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Imaging with Local Speckle Intensity Correlations: Theory and Practice
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Fig. 1. Near-field imaging through scattering. A latent object, comprising mutually incoherent light sources, is seen through a scattering sample (e.g.,

fluorescent particles inside tissue). The image measured by the camera is degraded due to scattering. Previous approaches suggest that due to speckle

statistics, the latent image can be recovered from the auto-correlation of the speckle image. Despite the potential of this idea, many previous experimental

demonstrations considered sources a few centimeters behind the scattering layer rather than inside it, as would be desired in a real biological application.

Here, we attempt to bring the algorithm from the far into the near field regime, taking advantage of a special characteristic of near field speckles: their local

support. In the right part, both the classic full-frame auto-correlation and our approach can successfully recover the latent object when it is composed only

of a small number of illuminating points (lower right). However, our approach can also recover a significantly denser object, while the classic algorithm fails

(top right).

Recent advances in computational imaging have significantly expanded

our ability to image through scattering layers such as biological tissues

by exploiting the auto-correlation properties of captured speckle intensity

patterns. However, most experimental demonstrations of this capability

focus on the far-field imaging setting, where obscured light sources are

very far from the scattering layer. By contrast, medical imaging applica-

tions such as fluorescent imaging operate in the near-field imaging set-

ting, where sources are inside the scattering layer. We provide a theoreti-

cal and experimental study of the similarities and differences between the

two settings, highlighting the increased challenges posed by the near-field
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setting. We then draw insights from this analysis to develop a new algo-

rithm for imaging through scattering that is tailored to the near-field set-

ting by taking advantage of unique properties of speckle patterns formed

under this setting, such as their local support. We present a theoretical

analysis of the advantages of our algorithm and perform real experiments

in both far-field and near-field configurations, showing an order-of magni-

tude expansion in both the range and the density of the obscured patterns

that can be recovered.

CCS Concepts: • Computing methodologies → Computational

photography;

Additional Key Words and Phrases: Speckle, memory effect, scattering

ACM Reference format:

Marina Alterman, Chen Bar, Ioannis Gkioulekas, and Anat Levin. 2021.

Imaging with Local Speckle Intensity Correlations: Theory and Practice.

ACM Trans. Graph. 40, 3, Article 30 (July 2021), 22 pages.

https://doi.org/10.1145/3447392

1 INTRODUCTION

Developing techniques for imaging through scattering layers, and

in particular through layers of biological tissue, is a core chal-

lenge of modern imaging. The fundamental difficulty in achieving

this objective is the fact that, when an incident wave propagates

through such a layer, it interacts with its microstructure multiple

times. For example, incident light arising from a single coherent
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source will, after such a scattering process, result in images show-

ing strong speckle patterns, spread over multiple pixels.

Despite their noise-like appearance, these speckle images have

strong statistical properties relating to both the incident wave and

the scattering material that produced them. One such property,

which is the focus of this article, is thememory effect (ME): This

refers to the fact that speckle patterns are correlated and approxi-

mately shift-invariant with respect to small tilts in the illumination

or viewing angles [Akkermans and Montambaux 2007; Baydoun

et al. 2016; Dougherty et al. 1994; Osnabrugge et al. 2017; Freund

and Eliyahu 1992; Berkovits and Feng 1994; Fried 1982; Feng et al.

1988]. This property underlies many recent techniques for pro-

ducing clean images through scattering media [Katz et al. 2014;

Bertolotti et al. 2012; Takasaki and Fleischer 2014; Edrei and Scar-

celli 2016a, 2016b; Hofer et al. 2018; Wu et al. 2017, 2020; Wang

et al. 2020]. In particular, Katz et al. [2014] have demonstrated that

it is possible to recover a clean, scattering-free image of a sparse

set of mutually incoherent latent illuminators, observed through a

thick scattering layer. Their algorithmworks by simply computing

the auto-correlation of the observed speckle image and performing

phase retrieval [Fienup 1982]. This remarkable imaging capability

has strong potential for applications in medical imaging, e.g., for

imaging fluorescent cells beneath tissue and for performing non-

invasive blood flow analysis.

Unfortunately, realizing this potential in practice remains

difficult. One reason for this lies in the fundamental limitations

restricting the applicability of memory effect algorithms: For

instance, it is well-documented that the strength of the memory

effect decays fast as the displacement between the latent illumina-

tors increases [Wang et al. 2019; Schott et al. 2015]; and we show

that it is also negatively affected as the density of the latent illumi-

nators increases. Another reason is that nearly all previous demon-

strations of imaging through scatteringwith thememory effect use

illuminators and sensors that are in the far field of the scattering

layer, i.e., placed at a large distance from it. (A notable exception is

the work of Chang and Wetzstein [2018], which we discuss in de-

tail later in the article.) This setting is reasonable for applications

such as non-line-of-sight imaging [Smith et al. 2018; Freund 1990;

Katz et al. 2012; Batarseh et al. 2018; Metzler et al. 2020; Viswanath

et al. 2018; Boger-Lombard and Katz 2019]. However, it is un-

realistic for tissue imaging applications, which typically require

near-field imaging conditions. For example, in fluorescent imaging,

the fluorescing particles are inside the scattering layer, rather than

at a distance from it. Consequently, the current experimental pro-

tocol used in research papers for evaluating theory and algorithms

about the memory effect is incompatible with how these theory

and algorithms would be applied in medical imaging practice.

Our goal in this work is to draw attention to this incompatibil-

ity, show that its implications are significant, and propose ways to

align research and practice. To this end, we begin with a detailed

study of the memory effect in the near-field and far-field settings

and highlight the differences between the two settings. In partic-

ular, we introduce a new theorem that allows us to draw direct

analogies between the two settings and use physically accurate

simulations [Bar et al. 2019, 2020] to both validate and generalize

conclusions drawn from this theorem. The findings of our study

suggest that, in the near-field setting, memory effect techniques

are only practical for scattering layers of modest optical depth,

namely, scattering layers whose thickness is only a few mean free

paths. In such layers, mid-order scattering is dominant, meaning

that light undergoes a small number of scattering events. In tis-

sue, this mid-order scattering regime corresponds to layers that are

still well-beyond the maximum penetration depth of standard mi-

croscopes. Therefore, memory-effect techniques operating in this

regime can be of great practical importance for medical imaging.

Based on this observation, we proceed to investigate how to

improve imaging-through-scattering techniques in the mid-order

scattering regime. Specifically, we document a property character-

istic of speckle patterns arising due to mid-order scattering: The

speckle pattern formed on a sensor due to a single latent illumi-

nator is typically much smaller than the sensor. This local support

property has not been studied in the past and, as we show, is key for

enhancing the performance of imaging-through-scattering tech-

niques in both the far-field and near-field settings.

In particular, we first derive an analytical expression for the

signal-to-noise ratio that can be achieved when recovering

scattering-free images using the memory effect. Our analysis

suggests that there exists an optimal matched filter, corresponding

to the local spatial support of speckle patterns, that maximizes

this ratio. We then use this theoretical result to motivate and

develop a new algorithm for using the memory effect to image

through scattering, taking advantage of the local support property.

