
Doc-Start

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Sequence analysis

A variant selection framework for genome graphs

Chirag Jain 1,⇤, Neda Tavakoli 2, Srinivas Aluru 2

1Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, India and 2School of Computational
Science and Engineering, Georgia Institute of Technology

⇤To whom correspondence should be addressed.

Abstract

Motivation: Variation graph representations are projected to either replace or supplement conventional
single genome references due to their ability to capture population genetic diversity and reduce reference
bias. Vast catalogues of genetic variants for many species now exist, and it is natural to ask which among
these are crucial to circumvent reference bias during read mapping.
Results: In this work, we propose a novel mathematical framework for variant selection, by casting it in
terms of minimizing variation graph size subject to preserving paths of length ↵ with at most � differences.
This framework leads to a rich set of problemsbased on the types of variants (e.g., SNPs, indels or structural
variants), and whether the goal is to minimize the number of positions at which variants are listed or to
minimize the total number of variants listed. We classify the computational complexity of these problems
and provide efficient algorithms along with their software implementation when feasible. We empirically
evaluate the magnitude of graph reduction achieved in human chromosome variation graphs using multiple
↵ and � parameter values corresponding to short and long-read resequencing characteristics. When our
algorithm is run with parameter settings amenable to long-read mapping (↵ = 10 kbp, � = 1000), 99.99%
SNPs and 73% structural variants can be safely excluded from human chromosome 1 variation graph. The
graph size reduction can benefit downstream pan-genome analysis.
Implementation: https://github.com/AT-CG/VF
Contact: chirag@iisc.ac.in, neda.tavakoli@gatech.edu, aluru@cc.gatech.edu

1 Introduction

High-throughput technologies enable rapid sequencing of numerous
individuals in a species population and cataloging observed variants.
This is leading to a switch from linear representation of a chosen
reference genome to graph representations depicting multiple observed
haplotypes. Graph representations more accurately reflect the sampled
individuals within a population, and their use in genome mapping
algorithms reduces reference bias and increases mapping accuracy when
sequencing a new individual (Ballouz et al., 2019). There is abundant
research on data structures designed for graph representations of genomes
and pangenomes (Garrison et al., 2018; Li et al., 2020), their space-
efficient indexing (Sirén et al., 2014; Marcus et al., 2014; Holley et al.,
2016; Ghaffaari and Marschall, 2019; Jain et al., 2019b; Chang et al.,
2020; Kuhnle et al., 2020), and alignment algorithms (Kuosmanen et al.,
2018; Jain et al., 2020; Rautiainen and Marschall, 2020; Darby et al.,
2020; Ivanov et al., 2020) to map sequences to reference graphs. For
review papers summarizing these developments, see (Paten et al., 2017;
Computational Pan-Genomics Consortium, 2018; Eizenga et al., 2020).

While graph representations have numerous advantages, complete
variation graphs that include every variant have certain drawbacks. The
graphs invariably contain paths combining variants across haplotypes,
but never seen in any observed haplotype. The number of such
recombinant paths increases combinatorially with graph size, and is
particularly troublesome when mapping long reads which span greater
distances. Inclusion of all variants also makes a pan-genome reference
more repetitive, i.e., finding a unique base-to-base alignment per read
becomes harder. Accuracy of sequence-to-graph mapping algorithms
shows diminishing returns at larger graph sizes, and is even negatively
affected eventually (Pritt et al., 2018; Sirén et al., 2020). A few
attempts have been made to address the first issue by augmenting paths
with haplotype information and specifically developing haplotype-aware
indexing strategies (Iqbal et al., 2012; Sirén et al., 2020; Mokveld et al.,
2020).

The aforementioned factors point to the need for variant selection
algorithms which tame reference graph sizes, and strike the right
balance for subsequent mapping accuracy and speed. This was
primarily approached through selecting variants from a specific
database (Schneeberger et al., 2009; Danek et al., 2014; Liu et al.,
2016), based on allelic frequency (Maciuca et al., 2016; Eggertsson

1

https://github.com/at-cg/VF

2 Jain et al.

et al., 2017; Kim et al., 2018), or specific to a biological context such
as limiting to a particular population (Sirén et al., 2014) or genome loci of
interest (Vijaya Satya et al., 2012; Dilthey et al., 2015; Jain et al., 2019a).
Recently, Pritt et al. (2018) developed amore systematic approach FORGe
by developing a mathematical model to prioritize variants, and selecting
top scoring variants according to themodel. In FORGe, the ranking of each
variant is done based on its frequency in a population, and its contribution
to runtime and space overhead of a read-to-graph mapper.

In this work we propose a rigorous algorithmic framework for variant
selection from the perspective of preserving subsequentmapping accuracy.
Consider a complete variation graph constructed from a set of given
haplotypes. Any substring of a haplotype has a corresponding path in the
complete variation graph. Not including somevariantswill introduce errors
in the corresponding paths. If the number of such errors ismatchedwith the
error tolerance built into sequence-to-graph mapping algorithms, the same
identical paths can still be found. We make the following contributions:

• We develop a novel mathematical framework for variant selection
subject to preserving paths of length ↵ while allowing at most �
differences. We separately consider the problems of minimizing the
number of positions at which variants are retained, and minimizing
the total number of variants selected.

• We show that both problems are optimally solvable in polynomial time
when only SNPs are considered and the goal is to preserve all paths of
length ↵ found in the complete variation graph.

• These problems become challenging when deletions and insertions are
considered. We present efficient heuristics that guarantee preserving
paths of length ↵ while allowing at most � edits, but do not guarantee
optimal reduction in graph size.

• We empirically evaluate run-time performance and reduction in
variation graph sizes achieved by the multiple algorithms that are
proposed in this paper. For testing, we utilize human chromosome
sequences, SNPs and short indels from the 1000 Genomes
Project (Consortium et al., 2015), and structural variants (SVs) from
fifteen diverse humans (Audano et al., 2019). When chromosome 1

variation graph is built using SNP variants, and parameters amenable
to short reads (↵ = 150 and � = 8) are used, the reduced graph
excludes 94.44%SNPs.With parameters adjusted for long reads (↵ =

10 kbp and � = 1000), 99.99% SNPs are excluded. When SVs are
considered, the (↵ = 150 bp, � = 8) and (↵ = 10 kbp, � = 1000)
settings result in excluding 0% and 73% SVs respectively.

• Finally, we consider the complexity of haplotype-aware versions of
the above problems where the goal is to only preserve paths of length
↵ actually found in the input haplotypes (i.e., not recombinant paths),
and prove that they are NP-hard even for � = 1.

