure 8b).

3.4 Hadean geodynamics inferred from crustal evolution

Whereas the details differ, the new growth models of Rosas and Korenaga (2018) and Guo and
Korenaga (2020) both suggest rapid crustal growth and efficient crustal recycling in the Hadean,
and the model of Guo and Korenaga (2020) suggests that it may have persisted until the mid-
Archean (Figure 8). As discussed in §2.4 and §3.1, the operation of plate tectonics is likely to be
required for such a combination of crustal generation and recycling. If it is just to create a massive

amount of felsic crust at the beginning of Earth history, some peculiar situation associated with the
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solidification of a magma ocean might be sufficient (e.g., Morse 1986; Harrison 2009). However,
such a crust has to be destroyed quickly at the same time, and crust generation has to continue
through the rest of Earth history. The most parsimonious explanation for such crustal evolution
would be the continuous operation of plate tectonics since the solidification of a magma ocean.
The onset time of plate tectonics on Earth is another controversial subject (e.g., Condie and Kroner
2008; Van Kranendonk 2010; Korenaga 2013), because one of the defining attributes of plate
tectonics is the recycling of the surface layer. That is, the very operation of plate tectonics leads
to the absence of its evidence. Also, as we go deeper in time, available rock records become more
sparse, making it more difficult to generalize from local geological observations. Preservation bias
can be severe; the fact that a certain region has survived the billion years of plate tectonic recycling
may suggest that the region is not a normal sample (§2). In this regard, crustal evolution inferred
from the history of argon degassing is notable. Being a heavy noble gas, argon, once degassed from
the solid Earth, remains in the atmosphere, and the argon isotope ratio in the atmosphere can always
be considered to be homogeneous. Thus, the atmospheric argon stores the time-integrated history
of degassing on a global scale, and argon-based inferences suffer much less from preservation bias
than typical rock-based inferences. The crustal evolution model of Guo and Korenaga (2020),
therefore, lends a strong support for the onset of plate tectonics in the Hadean (e.g., Watson and
Harrison 2005; Hopkins et al. 2008, 2010; Korenaga 2011; Turner et al. 2014, 2020).

Assuming that plate tectonics started in the Hadean, the estimated rates of crustal generation
and recycling suggest that the tempo of plate tectonics must have been much faster in the early
Earth. This is contrasting to the regime of sluggish plate tectonics that most likely prevailed in the
Proterozoic and the late Archean (e.g., Korenaga 2006; Herzberg et al. 2010). The geodynamic
rationale for more sluggish plate tectonics, when the mantle was hotter in the past, is that, because
of the effect of partial melting on mantle viscosity and density, a hotter mantle results in a thicker
lithosphere. Obviously, such a physical framework developed around modern plate tectonics does

not explain rapid plate tectonics in the Hadean. It appears that we need a drastically different
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kind of plate tectonics. One reasonable starting point to search for a new geodynamic regime
is the solidification of a putative magma ocean, which marks the initiation of subsolidus mantle

convection.

4 Physics and chemistry of magma ocean solidification

4.1 1993: Annus mirabillis

According to the current understanding of planetary formation (e.g., Chambers 2014), the late-
stage accretion of Earth-size planets is characterized by multiple giant impacts, and in case of
Earth, the last of such giant impacts is considered to be responsible for the formation of the Earth-
Moon system. Numerical studies of the Moon-forming giant impact suggest that the kinetic energy
imparted by the impactor on the proto-Earth would be sufficient to melt a substantial fraction of the
mantle (e.g., Canup 2004; Asphaug 2014). Whereas various authors had discussed how a magma
ocean would solidify (e.g., Hofmeister 1983; Ohtani 1985; Kato et al. 1988; Tonks and Melosh
1990), it is not until 1993 that a firm theoretical ground was laid out by a series of groundbreaking
papers (Abe 1993a, b; Solomatov and Stevenson 1993a, b, ¢). In particular, the theoretical exposi-
tion in the 1993 trilogy of Solomatov and Stevenson is so comprehensive that no major theoretical
development is needed since then (Solomatov 2000, 2015). The scenarios of magma ocean solid-
ification depicted by these papers were, however, still largely qualitative. The reason is simple.
Because the slope of the mantle liquidus is generally steeper than that of the mantle adiabat, a
magma ocean would start to solidify from the bottom, e.g., from the core-mantle boundary in case
of a whole-mantle magma ocean. Therefore, to model the solidification of a deep magma ocean
expected from the Moon-forming giant impact, we need to have a good understanding of mantle
melting under lower mantle conditions, which was not available in the early 1990s. In the modeling
of Abe (1993b), for example, the mantle solidus and liquidus are assumed be offset by only 200 K

at all depths, and the melt fraction is assumed to vary linearly from solidus to liquidus. Melting in
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the lower mantle was treated more carefully by Solomatov and Stevenson (1993b), but owing to
the lack of reliable experimental control, they had to explore a range of possibilities, leaving their
discussion mostly provisional.

The melting of lower mantle materials is a long-standing challenge in high-pressure mineral
physics (e.g., Boehler 2000; Boehler and Ross 2015). The lower mantle is composed of three min-
erals, Si-perovskite, ferropericlase, and Ca-perovskite, with the first two making up about 90 %,
and even the melting behaviors of these constituent minerals have been controversial. A good ex-
ample is the melting curve of MgO, which is a Mg end-member of ferropericlase. It has taken more
than two decades for experimental studies to converge, with an initial suggestion of relatively low
melting temperatures (Zerr and Boehler 1994), followed by much higher temperatures (Zhang and
Fei 2008), and then somewhere in-between (Du and Lee 2014; Kimura et al. 2017). Theoretical
attempts on MgO melting took a similarly tortuous path (e.g., Strachan et al. 1999; Alfe 2005; de
Koker and Stixrude 2009). The melting experiments of peridotite (i.e., polymineralic assemblage)
over the entire lower mantle conditions have become possible only in the last decade (Fiquet et al.
2010; Andrault et al. 2011; Nomura et al. 2014), though with somewhat conflicting results, part of
which may be ascribed to different starting materials used in those studies. High-pressure melting
experiments are still technically demanding, and the level of expectations in experimental accuracy
is different from that for melting experiments relevant for crust and upper mantle; for example, it is
not uncommon to see nontrivial differences between reported initial and final system compositions
in high-pressure studies (e.g., Nomura et al. 2011; Tateno et al. 2014). Francis Birch once noted

99 ¢

that terms like “certain,” “undoubtedly,” and “positive proof” in the high-pressure mineral physics

29 ¢

literature actually meant, respectively, “dubious,” “perhaps,” and *“vague suggestion” (Birch 1952,
p- 234), and it may be prudent to keep this in mind even today.
The persistent uncertainty in the melting of lower mantle did not discourage the exploration

of new ideas for magma ocean solidification. Motivated by the possibility that the mantle lig-

uidus may become less steep than the adiabat at the lowermost mantle (Mosenfelder et al. 2007),
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for example, Labrosse et al. (2007) suggested that the terrestrial magma ocean may have started
to solidify from the mid-mantle, leaving a basal magma ocean above the core-mantle boundary.
Solidification from the mid-mantle is also suggested from later theoretical studies (Stixrude et al.
2009; Boukaré et al. 2015), though such a scenario is inconsistent with the experimentally deter-
mined liquidus (Fiquet et al. 2010; Andrault et al. 2011). On a different thread, Elkins-Tanton
(2008) suggested that the fractional crystallization of a magma ocean may have created a gravi-
tationally unstable structure, which then could have been overturned to a stable, compositionally
stratified structure by the Rayleigh-Taylor instability. Plesa et al. (2014), however, pointed out that
such a stratified structure would be too stable to allow subsequent convection. More recently, it
is suggested that the Rayleigh-Taylor instability can take place before a magma ocean solidifies
completely, which tends to homogenize the solidified mantle (Maurice et al. 2017; Ballmer et al.
2017; Boukaré et al. 2018).