Inspired by ptychography techniques [Rodenburg et al. 2007],

our algorithm optimizes for the auto-correlation of overlapping

local windows, instead of the full-frame auto-correlation of the

entire sensor as in previous algorithms. Our algorithm can be

used to improve imaging-through-scattering performance in both

the near-field and far-field settings, so long as they operate in

the mid-order scattering regime. We demonstrate this improved

performance through experiments we perform using both near-

field and far-field imaging prototypes. Our experiments show

that, compared with previous auto-correlation approaches [Katz

et al. 2014; Chang and Wetzstein 2018], our algorithm results in

an order-of-magnitude expansion of both the range and density

of independent illuminators that can be recovered.

Implications and future outlook. Together, our theory, simula-

tions, and experiments shed light on a fundamental limit on the

performance of memory effect algorithms for imaging through

scattering: namely, their ability to recover a clean image of ob-

scured incoherent illuminators deteriorates as the density of the

illuminators increases. This is due to the fact that speckle contrast

decays quickly when summing speckle patterns from multiple il-

luminators, as shown, e.g., when comparing the sparse and dense

input images in Figure 1. The density of illuminators is a funda-

mental limit that has not previously received much attention in

the literature and is distinct from the better-studied fundamental

limit imposed by the memory effect’s finite range. That is, recov-

ering a clean image can be unsuccessful in the presence of a large

number of independent illuminators, even if all of them are within

the memory effect’s range.

Our article additionally comprehensively catalogues similarities

and differences between the far-field and near-field variants of

the imaging-through-scattering problem. In particular, our article

demonstrates that the near-field variant of the problem is harder in
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two ways. First, ME correlation applies to much shorter displace-

ments. Second, as we analyze in this article, due to restrictions on

illuminators density, the latent patterns that can be recovered in

the near-field setting are sparser and a lot more constrained in

terms of their spatial layout than in the far-field setting. Despite

these difficulties, our experimental results demonstrate that our al-

gorithm can reconstruct latent near-field patterns of considerable

size and density, both an order-of-magnitude larger than what was

possible using previous algorithms. These latent patterns already

have potential for applications in medical imaging, e.g., sparse

blinking fluorescent sources used for STORM localization [Betzig

et al. 2006] or sparse cell nuclei observed through microscopes. At

the same time, the challenges and limitations analyzed in our arti-

cle point towards the development of fully robust near-field mem-

ory effect algorithms as an important future research direction.

2 RELATED WORK

Imaging with speckle correlations. Several imaging techniques

leverage spatial speckle correlations, often termed the memory ef-

fect. Example applications include motion tracking [Jacquot and

RasTrans. Graphi 1979; Jakobsen et al. 2012; Jo et al. 2015; Smith

et al. 2017], looking around the corner [Smith et al. 2018; Fre-

und 1990; Katz et al. 2012; Batarseh et al. 2018; Metzler et al.

2020], super-resolution [Dertinger et al. 2009; Chaigne et al. 2016,

2017; Judkewitz et al. 2013], and seeing through [Katz et al.

2014; Bertolotti et al. 2012; Boniface et al. 2020] or focusing

through [Mosk et al. 2013; Nixon et al. 2013; Horstmeyer et al. 2015;

Osnabrugge et al. 2017; Vellekoop and Aegerter 2010; Papadopou-

los et al. 2016] tissue and other scattering layers.

Other techniques use temporal correlations due to scatterer

motion, e.g., in liquid dispersions [Dougherty et al. 1994; Berne

and Pecora 2000]. Temporal correlations provide information

about liquid flow (e.g., blood flow [Durduran et al. 2010]) and

composition. Example techniques include diffusing wave spec-

troscopy [Pine et al. 1988], laser speckle contrast imaging [Boas

and Yodh 1997], and dynamic light scattering [Goldburg 1999].

Imaging through scattering. Other techniques for imaging

through scattering with coherent illumination use adaptive optics

to focus at specific points inside the scattering sample [Rueckel

et al. 2006; Vellekoop and Mosk 2007; Yaqoob et al. 2008; Katz et al.

2010; Vellekoop et al. 2010; van Putten et al. 2011; Choi et al. 2011;

Katz et al. 2012; Vellekoop et al. 2012; Lai et al. 2015; Horstmeyer

et al. 2015; Boniface et al. 2019, 2020]. The main challenge for

these techniques is the non-invasive recovery of the aberration

correction pattern that the adaptive optics need to apply to achieve

focusing. The memory effect can help alleviate this challenge by

allowing to adapt a previously recovered pattern to focus at differ-

ent nearby points [Osnabrugge et al. 2017].

Other approaches for imaging through scattering use inco-

herent illumination and rely on incoherent intensity models

for scattering [Durduran et al. 2010]. Many of these tech-

niques take advantage of additional information available in

time-resolved measurements, captured using so-called transient

imaging systems [Satat et al. 2015, 2016, 2017; Xin et al. 2019].

Noteworthy within this category are diffuse optical tomography

techniques [Boas et al. 2001; Liu et al. 2020], which use diffusion

theory to achieve larger depth penetration, at the cost of reduced

resolution compared to coherent techniques.

Improving speckle correlation algorithms. Speckle auto-

correlation algorithms for imaging through scattering have

recently received increased attention, with several works fo-

cusing on improving depth penetration, angular extent, and

overall robustness. For example, Wang et al. [2019] proposed to

decompose the auto-correlation as a superposition of multiple

local auto-correlations, resulting in a threefold improvement in

angular extent. Li et al. [2018a] extract spatially varying point

spread functions from the speckle correlation using a sequence of

illumination patterns. Other techniques [Liao et al. 2019; Chang

and Wetzstein 2018] improve robustness by adding sparsity priors

on the latent image. Complementary to these techniques are

works [Li et al. 2018b; Guo et al. 2020] that use learning-based

approaches to allow recovering illuminator patterns wider than

the memory effect range. However, these come at the cost of

reduced generality—only patterns similar to those available in

constrained training datasets (e.g., handwritten digits) can be

recovered.

Finally, related to our work are techniques that use ptychogra-

phy [Rodenburg et al. 2007] to increase the memory effect range

[Zhou et al. 2020; Gardner et al. 2019; Li et al. 2019a, 2019b]. These

techniques take multiple images as input, each corresponding

to illuminating a different area on the scattering sample. By con-

trast, our algorithm works using just a single image as input.

3 PROBLEM SETTING AND BACKGROUND

In this section, we formalize the imaging through scattering

problem and clarify the distinction between near-field and far-

field imaging conditions. We additionally provide background on

speckle statistics, the memory effect, and its use for imaging

through scattering.

Imaging geometry. We consider the setup in Figure 2(a). Without

loss of generality, we assume that the optical axis of the system is

aligned with the z axis. A scattering sample (e.g., tissue layer) of

thickness L is positioned between depth planes zmin = −L/2, and
zmax = L/2. We assume that the scattering sample has a width in

the x ,y dimensions that is much larger than the depth L.
The sample is illuminated by multiple co-planar sources located

at depth zi . The light propagates through the scattering sample

and generates a speckle pattern, measured by a 2D sensor at depth

zv . This can be either a lensless sensor physically located at zv
(Figure 2(a)), or an imaging system focused at zv (Figure 2(b)).

We denote by i, v the 3D position of illumination and viewing

points, and by ix,y , vx,y their x−y restriction to the z=zi and

z=zv planes, respectively.

We restrict our discussion to the transmissive setting, where the

illuminators and the sensor (or imaging lens) are placed at oppo-

site sides of the scattering sample. Within this setting, selecting

zi = zmin corresponds to cases where the illuminators are imme-

diately at the back of the sample (e.g., isotropic fluorescent sources

inside the sample or confocal illumination focused at that depth).

