

1 **Dynamic topography and the nature of deep thick plumes**

2 William D. Frazer and Jun Korenaga

3 Department of Earth and Planetary Sciences, Yale University

4 PO Box 208109, New Haven, CT 06520, USA

5

6 **Abstract:**

7 Deep mantle plumes imaged by seismic tomography have much larger radii (~ 400 km) than
8 predicted by conventional geodynamic models (~ 100 km). Plume buoyancy fluxes estimated from
9 surface topography concur with narrow plumes with low viscosities expected from their high
10 temperatures. If plumes are thick as imaged by tomography, buoyancy flux estimates may require
11 very viscous or thermochemical plumes. Here we assess the dynamical plausibility of an
12 alternative model, a ponding plume, which has been suggested to explain thick plumes as well as
13 buoyancy fluxes estimated from surface topography. In the ponding plume model, a thick conduit
14 in the lower mantle narrows significantly after passing through the mantle transition zone, below
15 which excess material from the thick lower-mantle plume, which cannot be accommodated by the
16 narrow upper-mantle plume, spreads laterally. Such excess material in the mid-mantle, however,
17 should still manifest itself in surface topography, the amplitude of which can be quantified via
18 topography kernels. We find that the ponding of a purely thermal plume would lead to unrealistic
19 excess topography, with the scale of ponding material large enough to be detected by seismic
20 tomography. If mantle plumes are as thick as indicated by seismic topography, it appears to be
21 necessary to deviate from either conventional temperature-dependent viscosity or the assumption
22 of purely thermal origins.

23

24 Keywords: mantle plumes, hotspot swells, core heat flux

25

26 1. Introduction

27 Convective instabilities at the core-mantle boundary region can result in the formation of mantle
28 plumes (Morgan, 1971). It is widely believed that mantle plumes are responsible for the formation
29 of hotspot islands such as the Hawaiian Islands, the Azores, and the Marquesas Islands, and also
30 for the significant topographic swells around them (e.g., Ballmer et al., 2015). The upwelling of
31 mantle plumes is an important part of core heat flux as well (e.g., Davies, 1988; Labrosse, 2002;
32 Zhong, 2006). Presently, however, there are significant discrepancies between the geodynamic
33 models of mantle plumes and their actual images in seismic tomography. Geodynamic predictions
34 typically suggest that well-developed plumes should have conduits of no more than 100 km in
35 radius if they are of thermal origin (e.g., Richards et al., 1989). On the other hand, seismic
36 tomography has imaged much thicker plume conduits in the lower mantle (Montelli et al., 2006;
37 French and Romanowicz, 2015). Resolving the discrepancies between these models is important
38 for a better understanding of plume dynamics and the origin of hotspot islands.

39 The amount of material transported by a plume can be quantified by buoyancy flux, which
40 depends on the cross section of upwelling, the thermal buoyancy of the material, and its viscosity
41 (Olson et al., 1993). Since buoyancy flux is proportional to the fourth power of the conduit radius,
42 a small change in the size of the plume should result in substantial differences in surface
43 topography (Korenaga, 2005). The buoyancy flux of plumes has long been estimated from swell
44 topography (Davies, 1988; Sleep, 1990; King and Adam, 2014; Hoggard et al., 2020). Such
45 topography-based estimates of buoyancy flux are consistent with the notion of a low-viscosity
46 narrow conduit as predicted by geodynamic modeling. If plume conduits are as thick as suggested

47 by seismic tomography, and if plumes have low viscosity, a much larger topographic response
48 would be expected than is observed (Korenaga, 2005). At least three explanations may reconcile
49 thick plume conduits at depth with the observed topographic swells. One end-member is a thick
50 thermal plume with a very high viscosity brought by grain-size-sensitive creep (Figure 1a). A
51 “firm” plume of this nature allows for a very thick plume conduit with buoyancy flux consistent
52 with swell topography (Korenaga, 2005). Recently, it has been suggested that viscoplastic
53 rheology in the lower mantle may generate think lower-mantle plumes (Davaille et al., 2018); this
54 rheological effect on plume dynamics is similar to that of grain-size-sensitive creep, so it can be
55 classified into this end-member. Alternatively, the presence of high-density eclogite in a
56 thermochemical plume can sufficiently reduce buoyancy flux and may reconcile this discrepancy
57 as well (Farnetani and Samuel, 2005; Lin and van Keken, 2006; Dannberg and Sobolev, 2015).
58 Finally, a plume could be thick and have low viscosity, but most of the plume materials might be
59 deflected in the mid-mantle, resulting in a narrow conduit in the upper mantle (Figure 1b; Nolet et
60 al., 2006). Such deflection could potentially occur beneath the mantle transition zone (MTZ) where
61 viscosity is thought to exhibit a large jump (e.g., Hager et al., 1985; Mitrovica and Forte, 2004;
62 Liu and Zhong, 2016). Geodynamical modeling suggests that plumes narrow during upwelling
63 through large viscosity contrasts (Richards et al., 1988; Farnetani and Richard, 1994; Leng and
64 Gurnis, 2012). Additionally, there is seismic evidence suggesting that some plumes seem to have
65 extra material ponding at the base of the MTZ in global tomography (Nolet et al., 2006) and
66 regional tomography (Hansen et al., 2014). Under this ponding plume model, the buoyancy flux
67 of the plume would be significantly reduced in the upper mantle. Conversely, the ponding plume
68 model implies a much higher core heat flux (Nolet et al., 2006) than commonly accepted (Lay et
69 al., 2008).

70 A ponding plume in the mid-mantle, however, could still contribute to excess surface
71 topography at hotspot swells. Surface topography reflects vertical normal stresses associated with
72 flow generated by density anomalies within the mantle (e.g., Parsons and Daly, 1983). Ponding
73 materials are thermally buoyant, resulting in positive vertical normal stress. In this study, we use
74 topography kernels to quantify the relative magnitude of these stresses from density anomalies at
75 depth. This method provides a quantitative way to test long-wavelength lower mantle structures
76 against surface topography. The notion of topography kernel is valid when viscosity changes only
77 in the vertical direction, but the ponding plume model provides a fortuitous situation that, due to
78 its laterally expansive feature, allow such a simplified treatment of mantle viscosity. In the
79 following analysis, we demonstrate that a thermal ponding plume has a significant influence on
80 surface topography under most geometric and viscosity conditions.

81

82 2. Theoretical formulation

83 2.1 Buoyancy Flux and Plume Ponding

84 Plume buoyancy flux is defined as:

$$85 M = \int_0^R \Delta\rho(r) v(r) 2\pi r dr, (1)$$

86 where R is the radius of the model region, $\Delta\rho(r)$ is the density contrast between the plume material
87 and ambient mantle, and $v(r)$ is the upwelling velocity (e.g., Olson et al., 1993). We assume $\Delta\rho(r)$
88 is constant across the crossection of plume upwelling and set it to $\alpha\rho_0\Delta T$ where α is the thermal
89 expansivity, ρ_0 is the reference density, ΔT is the average plume thermal anomaly relative to the
90 ambient mantle. Under classical Poiseuille flow, $v(r) = 0$ when $R > a$ (plume radius) and $v(r)$ is
91 expressed as:

$$92 \quad v(r) = \frac{\alpha \rho_0 \Delta T g}{4\mu_p} (a^2 - r^2), \quad (2)$$

93 where g is gravitational acceleration, and μ_p is the plume viscosity. Steady-state plume buoyancy
 94 flux may then be expressed as:

$$95 \quad M = \frac{\pi(\alpha\rho_0\Delta T)^2 g a^4}{8\mu_p}, \quad (3)$$

96 The relationship among plume viscosity, buoyancy flux, and radius is shown in Figure 2a. For a
97 400-km-radius plume of typical mantle viscosity, for example, predicted buoyancy flux is far
98 greater than the existing estimates for the Hawaiian plume, which has the highest buoyancy flux
99 among all plumes (e.g., Sleep, 1990). Typical buoyancy fluxes are on the order of 1000 kg/s. If
100 such a large plume radius is applicable throughout the mantle, plume viscosity is required to be
101 very high (Korenaga, 2005), or positive thermal buoyancy has to be substantially offset by negative
102 chemical buoyancy (e.g., Lin and van Keken, 2006). Both possibilities represent considerable
103 deviation from the conventional view of mantle plumes (e.g., Morgan, 1971; Richards et al., 1989).

104 The ponding plume model posits that a conduit radius can become smaller in the upper
105 mantle, by deflecting some portion of the upwelling material in the mid-mantle. In this case, the
106 geometry of material ponding at depth is constrained by the difference in the buoyancy fluxes of
107 the upper and lower mantle plumes. Assuming, for simplicity, that the geometry of ponding
108 materials is rectangular, we have:

$$109 \quad M_L - M_U = (\alpha \rho_0 \Delta T) v_p W H, \quad (4)$$

110 where M_L is the buoyancy flux in the lower mantle, M_U is that in the upper mantle, v_p is plate
 111 velocity, W is the width of the ponding material, and H is its thickness. The thickness of the
 112 ponding material is thus inversely proportional to the width (Figure 2b). We use v_p as the

113 horizontal velocity in the upper- and mid-mantle for simplicity; if the mid-mantle horizontal
114 velocity is lower than the surface plate velocity, which is probably more realistic, it would lead to
115 more pronounced ponding (i.e., greater H for a given W). When a plume in the lower mantle has a
116 large radius and a low viscosity, the difference in buoyancy flux becomes unrealistically large, and
117 even with an extreme width of 90° (10,000 km), the thickness of the ponding material exceeds the
118 whole mantle depth. For the ponding plume model to be physically reasonable, therefore, plume
119 radius in the lower mantle cannot be too large (<300 km), or the plume viscosity has to be relatively
120 high ($\geq 10^{20}$ Pa s).