If a magma ocean solidifies from the mid-mantle, the formation of a basal magma ocean would
be inevitable, which has profound implications for the thermal and chemical evolution of Earth
(e.g., Labrosse et al. 2007; Garnero et al. 2016). This possibility, however, depends critically on
the details of mantle liquidus, on which there is no consensus (e.g., Stixrude et al. 2009; Fiquet
etal. 2010). The gravitational stability of a solidifying magma ocean would shape the initial phase
of mantle convection, but it has always been studied using a radically simplified thermodynamics
of mantle melting (e.g., Elkins-Tanton 2008; Ballmer et al. 2017), which makes it difficult to
quantitatively assess existing arguments. To break these impasses, some major improvement on

our understanding of lower mantle melting is clearly needed.

4.2 Thermodynamics of lower mantle melting

To model the solidification of a magma ocean, knowing the phase diagram of a pyrolitic mantle
is not enough, even if it covers the entire mantle depth. As soon as the mantle adiabat crosses the

mantle liquidus and solidification starts, crystals can be fractionated, changing the local system
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composition. Thus, to track the chemical evolution of magma ocean solidification, we have to
be able to calculate a phase diagram for a wide range of possible mantle composition. Given
the availability of a comprehensive thermodynamic database for mantle minerals (Stixrude and
Lithgow-Bertelloni 2011), what we need is a self-consistent thermodynamic database for silicate
liquids, which is necessary to conduct Gibbs energy minimization. For low pressures, there exist
a few options such as used in MELTS (Ghiorso et al. 1983, 2002) and THERMOCALC (Holland
and Powell 1998), but for high pressures relevant to lower mantle melting, there was nothing of
the sort until very recently.

The closest one available was the work of Boukaré et al. (2015), who, on the basis of the
theoretical work of de Koker and Stixrude (2009) on the MgO-SiO; system, built a self-consistent
thermodynamic database for the MgO-FeO-Si0O; system up to 140 GPa. Starting with this simple
ternary system is reasonable because these three components represent more than 90 wt% of the
mantle. Their approach is to supplement the theoretical prediction of de Koker and Stixrude (2009)
with the thermodynamic data of FeO liquid and the non-ideal mixing parameters between FeO and
Si0,, which were obtained by fitting to relevant experimental data, such as the melting curve of
FeO (Fischer and Campbell 2010), the density of liquid Fe,Si04 (Thomas et al. 2012), and Mg/Fe
partitioning between melt and silicates (e.g., Nomura et al. 2011; Tateno et al. 2014). Gibbs energy
minimization using the resulting database, however, does not reproduce well the melting behavior
of peridotite (Fiquet et al. 2010; Andrault et al. 2011) (see Figure 8 of Boukaré et al. (2015)). This
discrepancy may be owing to the presence of other minor elements in the materials used in those
experimental studies.

More recently, Miyazaki and Korenaga (2019a) also attempted to build a self-consistent ther-
modynamic database for the the MgO-FeO-SiO; system, but with a different approach. They
developed a new nonlinear inverse method to estimate a set of relevant thermodynamic parameters
directly from a collection of experimental melting temperatures. They first benchmarked their in-

verse method with synthetic data, confirming that the new approach can recover the correct answers
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within uncertainty. Then, they tested a different combinations of experimental data, to find out that
it was impossible to obtain an acceptable solution if the experimental data of Andrault et al. (2011)
were included; their liquidus temperatures appear to be simply too low. The inclusion of Andrault
et al. (2011) data resulted in severe underprediction of not only the liquidus curve of peridotite
(Fiquet et al. 2010) but also the melting temperatures of MgSiO3 (Zerr and Boehler 1993). That is,
the difference between Fiquet et al. (2010) and Andrault et al. (2011) is unlikely to be explained
only by the difference in their starting materials. The experimental data of Andrault et al. (2011)
were thus regarded as an outlier. Also, the inversion of Miyazaki and Korenaga (2019a) showed
that mixing between FeO and MgO, was constrained only loosely by existing data, which indi-
cates that oxides with low concentrations would have minimal effects on melting, at least under
lower-mantle pressures. Thus, we expect that the solidification of a magma ocean can be modeled
reasonably accurately with the thermodynamics of the MgO-FeO-Si0; ternary system.

Figure 9a shows the solidus and liquidus of a pyrolitic mantle based on the thermodynamic
database of Miyazaki and Korenaga (2019a). Similar to the experimental results of Fiquet et al.
(2010), and contrary to the theoretical prediction of Stixrude et al. (2009), the slope of the liquidus
is steeper than that of the mantle adiabat even at the core-mantle boundary. A magma ocean
would thus start to solidify from its base. This underscores the still tentative nature of the concept
of a basal magma ocean, which is sensitive to the subtle details of the mantle liquidus at high
pressures. Another important feature of this phase diagram is that melt fraction varies nonlinearly
between solidus and liquidus, and that the melt fraction of 0.4, which is commonly used to mark
the rheological transition (below which a melt-solid mixture behaves as a solid) takes place only
~200 K below the liquidus. Though at variance with what has been suggested by Monteux et al.
(2016) and Andrault et al. (2016), such high temperatures for the rheological transition prevent the

rapid cooling of the mantle and the core during magma ocean solidification.
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4.3 Gravitational stability of a solidifying magma ocean

Understanding the thermodynamics of lower mantle melting is an important step, but it is just
one of the few steps needed to model the solidification of a magma ocean with some confidence.
Probably the most important remaining uncertainty is grain size evolution in a solidifying magma
ocean. If crystals in a convecting magma ocean can grow as large as 1 cm, for example, they can
be fractionated and accumulate at the bottom because they are usually denser than the coexisting
melt. If grain size remains small, on the other hand, the whole magma ocean can solidify with
equilibrium crystallization. However, in the case of equilibrium crystallization, the melt could
become denser than the coexisting solids in the lowermost part of the mantle (note that a cumulate
forms as soon as the melt fraction becomes lower than 0.4, containing a large amount of melt
within), so if the grain size of the solids is large enough for melt to percolate quickly, chemical
differentiation still takes place.