We refer to such cases as near-field configurations (Figure 2(c)). By

contrast, selecting zi � zmin corresponds to cases where the il-

luminators are placed at a large distance from the sample, as is
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Fig. 2. Notation for memory effect parameters. (a) A sample is illuminated by sources at distance zi behind it. Light propagates through the sample

to generate a speckle pattern on a sensor plane at depth zv . (b) The same scene is imaged using a lens focused at the illuminator plane so zv = zi . (c) In

near-field configurations, the light is located inside (or at the back face of) the sample rather than far behind it. (d) A typical speckle image obtained on the

sensor, as the superposition of scattering from two sources. We mark the illumination and viewing points and the displacements Δi , Δv , τ between them.

common in prior experimental realizations of imaging through

scattering using the memory effect [Katz et al. 2014; Bertolotti

et al. 2012; Edrei and Scarcelli 2016a; Hofer et al. 2018; Li et al.

2018b]. We refer to such cases as far-field configurations. At the

extreme case, the illuminators can be located at (negative) infinity,

which corresponds to illuminating the scenewith directional plane

waves. When not clear from context, we denote these directional

far-field sources and sensors using vectors with a circumflex, î, v̂,

corresponding to their (unit-norm) directions.

Speckle statistics. We denote by ui (v) the complex speckle field

generated when light from source i propagates through the scat-

tering sample and is observed at viewing point v. We denote by

I i (v) = |ui (v) |2 the corresponding measured intensity.

Consider a scattering sample illuminated by two mutually co-

herent sources at i
1, i2, and measured at two sensor positions

v
1, v2. Then, we define the speckle covariance as:

Cf (ui
1
(v1),ui

2
(v2)) ≡ E

[
ui

1
(v1)ui

2
(v2)

∗]
− E

[
ui

1
(v1)

]
E
[
ui

2
(v2)

∗]
,

(1)

where ∗ denotes complex conjugation, and expectation is taken

with respect to multiple realizations of random media with the

same statistical properties (e.g., multiple tissue layers of the

same type and thickness). Similarly, we can define the intensity

covariance1:

CI (I i
1
(v1), I i

2
(v2)) ≡ E

[
I i

1
(v1)I i

2
(v2)

]
− E

[
I i

1
(v1)

]
E
[
I i

2
(v2)

]
.

(2)

Using classical statistics, it is easy to show that for zeromean fields:

CI (I i
1
(v1), I i

2
(v2)) = ���Cf (ui1 (v1),ui2 (v2))���2. (3)

We can now use these quantities to formally describe the mem-

ory effect (ME) property of speckle fields. We consider the speckle

fieldsui
1
,ui

2
generated by two nearby illuminators i1, i2, displaced

relative to each other by a vector Δi ≡ i
2
x,y − i1x,y . The ME refers

to the fact that ui
1
,ui

2
will be correlated shifted versions of each

other. That is, there exists a displacement vector Δv in the view

plane such that

ui
1
(v) ≈ ui

2
(v + Δv ). (4)

1Intensity correlations are independent of the phase of the signal, and hence they do
not require the sources to be mutually coherent.

In Section 4, we prove that for any given illuminator displace-

ment Δi , we can compute an optimal view-plane displacement

Δv
opt (Δi ) that maximizes the above correlation.

We show examples of the ME property in Figure 5: Speckle

patterns are similar when generated by nearby illuminators, but

become different as the illuminator displacement increases. This

points to the fact that the ME property holds only for small dis-

placements |Δi | between light sources, with the correlation de-

creasing as the displacement increases. To quantify how the ME

correlation decays as a function of displacement, it is common to

measure the sum of speckle correlations at all sensor pixels. For

applications considering field correlations (e.g., adaptive optics for

focusing through scattering [Judkewitz et al. 2014; Osnabrugge

et al. 2017; Horstmeyer et al. 2015; Papadopoulos et al. 2016]), this

corresponds to:

Cf (Δi ) =
∑
vx,y

eik (θ
opt (Δi ) ·vx,y )Cf

(
ui

1
(vx,y ),u

i
2 (
vx,y + Δv

opt (Δi )
))
,

(5)

where eikθ
opt (Δi )vx,y is a phase correction, which is required to

make Cf (Δi )meaningful, since the correlation at individual pixels

are complex with possibly different phases. We derive the optimal

frequency θopt (Δi ) in Appendix A.1. For applications considering

intensity correlations, such as the imaging-through-scattering task

we study in this article, the ME is instead quantified using:

CI (Δi ) =
∑
vx,y

CI
(
I i

1
(vx,y ), I

i
2 (
vx,y + Δv

opt (Δi )
))
. (6)

In both Equations (5) and (6), the correlation is evaluated with the

optimal view-plane displacement corresponding to the illuminator

displacement. We assume that, for a wide homogeneous sample,

this correlation depends only on the displacement Δi , rather than

on the exact spatial positions i1x,y , i
2
x,y of the illumination sources.

Wewill call theME range themaximum displacementΔi for which

the correlation CI (Δi ) remains significant.

Using ME to image through scattering. We now briefly review the

method of Katz et al. [2014] for imaging through scattering using

the ME. We will be using this method as our baseline throughout

the article. Consider a speckle image I generated when a scatter-

ing sample is illuminated simultaneously by K mutually incoher-

ent sources ik on one side and imaged by a camera on the other

side. The camera measures the incoherent summation of speckle
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Fig. 3. Image formationmodelwithin thememory effect [Katz et al.

2014]. S is the speckle pattern from a single illuminator, O is a binary

image of illuminator locations, and I is the imagemeasured by the camera.

intensities,

I (v) =
∑K
k=1

I i
k
(v), (7)

where I i
k
(v) denotes the intensity image from the kth source.2

We denote by S ≡ I (0,0) (vx,y ) the speckle image generated by a

source ix,y = (0, 0). If all K sources are within the ME range, then

all I i
k
(v) images are shifted versions of S . Denoting byO a binary

latent image corresponding to the locations of all K sources (i.e.,

the image the camera would capture in the absence of the scatter-

ing sample), we can write I = O � S , where � denotes correlation,

as visualized in Figure 3. We note that, if we replace I and S by

Ī ≡ I − μ (I ), S̄ ≡ S − μ (S ), (8)

μ (I ), μ (S ) being signal means, then the same correlation relation

holds.

The image Ī typically exhibits noise-like speckle, making it dif-

ficult to discernO . We can, however, consider its auto-correlation,

Ī � Ī = (O � S̄ ) � (O � S̄ ) = (O �O ) � (S̄ � S̄ ). (9)

As the intensity values in S̄ are approximately zero-mean inde-

pendent noise, its auto-correlation is approximately an impulse,

S̄ � S̄ ≈ δ . Thus, the auto-correlation of Ī is approximately equal

to the auto-correlation of O ,

Ī � Ī ≈ O �O . (10)

Therefore, we can recover O from Ī � Ī using phase retrieval al-

gorithms, e.g., the classical algorithm by Fienup [1982] or more

robust strategies [Li et al. 2018b; Guo et al. 2020]. We refer to this

procedure as the full-frame auto-correlation algorithm in the rest

of the article.