2 Proposed framework

Let R1, R2, . . . , Rm be m input reference haplotype sequences. To be
consistent with current literature, we assume one of these (say R1) is a
special reference and the other haplotypes are described as variations from
it. A (complete) variation graph of these sequences is represented using
an edge-labeled directed multigraph G(V,E,�) as follows. The graph
consists of haplotype R1 as a linear backbone, augmented with the set of
variants present inR2, R3, . . . , Rm, assumed to be known a priori. Each
variant represents a deviating base fromR1 (SNP) or an insertion/deletion
(can be multiple bases). The function � : E ! ⌃ [{✏} specifies edge
labels, where ⌃ denotes the alphabet and ✏ denotes the empty character.
The haplotype R1 is represented in G as a directed chain with character
labeled edges such that the chain spells the sequence R1. This chain will
have |R1|+1 ordered vertices v0, v1, . . . , v|R1|. These vertices serve as

a convenient coordinate axis for the variation graph. Each SNP variant is
an additional labeled edge between vertices at two adjacent coordinates.
A deletion variant is an edge labeled ✏ between a pair of vertices, whose
coordinates are separated by the deletion length. An insertion variant is
represented as a chain of one or more labeled edges that starts and ends at
the same vertex. In this setup, the total number of variants at coordinate i
(0  i  |R1|) equals out-degree of the vertex vi minus one. See Figure 1
for an illustration.

Any path in graphG with ↵ non-empty edges spells a string of length
↵. We place the restriction that a path is allowed to visit a vertex at
most twice. This restriction avoids traversal of more than one insertion
variant at the same coordinate. Note that any recombination of variants
that occur at different positions is allowed. Thus, the graph contains
paths corresponding to each haplotype and any substrings thereof, but
also numerous additional paths (genotypes) that are not present in any
haplotype. It is unknown whether such a recombinant genotype exists
in the population or not. Restricting paths to only those that belong to
at least one input haplotype can also be useful, and will be considered
separately (Section 4).

We seek to compute a reduced variation graphG0(V 0
, E

0
,�

0), where
V

0 ✓ V , E0 ✓ E, and for all e 2 E
0, �0(e) = �(e). The reduced graph

G
0 corresponds to removing some variants in graph G. Our goal is to

reduce graphG(V,E,�) to the maximum extent possible while ensuring
that any ↵-long string corresponding to a path in G can be mapped to the
same starting vertex (coordinate) inG0 without exceeding a user-specified
error threshold �. In practice, ↵ should be a function of read lengths
whereas � is determined based on sequencing errors and error-tolerance
of read-to-graph mapping algorithms.

We formulate four versions of the problem based on what types of
variants are allowed and the reduction objective. First consider the case
where all variants are SNPs.

Definition 1. Graph G
0
is said to be (↵, �)h-compatible if all ↵-long

strings in graph G can be mapped to their corresponding paths in graph

G
0
with Hamming distance  �.

Problem 1. Compute an (↵, �)h-compatible reduced variation graph

G
0
with minimum number of coordinates containing one or more variants.

Problem 2. Compute an (↵, �)h-compatible reduced variation graph

G
0
with minimum number of variants.

In Problem 1, we seek to ‘linearize’ the graph, whereas in Problem 2,
we intend to remove as many variants as possible. A user can choose either
version based on downstream analysis. For the next two problem versions,
suppose the variant set also contains indels.

Definition 2. Graph G
0
is said to be (↵, �)e-compatible if all ↵-long

strings in graph G can be mapped to their corresponding paths in graph

G
0
with edit distance  �.

Problem 3. Compute an (↵, �)e-compatible reduced variation graph

G
0
with minimum number of coordinates containing one or more variants.

Problem 4. Compute an (↵, �)e-compatible reduced variation graph

G
0
with minimum number of variants.

In Problems 1 and 2 that consider only SNP variants, ↵-long paths will
begin at a vertex along the coordinate axis as there are no other vertices
introduced in the graph. In Problems 3 and 4 however, a path can also
begin at other vertices due to insertion variants. In this case, we assume
an ↵-long string that maps to G must also be mappable starting from the
corresponding vertex in G

0 if that insertion variant is preserved. If the
variant is not preserved, it must be mappable to the closest vertex along
the coordinate axis.

A variant selection framework for genome graphs 3

G

R1 T G A C A T - - - T A
R2 T A A C A T G T C T A
R3 T C - - - T - - - T A

T G A C A T T A
A

C
T
C

�

Fig. 1.An example to illustrate construction of variation graph from three haplotype sequences.

3 Proposed algorithms

3.1 Results for variation graphs with SNPs

3.1.1 Greedy algorithm for Problem 1

Here the goal is to minimize the count of coordinates (positions along the
special referenceR1) at which variants occur. Based on this objective, we
should either fully remove or fully retain all the variants at each variant
coordinate. When removing variants at a coordinate, its outgoing edge
label is chosen to be the base fromR1. However, the (↵, �)h-compatibility
is sustained even if the base is chosen from a different haplotype, or any
arbitrary character in ⌃.

A path of length ↵ naturally corresponds to a line segment of length ↵
starting at an integer coordinate. Observe that in any ↵-long segment, we
cannot remove variants at > � coordinates without violating the (↵, �)h-
compatibility of reduced graph G

0 (Figure 2(a)). A variant coordinate i

is contained in ↵ segments of length ↵ each, whose starting positions are
in [i� ↵+ 1, i]. For each variant position, we associate two events with
coordinates starti = max{0, i � ↵ + 1} and endi = i respectively.
Assuming that the n SNP coordinates are given as sorted array, the
corresponding 2n events can be sorted in O(n) time. When two events
have equal coordinates, the start event type should be placed earlier than
the end event type in the sorted order.

Our greedy algorithm works as follows. Begin by placing an ↵-long
segment at position 0, and remove variants in the leftmost � variant
positions and retain the rest (if any). Keep a count of the number of
positions within the current segment at which variants are removed.
Iteratively consider each event in the sorted order. If the event is of type
starti and the count is less than �, the variants at position i are removed
and the count is incremented by one. If the event is of type starti but
the count is equal to �, the variants at position i are retained. If the
event is of type endi and the variants at i were previously removed,
the count is decremented by 1. As can be seen, the algorithm maintains
(↵, �)h-compatibility and runs in O(n) time.

Proof of optimality: Suppose the greedy algorithm retains variants at
coordinates g1, g2, . . . , gp in ascending order. Let o1, o2, . . . , oq be the
ordered variant coordinates retained by an optimal solution. Let k be the
first position where the solutions differ, i.e., gj = oj for j < k and
gk 6= ok . Due to our greedy strategy, ok < gk . Though ok was chosen
by the optimal algorithm, (↵, �)h-compatibility is not violated until start
event for gk is reached. For any path starting at a later coordinate, retaining
variants at gk offers the same benefit as retaining at ok . Thus, replacing
ok with gk will maintain optimality and (↵, �)h-compatibility. Hence, the
greedy solution is also optimal.