Thus, two kinds of grain size are important: (1) grain size in a convecting magma ocean,
and (2) grain size in a cumulate. As it is still difficult to theoretically predict those grain sizes
(Solomatov 2015), Miyazaki and Korenaga (2019b) considered four end-member cases to explore
the diversity of possible chemical differentiation. Shown in Figure 9b-d is the case with crystal
accumulation but no matrix compaction, i.e., when grains can grow large enough to settle through
a convecting magma ocean but are too small to allow efficient melt percolation. Several points
are worth being noted. Because crystal fractionation modifies the local system composition, the
rheological transition takes place at higher temperatures than expected from the phase diagram of
the initial mantle composition (Figure 9b); the temperature of a solidifying magma follows closely
the liquidus. Even with such high temperatures, the melt fraction of the cumulate is consistently
around 0.4 (Figure 9d), because it is highly depleted. The Mg# (defined as molar Mg/(Mg+Fe)
x 100) of the cumulate is as high as 95 (Figure 9c). Also, because the rheological transition
takes place at the melt fraction of 0.4, perfect fractional crystallization, i.e., the formulation of a

crystal cumulate with zero melt fraction, is unlikely to be materialized, though such end-member
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crystallization has been assumed by some previous studies (e.g., Elkins-Tanton 2008; Maurice
et al. 2017; Boukaré et al. 2018). In Figure 9, only one case is shown, but the above points are
mostly applicable to other cases as well, except for the case of homogeneous crystallization (i.e.,
no crystal accumulation nor matrix compaction), in which no chemical differentiation takes place.

Having a self-consistent thermodynamic database allows one to calculate the densities of the
melt and solid phases in an internally-consistent manner, and Miyazaki and Korenaga (2019b)
also examined the stability of a solidifying magma ocean, by calculating the dispersion relation
of the Rayleigh-Taylor instability. Without any formal analysis, it may be obvious that a solid-
ifying magma ocean is always gravitationally unstable because the slope of melting curves are
steeper than that of adiabat (Figure 9a). The formation of a cumulate with the melt fraction of 0.4
thus always results in a superadiabatic thermal structure, even in the case of homogeneous crys-
tallization. The dispersion relation of the Rayleigh-Taylor instability, however, provides important
details such as the wavelength of the most unstable mode and its time scale. For the case of crystal
accumulation, a highly-depleted, high Mg# cumulate is overlain by an iron-rich, low Mg# melt
(Figure 9c), which becomes denser than the cumulate upon crystallization. The dispersion relation
computed by Miyazaki and Korenaga (2019b) indicates a wavelength of a few hundred kilome-
ters and a time scale of less than 10 years, and the growth of the Rayleigh-Taylor instability with
such a short wavelength is qualitatively similar to what previous studies suggested (Maurice et al.
2017; Ballmer et al. 2017; Boukaré et al. 2018). In some sense, the destruction of a chemically
differentiated structure by small-scale downwellings is a relief. In the global overturn model of
Elkins-Tanton (2008), a resulting stably stratified structure has a potential density difference of
>600 kg m~> over the entire mantle depth. Such an intrinsic density difference is equivalent to a
temperature difference of >7000 K (with a thermal expansivity of 2 x 10~ K~! and a density of
4300 kg m~3), which is impossible to generate during the course of Earth evolution. A potential
temperature difference between the mantle and the surface would be less than ~1500 K after the

solidification of a magma ocean (Figure 9a,b), and that between the mantle and the core would
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be less than ~1000 K (see Figure 11 of Miyazaki and Korenaga (2019b)). In other words, the
present-day mantle would still have to be as strongly stratified as in the model of Elkins-Tanton
(2008), and such a mantle cannot convect. With the small-scale Rayleigh-Taylor instabilities, on
the other hand, it is possible to explain subsolidus mantle convection in the early Earth. In fact, a
chemically heterogeneous mantle resulting from the small-scale instabilities leads to entirely new

possibilities for Hadean geodynamics, as discussed next.

4.4 How Hadean geodynamics may have started

The small-scale downwellings of dense, iron-rich materials through the high Mg# matrix points to
the presence of a chemically heterogeneous mantle in the very early Earth (Figure 10). The bulk
composition of such a heterogeneous mantle would be the same as (or similar to) the composition
of a pyrolitic mantle, but because of lithologic differences, the chemically heterogeneous mantle
can exhibit a radically different dynamics.

First, the high Mg# matrix is depleted so that its melt production during adiabatic decompres-
sion is more reduced than the pyrolitic mantle, even though it is hot. This limited melting could
make fast plate tectonics possible (Davies 2006). As discussed in §5, the mantle soon after magma
ocean solidification was likely wet, and extensive melting expected from a homogeneous pyrolitic
mantle would create thick crust as well as thick dehydrated lithospheric mantle (Figure 10a), both
of which prevent rapid plate tectonics (e.g., Davies 1992; Korenaga 2006). However, the thickness
of a dehydrated layer, which is rheologically strong, is limited with a chemically heterogeneous
mantle, allowing rapid subduction. Given the rheology of lithosphere (§2.4), well-defined “plates”
should still exist, but plate kinematics as well the nature of plate boundaries could be different
from modern-style plate tectonics.

Second, the melting of the high Mg# matrix is likely to produce an ultramafic crust, and com-
bined with the possibility of rapid plate tectonics, the abundant exposure of olivine and pyroxenes

would make it possible to efficiently sequester atmospheric carbon by carbonate formation. The
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rapid sequestration of atmospheric carbon is essential to convert the initially CO5-rich, dense at-
mosphere to a habitable one (e.g., Zahnle et al. 2007), but how to do it in a physically plausible way
has always been a challenge. For example, Sleep and Zahnle (2001) once suggested that, because
of higher radiogenic heating in the past, the tempo of plate tectonics would have been faster in
the past, thereby enabling a rapid carbon cycle. However, the suggested relation between internal
heating and the rate of mantle convection is a common misconception (see section 3.1 of Korenaga
(2017b)), and it is also at odds with the estimated cooling history of Earth’s mantle (Herzberg et al.
2010). If the average subduction rate in the early Earth was lower than the modern rate, Sleep et al.
(2014) conceded that the deep sequestration of the initial atmospheric carbon would have taken
much of the Hadean. With the chemically heterogeneous mantle, on the other hand, it is possible
to speculate on the advent of a habitable surface environment in the early Hadean.

Whereas the melting of the high Mg# matrix would be limited, the embedded iron-rich blobs
would melt extensively upon upwelling. Because these blobs originate in the residual melt layer
formed during magma ocean solidification (Figure 9d), they are likely to be enriched in incompat-
ible elements including water. The melting of iron-rich blobs would produce an iron-rich crust,
which contributes to reduce the chemical buoyancy of the oceanic lithosphere, thereby further fa-
cilitating rapid plate tectonics. Because these iron-rich blobs are intrinsically denser than the high
Mg# mantle matrix, however, they would be normally sinking instead of upwelling unless their
sizes are sufficiently reduced by convective stirring. The role of iron-rich blobs in Hadean geody-
namics would thus depend on the competition of small-scale downwelling and mantle mixing.