121 2.2 Topography Calculation

122 The topography kernel represents the sensitivity of surface topography to subsurface density
123 perturbations. When the kernel takes a value of unity at some depth, for example, a density
124 anomaly at that depth contributes fully to surface topography. Conventional isostasy calculation
125 with a compensation depth is equivalent to assuming that the topography kernel is unity down to
126 the compensation depth and becomes zero below. Whereas this assumption is reasonable when
127 dealing with crustal-scale density anomalies, a more careful approach, such as using a topography
128 kernel, is required to evaluate the influence of deep mantle structures on surface observables. The
129 topography kernel can be constructed by calculating how vertical normal stress at the surface
130 changes with the varying depth of a unit density anomaly (Parsons and Daly, 1983). In this study,
131 we use the propagator matrix method to solve for the Stokes flow and derive such vertical normal
132 stress (Hager and O'Connell, 1981). The notion of topography kernel is valid only when the spatial
133 variation of viscosity is limited to the vertical direction. In the presence of lateral viscosity
134 variations, surface topography based on the topography kernel is only an approximation, but it is

135 sufficient for the discussion of long-wavelength topography (Richards et al., 1988), which is the
136 focus of our analysis.

137 Once a topography kernel is generated, different distributions of density anomalies can be
138 examined for their impact on surface topography. A negative density anomaly causes positive
139 vertical normal stress, and in case of a ponding plume, ponding material beneath the MTZ is more
140 buoyant than the ambient mantle, causing surface uplift. The topography kernel is a function of
141 horizontal wavelength, and using equation (4), we set half of the wavelength to the width (W) of
142 the ponding material as:

$$143 \quad \frac{\lambda}{2} = W = \frac{\Delta M_p}{(\alpha \rho_0 \Delta T) v_p H}. \quad (5)$$

144 where λ is the wavelength and ΔM_p is the difference between M_L and M_U . Excess topography
145 due to the ponding material, Δh_{excess} , can be calculated as:

$$146 \quad \Delta h_{\text{excess}} = \frac{(\alpha \rho_0 \Delta T)}{\rho_0 - \rho_w} \int_{z_{\text{PMB}}}^{z_{\text{MTZ}}} T(z, \lambda) dz, \quad (6)$$

147 where z_{MTZ} and z_{PMB} ($=z_{\text{MTZ}}+H$) are the depth of the MTZ and lower extent of the ponding
148 material, respectively, ρ_w is sea water density, and $T(z, \lambda)$ is the topography kernel.

149

150 3. Results

151 3.1 Topography Kernels

152 Topography kernels were calculated with horizontal wavelengths varying from 1450 to 20,000 km
153 (Figure 3). In our formulation, the wavelength is twice the width of the ponding material. We used
154 a simple 3-layer viscosity structure (e.g., Wei and Zhong, 2021) as well as one similar to that
155 proposed by Mitrovica and Forte (2004), hereinafter referred to as MF04. The 3-layer viscosity
156 structure features a 100-km stiff lid, low-viscosity upper mantle, and a high-viscosity lower mantle

157 (Figure 3c). Resulting topography kernels exhibit greater sensitivity in the upper mantle than in
158 the lower mantle, particularly at shorter wavelengths. At longer wavelengths, kernels decrease
159 more linearly from the top to the bottom. The MF04 viscosity structure is more complicated but
160 results in similar topography kernels. Lower-mantle sensitivities, where plume material ponds, are
161 higher in the MF04 kernels for shorter wavelengths. At longer wavelengths, the two sets of kernels
162 become nearly identical. The only notable differences in sensitivity occur in the upper mantle at
163 the shortest wavelengths, which are not relevant to material ponding below the MTZ. We also test
164 modified viscosity structures in which the ponding material reduces the viscosity to that of the
165 ponding material between z_{MTZ} and z_{PMB} by a factor of $\Delta\mu_p$. This reduction in viscosity generally
166 leads to an increase in topographic sensitivity to sub-MTZ structure. These topography kernels do
167 not account for the effects of lateral changes in viscosity, but ponding material is generally
168 horizontally extensive (Figure 2b), so our kernel-based approach is deemed sufficient to quantify
169 the first-order effects of ponding plume on long-wavelength topography. The kernels shown in
170 Figure 3 are most appropriate for a ponding of an isolated mantle plume in the center of the ocean
171 (e.g., the Hawaiian Plume).

172 3.2 Surface Topographic Response

173 Figure 4 shows representative examples of the geometry of ponding plumes with physically
174 permissible ponding depths. The width of these structures is typically so large that it is difficult to
175 illustrate them to scale. Figure 5 shows the excess topography generated by a ponding plume under
176 four sets of viscosity profiles, including the 3-layer and MF04 background models, and their
177 modified versions with plume viscosity. Only the topographic response generated by the thermal
178 buoyancy of ponding material is plotted; all other sources of topography at a hotspot swell, such
179 as the spreading of a narrow upper-mantle plume beneath the lithosphere, are absent in our

180 calculation. In each case, 100 unique kernels were generated for ponding material of widths
181 between 725 and 10,000 km. We conducted calculations for plumes with viscosities of 10^{19} Pa s
182 and 10^{20} Pa s, under both original and modified background viscosity conditions. In all cases, the
183 plume conduit in the upper mantle is fixed at 100 km in radius, plume material is 200 K hotter than
184 the ambient mantle, reference mantle density ρ_0 just below the MTZ is 4500 kg/m^3 , thermal
185 expansivity α is $2.5 \times 10^{-5} \text{ K}^{-1}$, and plate velocity v_p is 7 cm/yr. The plate velocity is
186 appropriate for the Hawaiian plume; the global average plate velocity is ~ 5 cm/yr (Parsons, 1981).
187 Calculated excess topography for ponding plumes is on the order of tens of meters to a few
188 kilometers (Figure 5). Topography is shown as a function of the thickness H of ponding material.
189 Each H value is paired with a corresponding value of W , as shown in Figure 2b, for a given plume
190 radius in the lower mantle and plume viscosity.

191 The topographic response under the 3-layer and MF04 viscosity profiles is shown in Figure
192 5a, for a ponding plume with a viscosity of 10^{19} Pa s. In this case, the buoyancy flux of the 100-
193 km-radius plume in the upper mantle is about 17,300 kg/s, about twice the highest estimate for the
194 Hawaiian plume (Sleep, 1990). Thinner (low H) and wider (high W) ponding material generally
195 results in a greater topographic response, attributed to increased sensitivity to density perturbations
196 at longer wavelengths. Due to the imposed maximum width of 90° , a ponding plume with a lower-
197 mantle radius of 300 km and 400 km requires a physically improbable depth for ponding material,
198 i.e., exceeding the core-mantle boundary (CMB). In these cases, the buoyancy fluxes for the lower-
199 mantle plumes are massive, about 1.4×10^6 kg/s and 4.4×10^6 kg/s, respectively. For this
200 plume viscosity, therefore, the lower-mantle conduit radius must be smaller than 200 km, to keep
201 the concept of a ponding plume physically realistic. Even with the radius of 200 km and a
202 physically permissible thickness of ponding material (i.e., H less than ~ 2000 km), however, excess

203 topography is still greater than \sim 1 km. This is problematic, because the observed swell topography
204 around the Hawaiian hotspot is on average only about 500 m (with a horizontal extent of
205 \sim 1000 km). Because our calculation does not include the contribution from the spreading of the
206 upper-mantle plume beneath the lithosphere, the excess topography from ponding material must
207 be considerably lower than the swell topography to be consistent with the observed seafloor
208 topography. To facilitate discussion, we assume that excess topography less than 100-200 m would
209 be acceptable. Such condition can be satisfied by the narrowest plume considered here (with a
210 lower-mantle radius of 150 km); but even this case requires material to pond almost to the CMB,
211 to become undetectable in surface topography. As expected from its deeper sensitivity (Figure 3b),
212 the MF04 viscosity profile generally yields greater topographic response than the 3-layer viscosity
213 profile, thereby making a ponding plume more visible in surface topography.

214 Increasing plume viscosity to 10^{20} Pa s reduces upper- and lower-mantle buoyancy fluxes
215 by an order of magnitude, but still, excess topography often exceeds the reasonable 100-200 m
216 limit (Figure 5b). Under these conditions, the 100-km-radius plume in the upper mantle has a
217 buoyancy flux comparable to a midsized plume such as Cape Verde and Réunion (Sleep, 1990).
218 For a 400-km-radius lower-mantle plume, minimum excess topography is of \sim 2.6 km, far greater
219 than is acceptable. A 300-km-radius lower-mantle plume can only produce acceptable excess
220 topography with material ponding at a depth greater than the lower mantle, making this scenario
221 physically unlikely as well. The two narrowest plumes (150 km and 200 km radii in the lower
222 mantle) can satisfy our requirement for reasonable excess topography with physically realistic
223 ponding geometries. These can be achieved with both background viscosity profiles, but the 3-
224 layer structure generally produces less pronounced topography. In particular, a 150-km-radius

225 lower-mantle plume generates under 200 m of excess topography for any given ponding thickness,
226 making this the most reasonable scenario.

