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Abstract

Motivation: Oxford Nanopore Technologies sequencing devices support adaptive sequencing, in which
undesired reads can be ejected from a pore in real time. This feature allows targeted sequencing aided
by computational methods for mapping partial reads, rather than complex library preparation protocols.
However, existing mapping methods either require a computationally expensive base calling procedure
before using aligners to map partial reads, or work well only on small genomes.

Results: In this work, we present a new streaming method that can map nanopore raw signals for real-
time selective sequencing. Rather than converting read signals to bases, we propose to convert reference
genomes to signals and fully operate in the signal space. Our method features a new way to index reference
genomes using k-d trees, a novel seed selection strategy and a seed chaining algorithm tailored towards
the current signal characteristics. We implemented the method as a tool Sigmap. Then we evaluated it
on both simulated and real data, and compared it to the state-of-the-art nanopore raw signal mapper
Uncalled. Our results show that Sigmap yields comparable performance on mapping yeast simulated raw
signals, and better mapping accuracy on mapping yeast real raw signals with a 4.4x speedup. Moreover,
our method performed well on mapping raw signals to genomes of size >100Mbp and correctly mapped
11.49% more real raw signals of green algae, which leads to a significantly higher F;-score (0.9354 vs.
0.8660).

Availability: Sigmap code is accessible at https://github.com/haowenz/sigmap

Contact: kinfai.au@osumc.edu, hli@jimmy.harvard.edu, and aluru@cc.gatech.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Oxford Nanopore Technologies (ONT) sequencers produce millions of
long reads with >10kbp N50 in a single 48 to 72 hour run. These long
reads can span repetitive regions of a genome that are hard to resolve
using short reads, thus enabling assemblies with high continuity (Miga
et al., 2020). Direct RNA sequencing through nanopores can sequence
full-length RNA transcripts without amplification, which can greatly aid
in de novo transcriptome analysis (Garalde et al., 2018). Without the need

for additional library preparation, amplification-free nanopore sequencing
also enables detection of nucleotide modifications (Simpson et al., 2017).

Nanopore sequencers work by measuring ionic current as a molecule
passes through a pore. Since different molecules in the pore modulate the
current in specific ways, individual nucleotides can be inferred by base
calling of the raw current signal. For various ONT pore versions (e.g., R7,
R9), the current signal is mainly affected by five or six nucleotides (i.e.,
k-mers where k = 5 or 6) occupying the pore at a given time point. These
current readings usually have a low signal-to-noise ratio, which makes it
hard to identify the corresponding k-mers. To tackle this problem, many
base callers have been developed to “translate" the raw signals to nucleotide

sequences (Rang et al., 2018). State-of-the-art base callers (e.g., ONT
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official base caller Guppy) can achieve around 90% accuracy. However,
base calling is computationally expensive and can last days on a high-
end central processing unit (CPU) or hours on a graphical processing unit
(GPU) even for a relatively low throughput run with only ~20Gbp data.

The ONT MinION is a portable device which typically yields up to
30Gbp sequencing data using a single flow cell at a low cost. Portability of
the MinION sequencer allows sequencing to be performed in the field or
the clinic, for example, surveillance for Ebola virus in West Africa (Quick
etal.,2016) and fast detection of SARS-CoV-2 with high sensitivity (Wang
et al., 2020). The MinION device is compatible with recently released
Flongle flow cells with even lower prices while reducing the sequencing
throughput to ~2Gbp for smaller analyses and tests. However, this
throughput is usually too low for many applications that require high
sequencing depth, which makes targeted sequencing necessary.

Targeted sequencing allows for enriched coverage of desired
genomic regions, which reduces sequencing costs and labor to achieve
high coverage at regions of interest. Typical targeted sequencing
approaches do not work well with nanopore sequencing due to loss
of nucleotide modifications, high input requirements, low throughput
or long protocols (Gilpatrick et al., 2020). On the other hand,
the targeted sequencing protocol designed specifically for nanopore
sequencing (Gilpatrick et al., 2020) addressed some of these issues, but
still requires additional preparation time and is limited by the maximum
size and number of targeted regions.