Finally, chemical reaction between ultramafic crustal rocks and seawater is not limited to car-
bonate formation. Serpentinization could also take place, which releases hydrogen. Thus, even
though the early atmosphere was likely to be oxidizing (e.g., Abe et al. 2000; Zahnle et al. 2007),
we can expect that a locally reducing environment, which is generally considered important for
abiogenesis (e.g., Sleep et al. 2004; Schrenk et al. 2013; Menez et al. 2018), was widely available

on the seafloor. Another aspect relevant to the origin of life and its early evolution is the exis-
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tence of the geomagnetic field. With rapid subduction, the mantle would have been cooled down
efficiently, which would then helped to cool the hot core maintained during the solidification of a
magma ocean (§4.2). The efficiency of core cooling is important to drive a geodynamo and gener-
ate a planetary magnetic field, particularly in the early Earth when the inner core was likely to have
been absent (e.g., Buffett 2002). Though it might be possible to generate a magnetic field with a
basal magma ocean (Ziegler and Stegman 2013), the formation of a basal magma ocean itself is
not guaranteed (§4.2). The presence of the geomagnetic field in the Hadean is still controversial
(e.g., Weiss et al. 2016; Tarduno et al. 2020), but it would contribute to the habitability of surface

environment by shielding high-energy cosmic rays from the young Sun (GrieBmeier et al. 2005).

5 Synthesis: A new picture of early Earth evolution

The regime of Hadean geodynamics, as mentioned in Introduction, may be inferred from how the
continental crust has grown, which could constrain the onset time of plate tectonics, and from
how a magma ocean solidified, which would have prescribed the initial state of subsolidus mantle
convection. As reviewed in the preceding sections, latest crustal growth models suggest that the
felsic continental crust started to emerge on a massive scale in the Hadean, and that the rates of
crustal generation and recycling were much higher in the early Earth than at the present. Also,
the latest modeling of magma ocean solidification, based on the self-consistent thermodynamics
of lower mantle melting, points to the possibility of forming a chemically heterogeneous mantle,
which could allow rapid plate tectonics, efficient carbon sequestration, felsic crust generation, and
wide-spread serpentinization on the seafloor. These two angles are independent from each other;
crustal growth models are built from geochemical observations, whereas a model of magma ocean
solidification is a theoretical prediction based on high-pressure mineral physics, petrology, and
fluid dynamics. It is thus encouraging that the notion of rapid plate tectonics in the early Earth,
which is called for to explain continental growth, is also expected from the aftermath of magma

ocean solidification.
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A chemically heterogeneous mantle resulting from small-scale Rayleigh-Taylor instabilities
can be recognized in some previous models of magma ocean solidification (Maurice et al. 2017;
Ballmer et al. 2017; Boukaré et al. 2018), but the kind of chemical heterogeneities inferred from
the model of Miyazaki and Korenaga (2019b) provides important specifics, i.e., hydrous iron-
rich blobs embedded in a high Mg# matrix (Figure 10). As speculated in §4.4, this particular
lithologic heterogeneity has the potential to not only make rapid plate tectonics possible but also
quickly convert the early Earth into a habitable world. Another interesting aspect is that this ‘early
Earth mode’ of plate tectonics is expected to be eventually superseded by a more standard kind of
plate tectonics, as chemical heterogeneities are homogenized by convecting mixing. Thus, starting
Earth history with this type of a chemically heterogeneous mantle would allow us to naturally
connect the vigorous Hadean Earth with the more steady Archean Earth. In this section, I attempt
to draw a rough sketch for how this transition in mantle dynamics might have interacted with
the other components of the Earth system such as the atmosphere, the oceans, the crust, and the
core. Although this sketch is largely a speculation at the moment, care has been taken so that it is
consistent with the current understanding of geodynamics. There are a number of details that need
to be examined carefully, and it is my hope that this working hypothesis will encourage a fresh
look at Hadean geodynamics and stimulate more synergistic research on the early Earth.

The Moon-forming giant impact, which completed the major accretion phase of Earth, resulted
in a deep magma ocean, the aftermath of which is likely to be characterized by a chemically hetero-
geneous mantle with a dense CO;-rich atmosphere (Figure 11a). Owing to the difference between
their solubilities in magma, CO, was mostly in the atmosphere, and water was mostly in the mantle
at this stage, although the presence of shallow oceans is also expected (e.g., Abe and Matsui 1986;
Zahnle et al. 1988; Abe 1993a). With surface water, thermal cracking can sufficiently weaken
the otherwise stiff lithosphere, allowing the operation of plate tectonics (Korenaga 2007, 2020).
Because the upwelling of the high Mg# matrix does not create thick buoyant crust and thick de-

hydrated lithosphere, the tempo of plate tectonics is controlled mostly by the viscosity of astheno-
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sphere (Korenaga 2010b). Mantle viscosity is a strong function of temperature and water content
(Karato and Wu 1993; Hirth and Kohlstedt 2003; Jain et al. 2019), and asthenospheric viscosity
at the beginning of subsolidus mantle convection was probably much lower than the present-day
value, because the initial mantle was not only hotter but also wetter than the present-day mantle;
the matrix is highly depleted in terms of major element chemistry, but it is expected to have been
initially wet. This is because of how a magma ocean solidifies. When a magma ocean is solid-
ifying, a melt porosity of ~40 % is maintained in the cumulate (Figure 9d), and this melt phase
contains abundant water. Because melt percolation is not fast enough, the water originally stored
in the melt phase remains mostly in the mantle when cooling by the Rayleigh-Taylor instabilities
drives the porosity down to zero.

The difference in water content between the initial and present-day mantle is difficult to quan-
tify with confidence, but it is important when estimating the tempo of plate tectonics, so one
possible approach is given below. Roughly speaking, the present-day convecting mantle can be
divided into two kinds of source mantle, one for MORB, and the other for OIB, with the former
being generally more depleted in incompatible elements including water. The water content of the
MORB source mantle is estimated to be 100-200 ppm (Michael 1988; Saal et al. 2002), and that
of the OIB source mantle is around 300-900 ppm (Sobolev and Chaussidon 1996; Wallace 1998;
Dixon et al. 2002; Aubaud et al. 2005). The fraction of the MORB source mantle is not well con-
strained, with existing estimates ranging from 30 % to 90 % (e.g., Allegre et al. 1983; Hofmann
1997). With these uncertainties, the present-day mantle may contain ~0.5-2 ocean worth of wa-
ter (or ~200-700 ppm H,0O). Soon after the solidification of a magma ocean, most of the present
oceans are likely to have been contained in the mantle, so the initial mantle could have contained
up to ~3 ocean worth of water or ~1000 ppm H,O.