227 Unsurprisingly, a background viscosity profile modified by ponding material increases the
228 magnitude of the surface uplift generated by a ponding plume. We set ambient lower-mantle
229 viscosity to 10^{21} Pa s. Ponding material from a plume with a viscosity of 10^{19} Pa s thus reduces the
230 background viscosity by two orders of magnitude (Figure 5c). Under these conditions, every
231 examined ponding plume generates far more excess topography than is acceptable. The minimum
232 surface expression of ponding material is ~ 800 m for the narrowest plume, attributed to a
233 significant increase in topographic sensitivity generated by the viscosity reduction. Increasing the
234 viscosity of the plume to 10^{20} Pa s, i.e., viscosity reduction only by one order of magnitude,
235 generates similar excess topography as in the unmodified background viscosity profile (Figure 5d).
236 The smaller viscosity reduction lessens its impact on kernel sensitivity. Only the two narrowest
237 plumes generate plausible surface responses, similar to those found in the original background
238 viscosity profile. In addition to the viscosity structures already discussed, a profile with a high-
239 viscosity MTZ, a feature that could enhance plume ponding, was tested as well (Supplementary
240 Figure 1). We find this viscosity structure to increase the surface response to ponding material
241 under both unmodified and modified viscosity conditions (Supplementary Figure 2).

242 Even when narrow, relatively high-viscosity (10^{20} Pa s) lower-mantle plumes exhibit
243 excess topography less than 100-200 m, the area underlain by the ponding material is still quite
244 large. In the most favorable case, a 150-km-radius plume in the lower mantle with a viscosity of
245 10^{20} Pa s, the thickness of ponding material ranges from ~ 20 km to ~ 200 km with corresponding
246 widths of 10,000 km to 725 km (equation 5). Additionally, our formulation sets an upper-mantle
247 plume radius at the high end of estimates for conventional thermal plumes, a favorable condition

248 for the ponding plume model; a narrower upper-mantle plume can transport much less material,
249 increasing the total mass ponding below the MTZ and resulting excess topography.

250

251 **4. Discussion and Conclusions**

252 The majority of ponding plume geometries examined generate greater than acceptable excess
253 topography, require a physically improbable ponding depth, or do both. For example, a ponding
254 plume with a lower-mantle radius of 200 km and a viscosity 10^{19} Pa s (solid orange line in Figure
255 5c) could have a thickness as low as \sim 550 km, but requires a width of \sim 10,000 km (Figure 4b).
256 Excess topography generated by such a structure is around \sim 1.5 km, much larger than is acceptable.
257 A higher plume viscosity (10^{20} Pa s) with a radius of 300 km, similar to those imaged by seismic
258 tomography, can fit within the lower mantle, but the excess topography is similar to that of
259 narrower, less viscous plumes (Figure 5d). The scale of ponding material is so large that it would
260 likely be detected by seismic tomography (Rickers et al., 2012). Yet, in the case of the Hawaiian
261 plume, seismic tomography has not imaged such structure (Montelli et al., 2006; Fukao and
262 Obayashi, 2013; Moulik & Ekström, 2014; French and Romanowicz, 2015), providing a major
263 setback for the ponding plume model. Smaller plumes imaged with material ponding at the base
264 of the MTZ (Nolet et al., 2006; Hansen et al., 2014) all have far less ponding material than is
265 predicted by our modeling. Additionally, many well-resolved lower-mantle plumes are located
266 closer than the width of many of these ponding geometries. More than one lower-mantle plume
267 could feed into the same ponding region, resulting in even more ponding material and extreme
268 excess topography.

269 Alternatively, one large ponding plume may source multiple plumes in the upper mantle,
270 similar to a certain version of “superplume” (Maruyama, 1994; Courtillot et al., 2003). Such a

271 condition may be present in the South Pacific Superswell, where multiple hotspots are located
272 above one large slow seismic anomaly in the lower mantle (e.g., French and Romanowicz, 2015).
273 Key features of superswells include non-age-progressive volcanic islands and long-wavelength
274 excess topography on the order of ~500 m (McNutt, 1998; Adam and Bonneville, 2005). If
275 multiple upper-mantle plumes draw from one superplume, the amount of ponding material is
276 reduced, making a ponding plume more reasonable, but the large lower-mantle plume flux is still
277 problematic. For example, a lower-mantle plume of 400 km radius has a buoyancy flux of
278 $\sim 4.4 \times 10^6$ kg/s, but even ten 100-km-radius plumes in the upper mantle only have a total
279 buoyancy flux of $\sim 1.7 \times 10^5$ kg/s (equation 3). Except for in the case of a 150-km-radius lower-
280 mantle plume, which will not be able to form in this scenario because ten 100-km-radius plumes
281 have a higher upper-mantle buoyancy flux than one 150-km-radius plume (equation 3), excess
282 topography is too great (~1 km) for large-radius (≥ 300 km), low-viscosity plumes.

283 An alternative to multiple upper-mantle plumes is multiple plume heads. The head of a
284 mantle plume can contain a significant volume of upwelling material. Bercovici & Mahoney
285 (1994) proposed that the Ontong Java large igneous province (LIP) may be sourced from the same
286 plume, if the plume head is able to separate from its conduit at the base of the MTZ. On the surface,
287 a detached plume head is predicted to produce a “double LIP” where two different flood basalt
288 provinces are observed, separated in time by ~ 30 Ma. Under this model, the older LIP forms from
289 the initial plume head and the younger LIP forms when a secondary plume head, formed from the
290 same conduit, reaches the surface. However, having two plume heads is not sufficient to account
291 for the volume flux carried by a 100-km-radius upper-mantle plume with a viscosity of 10^{19} Pa s.
292 In the case of Ontong Java, the maximum radius of a plume head is estimated to be 363 km

293 (Bercovici and Mahoney, 1994) and a total volume of $\sim 2 \times 10^8$ km³. It takes only ~ 15 Ma for a
294 100-km-radius plume to produce as much volume flux as two of such plume heads.

295 In this work, we seek to demonstrate the first-order impact of a ponding thermal plume. As
296 such, second-order effects, such as the release of latent heat due to the endothermic phase change
297 (e.g., Schubert et al., 1975), possible subadiabatic thermal gradients in the mid-mantle (e.g.,
298 Bunge, 2005), cycling of ponding material in large-scale mantle convection, are ignored. Thanks
299 to the enormous surface manifestation of a typical ponding thermal plume, however, such details
300 have a negligible impact on our assessment of this hypothesis. Many of our assumptions, such as
301 large-radius (100 km) upper-mantle plumes and high plate velocity (7 cm/yr), are set in favor of
302 the ponding plume model.

303 A few assumptions are potentially unfavorable to the ponding plume model, and we deem
304 it necessary to address these in some detail. First, we assumed that ponding plumes are always in
305 a steady state; however, owing to the large volume of ponding material, achieving a steady state
306 takes a finite time. For the parameters examined, the time to fill the ponding geometries varies
307 from ~ 5 Ma to ~ 11 Ma, depending on plume radius (Supplementary Figure 3). Since these times
308 are shorter than the typical duration of hot spots (Ballmer et al., 2015) and high plate velocity is
309 assumed, modeling a ponding plume in a steady state is justified. Second, we have assumed that
310 the 670-km discontinuity was at a fixed depth. In the case of a hot anomaly, the 670-km
311 discontinuity is expected to deflect upward (Bina and Helffrich, 1994), which should reduce the
312 topographic response to material ponding below the MTZ. Assuming a Clayepron slope of -1.3
313 MPa/K (Fei et al., 2004), a pressure gradient of 43 MPa/km (Dziewonski and Anderson, 1981), a
314 plume with $\Delta T = 200$ K deflects the phase transition by ~ 6 km upwards, resulting in a negligible
315 change of the topography kernel and surface expression (Supplementary Figure 4). Finally, for our

316 3-layer viscosity model, we have assumed a large increase in viscosity occurs at the base of the
317 MTZ. If significant viscosity stratification occurs at depth other than the 670-km discontinuity, a
318 thermal plume may pond at this alternative depth. Recently, it has been suggested that two orders
319 of magnitude increase in viscosity may exist at 1000 km depth (Rudolph et al, 2015; Deng and
320 Lee, 2017). Modifying the 3-layer case to have a viscosity increase and ponding at 1000 km depth
321 does reduce the surface topography, but it is still unreasonably large for wide (≥ 300 -km-radius)
322 mantle plumes (Supplementary Figure 5).