Lemma 1. The above greedy algorithm solves Problem 1 inO(n) time.

3.1.2 A linear programming solution to Problem 2

Here, we seek to minimize the total number of variants retained.
Interestingly, we can show that optimal solutions still retain or remove
all variants at a coordinate.

Lemma 2. An optimal solution to Problem 2 either retains or removes

all variants at a coordinate.

Proof. By contradiction. Suppose there exists an optimal reduced graph
G

0 with partially removed variants at coordinate i. Coordinate i already
induces an error in some ↵-long paths in G that contain the coordinate.
Accordingly, removal of all variants at coordinate i can be tolerated by all
↵-long paths containing that coordinate, further implying that graph G

0

must be sub-optimal.

Suppose we choose to remove all variants at coordinate i, then this
choice reduces the overall count of variants by out(vi)�1, where out(vi)
is the out-degree of vertex vi. As can be seen, Problem 2 is harder than
Problem 1 because the number of variants at different coordinates can be
different, leading to variable gains. We address this problem by using an
Integer Linear Programming (ILP) system that is polynomially-solvable
using LP relaxation.

Let p1, p2, . . . , pn be the n variant coordinates in G in ascending
order. Let X be an n ⇥ 1 boolean column vector where X[i] = 1 iff
variants are removed at coordinatepi in creatingG0. LetC be anothern⇥1

column vector whereC[i] = out(vpi)�1, i.e., the reduction achieved in
variant count by removing variants at pi. The goal is to maximize CT

X .
Next, we specify constraints to ensure (↵, �)h-compatibility of graphG0,
by not allowing removal of variants at > � coordinates in any ↵-long
segment. Similar to the observation made while addressing Problem 1, it
suffices to check this constraint only in the subset of↵-sized segments that
end at the n variants. Accordingly, let A be a boolean n⇥ n matrix such
that A[i][j] = 1 iff coordinate pj is within the ↵-sized segment range
(pi � ↵, pi] of coordinate pi. Then, ILP constraints required to ensure
(↵, �)h-compatibility of G0 can be specified as A · X  B, where B

is an n ⇥ 1 column vector with each value = �. We also need to ensure
that the X[i]’s are boolean. This can be achieved by expanding A to a
2n ⇥ n matrix with the bottom n rows being the n ⇥ n identity matrix,
and similarly expanding B to a 2n ⇥ 1 vector with the bottom n entries
set to 1. Now, maximizing CT

X while satisfyingA ·X  B leads to an
optimal reduced graph G0 that is (↵, �)h-compatible.

Run-time complexity: Matrix A exhibits a special structure that
guarantees integral optimal LP solutions. Observe that A is a 0-1 matrix,
and the 1’s appear consecutively in each row of A which makes it an
interval matrix (Fulkerson and Gross, 1965). As a result, the above
ILP can be solved in polynomial time by solving the corresponding LP,
which hasO(n!) run-time complexity where ! is the exponent of matrix
multiplication (van den Brand, 2020).

Lemma 3. The above LP-based algorithm solves Problem 2 in O(n!)

time.

3.2 Results for variation graphs with SNPs and indels

Variation graphs with indels introduce additional complexity. When
considering only SNPs, we benefited from the fact that end vertices of any
↵-long paths will be located on the coordinate axis. In addition, right end
of a path was a fixed distance away from its left along the coordinate axis.
When indels are permitted, these properties are no longer true, making
Problems 3 and 4 more challenging. We present two heuristic solutions,
each of which can be used to solve either problem.

4 Jain et al.

� = 2, � = 4

removed
retained

ii � � + 1

� = 2, � = 4

1 0 0 0
1 1 0 0
0 1 1 0
0 1 1 1

x1
x2
x3
x4

�
�

�
��

x1, x2, x3, x4 � 1

x1
x2
x3
x4

3
2
1
1

, Max

T

(a) (b)

p1 p2 p3 p4 p1 p2 p3 p4

Fig. 2. (a) Execution of the greedy algorithm on an example variation graph containing SNPs only. The black horizontal bar represents an ↵-long segment
corresponding to ↵ = 4 and solid circles represent variant coordinates p1, p2, p3 and p4. In the current iteration, variant loci p4 is being retained by the
greedy algorithm to avoid exceeding the error-threshold � = 2. (b) Execution of the LP algorithm on the same variation graph. LP constraints are shown
to maximize the count of variants that can be removed from the variation graph without exceeding the error-threshold �. Edge labels are not shown as
they do not affect the execution of either algorithm.

3.2.1 A greedy algorithm

We first propose a ‘conservative’ greedy heuristic which guarantees an
(↵, �)e-compatible reduced graph that is not necessarily optimal in terms
of the desired reduction objectives. We choose to either retain or remove
all variants at a coordinate vertex (vertex alongR1). Suppose a coordinate
vertex v has all three types of variants, i.e., insertions, deletions and SNPs.
We evaluate an upper bound of edit distance against any overlapping ↵-
long path if we choose to drop all variants at v. Let �ins,�del be the
longest insertion and deletion variants at vertex v respectively. Dropping
all variants at v can contribute an edit distance of at most �ins +�del.
In cases where only a subset of variant types are present, the bound can
be adjusted easily. The following greedy algorithm is designed to select
an appropriate set of coordinates where variants can be removed while
ensuring that the graph remains (↵, �)e-compatible.

As before, let p1, p2, . . . , pn be the n variant coordinates in G in
ascending order. Note that an ↵-long path in graphG can span> ↵ range
along the coordinate axis by using deletion edges. For a variant position pi,
consider the left-most position pj such that vpi can be reached from vpj

by using any path that uses< ↵ labeled edges. The rationale for choosing
pj this way is that any ↵-long path which begins at a variant coordinate
vertex prior to vpj cannot pass through vertex vpi . Such a window is pre-
computed for each variant position, and we ensure that dropped variants
within eachwindowcollectively contribute to edit distance �. To achieve
this, our greedy heuristic is to consider the variant positions from left
to right. A variant position is removed if and only if the total sum of
differences within its window remains  �. It is straightforward to prove
that the resulting reduced graph remains (↵, �)e-compatible.

Run-time complexity: Computing window lengths for each coordinate
vertex is the most time-consuming step in the above algorithm because the
remaining steps have linear complexity either in terms of count of variants
or count of variant positions in graphG. For calculating window lengths in
the above algorithm, we can ignore SNP and insertion variants fromG, and
consider only deletion variants. If y denotes the count of deletion variants,
then the modified graph will have exactly |R1| + 1 coordinate vertices
and |R1| + y edges. Any vertex vi (i > 0) has exactly one incoming
labeled edge (say, from vertex vi1) and � 0 incoming unlabeled edges
(say, from vertices vi2 , vi3 , . . . , vik). Let the function f(v, x) indicate
the left-most vertex that can be reached from v by using a path that uses
< x labeled edges. Then, f(vi,↵) equals the left-most vertex among
f(vi1 ,↵�1), f(vi2 ,↵), f(vi3 ,↵), . . . , f(vik ,↵). Oneway to compute
this recursion is to compute a vector of valuesf(vi, x)8x 2 [1,↵] for each
vertex along the coordinate axis going from left to right. This procedure
requiresO(↵ · (|R1|+y)) time. In practice, y ⌧ |R1|, so this procedure
effectively requires O(↵ · |R1|) time.