The viscosity of the upper mantle, which is governed by that of olivine aggregates, is propor-
tional to the water content to the power of 1 to 2 (Hirth and Kohlstedt 2003; Jain et al. 2019). So the

factor of 2 to 4 difference of water content between the MORB source mantle and the OIB source
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mantle means that the latter is 2 to 16 times weaker than the former. Because plate velocity is con-
trolled mainly by the viscosity of the upper mantle, rather than the lower mantle (e.g., Korenaga
2010b), the viscosity of the MORB source mantle, which probably occupies the most of the upper
mantle, is most relevant for the tempo of modern plate tectonics. At the start of subsolidus mantle
convection, however, there was no continental crust, so there was no depleted MORB source man-
tle, either. Thus, the viscosity of the upper mantle in the very early Earth, with up to 1000 ppm
H,O0, could have been ~10-100 times lower than that the present-day upper mantle. As plate ve-
locity is inversely proportional to viscosity to the two-thirds power (e.g., Turcotte and Schubert
1982), this means that, with other factors being equal, plate tectonics in the very early Earth could
be 5 to 20 times faster than the present-day counterpart. A hotter mantle in the Hadean makes it
even faster, because of the temperature dependence of viscosity.

With plate velocity 10 times faster than present, for example, the average age of subducting
slab could be 10 times younger than the present-day value (~50-60 Myr old (Parsons 1982)). Be-
cause the upwelling of the chemically heterogeneous mantle does not result in a thick layer of
buoyant crust, the subduction of such young seafloor is free from the chemical buoyancy consid-
eration that applies to the case of a homogeneous mantle (Davies 1992, 2006). The melting of a
composite mantle made of high Mg# matrix and iron-rich blobs is expected to produce a diverse
range of melt composition, and the rapid subduction of a chemically heterogeneous crust, which
is hydrated by its interaction with seawater, could result in an efficient construction of early con-
tinental crust (Figure 11b). Rapid plate tectonics would also help to degas most of water initially
stored in the mantle. The production of an ultramafic crust would promote carbonate formation
and serpentinization. Rapid plate tectonics with such an ultramafic seafloor quickly sequesters at-
mospheric carbon into the mantle and produces a number of locally reducing sites, which may be
important for the origin of life. Even after the amount of atmospheric CO, is brought down to a
steady-state level at which degassing and regassing are balanced, serpentinization at the seafloor

continues to produce hydrogen, which reacts with CO; and becomes methane. Such methane pro-
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duction would be sustained until the chemically heterogeneous mantle is mostly homogenized. As
methane is a strong greenhouse gas, the chemically heterogeneous mantle may also contribute to
resolving the faint young sun paradox in the early Earth (e.g., Kasting 1993). In addition to mix-
ing from the above by rapid subduction, the mantle is also stirred by mantle plumes. Because the
core is cooled only slightly during the solidification of a magma ocean (§4.2), the efficient cooling
of the mantle by rapid plate tectonics could induce high heat flux from the core. Mantle plumes
are naturally characterized by higher potential temperatures than modern plumes, and the global
plume flux should be greater in the early Earth, though whether such an increase in plume flux is
achieved by more plumes or bigger plumes depends on the rheology of the core-mantle boundary
region (Korenaga 2005). Core cooling during this stage is important not only for the generation of
the geomagnetic field in the early Earth, but also for the formation of the inner core at a later time,
for which the core needs to have been sufficiently cooled down (e.g., Stevenson et al. 1983; Buffett
et al. 1996; Labrosse et al. 2001).

The chemically heterogeneous mantle eventually ceases to exist because of convecting mixing.
The timing of the transition to a chemically homogeneous mantle depends on the efficiency of
mantle mixing, and it is expected to take a few tens to a few hundreds million years (e.g., Davies
2006). Of course, convective mixing would not be able to completely homogenize the mantle;
for example, some fraction of iron-rich blobs could escape mixing and accumulate at the core-
mantle boundary to form dense chemical piles (e.g., Garnero et al. 2016). However, most of the
highly depleted matrix should have been mixed with iron-rich blobs to become a pyrolitic mantle,
the upwelling of which would produce thick basaltic crust as the mantle temperature was still
higher than present (Figure 11c). Positive chemical buoyancy associated with thick basaltic crust
as well as depleted mantle lithosphere requires a growth of thick thermal boundary layer to make
subduction possible; i.e., the tempo of plate tectonics has to slow down to allow such growth of
boundary layer. The regime of sluggish plate tectonics thus began around this time. A thicker

thermal boundary layer allows deeper thermal cracks and thus a more hydration of lithosphere,



1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

55

whereas more sluggish plate tectonics slows down degassing at mid-ocean ridges. A combination
of more regassing and less degassing would materialize positive net water influx from the oceans
to the mantle, and the once mostly dried-out mantle by rapid plate tectonics would start to be
gradually hydrated again.

Sluggish plate tectonics is likely to have started in the late Hadean or the early Archean, and
its subsequent evolution to the present is reasonably well understood (e.g., Korenaga 2013, 2018a)
(Figure 12). I note that Aulbach and Arndt (2019) questioned the cooling history of Herzberg
et al. (2010) (Figure 12a) on the basis of their interpretation of eclogite xenoliths, but as pointed
out by Herzberg (2019), their interpretation assumes a highly unrealistic scenario of no fractional
crystallization during the formation of oceanic crust. Also, it is worth remembering that the kind
of thermal evolution indicated by Herzberg et al. (2010) is consistent with the present-day thermal
budget of Earth (Korenaga 2008b; Jaupart et al. 2015), which is constrained by the observations of
surface heat flow and the chemical compositions of the mantle and the crust. Deviating substan-
tially from the estimates of Herzberg et al. (2010) is thus equivalent to neglecting such established
geophysical and geochemical constraints. At any rate, because sluggish plate tectonics probably
started with a drier mantle than present, it could be different from modern-style plate tectonics in
a few important ways. Because the convecting mantle was as dry as the continental mantle litho-
sphere, it can be deduced that continents could have been easily deformed, fragmented, and thus
subducted. The reason is as follows. The continental crust itself is not particularly strong (e.g.,
Kohlstedt et al. 1995; Burgmann and Dresen 2008), so its mechanical integrity should originate in
the strength of subcontinental lithosphere. Because the strength of continental mantle lithosphere
and its longevity owe much to its being drier than the convecting mantle (e.g., Doin et al. 1997,
Hirth et al. 2000; Katayama and Korenaga 2011; Chu and Korenaga 2012), the lack of an intrin-
sic viscosity difference between these two kinds of mantle in the past means that the continental
mantle lithosphere could have easily been influenced by convective currents. Thus, as long as the

convecting mantle remains relatively dry in the early phase of sluggish plate tectonics, it is dif-
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ficult to expect stable, long-lasting continental blocks (Korenaga 2013). At the same time, a dry
mantle is equivalent to voluminous oceans, which can suppress the emergence of dry landmasses
(Korenaga et al. 2017) (Figure 12d), except for hotspot islands (Bada and Korenaga 2018; Rosas
and Korenaga 2021). In addition, when plate tectonics was more sluggish than present, the age
of subducting plates could have been over 300 Myr old (Korenaga 2008a); subducting plates can
become quite thick. As it is generally more difficult to bend a thicker plate (e.g., Conrad and Hager
1999; Rose and Korenaga 2011), the subduction of thick plates in the early Archean is likely to be
characterized by large radii of curvature, with low dip angles at shallow depths (Figure 11c). Even
with plate tectonics, therefore, the presence of the wedge mantle is not always guaranteed, and this
may lead to a different style of arc magmatism back then.