Alternatively, Loose et al. took advantage of the selective sequencing
feature of the MinlON sequencer and performed real-time targeted
sequencing for amplicon enrichment. This is achieved by temporarily
reversing the voltage across a nanopore, thereby rejecting an undesired
molecule and making the pore available for other molecules. Thus if there
is a sufficiently fast computational method that can identify whether reads
come from regions of interest, one can quickly eject undesired reads and
leave the pores for reads of interest so that undesired genomic regions are
not sampled and regions of interest are enriched. In their work, they use
dynamic time warping (DTW) to align raw signals to reference genomes to
decide whether reads are of interest. Since the time complexity of DTW is
quadratic in terms of sequence length, it only works on small genomes
that are kilobase pairs long. To address this issue, methods based on
base calling followed by read mapping were proposed (Edwards et al.,
2019; Payne et al., 2020). However, base callers are not optimized to
work on small chunks of reads; thus, they may generate sub-optimal read
sequences, which makes mapping challenging (Kovaka et al., 2020). As
base calling is a computationally intensive process, enough compute power
(e.g., sufficiently powerful GPUs) to achieve real-time base calling may
not always be available outside laboratories.

To avoid these drawbacks, Uncalled (Kovaka et al, 2020) was
developed to map raw signals in real time without base calling. It builds an
FM-index (Ferragina and Manzini, 2005) for reference genomes, segments
the raw signals into events (collapsed current readings for each k-mer), and
converts the events into possible k-mers using the ONT pore model. High-
probability k-mers are used to query the index and extended. Since raw
signals are noisy, Uncalled keeps track of all possible positions of each
k-mer as the mapping proceeds. After removing false positive locations
by a seed clustering method, the final mapping is reported if one of the
locations is sufficiently better than the others. The authors demonstrated
successful use of Uncalled on targeted sequencing of small genomes (<30
Mbp) and reported that it cannot work properly on mapping raw signals to
large genomes that have high repeat content.

In this work, we present a new streaming method to map raw signals
for real-time adaptive sequencing. In contrast to previous scalable methods
which convert signals to sequences and then leverage existing methods or
data structures to map sequences, we convert reference genomes to signals
and present a novel streaming method and tool Sigmap to map raw signals

to the reference. We evaluated the performance of Sigmap and Uncalled
on simulated and real data. Compared with Uncalled, while achieving
comparable performance on mapping yeast simulated raw signals, Sigmap
mapped slightly more yeast real raw signals accurately and provided 4.4 x
speedup. Moreover, Sigmap correctly mapped 11.49% more green algae
raw signals with significantly higher F'i-scores (0.9354 vs 0.8660). This
indicates that our method can map raw signals to genomes of size >100
Mbp, an important advancement over previous base-calling-free methods.

2 Methods

Seed-and-extend is a widely applied strategy to map erroneous long
reads (Chaisson and Tesler, 2012; Sovi¢ et al., 2016; Sedlazeck et al.,
2018; Li, 2018). Typically, exact or approximate word matches between
reads and reference genomes are extracted and then co-linear matches
(a sequence of matches that occur in ascending order in both reads
and reference genomes) are identified to generate final alignments. Our
algorithm also follows the seed-and-extend strategy (see Figure 1 for an
overview) but is specifically designed to handle noisy raw signal data.
Prior to mapping, the reference genome is converted to events and an
index of the reference is built once (Section 2.1). In the mapping step, raw
current signals are first segmented into events and normalized (Section
2.2). Then seeds that are less likely to contain segmentation errors are
selected from the processed raw signal and used to query the index (Section
2.3). After collecting the seed hits (anchors) on the reference, we designed
and implemented a chaining algorithm tailored towards the current signal
characteristics to find co-linear anchors as chains (Section 2.4). The chains
are filtered by their scores to ignore sub-optimal mappings. To do real-time
selective sequencing, we presented a streaming version of the proposed
algorithm (Section 2.5). The details of each step are as follows.

Reference genome and events Raw signal and events
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Fig. 1. Overview of the proposed algorithm. The reference genome is first converted to a
sequence of events 7, e3, . . . (red lines) using the expected current value of each k-mer in
the pore model. For simplicity of illustration, we use 2-mers in this example. Now every pair
of consecutive events (e, e7, 1) is a point in two-dimensional space, thus a spatial index
for these points (red triangles) can be created. For visualization purpose we set dimension
to 2, but higher dimensions may be used. In the mapping stage, raw signals (blue dots) are
first segmented into events e, ef, . . . (red lines). Then seeds are selected to query the
index with range search and hits on the reference are chained to get the mapping (in the

blue rectangle).