3.2.2 An ILP-based algorithm

Alternatively, we can further improve the greedy heuristic by using ILP.
This can be achieved by formulating the edit distance constraints discussed
above for each window as a set of ILP constraints. Similar to our LP-based
algorithm for Problem 2,A is an n⇥nmatrix, where row i contains non-
zero values for those variants that are within the pre-computed window of
variant i. For instance, if coordinate pj is within the pre-computedwindow
span of coordinate pi (j  i), then A[i][j] is set to the estimated upper
bound of differences induced by removing all variants at coordinate pj as
discussed before. Variable X is an n ⇥ 1 boolean column vector, where
X[i] = 1 iff variants at coordinate pi are removed. Then, ILP constraints
required to ensure (↵, �)e-compatibility can be specified as A ·X  B,
where B is a column vector with each value = �. Define C to be an
n ⇥ 1 column vector. While addressing Problem 3, set C[i]’s as 1, and
for Problem 4, set C[i] = out(vpi) � 1, i.e., the count of variants at
coordinate pi. In both cases, the ILP objective is set to maximize CT

X .
These ILP formulations have higher run-time complexity when compared
to the greedy solution, but are guaranteed to provide at least as good and
possibly superior reduction for both Problems 3 and 4. Neither algorithm
guarantees optimality.

4 Haplotype-aware variant selection

In the previous problem versions, we considered all ↵-long paths in graph
G. Herewe address the important special casewhere paths are restricted to
correspond to strings observed in haplotypesR1, R2, . . . , Rm. Due to this
restriction, fewer ↵-long strings are checked for mappability. As a result,
solutions to the previous problems are sub-optimal for this case because
further reduction may be possible. We start by making the simplifying
assumption that the input haplotypes contain only SNPs, and have equal
length. We do not require strings associated with haplotype R1 (or any
other haplotype) to be exactly preserved in a reduced graph. For example,
if all SNPs are removed at a variant coordinate, then its single outgoing
edge label can come from any of the m haplotypes. Graph G

0 is said
to be (↵, �)rh-compatible if all ↵-long restricted paths in G map to G

0

with Hamming distance  � between the corresponding strings. In this
scenario, consider the following problems:

Problem 5. Compute an (↵, �)rh-compatible reduced variation graph

G
0
with minimum number of coordinates containing one or more variants.

Problem 6. Compute an (↵, �)rh-compatible reduced variation graph

G
0
with minimum number of variants.

A variant selection framework for genome graphs 5

We prove that solving the above problems is NP-hard. We give
two reductions for Problem 5. The first is a general reduction whereas
the second proves hardness for even � = 1. These reductions trivially
generalize to Problem 6. Consider the following decision version of
Problem 5. Does there exist an (↵, �)rh-compatible simplified graph G

0

with  k coordinates containing one or more variants?

Lemma 4. The decision version of Problem 5 isNP-complete.

Proof. Clearly, the problem is in NP . Recall the decision version of
the closest string problem (CSP) (Lanctot et al., 2003). Given a set S of
strings each of length l and a parameter d, CSP checks existence of a string
that is within Hamming distance of d to each of the given strings. CSP is
known to beNP-complete. CSP exhibits a trivial reduction to Problem 5:
Assume the collection of reference haplotypes to be S. The following
statements are equivalent: (i) there exists a string with Hamming distance
 d to each of the given strings inS, (ii) there exists an (l, d)rh-compatible
graphG0 with no coordinate containing one or more variants. As a result,
decision version of Problem 5, which is stated for an arbitrary value of k,
isNP-complete.

CSP is known to be NP-complete even for a binary alphabet, thus
also making Problem 5 NP-complete for a binary alphabet. However,
CSP is fixed-parameter tractable relative to parameter d (Gramm et al.,
2003). Consequently, the above claim does not resolve the complexity of
Problem 5 for a constant �. For practical applications, � is expected to be
small. We address this in the following lemma.

Lemma 5. The decision version of Problem 5 is NP-complete even if

� = 1.

Proof. Recall the decision version of the maximum independent set
(MIS) problem. Given an undirected graph, the MIS problem asks for
a set of � k vertices no two of which are adjacent. In an MIS graph
instance Gm(Vm, Em), let u0, u1, . . . , u|Vm|�1 be the vertices and
e0, e1, . . . , e|Em|�1 be the edges. We translate this into a multigraph
instance of Problem 5 as follows. Let ⌃ = {A,C}. Define haplotype
reference sequencesR0, R1, . . . , R|Vm|+|Em| each of length |Vm|. The
first |Em| sequences are defined using the MIS graph instanceGm while
the rest are auxiliary:

Ri[j] = C if ei connects uj ; Ri[j] = A otherwise. (0  i < |Em|),
Ri = A(i�|Em|) ·C ·A(|Em|+|Vm|�i�1) (|Em|  i < |Em|+ |Vm|),
Ri = A|Vm| (i = |Em|+ |Vm|)

Observe that edge-labeled variation graph G built by using the above
sequences has a coordinate axis with |Vm| + 1 vertices (Figure 3). Each
coordinate 2 [0, |Vm|) has two SNPs ‘A’ and ‘C’. Claim: There exists

a k-sized independent set in Gm(Vm, Em) if and only if there exists

a (|Vm|, 1)rh-compatible reduced variation with |Vm| � k coordinates

containing one or more variants. Consider the forward direction. Suppose
there arek vertices in an independent setI. Build a reduced variation graph
G

0 by removing ‘C’-labeled outgoing edges from coordinates j (8j) such
that uj 2 I. Note that G0 is (|Vm|, 1)rh-compatible. Next consider the
backward direction. Suppose p1, p2, . . . , pk are the k coordinates in a
compatible simplified graph G

0 where variants are removed. If k = 1,
then finding an independent set I of size 1 is trivial. If k > 1, then we
note that each of thek coordinatesmust have a single outgoing edge labeled
with ‘A’ to ensure (|Vm|, 1)rh-compatibility with respect to the auxiliary
reference sequences. It can be further deduced that {up1 , up2 , . . . , upk}
is an independent set of graph Gm.