With positive net water influx maintained by plate tectonics, the convecting mantle becomes
hydrated, and the continental mantle lithosphere becomes relatively stronger than the convective
mantle, thus providing a stable foundation for the continental crust (Figure 11d). This relative
strengthening of continents corresponds to what is generally referred to as the stabilization of cra-
tons, or cratonization, at around 3 to 2.5 Ga. Some geologists have advocated that cratonization is
achieved by the gradual thickening of continental lithosphere (e.g., Cawood et al. 2018), but rela-
tive strengthening with gradual mantle hydration can also explain the geological records relevant to
cratonization. The continuous subduction of water also leads to the emergence of dry landmasses
(Korenaga et al. 2017) (Figure 12d). Because a cooler mantle produces thinner oceanic crust as
well as thinner depleted mantle lithosphere, and because the wet and thus weak asthenosphere
tends to prevent the growth of a thermal boundary layer, oceanic lithosphere becomes thinner.
Thinner lithosphere is easier to bend and subduct, so plate tectonics gradually speeds up, although
the rate of increase would be only ~10 % Gyr~! (Korenaga 2011). With thinner oceanic litho-
sphere, the radius of curvature can be smaller, making room for the wedge mantle and activating
modern-style arc magmatism (Figure 11d).

As mentioned earlier, the above scenario of Earth evolution is speculative, especially regarding
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the Hadean part. For one thing, the solidification of a magma ocean is assumed to result in the
chemically heterogeneous mantle as depicted in Figure 10b. According to the current theoretical
understanding, it is difficult to tell whether fractional crystallization is more likely than equilibrium
crystallization (Solomatov 2015). Thus, if a magma ocean can solidify with equilibrium crystal-
lization, there would be no chemical differentiation, so subsolidus mantle convection would start
with a homogeneous pyrolitic mantle (Figure 10a). However, even if crystals are not fractionated
from convecting magma, a similar kind of chemical differentiation still occurs by matrix com-
paction following equilibrium crystallization (Miyazaki and Korenaga 2019b). It would therefore
require certain special conditions to avoid the formation of the chemically heterogeneous mantle
at the end of magma ocean solidification. Also, the formation of small-scale heterogeneities is
supported not only theoretically by numerical simulation (e.g., Maurice et al. 2017; Boukaré et al.
2018) and the Rayleigh-Taylor stability analysis (Miyazaki and Korenaga 2019b), but also empiri-
cally by the very fact that large-scale circulations have long been taking place in Earth’s mantle. If
a chemically differentiated mantle were instead overturned into a stably stratified mantle, as pro-
posed by Elkins-Tanton (2008), it would not allow any convection for the rest of Earth history. The
potential density difference of 600 kg m—> (or ~500 kg m~> based on the fractional crystallization
modeling of Miyazaki and Korenaga (2019b)), if applied to a stable stratification in the mantle, is

simply so large that a planet remains geologically dead after magma ocean solidification.

6 Summary and outlook

On the basis of recent developments in the studies of continental growth and magma ocean solidi-
fication, along with geodynamical consideration, I have proposed one plausible scenario for early
Earth evolution. In this scenario, a chemically heterogeneous mantle resulting from the gravita-
tional instability of a solidifying magma ocean allows rapid plate tectonics, which in turn leads
to the early emergence of a habitable surface environment by efficiently sequestering atmospheric

carbon. This may also explain the high crust generation rate in the early Earth suggested by recent
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continental growth models. One attractive feature of this hypothesis is that this early Earth situa-
tion can naturally cease to exist by convective mixing and gradually transition to a more familiar
style of plate tectonics with a chemically homogeneous mantle. This new synthesis is admittedly
speculative, and it may require major revisions as many details need to be fleshed out in future.
However, compared to other existing proposals for early Earth dynamics such as stagnant lid con-
vection, sagduction, and heat pipe, this scenario has a more solid theoretical footing, warranting
further investigation. It provides a conceptual framework that can potentially explain nearly all as-
pects of Earth evolution in a coherent manner, including atmospheric evolution, deep water cycle,
continental growth, mantle convection, and core cooling.

Of course, testing this new hypothesis with a range of observations will be of vital importance,
and this review article is written with the hope of stimulating geologists and geochemists in that di-
rection. At the same time, there are a number of major theoretical tasks to be done, to facilitate such
observational testing by providing more concrete and specific model predictions. For example, the
thermodynamic modeling of magma ocean solidification is still too crude, and the existing models
do not adequately handle the final stage of solidification under upper mantle conditions (Boukaré
et al. 2015; Miyazaki and Korenaga 2019a), mostly because they are tuned to lower mantle con-
ditions. Also, the Rayleigh-Taylor instability of a solidifying magma ocean is characterized by
a very short time scale (Miyazaki and Korenaga 2019b), so it will remain a technical challenge
to model both solidification and instability in a self-consistent fashion. The petrological and geo-
chemical consequences of mantle convection starting with a chemically heterogeneous mantle are
virtually unexplored. It will be interesting to see how the new hypothesis affects our conventional
wisdom on the geochemical evolution of the mantle, which is largely guided by geochemical box
modeling with an initially homogeneous mantle. A new kind of geochemical modeling, which can
take into account the chemical and isotopic heterogeneities of both mantle and crustal reservoirs,
will be essential to generate model predictions that can be tested by some observational means.

The Hadean is also the time characterized by large bolide impacts (e.g., Marchi et al. 2014, 2018),



59

uss and their likely contributions to surface environment, in the presence of rapid plate tectonics and
5o Massive continents, remains to be understood.