2.1 Indexing

Different pore models are provided by ONT for various pore versions since
current readings are affected by different number of nucleotides occupying
the pore at each sequencing time point. In this probabilistic model, current
readings for each k-mer are assumed to follow a Gaussian distribution
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with known parameters. Thus using the pore model, one can estimate the
probability of a given event being any of the k-mers, or convert a nucleotide
sequence to an event sequence by simply substituting k-mers with their
expected current readings.

Uncalled uses the prior strategy to generate high-probability k-mers
from read events, while our method leverages the latter to convert the
reference to events. Note that in the first case a full iteration on all the
distributions is usually required to identify high-probability k-mers that
an event may correspond to, which can be slow when many events in the
read are processed simultaneously. But converting a k-mer to its expected
current reading is a direct translation once a hash table is built for the
pore model using k-mers as keys and expected current as values. Since
the conversion is only done once for reference genomes, we can save the
overhead of applying pore models to read events to find high-probability
k-mers during the mapping stage.

Formally, let s = s1s2...sn be a nucleotide sequence of length n
over alphabet 3 and its corresponding sequence of k-mers be K(s) =
kiko ... kp_k+1, where k; = s;5;41...5;4,—1. The pore model is
defined as f : ©* — R, which gives the expected current corresponding
to a k-mer. We create the corresponding event sequence as E(s) =
efes...e; 1> where ef = f(k;). This is translated to a set of points
P(s)={p; = (ef € 1,--»€, g 1)1 <i<n—k—d+2}ind
dimensional space. Similarly, for each raw signal sequence r, we generate
its events E(r) = eje} ... e}, (described in Section 2.2). The reads are
also translated to points P(r) = {p] = (e, € 1res ef+d_1), 1<
i <m-—d+ 1} in d-dimensional space, some of which are used as seeds
in the mapping step. Therefore we need a data structure to organize points
of the reference sequence in d-dimensional space so that given a query

point p” of the read, we can efficiently retrieve points pfl s pfz ,...of the

sequence near p”, i.e., ‘
range search.
Thek-d tree (Bentley, 1975) is a data structure designed for partitioning

P’ —p; ‘ < e where € is the threshold for this
ill2

space and organizing points with a binary tree. The leaf nodes of the
tree are points while every non-leaf node implicitly divides a subspace
into two parts by a hyperplane within that subspace. The points on
either side of this hyperplane are associated with the left/right subtrees,
respectively. In a balanced k-d tree, the time complexity of range search is
O(dnl_ t ) in worst case for a fixed range size (Lee and Wong, 1977). But
in practice, this typically takes O(logn + 2%) time, where logarithmic
time is spent in finding the nodes “near" the query point and O(2%) time
is spent to explore their neighborhoods. Therefore we use the k-d tree to
organize points generated from the reference to handle large number of
queries efficiently during mapping process. Note that construction of the
index requires O(n log n) time when using an O(n) median of medians
algorithm (Cormen et al., 2009), and the index only needs to be built once
prior to mapping. In the implementation, we used the highly-optimized
k-d tree package nanoflann (https://github.com/jlblancoc/
nanoflann), which supports k-d tree construction and queries.

2.2 Signal pre-processing

There are two signal pre-processing steps: signal segmentation and
normalization. For R9.4 pore, the DNA molecule transits through the pore
with an average speed of 450bp/s and the electric current is sampled at
4kHz, which means on average each k-mer has around 8 current samples.
The purpose of signal segmentation is to collapse the current readings of the
same k-mer into an event. However, speed of the molecule passing through
the pore varies significantly. As a result, some k-mers may stay longer in
the pore and generate more current readings (stay errors) while some k-
mers may have no recorded current as the time they reside in the pore is
too short (skip errors), which makes it hard to segment signals accurately.

Moreover, to process signals in real time, we need a fast segmentation
method.