323 Although the preceding calculations and discussion focused on a purely thermal plume, it
324 is also important to consider the possibility of thermochemical plumes because significant major-
325 element heterogeneities have been suggested for several plumes including Hawaii and Iceland
326 (e.g., Hauri, 1996; Takahashi et al., 1998; Korenaga and Kelemen, 2000; Sobolev et al., 2007).
327 Previously, a dense chemical component has been invoked to explain large-radius mantle plumes
328 (Farnetani and Samuel, 2005; Lin and vlan Keken, 2006; Dannberg and Sobolev, 2015). In our
329 formulation, it is straightforward to evaluate the impact of chemical heterogeneities on surface
330 topography, by means of the effective thermal anomaly (ΔT_{eff}). The Hawaiian plume, for example,
331 has been suggested to contain $\sim 20\%$ recycled crustal material and have an excess temperature of
332 ~ 200 K (Sobolev et al., 2007). Crustal material is ~ 100 kg/m³ denser than the ambient mantle, so
333 a plume with 20% recycled crust is intrinsically 20 kg/m³ denser than the mantle, thereby offsetting
334 the thermal buoyancy. Using $\alpha = 2.5 \times 10^{-5}$ K⁻¹, $\rho_0 = 4500$ kg/m³, and $\Delta T = 200$ K, ΔT_{eff} is
335 ~ 20 K. A factor of ten reduction in thermal anomaly lowers plume buoyancy flux by two orders
336 of magnitude (equation 3), so even a thick (400-km-radius) thermochemical plume of typical
337 viscosity ($\sim 6 \times 10^{19}$ Pa s) can agree with the high end of buoyancy flux estimates for the
338 Hawaiian plume (Figure 6). The lowest estimate for Hawaiian buoyancy flux can be achieved by

339 a thick plume with a viscosity of $\sim 2 \times 10^{20}$ Pa s, lower than the viscosity of firm plumes ($10^{21} -$
340 10^{23} Pa s; Korenaga, 2005). Conversely, with a recycled crust component, mantle plumes must
341 have a radius greater than geodynamic predictions for thermal plumes (~ 100 km) to generate
342 typical values of buoyancy flux (~ 1000 kg/s). This result agrees with previous buoyancy flux
343 estimates for thermochemical plumes, but an eclogite content of 15 %, lower than estimates for
344 Hawaii, has been shown to require an excess temperature of at least 550 K for a plume to reach
345 the uppermost mantle (Dannberg and Sobolev, 2015). This is more than double the estimates for
346 thermal anomalies constrained by plume chemistry (Sobolev, et al., 2007), suggesting that recycled
347 crust may not be able to reconcile thick plume conduits at depth with observed topographic swells.

348 We have shown, by simple numerical modeling, that ponding thermal plumes are an
349 unlikely way to reconcile thick plume conduits in the lower mantle with observed topographic
350 swells. Two of the remaining explanations are thermochemical plumes, as discussed above, and
351 slowly upwelling plumes with grain-size-sensitive creep or viscoplastic rheology. As the latter
352 possibility arises from lower-mantle rheology (Solomatov, 1996; Korenaga, 2005; Davaille et al.,
353 2018), they can occur globally. On the other hand, it may seem ad hoc to invoke chemical
354 heterogeneities for many thick plumes imaged by seismic tomography. Also, chemical
355 heterogeneities in this context act to retard the upwelling of a plume and may require extreme
356 excess temperatures, so it would be puzzling why the majority of plumes are dynamically
357 compromised. However, if many plumes originate from large low-shear-velocity provinces (e.g.,
358 Burke and Torsvik, 2004), they may share similar chemical characteristics. Further improvement
359 of seismic tomography, in conjunction with geochemical observations, will allow us to distinguish
360 between these possibilities.

361

362 Acknowledgements: We would like to thank Editor Hans Thybo for his assistance with this
363 manuscript. We thank Norm Sleep and two anonymous reviewers for their comments on the earlier
364 version of the manuscript. This work was supported in part by U.S. National Science Foundation
365 EAR-1753916.

366

367 References:

368

369 Adam, C., Bonneville, A., 2005. Extent of the South Pacific Superswell. *J. Geophys. Res. Solid*
370 *Earth.* 110, B09408.

371

372 Ballmer, M.D., van Keken, P.E., Ito, G., 2015. Hotspots, large igneous province, and melting
373 anomalies. *Treatise on Geophysics.* 7, 394-443.

374

375 Bercovici, D., Mahoney, J., 1994. Double flood basalts and plume head separation at the
376 660-kilometer discontinuity. *Science.* 266, 1367-1369.

377

378 Bina, C.R., Helffrich, G., 1994. Phase transition Clapeyron slopes and transition zone seismic
379 discontinuity topography. *J. Geophys. Res. Solid Earth.* 99, 15,853–15,860.

380

381 Bunge, H.-P., 2005. Low plume excess temperature and high core heat flux inferred from
382 non-adiabatic geotherms in internally heated mantle circulation models. *Phys. Earth Planet.*
383 *Inter.* 153, 3-10.

384

385 Burke, K., Torsvik, T.H., 2004. Derivation of large igneous provinces of the past 200 million
386 years from long-term heterogeneities in the deep mantle. *Earth Planet. Sci. Lett.* 227, 531-538.

387

388 Courtillot, V., Davaille, A., Besse, J., Stock, J., 2003. Three distinct types of hotspots in the
389 Earth's mantle. *Earth Planet. Sci. Lett.* 205, 295-308.

390

391 Dannberg, J., Sobolev, S.V., 2015. Low-buoyancy thermochemical plumes resolve
392 controversy of classical mantle plume concept. *Nat. Comm.* 6, 6960.

393

394 Davaille, A., Carrez, Ph., Cordier, P., 2018. Fat plumes may reflect the complex rheology of
395 the lower mantle. *Geophys. Res. Lett.* 45, 1349-1354.

396

397 Davies, G.F., 1988. Ocean bathymetry and mantle convection: 1. Large-scale flow and
398 hotspots. *J. Geophys. Res. Solid Earth.* 93, 10,467-10,480.

399

400 Deng, J., Lee, K.K.M., 2017. Viscosity jump in the lower mantle inferred from melting curves
401 of ferropericlase. *Nat. Comm.* 8, 1997.

402

403 Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference Earth model. *Phys. Earth Planet. Inter.* 25, 297–356.

404

405

406 Farnetani, C.G., Samuel, H., 2005. Beyond the thermal plume paradigm. *Geophys. Res. Lett.* 32, 303–341.

407

408

409 Fei, Y., Orman, J.V., Li, J., Westrennen, W.V., Sanloup, C., Minarik, W., Hirose, K., Komabayashi, T., Walter, M., and Funakoshi, K., 2004. Experimentally determined postspinel transformation boundary in Mg_2SiO_4 using MgO as an internal pressure standard and its geophysical implications. *J. Geophys. Res. Solid Earth.* 109, B02305.

410

411

412

413

414 French, S., Romanowicz, G., 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. *Nature.* 525, 95-99.

415

416

417 Fukao, Y., and M. Obayashi., 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. *J. Geophys. Res. Solid Earth.* 118, 5920–5938.

418

419

420 Hager, B., O'Connell, R.K., 1981. A simple global model of plate dynamics and mantle convection. *J. Geophys. Res. Solid Earth.* 86, 4843-4867.

421

422

423 Hager, B. H., Clayton, R. W., Richard, M. A., Comer, R. P., Dziewonski, A. M., 1985. Lower mantle heterogeneity, dynamic topography and the geoid. *Nature.* 313, 541-585.

424

425

426 Hansen, S.E., Graw, J.H., Kenyon, L.M., Nyblade, A.A., Wiens, D.A., Aster, R.C., Huerta, A.D., Anandakrishnan, S., Wilson, T., 2014. Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: Evidence for heterogenous structure beneath West Antarctica. *Earth Planet. Sci. Lett.* 408, 66-78.

427

428

429

430

431 Hauri, E. H., 1996. Major-element variability in the Hawaiian mantle plume. *Nature.* 382, 415-419.

432

433

434 Hoggard, M.J., Parnell-Turner, R., White, N., 2020. Hotspots and mantle plumes revisited: Towards reconciling the mantle heat transfer discrepancy. *Earth Planet. Sci. Lett.* 542, 116317.

435

436

437 King, S.D., Adam, C., 2014. Hotspot swells revisited. *Phys. Earth Planet. Inter.* 235, 66-83.

438

439 Korenaga, J., 2005. Firm mantle plumes and the nature of the core-mantle boundary region. *Earth Planet. Sci. Lett.* 232, 29-37.

440

441

442 Korenaga, J., and Kelemen, P.B., 2000. Major element heterogeneity in the mantle source of the North Atlantic igneous province. *Earth Planet. Sci. Lett.* 184, 251-268.

443

444

445 Labrosse, S., 2002. Hotspots, mantle plumes and core heat loss. *Earth Planet. Sci. Lett.* 199, 147-156.

446

447

448 Leng, W., Gurnis, M., 2012. Shape of thermal plumes in a compressible mantle with depth-
449 dependent viscosity. *Geophys. Res. Lett.* 39, L05310.

450

451 Lin, S.-C., van Keken, P.E., 2006. Dynamics of thermochemical plumes: 2. Complexity of
452 plume structures and its implications for mapping mantle plumes. *Geochem., Geophys.,*
453 *Geosyst.* 7, Q03003.

454

455 Liu, X., Zhong, S., 2016. Constraining mantle viscosity structure for a thermochemical
456 mantle using the geoid observation. *Geochem., Geophys., Geosyst.* 17, 895-913.

457

458 Maruyama, S., 1994. Plume tectonics. *J. Geol. Sur. Japan.* 100, 24-49.

459

460 McNutt, M.K., 1998. Superswells. *Rev. Geophys.* 36, 211-244.

461

462 Mitrovica, J.X., Forte, A.M., 2004. A new interface of mantle viscosity based on joint inversion
463 of convection and glacial isostatic adjustment data. *Earth Planet. Sci. Lett.* 225, 177-189.