1460 This review on the global aspects of Hadean geodynamics does not place an emphasis on
usr  Hadean zircons, because of the limited locality of so far published geochemical data. However, as
us2 compiled by Harrison (2020), there are at least fourteen other localities across five continents, such
13 as Barberton in South Africa, Acasta in Canada, Akilia Island in Greenland, and Buring County
ues 1n Tibet. Although no locality outside the Jack Hills has yielded more than a few hundred Hadean
ues  zircons, there is a potential to substantially increase the discovery rate with an orchestrated use
ues Of numerous LA-ICPMS instruments around the globe (Harrison 2020). Such an expansion of
uez  Hadean zircon database, in addition to constraints on Hadean protoliths inferred from Archean
ues rocks (e.g., Caro et al. 2017; O’Neil and Carlson 2017), will be essential to improve our under-

ueo  standing of the Hadean Earth by continual feedback between theories and observations.
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Figure 1: Influence of varying internal heat production on the magnitude of convective stress. (a)-(c)
Reproduction of stagnant lid simulation in O’Neill et al. (2007). With the bottom temperature fixed to some
constant value, increasing internal heat production moves the convection system from purely basally heated
(a) to almost purely internally heated (c). This can also be seen in terms of the internal heating ratio (IHR),
which varies from O to 1.02. (d) Horizontally averaged thermal profiles of (a) (blue), (b) (green), and (c)
(red). (e)-(g) Purely internally-heated simulation, corresponding to (a)-(c), to isolate the effect of internal
heating. (h) Same as (d) but for (e) through (g). (i) Convective stress as a function of internal temperature,
which is in turn a function of internal heating. Solid circles correspond to mixed heating (as shown in (a)-
(c)), whereas open circles to pure internal heating (as shown in (e)-(g)). Also shown as dashed is the stress
scaling of Solomatov (2004). (j) A typical secular evolution of internal heating ratio over Earth history.
The example shown corresponds to the thermal evolution shown in Figure 12a. Modified after Korenaga
(2017b).
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Figure 2: (a) 143Nd and (b) '*’Nd evolution of the depleted mantle based on published data (Baads-
gaard et al. 1986; Moorbath et al. 1997; Vervoort and Blichert-Toft 1999; Caro et al. 2006; Bennett
et al. 2007; Murphy et al. 2010; Rizo et al. 2012; Jackson and Carlson 2012; Debaille et al. 2013;
Roth et al. 2014; Puchtel et al. 2016; Caro et al. 2017; Morino et al. 2017). &\ (¢) is defined as
[(143Nd/144Nd)t/(143Nd/144Nd)FHUR _ 1] X 104’ and u1114d2(t) as [(142Nd/144Nd)t/(142Nd/144Nd)?td _ 1] %
10°, where CHUR and std stand for the chondritic uniform reservoir and the terrestrial standard reference,
respectively. Also shown are predictions from the model of Rosas and Korenaga (2018). Dark blue region
denotes the inter-quartile range, representing the middle 50 % of all successful solutions, whereas light blue
region covers from the Sth to 95th percentile. After Rosas and Korenaga (2018).
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Figure 3: Results of applying the method of Belousova et al. (2010) to four different sets of synthetic
data: (1st row) constant crust production through time, (2nd row) more production in recent times, (3rd
row) less production in recent times, and (4th row) multiple peaks in crustal production. The 1st column
shows the true distribution (gray) and the corresponding distributions of U-Pb crystallization age (yellow)
and the depleted mantle model age (magenta). The 2nd column compares the model age distribution with
the summation of the crystallization and model age distributions (orange). The 3rd column compares the
result of dividing the model age distribution by the summation (blue), which, according to Belousova et al.
(2010), would represent new crust generation rate, with the true distribution of crust production (gray). The
4th column is a cumulative version of the 3rd column. The age distribution obtained by the method of
Belousova et al. (2010) (and popularized by Dhuime et al. (2012)) is labeled by Ts.p. Also shown in the
3rd and 4th columns are the results of applying the unmixing method of Korenaga (2018b) (red; labeled by
Tinmix)- See Korenaga (2018b) for how to make those synthetic data.
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Figure 4: Secular evolution of upper continental crust composition according to the estimates of Condie
(1993). Relative proportions of rock types (TTG, granite, felsic volcanics, basalt, komatiite, andesite, and
graywacke) as well as SiO; (red), MgO (blue), and K,O (green) contents are shown, for his map (solid) and
restoration (dashed) models. Difference between these two models reflects corrections for erosion.
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Figure 5: Hypothetical yield strength profiles (thick gray curves) for the shallow suboceanic mantle (a)
at present with a potential temperature of 1350 °C and (b) at the Archean with a potential temperature of
1650 °C, both evaluated under a seafloor age of 100 Ma. The Archean asthenosphere is assumed to be
dry. The thermal structure is based on half-space cooling and is shown on the right axis. Yield strength is
calculated assuming a geological strain rate of 107! s~!, so a yield strength of 1 GPa corresponding to an
effective viscosity of 10>* Pa s. For simplicity, the effect of crustal layer is ignored, and the rheology of
olivine aggregates is used at all depths. Deformation mechanisms considered here include: (1) dry diffusion
creep (red) with the grain size exponent of 2.2, the activation energy of 376 kJ mol !, the activation volume
of 7 cm® mol~!, and the preexponential factor of 8.3 x 107, (2) dry dislocation creep (orange) with the stress
exponent of 3.6, the activation energy of 400 kJ mol~!, the activation volume of 9 cm® mol~!, and the
preexponential factor of 110, (3) wet diffusion creep (red dashed) with the grain size exponent of 1.7, the
water content exponent of 1.2, the activation energy of 307 kJ mol~!, the activation volume of 24 cm® mol !,
and the preexponential factor of 4.4 x 10%, (4) wet dislocation creep (orange dashed) with the stress exponent
of 4.4, the water content exponent of 2, the activation energy of 171 kJ mol~!, the activation volume of
24 cm? mol~!, and the preexponential factor of 1.4 x 10~*. (5) low-temperature plasticity (blue) based on
the reanalysis of the experimental data of Mei et al. (2010) by Jain et al. (2017), with the exponents of p =1
and g = 2, (6) brittle strength (purple) with the friction coefficient of 0.8 under optimal thrust faulting, (7)
reduced brittle strength with thermal cracking (purple dashed), assuming the effective friction coefficient
of 0.03 (Korenaga 2011). The flow-low parameters for diffusion and dislocation creep are sampled from
the statistical models of Jain et al. (2019): model OL-DB, for dry conditions, and model OL-WB; for wet
conditions. Thermal cracking is effective only up to ~700 °C (Korenaga 2007). Grain size is set at 1 cm,
and the water content of the present-day asthenosphere is assumed to be 800 ppm H/Si (Hirth and Kohlstedt
1996).
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Figure 6: Evolution of an Earth-size planet in the mode of stagnant lid convection with magmatism
(O’Rourke and Korenaga 2012). (a) Schematic description of the model structure. Depleted mantle litho-
sphere (DML) refers to the mantle that has been processed by melting and stays in the thermal boundary
layer. The thickness of DML cannot exceed that of the mantle part of thermal lithosphere (ML). The section
of the mantle below ML is the sublithospheric mantle. (b) Mantle potential temperature (blue) and Moho
temperature (red). (c) Mantle heat flux (F,; blue) and surface heat flux (F;; red). Because crustal melting
makes surface heat flux highly discontinuous, a Gaussian filter with a standard deviation of 4 Myr is ap-
plied for plotting purposes. (d) Thicknesses of mantle lithosphere (hng; blue), DML (Apmy; purple), and
crust(hgrust; red).
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Figure 7: (a) Net growth of continental crust (red), the present-day cumulative distribution of crust for-
mation ages (blue), and the present-day cumulative distribution of surface ages (purple). The difference
between net growth and formation age distribution reflects the time-integrated effect of crustal recycling,
and that between formation age and surface age distributions reflects the time-integrated effect of crustal re-
working. (b) Crustal generation rate (orange), crustal recycling rate (blue), crustal reworking rate (purple),
and net growth rate (red dashed), all corresponding to the example shown in (a).
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Figure 8: (a) Net growth models of Rosas and Korenaga (2018) (blue) and Guo and Korenaga (2020) (or-
ange). Only middle 50 % of their solutions are shown here for clarity. The model of Armstrong (1981b) (red
dashed) is also shown for comparison. (b) Predicted formation age distributions according to the models of
Rosas and Korenaga (2018) (blue) and Guo and Korenaga (2020) (orange), and the formation age distribu-
tion estimated from detrital zircon ages (green) (Korenaga 2018b). The zircon-based distribution was used
as a constraint in the inverse modeling of Guo and Korenaga (2020). (c) Crustal generation rate and (d)
crustal recycling rate according to the models of Rosas and Korenaga (2018) (blue) and Guo and Korenaga