Scrappie (https://github.com/nanoporetech/scrappie)
is a base caller from ONT, which has a segmentation step prior to fine-
grained base calling. It uses t-test over rolling window on the raw signal
to detect where the current changes significantly, thereby segmenting
the signal. Similar to this method, we also use the Welch’s t-test to
segment the signal. We choose a fixed window size w and for raw
current samples in every two adjacent windows we compute the t-statistics
t = (Z1 — Z2)/
and y; is the current sample standard deviation in the window. Then
all the local maxima and minima are identified among the computed t-

(y? 4+ y2)/w where Z; is the current sample mean

statistics along the sequence. When a local extremum passes a significance
threshold, its position is selected to segment the signal. Due to the various
molecule transiting speeds, t-statistics should be computed using multiple
window sizes. Local extrema are chosen as segmentation positions using
the smallest possible window size if the local extrema reach the significance
threshold of that window size. After the signal is segmented, the detected
events are normalized to account for the shift or drift during sequencing.

2.3 Seeding

After reference genomes and raw signals are converted into events, the
mapping problem is as follows: given read events E(r) and reference
events E(s), find consecutive events E; j(s) = ejej ; ...e; in E(s)
such that E/(r) can be aligned to F; ;(s) with high confidence. Note that
the mapping can be found by using subsequence dynamic time warping
(sDTW) (Han et al., 2020). But the time to compute DTW distance is
quadratic in the length of events sequences, which is too slow to compute
for long reads in real time. Since the reads are long, though they are
erroneous, there are still many subsequences shared in a high confidence
mapping region of the read and the reference. Taking advantage of this
fact, long read aligners such as minimap2 (Li, 2018) can efficiently map
reads using the seed-and-extend strategy and so does our method.

As the reference points are indexed for fast queries, we can use read
points P(r) = {p] = (ei’eerrlv" .,e'lf+d_1),1 <i<m-d+1}
as the seeds. Note that the number of seeds (or points) needed to query the
index is roughly the length of the event sequence. For real-time mapping,

T

the reads have to be mapped within their first few hundreds of base
pairs (events). Thankfully, searching for all the seeds can be completed
in reasonable time. However, more seeds also lead to more hits on the
reference, thereby potentially increasing the time spent in chaining the
hits. For organisms like yeast, the number of hits is limited by the small
genome size and fewer repetitive regions. But for larger genomes with
more repetitive structures, the number of hits can increase significantly,
which makes the chaining step time consuming.

To address this problem, one can select seeds with a fixed step size
1 and only use a subset of all the read points P(r) as seeds, P;(r) =
i = (el ef4qs-v€iig 1)1 <i<m—d+1,5 modl =0}
However, raw signals are noisy, which also makes the events erroneous.
Simply picking seeds with a fixed step size could miss some “error free"
seeds (query points that have true hits in the index within a certain range)
and reduce mapping accuracy. This problem is even more serious when
mapping reads in a streaming manner, where the read is supposed to be
mapped with only its first few hundreds of base pairs sequenced.

As an alternative, if the quality of the seed can be measured by a score,
then error-free seeds can be preferred during seed selection procedure.
Formally, we define a scoring function g : R4 — R which computes
the score for a given point in d-dimensional space. Note that during
sequencing, stay errors happen more frequently than skip errors. Affected
by the noise during sequencing, stay errors result in many current samples
for the same k-mer with large variance, which leads to over segmentation
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of the raw signal. If a seed contains stay errors, range search can fail to
find true hits of the seed.

We present a method to avoid seeds that are likely to contain stay
errors. For a seed (query point) p7 = (e7, €1 -
i+d—1 r
j=it1 j—1
the sum of the differences between every pair of consecutive events in the
seed. Then with step size [, top [(m — d + 1) /1] seeds are selected based
on their scores. Note that seeds with more abrupt changes in their events
are considered better since the segmentation is more reliable in that case.

T
, eH_d_l), we define

the seed scoring function as g(p}) = 3 e —e , which is

2.4 Chaining

The time for computing an optimal alignment between two sequences
is quadratic in the length of the sequences. To avoid this computational
bottleneck for aligning long sequences, chaining approaches (Li, 2018)
have been proposed and used to efficiently find mapping positions of long
reads in large reference genomes.