464

465 Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., 2006. A catalogue of deep mantle plumes:
466 New results from finite-frequency tomography. *Geochem., Geophys., Geosyst.* 7, Q11007.

467

468 Morgan, W. J., 1971. Convection in the lower mantle. *Nature.* 230, 42-43.

469

470 Moulik, P., Ekström, G., 2014. An anisotropic shear velocity model of the Earth's mantle using
471 normal modes, body waves, surface wave, and long-period waveforms. *Geophys. J. Int.* 199,
472 1713-1738.

473

474 Nolet, G., Karato, S.-I., Montelli, R., 2006. Plume fluxes from seismic tomography. *Earth*
475 *Planet. Sci. Lett.* 238, 685-699.

476

477 Olson, P., Schubert, G., Anderson, C., 1993. Structure of axisymmetric mantle plumes. *J.*
478 *Geophys. Res. Solid Earth.* 98, 6829-6844.

479

480 Parsons, B., 1981. The rate of plate creation and consumption. *Geophys. J. Int.* 67, 437-448.

481

482 Parsons, B., Daly, S., 1983. Relationship between surface topography, gravity anomalies, and
483 temperature structure of convection. *J. Geophys. Res. Solid Earth.* 88, 1129-1144.

484

485 Rickers, F., Fichtner, A., Trampert, J., 2012. Imaging mantle plumes with instantaneous phase
486 measurements of diffracted waves. *Geophys. J. Int.* 190, 650-664.

487

488 Richards, M.A., Duncan, R.A., Courtillot, V.E., 1989. Flood basalts and hot-spot tracks: plume
489 heads and tails. *Science.* 246, 103-107.

490

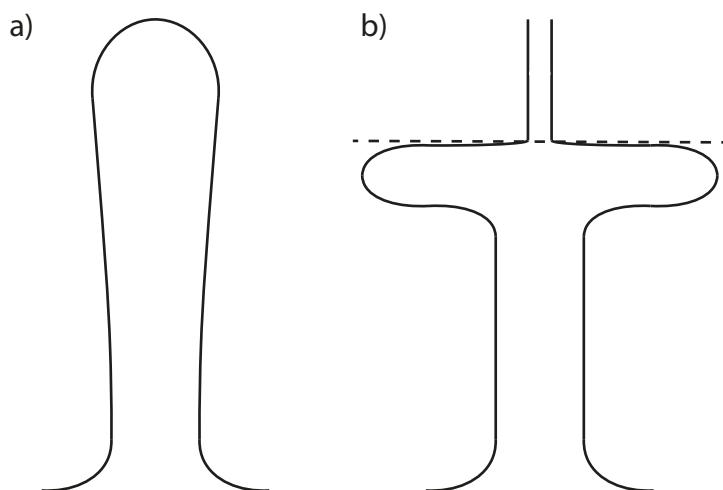
491 Richards, M.A., Hager, B.H., Sleep, N.H., 1988. Dynamically supported geoid highs over
492 hotspots: Observation and theory. *J. Geophys. Res. Solid Earth.* 93, 7690-7708.

493

494 Rudolph, M. L., Lekic, V., Lithgow-Bertelloni, C., 2015. Viscosity jump in Earth's mid-
495 mantle. *Science*. 350, 1349-1352.

496
497 Schubert, G., Yuen, D.A., Turcotte, D.L., 1975. Role of phase transitions in a dynamic
498 mantle. *Geophys. J. Int.* 42, 705-735.

499
500 Sleep, N.H., 1990. Hotspots and mantle plumes: Some phenomenology. *J. Geophys. Res. Solid*
501 *Earth*. 95, 6715-6736.


502
503 Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.L.,
504 Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S.,
505 Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V., Nikogosian, I.K., Rocholl, A.,
506 Sigurdsson, I.A., Sushchevskaya, N.M., Teklay, M, 2007. The amount of recycled crust in
507 sources of mantle-derived melts. *Science*. 316, 412-417.

508
509 Solomatov, V. S., 1996. Can hotter mantle have a larger viscosity? *Geophys. Res. Lett.* 23,
510 937-940.

511
512 Takahashi, E., Nakajima, K., Wright, T.L., 1998. Origin of the Columbia River basalts:
513 melting model of a heterogeneous plume head. *Earth Planet. Sci. Lett.* 162, 63-80.

514
515 Wei, M., Zhong, S., 2021. Constraints on mantle viscosity from intermediate wavelength
516 geoid anomalies in mantle convection models with plate motion history. *J. Geophys. Res.*
517 *Solid Earth*. 129, e2020JB021561.

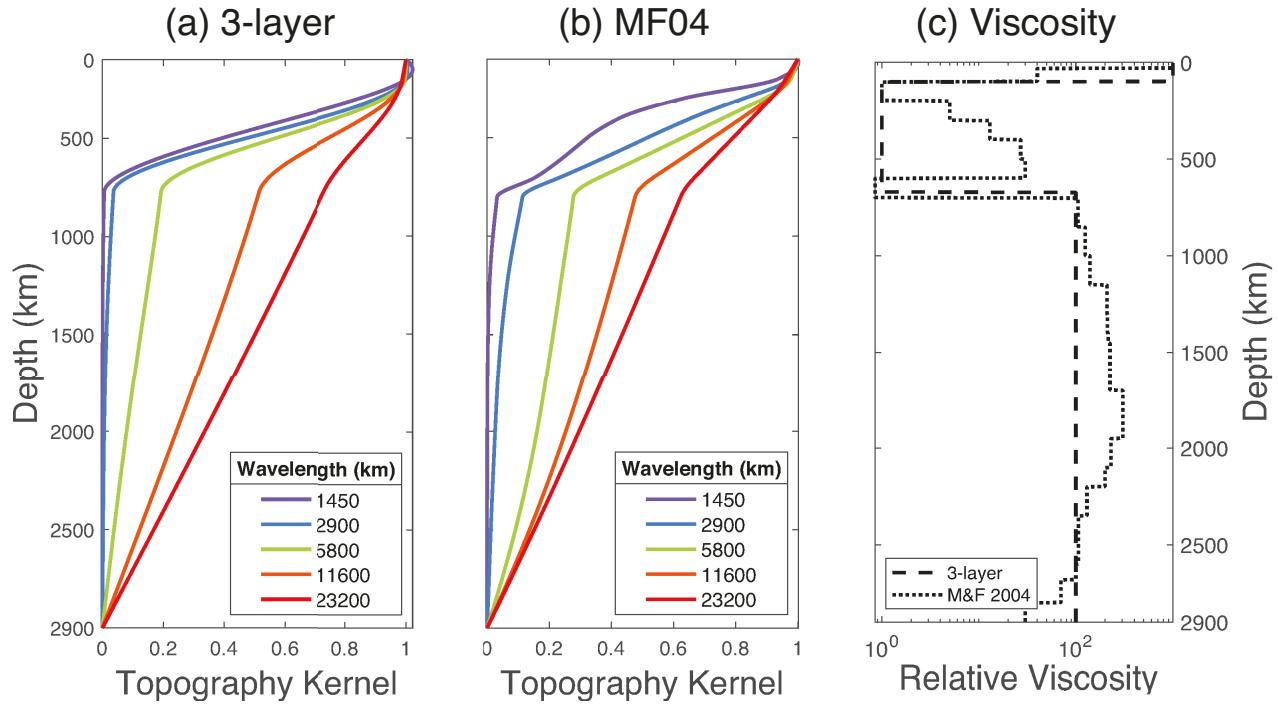
518
519 Zhong, S., 2006. Constraints on thermochemical convection of the mantle from plume heat
520 flux, plume excess temperature, and upper mantle temperature. *J. Geophys. Res. Solid Earth*.
521 111, B04409.

524
525

526 Figure 1. Two end-member geometries of plume conduits. (a) A firm (highly viscous) plume with
 527 a relatively slow ascent velocity, and (b) a plume with low viscosity and material ponding beneath
 528 the 670 km discontinuity (dashed line).

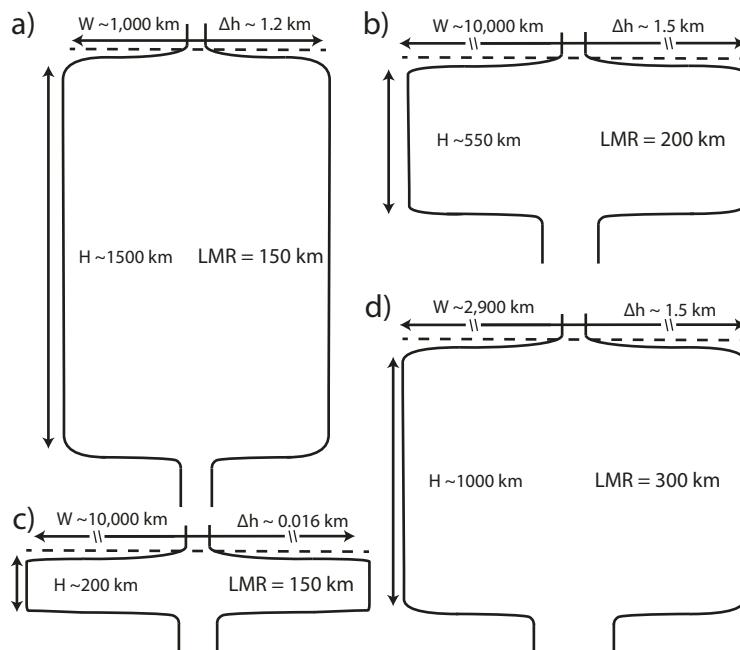
529

530



531

532


533 Figure 2. (a) Relationship between plume viscosity, buoyancy flux, and radius. Values above the
 534 curves represent the plume radius. Gray bar represents the low (Hoggard et al., 2020) and high
 535 (Sleep, 1990) buoyancy flux estimates for the Hawaiian plume. (b) Relationship between the
 536 thickness (H) and width (W) of ponding material (equation 4) for 200 km and 400 km lower plume
 537 radii and viscosities. The upper plume radius is fixed at 100 km, and plate velocity is assumed to
 538 be 7 cm/yr. Different line colors correspond to plume radii considered in (a), and solid, dashed,
 539 and dotted lines correspond to plume viscosity of 10^{19} , 10^{20} , and 10^{21} Pa s, respectively. Gray
 540 horizontal line denotes the depth of the core-mantle boundary; the values of H exceeding this line
 541 should be regarded as unrealistic.