A serious shortcoming of the full-frame auto-correlation algo-

rithm is that the range of illuminators it can recover is small, as the

maximal displacement between the illuminators |ik1 − ik2 | needs
to be within the ME range, which is typically very small. Addi-

tionally, our article highlights another shortcoming that has re-

ceived less attention in the literature, namely, that recovery is only

possible when the number of illuminators K contributing to Equa-

tion (7) is sufficiently small. Our goal in this article is to quantify

and compare these constraints in the far-field and near-field set-

tings; as well as to propose a new algorithm for imaging through

scattering that can significantly relax these constraints.

2As the sources are incoherent, the camera measures
∑K
k=1

I i
k
(v) rather than

|∑K
k=1

u i
k
(v) |2.

4 COMPARING NEAR-FIELD AND FAR-FIELD

SETTINGS

We start by exploring some properties of speckle statistics, with

a focus towards understanding the relationship between speckle

statistics in the near-field and far-field settings. In particular, we

explore the effect of the parameters zi and zv , shown in Figure 2,

on speckle correlations. The depth zi of the illuminators is relative

to the scattering sample controls whether we are in the near-field

and far-field settings, and thus investigating how speckle correla-

tions vary as a function of this parameter can help us understand

the differences between the two settings. The depth zv of the view-

ing plane corresponds to experimental choices such as deciding

whether to measure speckle using a bare sensor on the front face

of the sample, versus using a lens to focus the sensor at a different

plane. We will use the observations we make in this section to de-

velop better imaging-through-scattering algorithms in subsequent

sections.

4.1 Analytic Field Correlation Relationship

In this section, we focus on correlation of complex fields (Equa-

tion (5)); we will discuss the correlation of intensity images later.

We derive a new technical result that allows converting between

field correlations in the near-field and far-field settings.

Claim 1. Let Cf (Δi |z ji , z
j
v ) denote the field correlation in Equa-

tion (5), with illuminators and sensors placed at planes z
j
i , z

j
v , re-

spectively. Then, correlationsmeasured at different illuminator place-

ments can be related through a displacement scaling as:

Cf
(
Δi |z1i , z

1
v

)
= Cf ��

z1i

z2i
Δi |z2i , z

2
v
�
� , (11)

where in both cases correlation is evaluated at the optimal view-plane

displacement given by

Δv
opt (Δi ) =

zv
zi

Δi or equivalently
Δv

opt (Δi )

zv
=

Δi

zi
. (12)

We provide the proof in Appendix A.1 relying on ideas in Bar

et al. [2021]. We will be using

Δ̂i ≡
Δi

zi
, Δ̂v ≡

Δv

zv
(13)

to denote normalized displacements. For small angles, the normal-

ized displacement Δ̂i is equal to a first-order approximation to the

angle two illuminators displaced by Δi at depth zi form with their

midpoint on the plane z = 0 in the middle of the sample; and sim-

ilarly for Δ̂v . We visualize these angles in Figure 4(a). Thus, we

refer to Δ̂i , Δ̂v as the angular displacements.

Claim 1 has three important implications: First, it states that

field correlation is a function of only the angular displacement be-

tween the illuminators, and not their actual distance. Second, it

states that field correlation is invariant to the viewing plane zv , as
long as the view-plane displacement is scaled as in Equation (12) to

maintain a fixed angle with the scattering sample. Third, it states

that we can convert field correlations between the far-field (large

zi values) and near-field (small zi values) settings. This may be

useful for translating knowledge about the far-field setting into

the near-field setting.
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Fig. 4. Dependence of correlation on angular displacement. (a) Setup for simulation in (b)–(e), highlighting the angular displacement Δ̂i corresponding

to spatial displacements Δi at different illumination planes. Plots (b)–(e) evaluate ME decay for three distances of the illumination source, and two focus

settings. (b) Field correlation, plotted as a function of absolute displacement Δi . Far sources has much wider ME extant. (c) When plotted as a function

of angular displacement, all configurations lead to the exact same decay, regardless of the actual distance of illumination and view planes. That is, field

correlation is a function of angular displacement Δ̂i rather than actual spatial displacements. (d) Intensity correlations as a function of spatial displacement

are also much wider for far sources. (e) Intensity correlations as a function of angular displacement are not fully invariant to source distance. (f)–(g) Varying

the view plane zv for a fixed illumination plane zi shows that the widest intensity correlation is obtained when the sensor focuses at the illuminator plane.

(h) Setup for (i)–(j). (i) Near field intensity correlation as a function of absolute displacement, evaluated for a few material thickness. As the optical depth

grows, ME correlation shrinks. For thick slices, the largest displacement at which correlation holds can be too small for any practical usage. (j) Same as (i)

but for far sources. In this case, correlation at non zero displacements can be found even for thicker materials.

Claim 1 applies to the correlations of complex fields. However,

imaging-through-scattering algorithms use correlations of speckle

intensities. Unfortunately, we have not found a similar closed-form

relationship for intensity correlations. However, the intuition that

such correlations depend mostly on angular displacements still

holds. In the following, we explore intensity correlations using nu-

merical simulations as well as real tissue measurements.

4.2 Simulation-based Exploration

In this section, we use the physically accurate speckle render-

ing algorithms of Bar et al. (2019, 2020) to perform simulated ex-

periments with two objectives in mind: First, we want to vali-

date the predictions of Claim 1 for field correlations. Second, we

want to explore properties of intensity correlations. In our simu-

lations, we use scattering material parameters commonly used in

medical imaging to model tissue [Igarashi et al. 2007]. In partic-

ular, we simulate a scattering sample with a Henyey-Greenstein

phase function of anisotropy parameter д = 0.99, and mean free

path MFP = 50μm at wavelength λ = 0.5μm. Except where noted

otherwise, we set sample thickness to L = 200μm, resulting in

an optical depth OD = 4. We consider three illumination plane

settings: (i) zi = zmin=−100μm, a near-field configuration where

illuminators are placed at the back face of the sample; (ii) zi =
−300μm, representing a small gap between the illuminator plane

and the sample; (iii) zi = −1cm, which is large enough to corre-

spond to a far-field configuration. The second case is represen-

tative of experimental near-field realizations where fluorescent

patterns are not really attached to the sample, but rather are pro-

jected onto it using a—potentially misfocused—relay lens [Chang

andWetzstein 2018]; or where fluorescent particles need to remain

separated from the sample by a thin cover glass. These situations

motivate our experiments to understand the effect of the resulting

gap on speckle correlations. For each zi setting, we consider two
viewing plane settings: (i) zv = zi , corresponding to a sensor that

is focused, through an imaging lens, at the illuminator plane; and

(ii) zv = −zi , corresponding to a sensor placed at some distance

from the front face of the sample. This case is representative of

how far-field ME is often measured in practice, by placing a bare

sensor far enough from the sample.

Dependence of correlation on angular displacement. In

Figure 4(b)–(c), we simulate field correlation values Cf as a

function of either absolute displacement Δi , or angular displace-

ment Δ̂i , for the six different configurations of illuminator and

view planes zi , zv described above. When parameterizing Cf
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by Δi , increasing the distance between the sample and illumi-

nator plane increases the ME range. This is due to the fact that

increasing this distance while keeping Δi constant reduces the

angular displacement of the sources. As suggested by Claim 1,

parameterizing Cf by Δ̂i makes all six configurations identical,

showing that field correlations are invariant to the illuminator

and view plane locations zi , zv .
In Figure 4(d)–(e), we repeat the above experiments, but this

time simulating intensity correlation values CI , which are the

actual input to the imaging-through-scattering algorithms we

develop later. As in the field case, when we parameterize CI by

absolute displacementΔi , the correlation significantly increases as

the distance of the illuminator plane zi increases. Parameterizing

CI as a function of angular displacement Δ̂i brings the six different

configurations closer to each other, suggesting that, similarly to

field correlation, intensity correlation also depends more strongly

on angular displacement Δ̂i than on absolute displacement Δi .