R0 C C A A
R1 A C C A
R2 A A C C
R3 A C A C

R4 C A A A
R5 A C A A
R6 A A C A
R7 A A A C

R8 A A A A

u0 u1
u3

u2

e0 e1 e2e3

C

A A

C C

A A

C

Fig. 3. Illustration of reduction used to prove Lemma 5. Vertices selected
as independent set are highlighted in red (left). Accordingly, we can find
an equivalent reduced variation graph where variants from two vertices are
removed (removed edges are highlighted in gray).

In the formulations of Problems 5 and 6, haplotype R1 is not
given any special significance. An interesting question is whether the
problems become tractable if we impose the additional constraint that
edges associated with haplotype R1 must be preserved (assuming R1 is
the standard genome reference). In this case, the reduction from the closest
string problem (i.e., Lemma 4) is no longer applicable. However, it is still
possible to design a reduction from themaximum independent set problem
(Lemma 5), with a few simple modifications. The revised proof is omitted
for brevity.

5 Experimental results

Hardware and software: We provide C++ implementations of all the
algorithms presented in Section 3 (https://github.com/AT-CG/
VF). Among these, the first two handle SNP-based variation graphs
(Greedys and LPs), and the remaining (Greedyi, ILPi

v and ILPi
p) are

designed for a generic variation graph containing substitution, insertion
and deletion events. Our ILP algorithm (Section 3.2.2) supports two
different objective functions, the first minimizes count of variants, and
the second minimizes variant-containing positions. Accordingly, their
naming, i.e., ILPi

v and ILPi
p differentiates the two versions respectively.

Using human variation graphs (Table 1), we assess the graph size
reduction achieved by the various algorithms, and also evaluate their run-
time performance and scalability. The LPs, ILPi

v and ILPi
p algorithms

make use of Gurobi 9.1.0 solver for LP optimization. All the algorithms
were tested on dual Intel Xeon Gold 6226 CPUs (2.70 GHz) processors
equipped with 2⇥12 physical cores and 384 GB RAM. Among the
implemented algorithms, only the LPs, ILPi

v and ILPi
p take advantage

of multiple cores via Gurobi, whereas the remaining two are sequential.

Variation graph construction: We tested our algorithms using
variation graphs associated with human chromosome 1 (249 Mbp) and
chromosome 22 (51 Mbp) respectively. For each chromosome, we built
three types of variation graphs, corresponding to (a) SNPs, (b) SNPs
and short indels, and (c) structural variants (SVs), respectively. This

Table 1. Variation graphs used for testing the proposedvariant selection algorithms.

Graph Chr Type of No. of No. of variant

label variants variants containing loci

g_chr1_SNP 1 SNPs 6,234,054 6,215,039
g_chr22_SNP 22 SNPs 1,063,618 1,059,517

g_chr1_SNP_indel 1 SNPs, short indels 6,478,244 6,453,040
g_chr22_SNP_indel 22 SNPs, short indels 11,05,948 1,100,716

g_chr1_SV 1 Indel SVs 6,525 6,369
g_chr22_SV 22 Indel SVs 2,056 1,996

https://github.com/AT-CG/VF
https://github.com/AT-CG/VF

6 Jain et al.

Greedys

LPs

�

13
65
0

13
87
7

21
88
21
43

67
9
67
1 53

1
34
48
02

34
48
42

13
64
7
13
65
0

6M 6M 4M 4M

13
64
7

21
43

67
1 52

713
65
0

21
43

67
1

34
48
02

34
48
35

13
64
7
13
65
0

6M 6M 4M 4M

87
34
87
34

67
1
67
1

6M 6M 4M 4M

88
08
87
34

67
9
67
1

6M 6M 4M 4M

(a) chromosome 1 (b) chromosome 22

Greedys

LPs

�

13
65
0

13
87
7

21
88
21
43

67
9
67
1 53

1
34
48
02

34
48
42

13
64
7
13
65
0

6M 6M 4M 4M

13
64
7

21
43

67
1 52

713
65
0

21
43

67
1

34
48
02

34
48
35

13
64
7
13
65
0

6M 6M 4M 4M

87
34
87
34

67
1
67
1

6M 6M 4M 4M

88
08
87
34

67
9
67
1

6M 6M 4M 4M

Greedys

LPs

67
44

67
29

24
2624

26
84
084
0

67
4
67
4

1M1M 0.7
M
0.7
M

91
91
3
91
31
6

69
06
67
46

91
26
5
91
29
4

67
29
67
44 72

3972
39

84
0
84
0

73
92
72
39

87
2
84
0

1M1M

67
46

69
06

25
3824

26
87
284

0
69
5
67
4

1M1M 0.7
M
0.7
M

0.7
M
0.7
M

1M1M 0.7
M
0.7
M

Fig. 4. Empirical evaluation of Greedys and LPs algorithms using two human variation graphs g_chr1_SNP and g_chr22_SNP containing SNPs. These
plots demonstrate reduction achieved in graph sizes while varying ↵ and � parameters. Size of the complete variation graph (� = 0%) is included for
comparison. Numbers on top of bars present actual data, useful for comparison when both Greedys and LPs achieve close results. Result of LPs algorithm
is missing for ↵ = 10, 000 (left-most column) because Gurobi LP solver crashed due to insufficient memory. Y-axes are log-scaled in all the above plots.

is useful to contrast output quality while exploring variant types from
point mutations (SNPs) to larger variants. Here SVs include deletion and
insertion events of size � 50 bp as other type of SVs are currently not
supported by our framework. Exclusion of SVs in variation graphs is
naturally expected to introduce more differences in ↵-sized paths, and
therefore SVs test the limits of our algorithms. SNP and short indel variants
were downloaded from the 1000 Genomes Project Phase 3 (Consortium
et al., 2015), and SVs were downloaded from a recent long-read based
SV survey of fifteen diverse human genomes (Audano et al., 2019). We
used vcftools (Danecek et al., 2011) to parse SNPs and indels from the
1000 Genomes Project variant files. Similarly, SVs other than insertions or
deletions were filtered out from the SV files. Summary statistics of these
variants, and graphs built using them, are listed in Table 1.

↵ and � parameters: We tested our algorithms using ↵ values of
150 bp, 1 kbp, 5 kbp, and 10 kbp. The first is useful for Illumina reads,
whereas the latter are useful for different protocols available for long read
sequencing (e.g., DNA or RNA sequencing using either PacBio or ONT).
For each↵ value, we experimentedwith � values that are 1%, 5% and 10%
of↵. Here 1% corresponds to low error-tolerance of a mapping algorithm,
and 10% corresponds to significant tolerance.