542

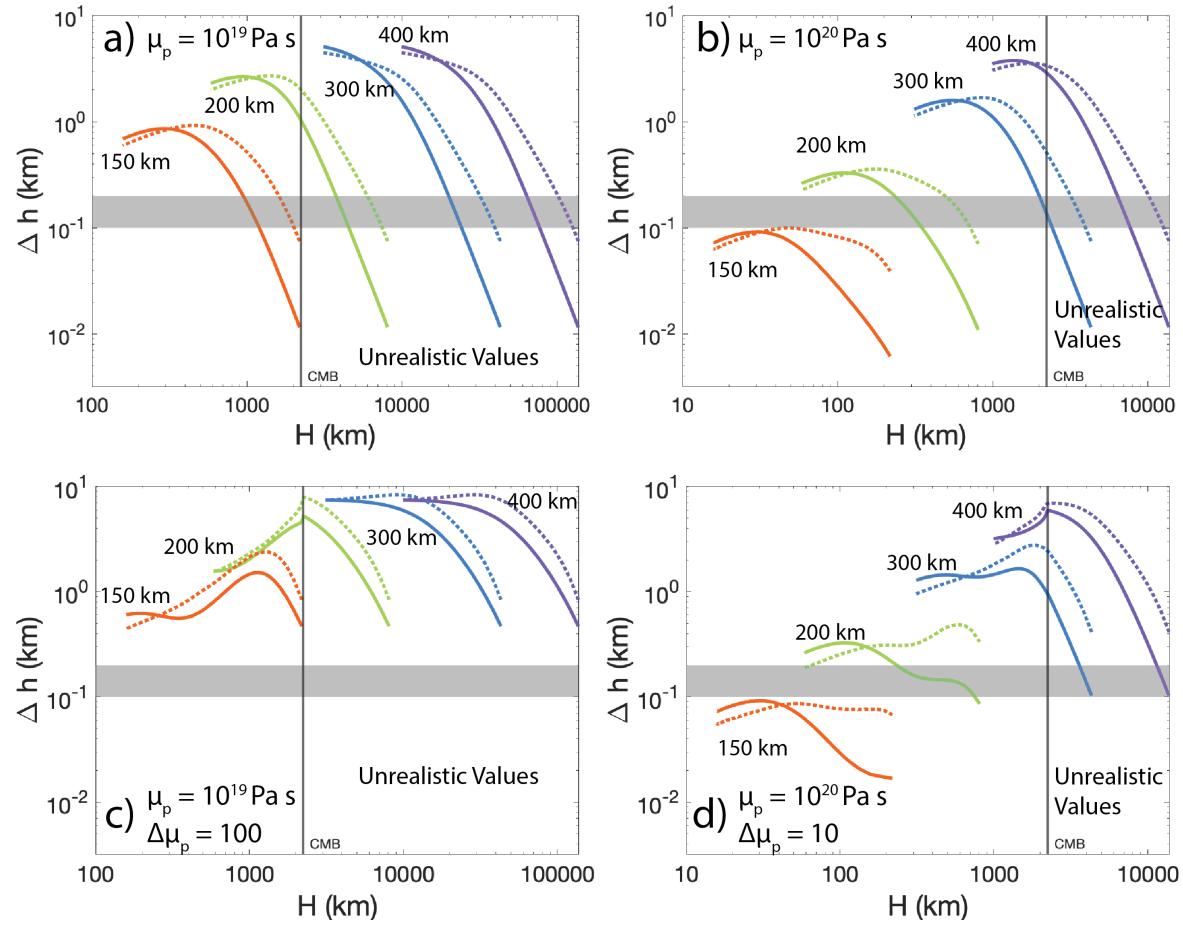
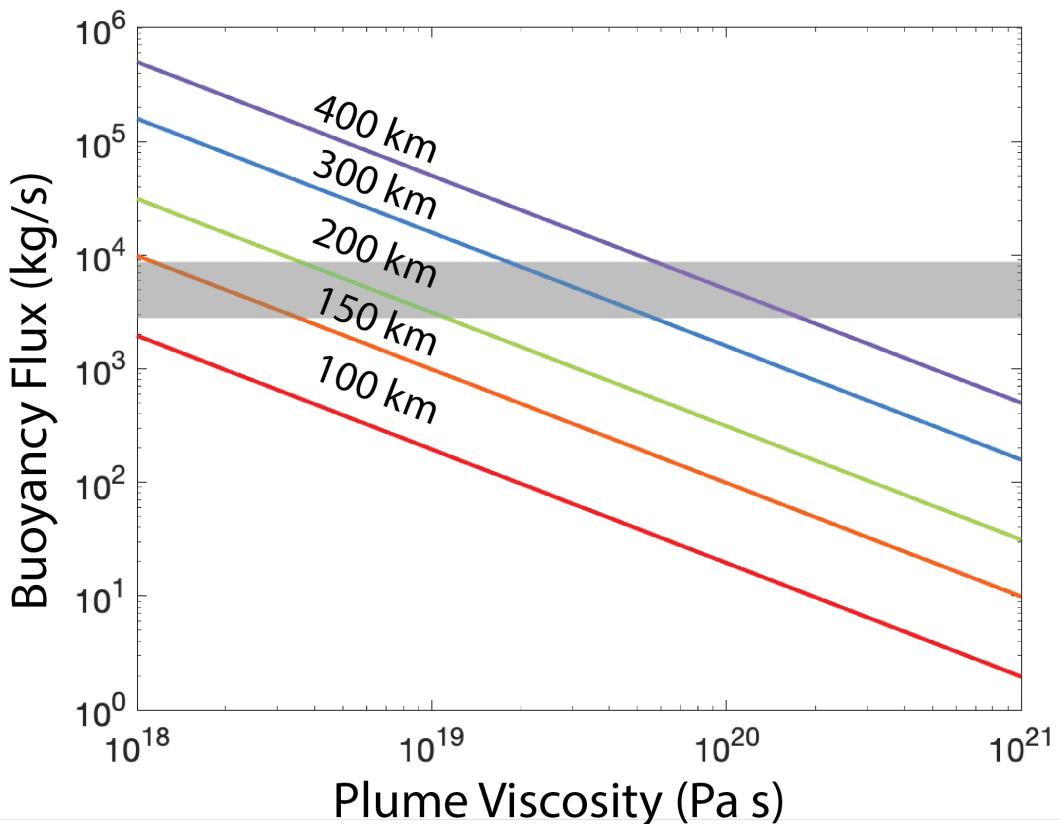
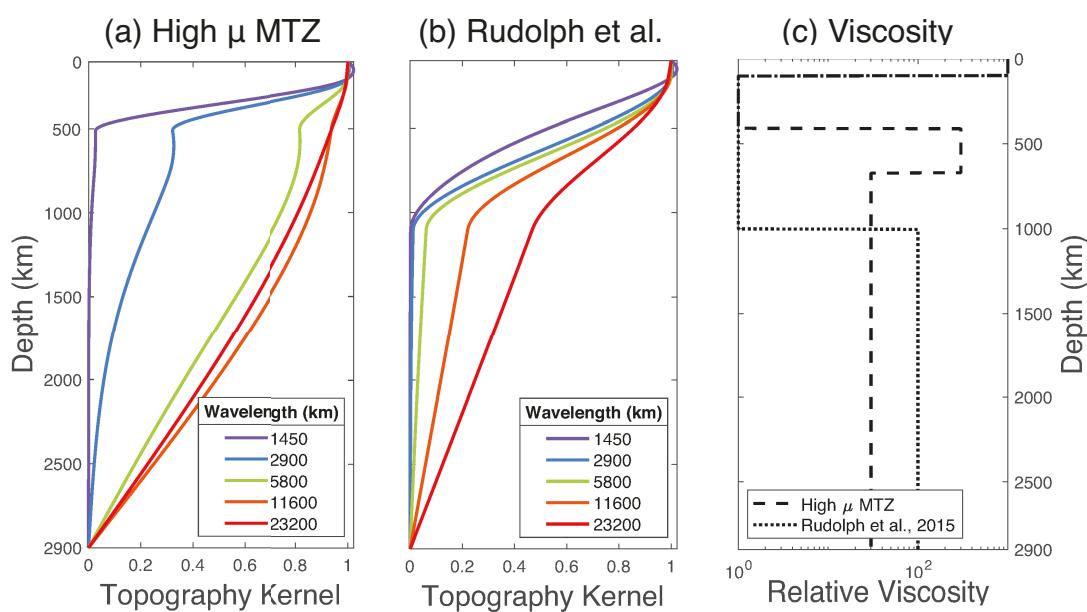

543
544
545
546
547

Figure 3. Topography kernels (a&b) calculated for various viscosity profiles (c). (a) is the 3-layer case, and (b) represents the profile of Mitrovica and Forte (2004).