However, in contrast to the field correlation case, the six configura-

tions are not equivalent, indicating that intensity correlations are

not completely independent of absolute displacements.We explain

this difference between field and intensity correlations in Appen-

dix A.1; recall in particular that from Equations (5) and (6), CI (Δ̂i )

is not the squared amplitude of Cf (Δ̂i ).

Dependence of intensity correlation on view plane. Figure 4(g)

demonstrates that, unlike field correlations Cf , intensity correla-

tions CI are sensitive to the selection of the viewing plane zv . In
particular, we note that intensity correlation is maximized when

the viewing plane coincides with the illuminator plane, zv = zi .
This is an important practical observation. Often, such experi-

ments use a bare sensor placed on the front face of the sample

to measure speckle correlations. Our results suggest that we can

increase the measured ME through a simple change in the imaging

setup, namely, using a lens positioned in such a way that if there

were no scattering sample, the sensor would image the illumina-

tor plane zi . We refer to this imaging configuration as the focused

configuration. We validate this observation below using real tissue

measurements.

ME ranges in practical near-field and far-field configurations. As

ME range depends mostly on the angular displacement Δ̂i , the

size of the latent pattern one can handle using ME techniques in-

creases when this pattern is placed further away from the scat-

tering sample. This observation explains why imaging-through-

scattering experiments are easier to perform in the far-field than in

the near-field. In particular, even though the intensity correlation

decay as a function of angular displacement is similar for near-field

and far-field configurations, in the near-field case, the correspond-

ing maximal absolute displacement Δi can become smaller than

the wavelength.

To demonstrate this, in Figure 4(i), we simulate intensity corre-

lation values in a near-field configuration, for scattering samples

of progressively larger depths, with all other sample parameters

remaining the same. This corresponds to increasing the optical

depth of the sample, and thus increasing the average number of

light scattering events; in turn, this results in a faster decay of

intensity correlation as a function of absolute displacement Δi .

The evaluation shows indeed that, for thick samples, near-field

ME vanishes for any realistic displacement. By contrast, when

repeating the same simulations for a far-field configuration, as in

Figure 4(j), we observe that the ME range remains non-negligible

even for thick scattering samples. By moving the illuminator

plane further away from the sample, we can scale the ME range

to cover latent patterns of any size.

These simulations suggest that ME techniques in the near-field

setting are only applicable for scattering samples of modest thick-

ness, wheremid-order scattering is dominant. Consequently, in the

next section, we focus on exploring properties of speckle patterns

formed under these conditions that can facilitate the development

of imaging-through-scattering algorithms. We note here that the

exact sample depth at which near-field ME is non-negligible will

vary for different types of scattering materials. In particular, there

are significant variations in the material parameters reported as

representative of tissue in the literature [Cheong et al. 1990; Tuchin

2000; Igarashi et al. 2007]. We used one set of such parameters

for our simulations, but the exact correlation values will be dif-

ferent for other tissue parameters. Therefore, our simulations, and

in particular the near-field correlation plots in Figure 4(i), are not

intended to precisely predict a tissue depth at which near-field ME

vanishes, but rather to support our observation that near-field ME

is only non-negligible under modest thicknesses corresponding to

mid-order scattering. In practice, for chicken breast tissue, we de-

tect near-field correlations for samples up to 200μm thick. Despite

the modest thickness of the samples, images captured through

them still contain considerable degradation that can benefit from

speckle correlation techniques.

4.3 Qualitative Validation Using Real Measurements

Before concluding this section, we present results from real mea-

surements of chicken breast tissue. Data was captured using a

near-field experimental imaging setup, described in Section 8.1.

These results lend support to the observations presented earlier

in this section.

Empirical correlation decay. In Figure 5, we use near field speckle

images to demonstrate how intensity correlation CI decays as

a function of absolute displacement Δi . We compute CI (Δi ) by
empirically correlating the captured speckle images. We perform

measurements for different placements of the view and illumina-

tor planes. We first compare the intensity correlation plots CI (Δi )
measured when the sensor is focused at the illuminator plane, ver-

sus when it is focused at a different plane. TheME range is wider in

the former case, as predicted by our simulations. We then compare

the intensity correlations CI (Δi ) measured for two placements of

the illuminator plane: one where it is exactly at the back plane of

the sample and another where it is at a distance of 200μm from

the back plane. In both of these cases, the sensor is focused at

the illuminator plane. In agreement with our earlier observations,

our measurements show that placing the illuminators at a distance

from the sample results in an increased ME range, when measured

as a function of absolute displacement Δi rather than angular dis-

placement Δ̂i . That is, even a small distance of 200μm, which can

occur in experiments due to misfocusing, can significantly impact

the ME range.
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Fig. 5. Near-fieldME.We present speckle images captured when placing

an illuminator at three nearby positions; speckle patterns are shifted ver-

sions of each other, demonstrating the ME. The speckle spread is smallest

when the illumination source is located exactly at the back plane of the

sample and the objective distance is set to focuses on that plane. Focusing

the objective on a closer plane (2nd row) results in wider speckles. Com-

putingME correlation empirically from the captured speckles (lower part),

we see that ME correlation holds for larger displacements when the cam-

era is properly focused. We also test the option of moving the light source

200μm further than the back layer while correctly focusing on the illumi-

nation plane. In this configuration, higher correlation is measured at wider

displacements.

Summary of important observations. To conclude this section,

we summarize three important observations we presented: (i) We

showed that, in near-field settings, the ME range is non-negligible

only for scattering samples of modest optical depth, with a thick-

ness of only a few mean free paths. Such layers are dominated by

mid-order scattering. (ii) We showed that it is important to use a

focused configuration where the view plane coincides with the il-

luminator plane to maximize the ME ranges. (iii) We showed that

care needs to be taken when placing the illuminators behind the

scattering sample, as even a small gap between the two can artifi-

cially increase the ME range, even if such a gap is unrealistic for

applications such as fluorescent imaging. In the rest of the article,

Fig. 6. Local support property. Images of far-field illumination scatter-

ing through a chicken breast slice of thickness 250μm, for a focused and

a bare sensor. Imaging with a focused sensor reduces the speckle sup-

port. We show speckle images for three different positions of the illumi-

nation source. The insets demonstrate the ME, namely, that the speckle

patterns generated by different illuminators are shifted versions of each

other. Lower panel: empirical speckle correlation CI (Δ, τ ) (as defined in

Equation (17)) evaluated from the focused data at the second panel. The

correlation is displayed as a function of the 2D displacement vector τ
for three different choices of illuminator displacements Δ̂0 = (0, 0)◦, Δ̂1 =

(0.18, 0)◦, Δ̂2 = (1.6, 0)◦. Due to the modest sample thickness, speckle

spread is local, and so is the correlation.

we focus on experimental settings using samples of modest thick-

ness, properly focused sensor, and carefully placed illuminators, as

informed by the above three observations.