Performance of Greedys and LPs algorithms: These algorithms were
tested using g_chr1_SNPandg_chr22_SNPgraphs (Figure 4). For both the
algorithms, we report four statistics: (i) count of variants retained, (ii) count
of variant-containing loci retained, (iii) run-time, and (iv) peak memory-
usage. LPs andGreedys algorithms are guaranteed to return optimal graphs
in terms of the objectives (i) and (ii) respectively. The results in Figure 4
suggest that the two algorithms perform almost equally well in terms of

both objectives for all tested combinations of (↵, �) values. Increasing ↵

value while keeping � as a constant fraction of ↵ naturally corresponds to
fewer SNPs retained. The same is true when � is increased while keeping
↵ fixed. These results corroborate the fact that longer reads and higher
sensitivity of mapping algorithms result in retention of fewer variants
in a variation graph. For instance with (↵ = 10 kbp, � = 1000), the
Greedys algorithm retained only 531 (0.009%) out of 6,234,046 SNPs
using graph g_chr1_SNP. After this run, average distance between two
adjacent loci containing SNPs increased from 39 to 225, 963. This
suggests that variation selection algorithms can potentially yield long
stretches of variant-free regions in graph, where the usual read-to-sequence
mapping algorithms can also operate.

If run-time is considered, the Greedys algorithm runs significantly
faster than LPs, which was also reflected by our time complexity analysis
in Section 3.1. Using graph g_chr1_SNP, LPs algorithm ran out ofmemory
for↵ = 10 kbp due to increased size of the matrix, i.e., count of non-zeros
in the matrix which specifies the LP constraints. Taken together, Greedys
algorithm suffices formost practical purposes because it is fast and optimal
in terms of its objective to minimize count of variant-containing loci
retained. Greedys algorithm does not account for the number of variants
at a locus while deciding its fate, yet it achieves near-optimal reduction
in terms of minimizing the count of variants. This is likely because most
human SNPs are biallelic.

Performance of Greedyi and ILP-based algorithms: We tested our
Greedyi, ILPi

v and ILPi
p heuristics using g_chr1_SV and g_chr22_SV

graphs (Figure 5). In contrast to SNPs which are single-base mutations,
the sizes of SV indels in chromosome 1 computed by Audano et al. (2019)
range from 50 bp to 33 kbp, with mean length 0.5 kbp. As a result, it is

A variant selection framework for genome graphs 7

Greedyi ILPvi ILPpi

15
54

15
56

15
54

75
5

83
4

75
1

51
362
8

50
9

14
95

14
97

14
95

71
5

79
7

71
9

48
060
0

48
5

19
93

19
93

19
93

20
53

20
53

20
53

20
53

20
53

20
53

20
53

20
53

20
53

20
11

20
11

20
11

11
40

11
91

11
38

75
5

83
4

75
1

19
51

19
51

19
51

10
87

11
39

10
90

71
5

79
7

71
9

20
53

20
53

20
53

20
53

20
53

20
53

20
53

20
53

20
53

19
93

19
93

19
93

19
93

19
93

19
93

19
93

19
93

19
93

19
93

19
93

19
93

19
93

19
93

19
93

(a) chromosome 1 (b) chromosome 22

Greedyi ILPvi ILPpi

65
12

65
12

65
12

50
05

50
04

50
05

24
31

26
41

24
19

17
58

20
38

17
48

48
49

48
48

48
49

23
17

25
41

23
30

16
80

19
71

16
87

63
56

63
56

63
56

63
56

63
56

63
56

63
56

63
56

63
56

63
56

63
56

63
56

63
56

63
56

63
56

65
12

65
12

65
12

65
12

65
12

65
12

65
12

65
12

65
12

65
12

65
12

65
12

63
99

63
99

63
99

37
17

38
27

37
13

24
31

26
41

24
19

65
12

65
12

65
12

62
43

62
43

62
43

35
78

36
96

35
83

23
17

25
41

23
30

63
56

63
56

63
56

Greedyi ILPvi ILPpi

Fig. 5. Empirical evaluation of Greedyi, ILPiv and ILPip algorithms using two human variation graphs g_chr1_SV and g_chr1_SV containing insertion
and deletion structural variants. These plots demonstrate reduction achieved in graph sizes while varying ↵ and � parameters. Numbers on top of bars
present actual data, useful for comparison when the three algorithms achieve close results.

natural to expect that the fraction of variants retained will be much higher
compared to SNPs. The ILP-based heuristics are guaranteed to achieve
superior results than the greedy heuristic, i.e., ILPi

v heuristic is expected
to retain the smallest count of variants among the three, and similarly
ILPi

p heuristic will retain the smallest count of variant-containing loci. For
instance, with long-read compatible settings (↵ = 10 kbp, � = 1000), the
ILPi

v, ILPi
p and Greedyi heuristics retained 26.8%, 27.0% and 31.3%

SVs respectively in graph g_chr1_SV. Similarly, 24.8%, 25.0% and
30.6% SVs were retained in graph g_chr22_SV. However, with short-
read compatible settings (↵ = 150 bp, � = 8), all SVs were retained by
all three heuristics, as expected. These results are not necessarily optimal,
but we do not expect them to deviate significantly from optimal numbers.
The rationale is that not only SVs are bigger in size but also SV loci are
known to be clustered in several known hot-spots of the human genome,
e.g., within the last 5Mbp of both chromosome arms (Audano et al., 2019).

In terms of count, SVs occur much less frequently as compared to
SNPs or indels. As a result, run-time of all the three heuristics was
dominated by their first step of computing the constraints required to
ensure (↵, �)e compatibility, which is common in all of them. As shown
in Section 3.2, this step requires time proportional to ↵ as well as the
length of the reference sequence. Accordingly, we observe that running
time is comparable among all three heuristics, appears to be independent
of �, scales roughly linearly with ↵, and time spent is higher using graph
g_chr1_SV than g_chr22_SV.With the largest↵ = 10 kbp value, all three
algorithms require about six minutes and one minute to process the two
graphs, respectively.

The Greedyi, ILPi
v, and ILPi

p heuristics were also separately tested
using graphs containing SNPs and short indels, i.e., g_chr1_SNP_indel
and g_chr22_SNP_indel. For convenience, we indicate their output graph

statistics as a pair (x, y) such that x and y refer to the fraction of SNPs
and indels retained, respectively. When using (↵ = 150 bp, � = 8)
parameters on variation graph g_chr1_SNP_indel, the three heuristics
Greedyi, ILPi

v, and ILPi
p retained (6.6%, 25.9%), (6.0%, 32.0%), and

(6.0%, 32.1%) of the variants respectively. Using long-read settings
(i.e., ↵ = 10 kbp, � = 1000), all three heuristics retained only
(0.01%, 0.002%) variants. These results suggest that the fraction of indels
that should be retained is higher than SNPs while mapping short reads.
However, almost all SNPs and short indels can be excluded while mapping
long reads.