548
549

Figure 4. Schematic of representative ponding geometries modeled in Figure 5. W is ponding width, Δh is excess topography, H is ponding thickness, LMR is the lower mantle conduit radius. Upper and lower mantle plume radius, ponding thickness, and ponding width are to scale except for those with a break in arrows. (a,b) have μ_p of 10^{19} Pa s. (c,d) have μ_p of 10^{20} Pa s.



557 Figure 5. Surface topographic uplift due to a ponding plume at the bottom of the MTZ under
 558 various viscosity conditions. An unmodified viscosity structure is used in (a) and (b). (c) and (d)
 559 use a modified viscosity structure. μ_p is plume viscosity and $\Delta\mu_p$ is the factor by which ambient
 560 viscosity was reduced. The solid lines are the topographic response to the 3-layer derived kernels
 561 and the dotted lines are for MF04 derived kernels. Line color follows the same convention as
 562 Figure 2. The gray bar represents 100 m to 200 m of excess topography. The solid black line
 563 indicates the depth of the CMB, values beyond this are unrealistic.

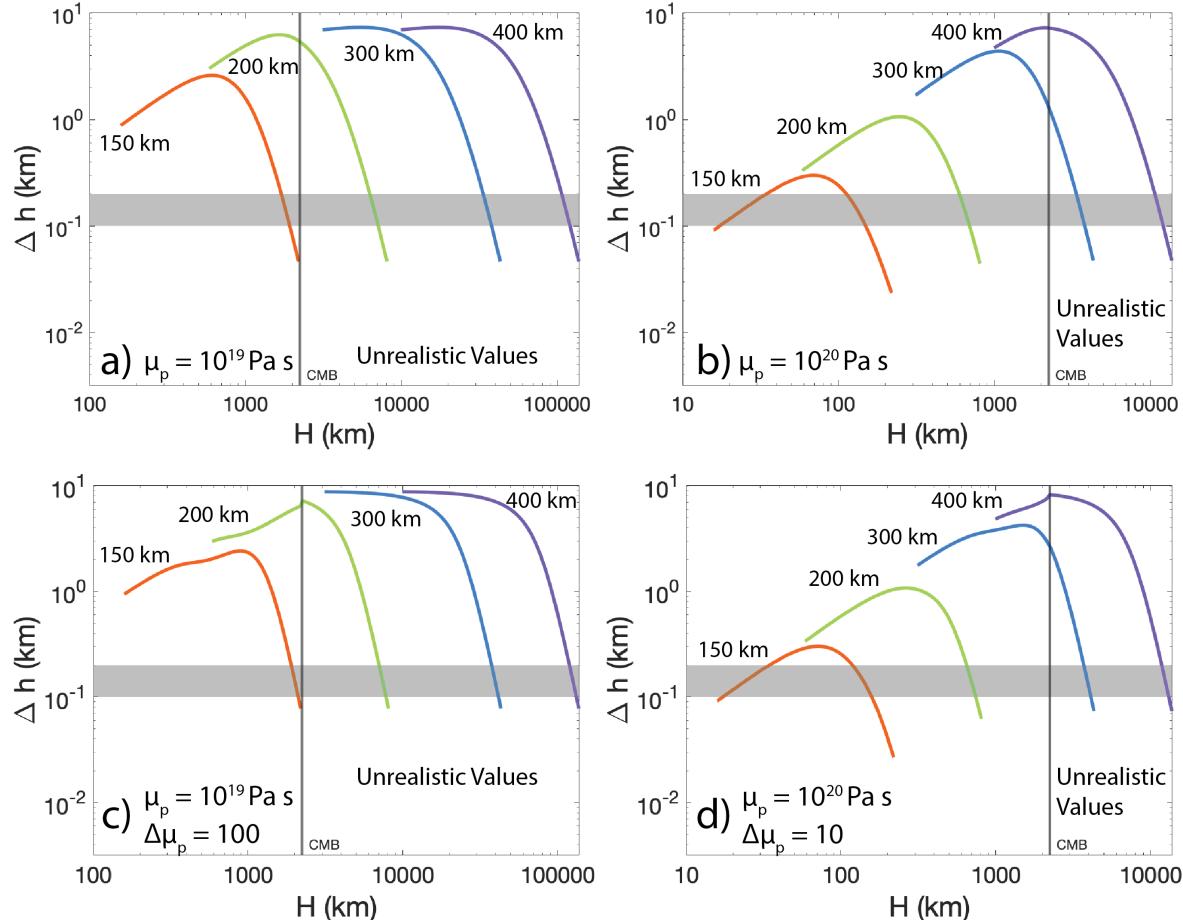
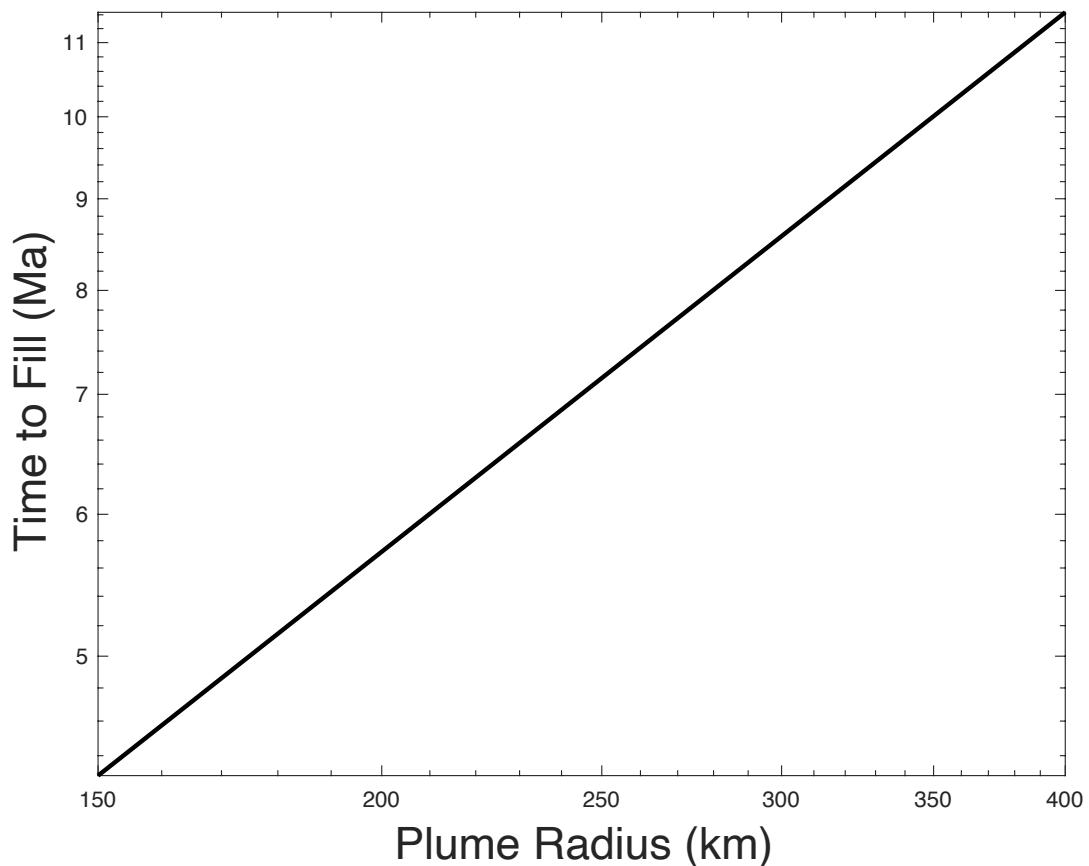
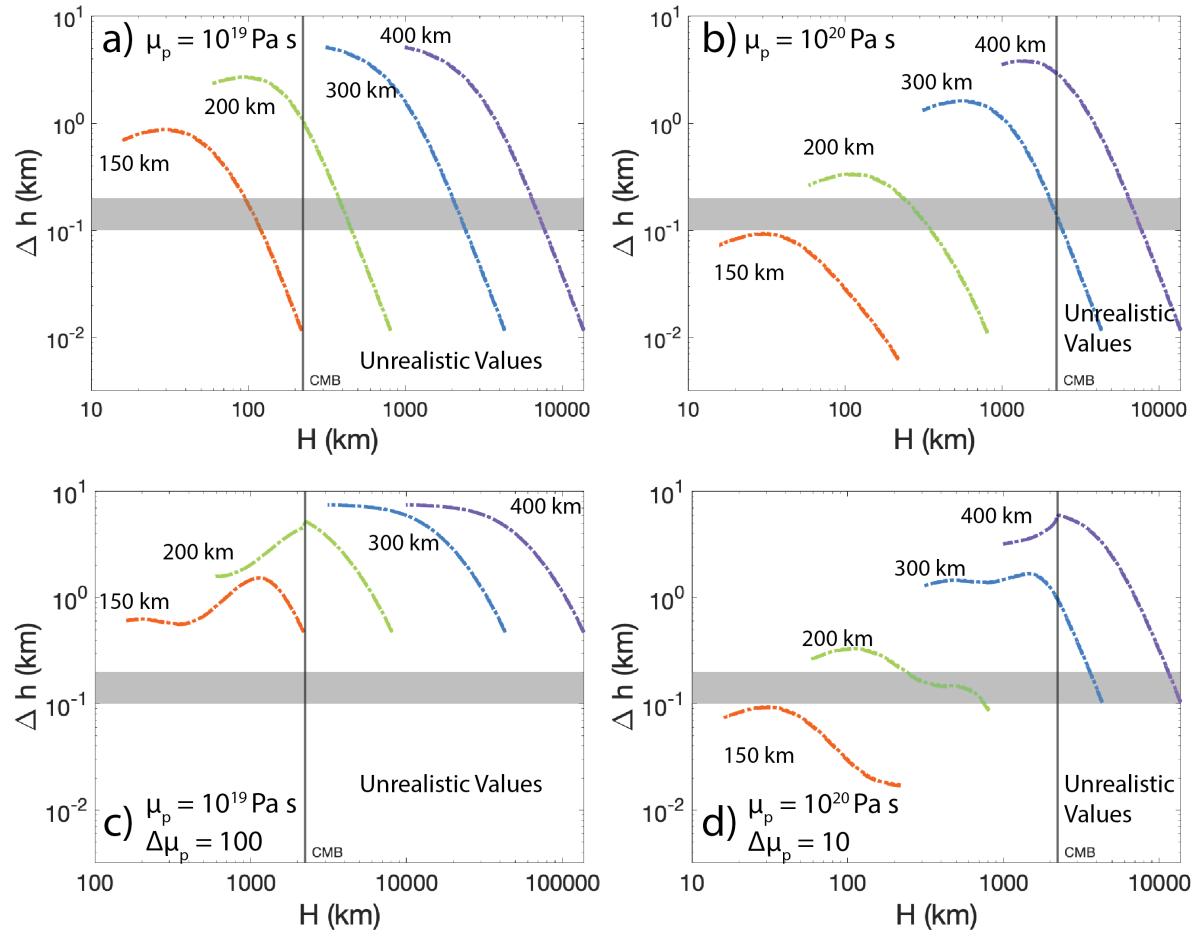