Inspired by the chaining method of minimap2, we present a
dynamic programming algorithm to identify a set of co-linear anchoring
point matches. Formally, each seed hit (anchor) is a triple (u,v,h),
which represents a read point p;, matching a reference point pg
with distance h, i.e., ||[p}, —p;ll, = h. Given a list of anchors
sorted by their position on the reference, the best chaining score
up to the ¢th anchor can be computed using the recurrence D; =
max {maX1§j<i {D]‘ + i — ﬁﬂ} s (1 — hi/e)d}, where Qjp =
(1 — hi/€) * min{u; —uj,v; —vj,d} is the bonus for the seed hit
and (3;; is the gap penalty. Let aj; = |(u; — u;) — (v; — v;)| denote
the gap length and b;; = [(u; — u;)/(v; — v;)| denote the gap scale.
The gap penalty 3;; is set to oo when v; < v; (ith anchor is not co-linear
with the jth anchor), or gap length a; or gap scale bj; is too large. Due
to stay and skip errors, the gap length and scale are usually unpredictable.
Hence, we do not penalize the gap as long as its length and scale are below
certain thresholds. Instead, when computing the bonus «;; for seed hits,
we scale it down by the factor (1 — h; /e).

Note that the time of the chaining algorithm is quadratic in the number
of anchors, which is slow. In practice, we use similar heuristics as in
minimap2 chaining to reduce the number of anchors to examine. When
computing D;, we start the iteration from j = ¢ — 1 and stop when
no better chaining score is found after c iterations. For n, anchors, this
heuristic reduces the average time to O(cng). The default c is set to the
same value used in minimap?2 since it led to reasonable speed and accuracy
on mapping reads to various genomes empirically. There are theoretically
faster chaining algorithms (Abouelhoda and Ohlebusch, 2005) but they
are usually not adapted to generic gap functions, or have large hidden
constants in their time complexity.

2.5 Streaming mapping

In nanopore real-time sequencing, the signal is returned in chunks, and
each chunk by default is one second’s worth of signal and contains 4000
current samples or roughly 450bp. We developed a streaming method to
map raw signals by chunks. The signal preprocessing and seeding are
performed on each chunk individually. As for chaining, the anchors in the
good chains (chaining scores are at least half of the best score) generated
using previous chunks are kept and used in the chaining together with the
anchors in the current chunk. Each time after a chunk is processed, we
compute the ratio between the best chaining score and the second best
chaining score. If the ratio exceeds a certain threshold, we stop mapping
more chunks and report the best chain as the mapping. By default, we set
this ratio to 1.4. If this ratio cannot exceed this threshold after mapping
the first 30 chunks of the read, the mapping process of this read will be
stopped and the read will be reported as unmapped. These parameters can

be adjusted by users to increase mapping speed or lower false positive rate
based on the applications if necessary.

3 Experimental Results

We demonstrate empirically the advantages of our method on both
simulated and real data sets on two different genomes. The implementation
of our proposed method is termed Sigmap, which is available at
https://github.com/haowenz/sigmap. We compare Sigmap
with Uncalled (v2.1).

3.1 Experimental setup

3.1.1 Benchmarking data sets

‘We used one simulated and two real data sets to test the methods. The
number of reads, N50 values, genome sizes and average coverage for these
data sets are shown in Table 1. Simulated raw signals of Saccharomyces
cerevisiae (yeast) were generated using DeepSimulator (Li et al., 2020)
with its context-dependent model (-M 0) and sequencing coverage set
to 20x (-K 20). For real data sets, 100,000 raw reads were randomly
selected from nanopore sequencing of S. cerevisiae using ONT R9.4
chemistry (available at NCBI under the study PRINA510813). The first
run of Chlamydomonas reinhardtii (green algae) nanopore sequencing
using ONT R9.4 chemistry was also used (under study PRIEB31789 on
EMBL-EBI) in the evaluation. Note that in real-time targeted sequencing
applications, the regions of interest are usually from ~10 Mbp to ~100
Mbp and the coverage of target regions is around 20x (Kovaka et al., 2020;
Miller et al., 2020). Thus in the evaluation, the yeast and green algae
sequencing data were used as their genome sizes are appropriate and their
whole genome sequencing data are subsampled to the proper coverage for
real-time targeted sequencing applications. Besides, since Uncalled only
supports R9.4 chemistry so far, we used R9.4 data in our evaluation. But
with some parameter tuning for both methods, they might also be able to
work on R10 data with the R10 pore model (https://github.com/
jts/nanopolish/tree/rl10/etc/rl10-models) trained using
Nanopolish (Simpson et al., 2017).