Impact on sequence-to-graph mappers: We conducted a preliminary
evaluation to assess the impact of variant selection on read-to-graph
mapping. For this experiment, we considered the reduced graph obtained
by ILPi

v using g_chr1_SV graph as input. As discussed previously, the
ILPi

v heuristic retained 1748 of the 6512 SVs using ↵ = 10 kbp and
� = 1000 parameters. We built two variation graphs using VG (v1.29.0)
tool corresponding to the complete set of SVs and the reduced set of SVs
respectively. The graph statistics (e.g., vertex degree distribution) were
validated to ensure the presence of SVs in the respective graphs. Next, we
simulated 10, 000 long reads, each of length 10 kbp from randomly chosen
paths of the complete variation graph with error-rate 5% using VG’s read
simulation feature. Subsequently, we made use of GraphAligner (v1.0.11)
to map these reads to both variation graphs.

We observed the following. First, all 10, 000 reads were successfully
mapped by GraphAligner to both the graphs. Second, each read was
mapped only using primary alignments, and there were no secondary
alignments reported. This indicates that there was no mapping ambiguity
while using the reduced variation graph. A direct comparison of mapping
coordinates is not feasible because VG used different vertex identifiers in

8 Jain et al.

the two graphs which have different topology. However, VG includes a
heuristic to project graph coordinates onto the linear reference genome
using surject command. We used this command to project true read
coordinates as well as the computed read alignments to the linear genome
reference. A read is considered to be mapped correctly if any one of its
alignments overlaps with � 50% of the true interval. Using this criteria,
9922 and 9919 reads were found to be correctly mapped to the complete
and the reducedvariation graph, respectively.Weadditionally used a chain-
like variation graph by removing all variations, and found that 9908 reads
could be mapped correctly to this graph.

The impact of missing variations was also observed on the count of
reads which had split alignments. Reads with split alignments increased
from 2 in the complete variation graph to 209 in the reduced graph. Split
read alignments are often used as a signature by variant callers to discover
SVs (Rausch et al., 2012). Once the reduced variation graph is used to
correctly anchor alignments, the full spectrum of variations in the aligning
region can be used for effective genotyping. Upon further inspection of the
split read alignments, we found the count of alignments per read varied
from 2 to 3 in the complete graph, and from 2 to 5 in the reduced graph. We
also observed 295 split read alignments if we map the simulated reads to
the chain graph with no variation, but the alignments per read in this case
ranged from 2 to 43. Here 15 reads were found to have > 5 alignments.
These reads may be difficult to align due to significant edit distance with
their closest matching path in the reduced graph. Similar anomalies were
observed if we construct a graph by selecting a random subset of 1748
SVs, where 1748 is the count of the SVs retained by the ILPi

v algorithm.
We note that GraphAligner required similar runtime and memory in

all scenarios (about five minutes). This is likely because the graph is
nearly linear, due to limited count of SVs (6, 512) that were available
in the complete chromosome 1 graph. This result is preliminary, but
motivates a deeper investigation into the impact of the proposed algorithms
on various sequence-to-graph mapping algorithms while using a much
larger catalog of variants as input. Variant selection tool FORGe (Pritt
et al., 2018) uses allelic frequency data as an input to its model. Currently,
frequency assessment remains challenging in case of SVs due to the lack
of appropriate tools as well as data (Mahmoud et al., 2019). A direct
comparison with FORGe could not be carried out due to these limitations.

6 Conclusions and open problems

We developed a novel mathematical framework for variant selection, and
presentedmultiple algorithms and complexity results for various problems
arising from this framework. Experimental results demonstrate substantial
reduction in the resulting variation graph sizes, while guaranteeing bounds
on the number of errors toleratedwhile doing so. Implementations of all the
four algorithms that are proposed in this paper are available as open-source,
and can be used by practitioners for pan-genomic analysis. The path-length
and error parameters (↵, �) can be tuned to match the choice of sequencing
technology, mapping algorithms, and types of variants considered. The
proposed framework makes the assumption that the mapping algorithms
have uniform error-tolerance throughout the reference. By experimenting
with publicly-available human genome variation data, we demonstrated
that a significant fraction of small-scale variants, but no large-scale variants
can be left out during short-read mapping to variation graphs. On the other
hand, almost all small-scale variants and a significant fractionof large-scale
variants can be excluded prior to long-read-based analysis.

The proposed variant selection framework underpins a rich class
of problems making it fertile ground for future research. (i) Optimal
algorithms for the two problems associatedwith indel variants (Problems 3
and 4) are unknown. In fact, it is not known whether these two problems
can be solved in polynomial time. (ii) While we were able to prove that the

haplotype-aware versions of the problem areNP-hard, efficient heuristics
and approximation algorithms for these problem are yet to be developed.
Haplotype-aware algorithmic extensions can result in further reduction
of graph sizes because fewer paths need to be preserved. (iii) It may
also be possible to further extend this framework and add constraints
similar to allele frequency thresholding, e.g., by asking a reduced graph
which is allowed to violate error-bound for up to 1% of haplotypes at any
position. (iv) This work only considered pre-dominant variant categories
- SNPs, insertions and deletions; further research is needed to analyze
other variant types such as duplications, inversions, and complex genomic
rearrangements.

Funding

This work is supported in part by the National Science Foundation under
CCF-1816027. This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

References

Audano, P. A., Sulovari, A., Graves-Lindsay, T. A., Cantsilieris, S., Sorensen, M.,
Welch, A. E., Dougherty, M. L., Nelson, B. J., Shah, A., Dutcher, S. K., et al.
(2019). Characterizing the major structural variant alleles of the human genome.
Cell, 176(3), 663–675.

Ballouz, S., Dobin, A., and Gillis, J. A. (2019). Is it time to change the reference
genome? Genome biology, 20(1), 1–9.

Chang, X., Eizenga, J., Novak, A. M., Sirén, J., and Paten, B. (2020).
Distance indexing and seed clustering in sequence graphs. Bioinformatics,
36(Supplement_1), i146–i153.

Computational Pan-Genomics Consortium (2018). Computational pan-genomics:
status, promises and challenges. Briefings in bioinformatics, 19(1), 118–135.

Consortium, . G. P. et al. (2015). A global reference for human genetic variation.
Nature, 526(7571), 68–74.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A.,
Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., et al. (2011). The variant
call format and vcftools. Bioinformatics, 27(15), 2156–2158.

Danek, A., Deorowicz, S., and Grabowski, S. (2014). Indexes of large genome
collections on a PC. PloS one, 9(10), e109384.

Darby, C. A., Gaddipati, R., Schatz, M. C., and Langmead, B. (2020).
Vargas: heuristic-free alignment for assessing linear and graph read aligners.
Bioinformatics, 36(12), 3712–3718.

Dilthey, A., Cox, C., Iqbal, Z., Nelson, M. R., and McVean, G. (2015). Improved
genome inference in theMHCusing a population reference graph. Nature genetics,
47(6), 682–688.