565
566
567
568
569
570
571

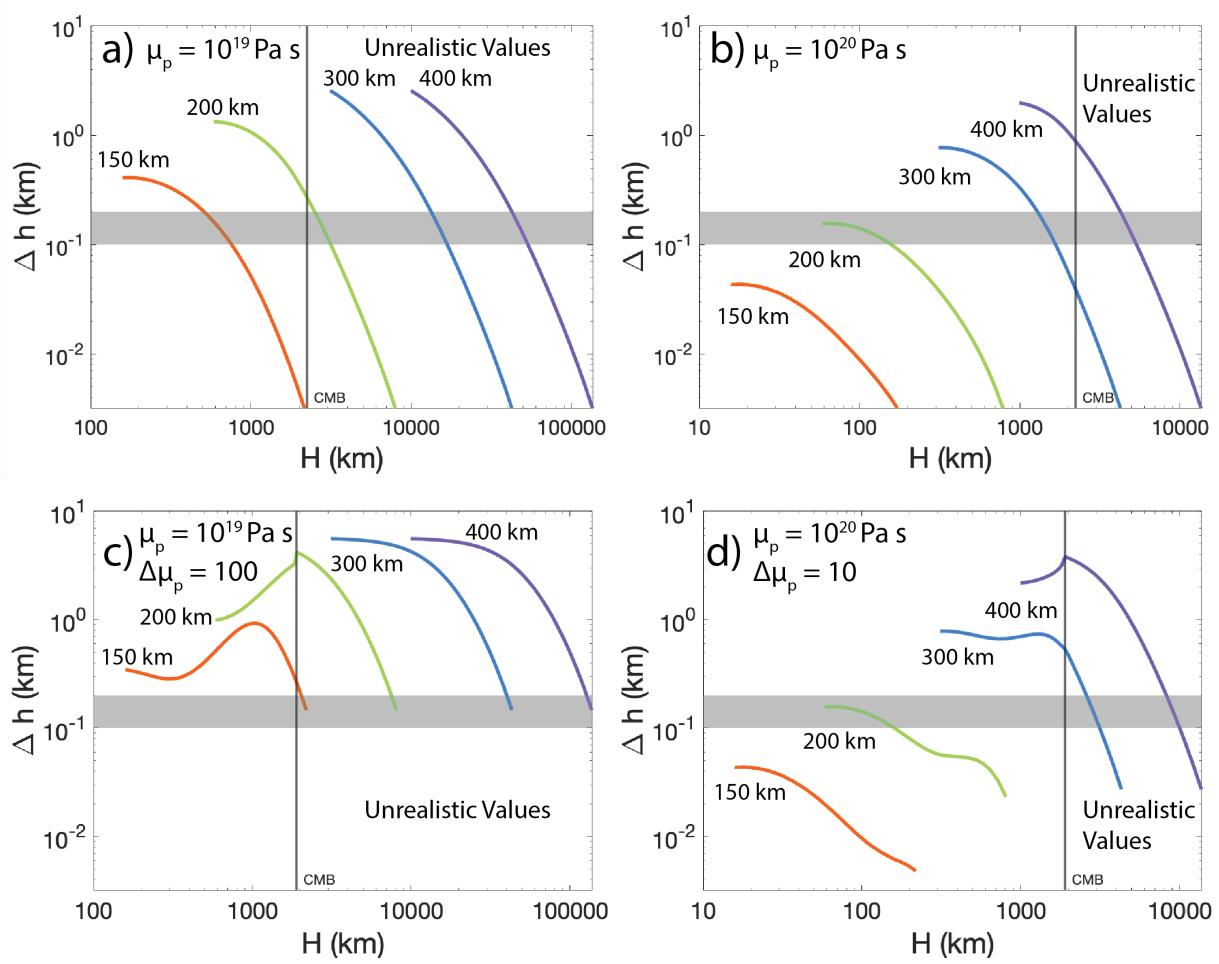
Figure 6. Relationship between plume viscosity, buoyancy flux, and radius for a thermochemical plume with the effective thermal anomaly (ΔT_{eff}) of 20 K. Values above the curves represent the plume radius. Gray bar represents the low (Hoggard et al., 2020) and high (Sleep, 1990) buoyancy flux estimates for the Hawaiian plume.



572
573


574 Supplementary Figure 1. Topography kernels (a&b) calculated for various viscosity profiles (c).
 575 (a) is a case with a high viscosity MTZ, and (b) represents a 3-layer case with the increase in
 576 viscosity occurring at the 1000 km depth as suggested by Rudolph et al., (2015).
 577

578
 579
 580 Supplementary Figure 2. Surface topographic uplift due to a ponding plume at the bottom of the
 581 MTZ under high viscosity MTZ derived kernels. An unmodified viscosity structure is used in (a)
 582 and (b). (c) and (d) use a modified viscosity structure. μ_p is plume viscosity and $\Delta\mu_p$ is the factor
 583 by which ambient viscosity was reduced. Line color follows the same convention as Figure 2. The
 584 gray bar represents 100 m to 200 m of excess topography. The solid black line indicates the depth
 585 of the CMB, values beyond this are unrealistic.
 586



587
588
589 Supplementary Figure 3. Time to fill the examined ponding geometry compared to lower-mantle
590 plume radius. This is only a function of plume radius and plate velocity ($t = a/v_p$). The plate
591 velocity is fixed at 7 cm/yr.
592

593
594

595 Supplementary Figure 4. Surface topographic uplift due to a ponding plume at the bottom of the
 596 MTZ under 3-layer viscosity structures. The dashed lines are the topographic response to a fixed
 597 670-km discontinuity and the dotted lines are for kernels derived from a 670-km discontinuity
 598 displaced upwards by ~ 6 km. An unmodified viscosity structure is used in (a) and (b). (c) and (d)
 599 use a modified viscosity structure. μ_p is plume viscosity and $\Delta\mu_p$ is the factor by which ambient
 600 viscosity was reduced. Line color follows the same convention as Figure 2. The gray bar represents
 601 100 m to 200 m of excess topography. The solid black line indicates the depth of the CMB (set to
 602 670 km); values beyond this are unrealistic.
 603

604
 605
 606 Supplementary Figure 5. Surface topographic uplift due to a ponding plume at 1000 km depth with
 607 a 3-layer viscosity model with the two orders of magnitude increase at 1000 km depth as in
 608 Rudolph et al. (2015). See Supplementary Figure 1b for the kernels used. An unmodified viscosity
 609 structure is used in (a) and (b). (c) and (d) use a modified viscosity structure. μ_p is plume viscosity
 610 and $\Delta\mu_p$ is the factor by which ambient viscosity was reduced. The gray bar represents 100 m to
 611 200 m of excess topography. The solid black line indicates the depth of the CMB; values beyond
 612 this are unrealistic.
 613