3.1.2 Hardware and software

For all experiments, we used a compute node with dual Intel Xeon Gold
6226 CPU (2.70GHz) processors equipped with a total of 24 cores and
128GB main memory. We run Sigmap and Uncalled with all the available
cores.

The k-d tree index constructed by Sigmap has two important
parameters: dimension d and the maximum number of points associated
with a leaf node, nj,. The empirical performance of k-d trees is usually
good in low-dimensional spaces (e.g., 2D or 3D) but degrades in high-
dimensional spaces as more tree branches need to be visited for each
query. For this application a low d such as 2 or 3 cannot be chosen, as
querying points in low-dimensional spaces usually results in too many
hits, which can slow down mapping. Thus we set d to 6 by default. Since
the ONT R9.4 pore model lists the expected current reading for each 6-
mer, a point in the 6-dimensional space is analogous to an 11-mer, which
is also a reasonable k-mer size for read mapping on genomes from tens of
Mbp to several hundred Mbp. As for the other parameter, n,, controls the
maximum number of points associated with a leaf node (points are stored
in leaf nodes of k-d trees). A larger n, can make the tree smaller but may
cause more explorations of points during the search process and increase
the query time. On the other hand, a smaller n, may reduce the number
of points to inspect for a query but increase the tree size. By default, we
set np to 20 and studied how it can affect memory usage and mapping
time on D2. Moreover, to study the effect of seeding step size on mapping
time, we evaluated Sigmap with various seeding step sizes [ from 2 to 6
on D3 while other parameters are set to the default. We set the maximum



Signal mapping

Table 1. List of benchmarking data sets.

Data set  Type

Number of reads N50 (bp) Reference genome Genome size (Mbp) Avg. coverage

Dl Simulated 30,385 11,984 S. cerevisiae S288c 12.2 20x
D2 Real 100,000 8,348 S. cerevisiae S288¢c 12.2 58x
D3 Real 63,215 32,025 C. reinhardtii v5.5 111.1 12x

amount of chunks to use for mapping a raw signal as 30 and the search
radius e to 0.08 by default since they led to proper mapping accuracy and
time. These parameters can be adjusted by users according to their data
and applications in practice.

To test Uncalled, we used default parameters for indexing reference
genomes and mapping raw signals. Kovaka er al. (2020) showed that
masking repeats in genomes improved the mapping speed and accuracy
of Uncalled. In the evaluation, we used recommended parameters and
procedures stated in the Uncalled’s user documentation for C. reinhardtii
genome repeat masking.

3.1.3 Evaluation criteria

We followed a similar evaluation criteria previously used by Kovaka et al.
(2020). Raw reads that are mapped to their true mapping locations are true
positives (TP). Reads that are mapped by their raw signals but not to the
correct locations are false positives (FP). Reads that have true mapping
locations but are not mapped by their raw signals are false negatives (FN).
Precision equals TP/(T' P + FP), recall equals TP/(TP + FN), and
Fy-score is calculated by 2 x precision * recall / (precision + recall).
The percent of correctly mapped reads is the portion of reads that are
mapped to their true mapping locations.

For simulated data set D1, we evaluated the mapping accuracy against
the ground truth output by the simulator. For real data sets, we mapped
the base-called read sequences with the well-established long read aligner
minimap2 (Li, 2018) and used the read alignments as ground truth to
validate Sigmap and Uncalled. We excluded reads that are not mapped by
minimap?2 in the evaluation.