5 THE LOCAL SUPPORT PROPERTY

In this section, we document and characterize a property of speckle

patterns formed under conditions where mid-order scattering is

dominant. In particular, in Figures 5 and 6, we show speckle pat-

terns measured through a tissue layer of modest thickness, using

our near-field and far-field imaging setups. We observe that the

speckle patterns have local support, much smaller than the full ex-

tent of the sensor. Local supports are prevalent in biological tissue

samples of modest thickness, as the phase functions characteriz-

ing these samples are strongly forward-scattering—their average

cosine is typically д > 0.95. Given such phase functions, light en-

tering the sample with direction î will, after undergoing a small

number of scattering events, spread primarily towards outgoing

directions v̂ ≈ î. As we will show in the next section, the local

support property of speckle patterns due to mid-order scattering

is key for improving imaging-through-scattering algorithms based
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on the ME. Given its importance, we use this section to study this

property in more detail.

Effect of focusing on speckle support. In Section 4, we showed

that using a lens to focus the sensor at the same plane as the illu-

minators is important for increasing the ME range. Figures 5 and 6

demonstrate an additional advantage of using this focused con-

figuration: In both the far-field and near-field settings, focusing

decreases the speckle spread. Intuitively, the wider spread of non-

focused configurations can be explained by the fact that the sup-

port of the scattered field is convolved with a defocus blur kernel.

Far-field versus near-field speckle patterns. Speckle patterns

formed under far-field and near-field settings both exhibit the local

support property. However, far-field patterns, such as those shown

in Figure 6, include many more speckle features compared to near-

field ones, such as those shown in Figure 5. We will see in subse-

quent sections that this difference makes imaging through scatter-

ing in the near-field setting more challenging than in the far-field

setting.

Extended parameterization of intensity correlation. For the rest of

this article, we restrict the discussion to focused configurations,

where zv = zi . In this case, we get from Equation (12) that the dis-

placement on the illuminator plane and the corresponding optimal

displacement on the view plane are equal. Thus, we simplify no-

tation using Δ ≡ Δi = Δv
opt (Δi ) for both displacements, leading

to:

i
2
x,y − i1x,y = v

2
x,y − v1x,y = Δ. (14)

We note that the definition of the intensity correlation CI (Δ) in
Equation (6) treats all pixels v1x,y equally and does not consider

the location of the pixel v1x,y relative to the illuminator location

i
1
x,y . This is due to the fact that most prior literature on the

ME focuses on settings where speckle patterns cover the entire

sensor plane (e.g., cases where high-order scattering is dominant).

Consequently, correlation does not vary significantly at different

locations v1x,y on the sensor, and it is sufficient to analyze how

correlation CI decays as a function of the displacement Δ alone.

By contrast, in our setting, the local support property implies

that speckle patterns generated by an illuminator at location

i
1
x,y are concentrated at pixels in locations v1x,y adjacent to i

1
x,y .

This suggests that correlation can vary at different locations

v
1
x,y on the sensor: For example, as we move away from i

1
x,y ,

less light is measured, and we expect correlation to be reduced.

To characterize this effect of the local support property, we will

modify the definition of the intensity correlation CI so it takes

as input the displacement between the illuminator and the pixel

rather than only the displacement between the two sources.3

To this end, we denote the 2D displacement between the illumi-

nator and pixel locations as:

τ ≡ v
1
x,y − i1x,y . (15)

3We note that Judkewitz et al. [2014] have observed that materials with forward-
scattering phase functions produce speckle patterns with local support, and also that
this results in thesematerials having a largerME range. In particular, they showed that
the local support of the speckle patterns is related to a larger ME range, as Cf (Δ) is
the Fourier transform of the angular speckle spread. However, their study still weighs
all sensor pixels equally when computing correlation values.

We visualize both τ and Δ in Figure 2(d). For illuminator and pixel

pairs satisfying Equation (14), it follows that:

v
1
x,y − i1x,y = v

2
x,y − i2x,y = τ . (16)

Then, we define the intensity correlation for illumination and

pixel pairs satisfying both the illuminators displacement relation

of Equation (14) and the illuminator-pixel displacement relation of

Equation (16):

CI (Δ,τ ) ≡ CI
(
I i

1
x,y (i1x,y + τ ), I

i
1
x,y+Δ (i1x,y + τ + Δ)

)
, (17)

where the intensity covariance CI (I i
1
(v1), I i

2
(v2)) was defined in

Equation (2). We note that we can relate this definition to the def-

inition of intensity correlation as a function of Δ alone in Equa-

tion (6) through the equation CI (Δ) =
∑
τ CI (Δ,τ ).

To demonstrate empirically the importance of parameterizing

the intensity correlation CI as a function of both Δ and τ , we use
speckle images captured from chicken breast tissue samples with

a far-field experimental imaging setup described in Section 8.1 be-

low. In Figure 6, we show the intensity correlation CI (Δ,τ ) com-

puted from the image measurements. We can observe that CI
varies significantly as a function of both Δ and τ , and in partic-

ular that it quickly decays as the distance τ between the illumina-

tor and pixel location increases. A schematic of the displacments

Δ,τ is visualized in Figure 2(d). To our knowledge, the local sup-

port property and its effect on intensity correlations have not pre-

viously been used for imaging-through-scattering applications. In

the next section, we provide a theoretical justification for using

this property; then, in Section 7, we use it to develop an improved

algorithm for imaging through scattering.

6 SIGNAL-TO-NOISE RATIO ANALYSIS

Previous studies of the full-frame speckle auto-correlation al-

gorithm that we described in Section 3, for example by Wang

et al. [2019], have focused on how the limited ME range constrains

the size of the latent illuminator pattern that can be recovered. In

this section, we study a second constraint on the recoverable latent

illuminator pattern that has received little attention in the litera-

ture (see limited discussion in the supplement of Katz et al. [2014]):

the fact that reconstruction is usually successful only when the

number of different illuminators K in Equation (7) is sufficiently

small. When a large number of incoherent sources contribute to

the measured intensity image, speckle contrast decays and cor-

relation becomes noisier. For example, this difference in speckle

contrast is noticeable when comparing the sparse and dense in-

puts of Figure 1. We show that, by taking advantage of the local

support property we described in the previous section, we can sig-

nificantly increase the signal-to-noise ratio (SNR) of the correla-

tion, and consequently, the density of illuminators we can recover.

We note that the reconstruction algorithm by Katz et al. [2014] has

two parts: first computing speckle correlation, and then perform-

ing phase retrieval. The focus of our analysis is on the first part, the

SNR at which correlation can be computed. Even thoughwe expect

that the performance of the phase retrieval part will also improve

as the noise characteristics of its input improve, a detailed analysis

of phase retrieval convergence is beyond the scope of this work.

ACM Transactions on Graphics, Vol. 40, No. 3, Article 30. Publication date: July 2021.



30:10 • M. Alterman et al.

We are given a speckle image I formed as in Equation (7) and

want to examine whether illuminators i1, i2 contributed to its for-

mation. Denoting the illuminator displacement Δ = i
2
x,y − i1x,y as

in Equation (14), we can multiply the zero-mean speckle image

Ī with its shifted copy, then form a correlation estimate using

weighted pixel averaging:

cemp (i
1
x,y ,Δ) =

∑
τ w (Δ,τ )Ī (i1x,y + τ )Ī (i

1
x,y + τ + Δ). (18)

We expect cemp to have a large value when an illuminator pair

i
1
x,y , i

1
x,y + Δ exists and a value close to zero otherwise. When

computing full-frame auto-correlation, as in Equation (10), the spa-

tial weightsw are uniform over the entire image I . However, if we
know that the speckle patterns have local support, we can consider

setting non-zero weights w only in a window around i
1
x,y , rather

than in the entire image. We state a new technical result showing

this can drastically improve SNR, and derive the optimal weighting

strategy.