(2020) (orange).
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Figure 9: (a) Phase diagram for a pyrolitic mixture of MgO-FeO-SiO, (MgO: 42.2 wt%, FeO: 8.7 wt%, and
Si0;: 49.1 wt%) based on the thermodynamic database of Miyazaki and Korenaga (2019a). Dashed line
denotes melt fraction of 0.4. Colored lines represent mantle adiabats with different potential temperatures.
Note that, unlike in the petrological literature, potential temperature in the context of magma ocean research
includes the effect of melting. (b) Thermal evolution of a solidifying magma ocean with the effect of crystal
accumulation: initial (red), 1 kyr (orange), 2 kyr (green), 4 kyr (blue), and 10 kyr (purple). (c) Chemical
evolution in terms of Mg# corresponding to (b). Solid lines denote local system composition, whereas
dashed lines denote melt composition. (d) The evolution of melt fraction corresponding to (b). Melt fraction
of 0.4 shown by dashed line marks the rheological transition below which a melt-solid mixture behaves as
a solid. The lower mantle temperature stays above the line of melt fraction of 0.4 in (b), but there is no
contradiction between (b) and (d); this is simply because the phase diagram shown in (a) and (b) is based on
the initial composition. After Miyazaki and Korenaga (2019b).
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Figure 10: (a) Plate tectonics with a hot pyrolitic mantle results in the formation of thick basaltic crust
and thick depleted lithospheric mantle. (b) Plate tectonics with a chemically heterogeneous mantle expected
from small-scale Rayleigh-Taylor instabilities in a solidifying magma ocean. The melting of the high Mg#
matrix produces an ultramafic crust, which would promote carbonate formation and serpentinization. The
melting of iron-rich blobs produces an iron-rich crust, which reduces the chemical buoyancy of the oceanic
lithosphere.
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Figure 11: A suggested scenario for early Earth evolution and its transition to modern-style plate tectonics.
(a) Right after the solidification of a magma ocean, the mantle is chemically heterogeneous, with a high Mg#
matrix and small-scale iron-rich blobs. Inheriting from gas-melt equilibria established during the magma
ocean stage, both matrix and blobs contain a substantial amount of water, whereas most of carbon exists
as CO; in the atmosphere. The water budget in the atmosphere and oceans is thus limited. (b) During the
early to mid-Hadean, the high Mg# matrix, combined with high temperature and high water content, allows
rapid plate tectonics, which facilitates the sequestration of atmospheric carbon and the degassing of mantle
water. A diverse range of melt composition is expected by interaction between the melting of the high Mg#
matrix and that of iron-rich blobs, and the rapid subduction of such a chemically heterogeneous crust could
help to build early continental crust. Though not depicted here, plume activities are also expected to be
intense, which can further modify the melting behavior of this chemically complex mantle. (c) During the
late Hadean to the early Archean, convecting mixing eventually restores a pyrolite mantle, the melting of
which creates thick basaltic crust and thick depleted mantle lithosphere. Oceanic lithosphere thus becomes
a thermal and chemical boundary layer. Thick oceanic lithosphere subducts with a large radius of curvature,
leaving little room for the wedge mantle. The convecting mantle is as dry as the continental mantle litho-
sphere, and owing to this lack of intrinsic viscosity difference between them, the continental lithosphere
(including both crust and mantle lithosphere) is subject to intense deformation by convective currents. (d)
Continuous operation of plate tectonics gradually hydrates the mantle again, and modern-style plate tecton-
ics manifests from the late Archean. The dry continental mantle lithosphere is now relatively stronger than
the damp convecting mantle, protecting the continental crust from below. This corresponds to the stabi-
lization of cratons. The volume of oceans gradually decreases concurrently, allowing the emergence of dry
landmasses.
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Figure 12: Mid-Archean to Phanerozoic evolution of Earth’s interior and surface environment. (a) The
thermal history of the upper mantle for the last 3.5 Gyr, according to petrological estimates (orange circles;
Herzberg et al. (2010)), and parameterized convection modeling with different assumptions on the amount
of radiogenic heating (blue curves). After Servali and Korenaga (2018). (b) The secular evolution of the
composition of continental mantle lithosphere in terms of Mg# or the forsterite content of olivine. Orange
circles represent prediction based on Precambrian non-arc basalts (Herzberg and Rudnick 2012), and red
crosses denote cratonic xenolith data (Servali and Korenaga 2018). Blue curves denote predictions based
on the parameterized convection modeling. Modified after Servali and Korenaga (2018). (c) Different
scenarios for sea level change based on the continental freeboard modeling of Korenaga et al. (2017). The
mass of continental crust is constant during this period (cf. Figure 8). The results shown here follow mostly
the reference case adopted by Korenaga et al. (2017): half-space cooling for seafloor subsidence, 5 km
thicker continental crust at 2.5 Ga, more buoyant continental mantle lithosphere in the Archean, and reduced
continental topography in the past, but the constant density of continental crust through time is assumed
to reflect the discussion of §3.3. Three different net water fluxes are tested: 0 (purple), 3 x 10'4 g yr~!
(orange), and 4.5 x 104 g yr*1 (red). In the last two cases the volume of oceans at 2.5 Ga is higher than
the present volume by ~50 % and ~70 %, respectively. A nearly constant sea level during the Precambrian
as indicated by epicontinental sedimentary records (Korenaga et al. 2017) suggests that long-term net water
flux is approximately 3.5-4 x 10'* g yr=!. (d) Fraction of dry landmasses on surface, corresponding to the
three cases in (c). Because the thickness of continental crust is assumed to be slightly thicker in the past
(Galer and Mezger 1998), the surface area of continental crust decreases with age even with the constant
crustal mass assumed here.