Eggertsson, H. P., Jonsson, H., Kristmundsdottir, S., Hjartarson, E., Kehr, B.,
Masson, G., Zink, F., Hjorleifsson, K. E., Jonasdottir, A., Jonasdottir, A., et al.
(2017). Graphtyper enables population-scale genotyping using pangenome graphs.
Nature genetics, 49(11), 1654.

Eizenga, J. M., Novak, A. M., Sibbesen, J. A., Heumos, S., Ghaffaari, A., Hickey,
G., Chang, X., Seaman, J. D., Rounthwaite, R., Ebler, J., et al. (2020). Pangenome
graphs. Annual Review of Genomics and Human Genetics, 21.

Fulkerson, D. and Gross, O. (1965). Incidence matrices and interval graphs. Pacific
journal of mathematics, 15(3), 835–855.

Garrison, E., Sirén, J., Novak, A. M., Hickey, G., Eizenga, J. M., Dawson, E. T.,
Jones, W., Garg, S., Markello, C., Lin, M. F., et al. (2018). Variation graph toolkit
improves read mapping by representing genetic variation in the reference. Nature
biotechnology, 36(9), 875–879.

Ghaffaari, A. and Marschall, T. (2019). Fully-sensitive seed finding in sequence
graphs using a hybrid index. Bioinformatics, 35(14), i81–i89.

Gramm, J., Niedermeier, R., Rossmanith, P., et al. (2003). Fixed-parameter
algorithms for closest string and related problems. Algorithmica, 37(1), 25–42.

Holley, G., Wittler, R., and Stoye, J. (2016). Bloom filter trie: an alignment-free and
reference-free data structure for pan-genome storage. Algorithms for Molecular

Biology, 11(1), 1–9.
Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean, G. (2012). De novo
assembly and genotyping of variants using colored de bruijn graphs. Nature

genetics, 44(2), 226–232.

Ivanov, P., Bichsel, B., Mustafa, H., Kahles, A., Rätsch, G., and Vechev, M.
(2020). Astarix: Fast and optimal sequence-to-graph alignment. In International

Conference on Research in Computational Molecular Biology, pages 104–119.
Springer.

Jain, C., Misra, S., Zhang, H., Dilthey, A., and Aluru, S. (2019a). Accelerating
sequence alignment to graphs. In 2019 IEEE International Parallel andDistributed

Processing Symposium (IPDPS), pages 451–461. IEEE.
Jain, C., Zhang, H., Dilthey, A., and Aluru, S. (2019b). Validating Paired-End Read
Alignments in Sequence Graphs. In 19th International Workshop on Algorithms

in Bioinformatics (WABI 2019), volume 143 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 17:1–17:13.

Jain, C., Zhang, H., Gao, Y., and Aluru, S. (2020). On the complexity of sequence-
to-graph alignment. Journal of Computational Biology, 27(4), 640–654.

Kim, D., Paggi, J., and Salzberg, S. L. (2018). Hisat-genotype: Next generation
genomic analysis platform on a personal computer. BioRxiv, page 266197.

Kuhnle, A., Mun, T., Boucher, C., Gagie, T., Langmead, B., and Manzini, G. (2020).
Efficient construction of a complete index for pan-genomics read alignment.
Journal of Computational Biology, 27(4), 500–513.

Kuosmanen, A., Paavilainen, T., Gagie, T., Chikhi, R., Tomescu, A., and Mäkinen,
V. (2018). Using minimum path cover to boost dynamic programming on
DAGs: co-linear chaining extended. In International Conference on Research

in Computational Molecular Biology, pages 105–121. Springer.
Lanctot, J. K., Li, M., Ma, B., Wang, S., and Zhang, L. (2003). Distinguishing string
selection problems. Information and Computation, 185(1), 41–55.

Li, H., Feng, X., and Chu, C. (2020). The design and construction of reference
pangenome graphs with minigraph. Genome Biology, 21(1), 1–19.

Liu, B., Guo, H., Brudno, M., and Wang, Y. (2016). debga: read alignment with de
bruijn graph-based seed and extension. Bioinformatics, 32(21), 3224–3232.

Maciuca, S., del Ojo Elias, C., McVean, G., and Iqbal, Z. (2016). A natural encoding
of genetic variation in a burrows-wheeler transform to enablemapping and genome
inference. In International Workshop on Algorithms in Bioinformatics, pages 222–
233. Springer.

Mahmoud, M., Gobet, N., Cruz-Dávalos, D. I., Mounier, N., Dessimoz, C., and
Sedlazeck, F. J. (2019). Structural variant calling: the long and the short of it.
Genome biology, 20(1), 1–14.

Marcus, S., Lee, H., and Schatz, M. C. (2014). Splitmem: a graphical algorithm for
pan-genome analysis with suffix skips. Bioinformatics, 30(24), 3476–3483.

Mokveld, T., Linthorst, J., Al-Ars, Z., Holstege, H., and Reinders, M. (2020). Chop:
Haplotype-aware path indexing in population graphs. Genome Biology, 21(1),
1–16.

Paten, B., Novak, A. M., Eizenga, J. M., and Garrison, E. (2017). Genome graphs
and the evolution of genome inference. Genome research, 27(5), 665–676.

Pritt, J., Chen, N.-C., and Langmead, B. (2018). Forge: prioritizing variants for graph
genomes. Genome biology, 19(1), 1–16.

Rausch, T., Zichner, T., Schlattl, A., Stütz, A.M., Benes, V., andKorbel, J. O. (2012).
Delly: structural variant discovery by integrated paired-end and split-read analysis.
Bioinformatics, 28(18), i333–i339.

Rautiainen, M. andMarschall, T. (2020). Graphaligner: rapid and versatile sequence-
to-graph alignment. Genome Biology, 21(1), 1–28.

Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S.,
Kohlbacher, O., and Weigel, D. (2009). Simultaneous alignment of short reads
against multiple genomes. Genome biology, 10(9), 1–12.

Sirén, J., Välimäki, N., and Mäkinen, V. (2014). Indexing graphs for path queries
with applications in genome research. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 11(2), 375–388.
Sirén, J., Garrison, E., Novak, A. M., Paten, B., and Durbin, R. (2020). Haplotype-
aware graph indexes. Bioinformatics, 36(2), 400–407.

van den Brand, J. (2020). A deterministic linear program solver in current
matrix multiplication time. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 259–278. SIAM.
Vijaya Satya, R., Zavaljevski, N., and Reifman, J. (2012). A new strategy to reduce
allelic bias in RNA-seq readmapping. Nucleic acids research, 40(16), e127–e127.

	Introduction
	Proposed framework
	Proposed algorithms
	Results for variation graphs with SNPs
	Greedy algorithm for Problem 1
	A linear programming solution to Problem 2

	Results for variation graphs with SNPs and indels
	A greedy algorithm
	An ILP-based algorithm

	Haplotype-aware variant selection
	Experimental results
	Conclusions and open problems