To formulate this result, we denote by P the number of sen-

sor pixels and by F the number of speckle features in the image,

where a feature refers to a diffraction-limited speckle spot. We

have F ≤ P , where a gap F < P happens for two possible reasons:

First, depending on the aperture, a diffraction limitted feature can

spread over more than a single pixel; and second, even for single

pixel features, the combined speckles from all illuminatorsmay not

cover the entire sensor. Additionally, we denote by K the number

of illuminators.4 Using these notations, we define the density of

independent illuminators as

α ≡ K/F . (19)

Using the density definition, we state the following claim:

Claim 2. The signal-to-noise ratio of the estimator of Equa-

tion (18) is

SNR =
E
[
c emp (i

1
x,y,Δ)

]2
Var

[
c emp (i

1
x,y,Δ)

] = |∑τ w (Δ,τ )CI (Δ,τ ) |2
α 2 ·∑φ |w (Δ,φ ) |2 · |∑τ CI (0,τ ) |2

, (20)

and is maximized by the matched filter w (Δ,τ ) ≡ CI (Δ,τ ),
reaching

SNRmatched =
∑
τ |CI (Δ,τ ) |2

α 2 · |∑τ CI (0,τ ) |2
. (21)

We provide the proof in Appendix A.2. Algorithmically, using

the matched filter requires averaging only within the local image

window where we expect to have speckle from illuminator i1, and

not within the entire sensor as in the full-frame auto-correlation

algorithm. We provide algorithmic details in Section 7.

Implications. Claim 2 suggests that using the matched filter in-

stead of uniform summation over the image can significantly im-

prove SNR. To qualitatively characterize this improvement, we as-

sume for simplicity that the size of a speckle feature is one pixel,

the support of the speckle pattern due to one illuminator is N pix-

els, and all sensor pixels receive light from at least one illuminator,

so F = P . Suppose also that CI (Δ,τ ) = 1 inside the support and 0

otherwise. From Claim 2, the matched and uniform filters achieve

SNRs of

SNRmatched = 1/(α 2N ), SNRuniform = 1/(α 2P ). (22)

4In the supplement of Katz et al. [2014], density is defined as the area of high emission
in the target, divided by the area of a diffraction limited spot.

Fig. 7. SNR gain. We visualize the correlation c emp (i
1
x,y, Δ) over a 1D

line (highlighted on O ). As this line includes three different illuminators,

we expect to detect high correlations at three displacements. Correlations

resulting from the matched filter (red curves) are less noisy than corre-

lations from full-frame averaging (blue curves). We simulated observed

images I due to the same illuminator arrangement O and three differ-

ent speckle support sizes, visualized as insets at the top right corner of the

corresponding observed images. As predicted by our theory, SNR improves

for medium speckle support size, but decays for very small and very large

support sizes.

Therefore, using the matched filter versus full-frame averaging

improves SNR by N /P . When the sensor size is a few megapix-

els and the speckle support of each illuminator is only 100 × 100
pixels, this translates into an SNR improvement of two orders of

magnitude.

We can also use Claim 2 to understand what illuminator density

α we can expect to reliably detect. Suppose that for good detec-

tion we seek an SNR larger than a threshold R. As before, assume

speckle features are single-pixel wide and the full sensor is cov-

ered by speckles. The matched and uniform filters lead to different

upper bounds on the recoverable density:

αmatched <
1
√
NR
, αuniform <

1
√
PR
. (23)

Selecting, e.g., R = 100 as a threshold for reliable detection, and

given P =F =106, we find that a uniform filter can reliably detect

only one illuminator per 104 pixels. By contrast, if the speckle sup-

port from one illuminator includes N =104 pixels (e.g., a 100 ×
100 support), then the matched filter can reliably detect one
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illuminator per 103 pixels; for N =102, this becomes one illumi-

nator per 102 pixels.

We note that the above limits on SNR as a function of illumina-

tor density hold even if all illuminators are within the ME range.

Therefore, the constrained density is a fundamental limitation of

the full-frame auto-correlation method for which there is limited

discussion in the literature.

Visualizing the SNR gain. In Figure 7, we use a synthetic exam-

ple to visualize the SNR gain achieved using the matched filter. We

generate speckle images using the idealized formula I = S �O , so
all pixels are inside the ME range. We use three speckle patterns

S of different support for the same latent image O . We then com-

pute cemp (i
1
x,y ,Δ) as in Equation (18), for the i

1
x,y point marked

in Figure 7(a). For simplicity, we vary Δ only over one horizontal

line marked in the figure. As the line contains only three illumina-

tors, we ideally expect high correlation only for three translation

values. We observe that, in agreement with Claim 2, uniform aver-

aging produces significantly noisier correlations than the matched

filter (compare the red and blue curves in Figure 7). In Figure 7(c),

where we use a medium support N , the matched filter produces

sharp correlation peaks at the correct displacements. In Figure 7(d),

we increase the support N , and the matched-filter correlation be-

comes noisier; this agrees with Equation (22), which states that

SNRmatched decays as the support N increases.

We now consider Figure 7(b), where we use a small support

N , and some sensor pixels do not receive light. The correlation

becomes worse than that obtained with the medium support in

Figure 7(c). To understand this, we note that when transitioning

from the medium support in Figure 7(c) to the large support in

Figure 7(d), the illuminator density α as defined in Equation (19)

remains the same; as in both cases, the entire sensor is covered

by speckle features so the feature number F remains the same. By

contrast, in the case of small support in Figure 7(b), the density α
is higher; this is because the number of sensor pixels covered by

speckle, and thus the number of speckle features F , are both re-

duced. Consequently, from Equation (22), the SNR is also reduced.

This example is important for understanding the near-field setting,

where typically speckle support sizes are small and the speckles

from all illuminators do not cover the entire sensor.

7 OPTIMIZING USING LOCAL SUPPORT

The previous section provides theoretical justification for using

the matched filter, rather than uniform weights. In this section,

we develop a new algorithm for imaging through scattering that

explicitly takes into account the local support.

We begin by noting that, in many practical cases, we cannot

measure the exact correlation CI (Δ,τ ), and thus cannot compute

the exact matched filter of Equation (21). Instead, our algorithm

will approximate it using two binary thresholds Tτ ,TΔ, assum-

ing that speckles from one illuminator are spread over pixels in

a window of size Tτ around it, and that ME correlation holds for

displacements |Δ| < TΔ. The thresholdsTτ ,TΔ are free parameters

that we can fine-tune to improve reconstruction quality. We show

in Appendix A.5 that performance is robust to their exact values.

As we discuss below, our algorithm offers improved performance

compared to the baseline full-frame auto-correlation algorithm in

Fig. 8. Local window selection for optimization. We consider local

subwindows wτ (light green and cyan frames) whose support is equiva-

lent to the speckle support size. Each such window is correlated with a

wider window wΔ (yellow and blue frames) around it, whose support is

equivalent to the ME range. As speckle inside window wτ can arise from

a source outside wτ , Owτ �OwΔ may not match Iwτ � IwΔ . To over-

come this, we use an extended non-binary sub-window w̄2τ = wτ �wτ

for O , whose support is indicated by dashed lines.

situations where Tτ < TΔ, namely, when the support from one

illuminator is lower than the ME range. For thick scattering slices,

where high-order scattering is dominant, this relationship does not

hold, and our approach reduces to the baseline full-frame auto-

correlation algorithm of Equation (10).