Moreover, we measured the mean mapping time of each read and the
number of chunks used to map a read. In practical applications, mapping
results are needed in real time to decide whether to eject a pore. Therefore,
instead of cumulative mapping time, time spent on individual reads is an
important metric to show whether most of the reads can be mapped fast
enough for real-time decisions. To accurately measure the mapping time
for individual reads, the mapping start time and end time of each read were
recorded and the wall time for mapping each read was computed as the
difference between these two values and then reported. This way of timing
the mapping process for individual reads avoids the effect of loading index
or the scalability of multi-thread implementation on measuring mapping
time, which is a fair way to compare the two methods.

3.2 Comparison with Uncalled

We evaluated the performance of Sigmap and Uncalled on data sets D1-
D3. The results on yeast genome are shown in Table 2. On the simulated
data set D1, Sigmap achieved higher percentage of correctly mapped
reads, precision and F7-score while Uncalled has higher recall and faster
speed. Since simulated data might not be as noisy as real data, the events
were likely to be detected and converted to corresponding k-mers more
reliably, which reduced the number of high-probability k-mers to explore
in Uncalled and made it faster. On yeast real data set D2, 93,544 of the
100,000 reads were mapped by minimap2 and used in the evaluation.
Sigmap achieved higher percent of correctly mapped reads, precision,

recall and F-score. Notably, its speed of mapping a raw signal on average
was 4.4 times faster than Uncalled.

Next, we tested Sigmap and Uncalled on the green algae real data set
D3, where minimap2 mapped 60,313 out of 63,215 reads. Table 3 shows
the evaluation results. We denote Sigmap run with seeding step size 3 by
Sigmap (13), etc. Since the green algae genome is much larger than the
yeast genome and has more repetitive regions, genome repeat masking
was performed as suggested when using Uncalled to map raw signals.
After repeat masking, both mapping accuracy and mean time to map
a read improved. But Sigmap significantly outperformed Uncalled with
or without repeat masking on the percentage of correctly mapped reads,
recall, and F-score, while achieving comparable precision. Moreover,
compared with Uncalled with and without masking respectively, Sigmap
using default parameters was 1.3 and 1.2 times faster on mapping reads,
and Sigmap using seeding step size 6 was 2.6 and 2.3 times faster. Though
the mapping accuracy of Sigmap degraded when increasing the seeding
step size, it was overall better compared to Uncalled. The reason for this
observation is that using larger seeding step size reduces the number of
picked seeds that go into chaining, which would reduce chaining time
and thereby reducing mapping time. But picking fewer seeds also reduced
the mapping accuracy since the true mapping location would have fewer
supported seeds making it harder to distinguish from other false mapping
locations.
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Fig. 2. Boxplots showing the mapping time distributions of Uncalled and Sigmap on
mapping real reads in D2 and D3. Center lines denote the median, box limits are the
quartiles and the whiskers extended from the boxes represent 5% and 95% confidence
intervals.

The mapping time distributions of Uncalled and Sigmap on D2 and
D3 are shown in Figure 2. We observed that overall Sigmap achieved
much shorter mapping time on mapping yeast real raw reads compared
with Uncalled. We noticed the speedup of mapping reads on green algae
genome is not as significant as the speedup of mapping yeast reads. One
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Table 2. Performance comparison between Sigmap and Uncalled on yeast genome.

C tl Mean ti
Data set Method orrecty TP FP FN Precision (%) Recall (%) F1-score can time
mapped reads (%) per read (ms)
D1 Sigmap 97.66 29675 7 661 99.98 97.82 0.9889 59
Uncalled 97.47 29615 722 47 97.62 99.84 0.9872 18.3
D2 Sigmap 87.54 81892 964 10683 98.84 88.46 0.9336 68.3
Uncalled 87.37 81725 1054 10765 98.73 8836  0.9326 303.1
Table 3. Performance comparison between Sigmap and Uncalled on green algae genome.
1 M i
Data set Method Correctly TP FP  FN Precision (%) Recall (%) Fl-score ' comtme
mapped reads (%) per read (ms)
D3 Sigmap 87.86 52989 1694 5628 96.90 90.40 0.9354 509.1
Sigmap (13) 86.21 51998 1973 6338 96.34 89.14  0.9260 373
Sigmap (14) 83.51 50370 2542 7397 95.20 87.20  0.9102 314.8
Sigmap (15) 80.69 48669 3107 8532 94.00 85.08  0.8932 279.6
Sigmap (16) 7720 46564 3781 9962 92.49 8238 0.8714 261.2
Uncalled 72.18 43534 883 15896 98.01 73.25  0.8384 671
Uncalled (mask) 76.37 46060 881 13372 98.12 77.50  0.8660 596.5

reason is that the size of green algae genome is as around 9 times larger
as the size of yeast genome. Given the fact that in practice the time of
k-d tree queries is usually logarithmic in the number of points (explained
in section 2.1), which is roughly the size of the genome, the query time
is supposed to increase accordingly. In addition, the green algae genome
has more repetitive regions than the yeast genome and thus the number of
signal chunks needed to map algae reads confidently on average is expected
to be greater than that to map yeast reads. In the evaluation, we studied
the number of chunks needed for Sigmap to map yeast and green algae
reads correctly and present the results in Figure 3. We observe that using
the same number of chunks, a smaller fraction of green algae reads were
correctly mapped compared with yeast reads. This also indicates overall
more chunks were needed to map green algae reads confidently, which
increased the mapping time.

1.0
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0.6

0.44

Cumulative portion of correctly mapped reads

0.2
Algae
[ Yeast
0.0 T v v - .
2 4 6 8 10

Number of chunks processed

Fig. 3. Number of chunks processed by Sigmap to correctly map reals read in D2 and D3.
Most of the reads were mapped using <= 10 chunks.

Besides mapping speed, we investigated the index size of Sigmap and
Uncalled, which contributes to most of the memory usage in real-time
signal mapping. Note that Uncalled mainly relies on an FM-index of the
reference sequence which is a compressed full text index, hence expected
to be space-efficient. The index size of the yeast genome and the green
algae genome built by Uncalled is 21MB and 186MB respectively. Using
default parameters, Sigmap built a 417MB index for the yeast genome
and a 3.2GB index for the green algae genome, which are larger than the
indices built by Uncalled but can still be accommodated on typically used
computing systems.
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Fig. 4. Index size and mean read mapping time with respect to the maximum number of

points allowed in a leaf node of the k-d tree.

As discussed in section 3.1.2, increasing the maximum number of
points associated with a leaf node, ny, can trade off mapping speed for
smaller index. We studied how mean time to map reads and index size vary
with different n, = 10,20, 50,100, 200 on D2 and showed the results
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in Figure 4. We observed that the mean mapping time increased and the
index size decreased as n increased and when n, = 200, the index size
can be reduced by a half while the average time to map a read increased
by about two times. Similarly, the index size of green algae genome can
be reduced to 1.8GB when setting n,, = 200.

Note that the space complexity of the k-d tree is linear in the number of
points and the reason that Sigmap index size is large can be partly attributed
to the implementation. Therefore, another possible way to reduce the index
size without sacrificing mapping speed is to implement a memory efficient
k-d tree customized for this application rather than using a generic k-d tree
library, which is a useful direction for future work.

4 Conclusions

Mapping nanopore raw signals in real time is challenging under limited
computing resources. Most mapping methods require base calling, which
is computationally expensive. Uncalled is an efficient method that does
not require base calling, but hits performance limitations on large genomes
with higher repeat content. In this work, we introduced a new nanopore
raw signal mapping method and implemented it as a tool Sigmap. On
small genomes like yeast, while Sigmap has comparable performance with
Uncalled on mapping simulated data, Sigmap is 4.4 x faster than Uncalled
on mapping yeast real raw signals and has the potential to support real-time
signal mapping for high-yield run ONT sequencing devices with more
pores (e.g., GridION), which previous mapping methods without base
calling might not be able to achieve. Sigmap also has good performance
on genomes of size >100Mbp such as green algae, where Uncalled could
not identify many correct mappings. The method avoids any conversion of
signals to sequences and fully works in signal space, which holds promise
for completely base-calling-free nanopore sequencing data analysis.

We envision two directions for future research. First, we intend to
accelerate Sigmap by utilizing CPU SIMD instruction sets or GPUs so that
it can scale to support real-time sequencing on GridION or PromethION
which has even more pores. Second, we plan to study whether Sigmap
can be adapted to map RNA nanopore raw signals. This may require the
development of new seeding and chaining methods that are suitable to the
characteristics of direct RNA-sequencing.
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