Our algorithm searches for a latent imageO such that the auto-

correlation in its local windows will match the auto-correlation in

the local windows of the input image I . We define wΔ and wτ to

be binary windows with support TΔ,Tτ , respectively, and w̄2τ =

wτ �wτ—note that, from its definition, w̄2τ is non-binary. Then,

we recover O by solving the optimization problem:

min
O

∑
j ‖Īwτ

j
� ĪwΔ

j
−Ow̄2τ

j
�OwΔ

j
‖2, (24)

where Īwτ
j
, ĪwΔ

j
,Ow̄2τ

j
,OwΔ

j
denote windows of a given size

cropped from the input and latent images, centered around the jth
pixel.
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Equation (24) uses windows of three different sizes, and we use

Figure 8 to visualize their different roles: Each wτ
j is a small win-

dow whose support is equivalent to the expected support size of

the speckle pattern due to a single illuminator.wΔ
j is a larger win-

dow around it, corresponding to the maximal displacementTΔ for

which we expect to find correlation, as dictated by the ME range.

If the windows wτ
j ,w

Δ
j are centered around pixel ix,y , then the Δ

entry of the correlation Īwτ
j
� ĪwΔ

j
is equal to cemp (ix,y ,Δ) from

Equation (18), where the matched filter is approximated by the bi-

nary windowwτ .

We note, additionally, that the window cropped from O should

be wider than that from I . This is because speckle at a certain pixel
can arise from an illuminator within a window around it. For ex-

ample, in Figure 8, no illuminator is located inside the cyan sub-

window ofO , but a part of the speckle pattern is contained within

the corresponding cyan subwindow of I . As a result Owτ
j
�OwΔ

j

is a zero image, even though Īwτ
j
� ĪwΔ

j
detects three impulses. It

is easy to prove that this can be addressed using the larger, non-

binary window w̄2τ in the latent image, indicated in Figure 8 using

dashed lines: In this case, Ow̄2τ
j
�OwΔ

j
correctly detects the same

three impulses as Īwτ
j
� ĪwΔ

j
.

The motivation for the cost of Equation (24) is that, even if two

illuminators in the latent pattern O are at a distance larger than

the ME range TΔ, they can be recovered if there exists a sequence

of illuminators between them, where each two consecutive illu-

minators in the sequence are separated by a distance smaller than

TΔ. For example, in Figure 8, the illuminators outside the yellow

and cyan wΔ windows are recovered, thanks to the intermediate

illuminators.

As pre-processing for our optimization procedure, we form an

approximation for the zero mean speckle signal defined in Equa-

tion (8) by subtracting the local mean of each window:

Ī ≈ I −G ∗ I , (25)

where G is a Gaussian blur filter. The optimization problem in

Equation (24) is no longer a phase retrieval problem as in standard

full-frame auto-correlation algorithms. We minimize it using the

ADAM gradient-based optimizer [Kingma and Ba 2014]. Gradient

evaluation is described in Appendix A.3 and reduces to a sequence

of convolution operations that can be performed efficiently, e.g.,

using a GPU-based fast Fourier transform. For initialization, we

set the latent image to random noise; we have observed empir-

ically that the optimization is fairly insensitive to initialization.

Finally, we note that even though we could place a window w j

around every pixel of I , the empirical correlation is insensitive to

small displacements of the central pixel j. Therefore, in practice, we
consider windows only at strides Tτ /2, which helps reduce com-

putational complexity.

To conclude this section, we note that the optimization problem

of Equation (24) is similar to ptychography algorithms [Rodenburg

et al. 2007]. However, we emphasize that previous ptychographic

approaches for extending the ME range recover the latent

illuminators from multiple image measurements, captured by

illuminating different areas on the scattering sample [Zhou et al.

2020; Gardner et al. 2019; Li et al. 2019a, 2019b; Shekel and Katz

Fig. 9. Hardware setup. Top row: schematic of far-field setup, demon-

strating two illumination configurations used in experimental setup. The

first translates a single point source (fibered laser). The second uses an LED

source with masked area of emission. Second row: schematic of near-field

setup. Lower panels visualize our hardware lab setup.

2020]. By contrast, our algorithm recovers the latent illuminators

from a single shot.

8 EXPERIMENTS

We begin by evaluating our algorithm in the far-field setting,

demonstrating that even in this setting it provides an order-of-

magnitude extension of both range and density of illuminators that

can be recovered, compared to the full-frame auto-correlation al-

gorithm. We then proceed to show experiments in near-field set-

ting, demonstrating again significant improvement over previous

approaches. We discuss the challenges of the near-field setting and

show that they are in agreement with our theoretical analysis.

8.1 Experimental Setup

We built two hardware setups shown in Figure 9, implementing

near-field and far-field imaging configurations.

For the near-field setup, we use a tube lens and an objective

lens to focus a point source (the output of a single mode fiber con-

nected to a 632nm laser) into a point source at the back side of a
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Fig. 10. Local versus global auto-correlation. The orientation of the

auto-correlation evaluated in three different local windows of the image

matches the orientation of the arc in the corresponding region of the latent

image. By contrast, the auto-correlation of the full frame is much nosier

and decays for large displacements due to limited ME.

scattering sample. To image the sample, we use a camera placed

at the opposite side of the sample, similarly equipped with a tube

lens and an objective lens. As we discussed in Section 4, verify-

ing that the point source is focused exactly on the back face of the

sample is important for ensuring that our experiments are repre-

sentative of realistic scenarios where illuminators are located in-

side the tissue rather than beyond it. We confirmed that using a

second, control camera. Additionally, as discussed in Section 4, we

use a focused configurationwhere the camera is also focused at the

same plane as the point source, at the back face of the sample. We

verified the camera focusing by scanning its objective lens along

the ẑ axis, capturing a focal stack, and selecting the position where
speckle support size is smallest and ME range is largest. We used

Nikon N20X-PF objectives with NA = 0.5 and ×20 magnification,

and Thorlabs TTL200 tube lenses.

For the far-field setup, instead of placing the source at a large

distance from the sample, we placed it at the Fourier plane of a

lens, creating fully directional illumination. This configuration is

equivalent to a point source infinitely far away from the sample

and allows for better light efficiency. Likewise, we use a camera

on the opposite side of the sample, focused at infinity. This setup

corresponds to a 4F system around the sample, which we imple-

ment using two macro lenses (Nikon 105mm f/2.8D).

For scattering samples, we use slices of chicken breast of thick-

nesses ranging between 100 − 400μm. We measure the thick-

ness of samples by placing them between two microscope slides

of known dimensions and using a caliper to measure the total

thickness.

In both the near-field and far-field setups, we translate the laser

point source at different locations behind the sample, capturing

different images I i
k
at each location. We then sum these inten-

sity images to form I =
∑
k I

i
k
, simulating the input from multiple

mutually incoherent sources. Having access to the individual I i
k

images is useful for analyzing various algorithmic tradeoffs. We

also use a second, single-shot setup, consisting of a binary mask

illuminated by a wide-area, spatially incoherent 625nm LED.

8.2 Far-field Experiments

Local auto-correlation. In Figure 10, we visualize the different

structure of local and global auto-correlations. Computing auto-

correlation at small subwindows of the speckle image reveals the

local orientation of the arc in the latent image. By contrast, when

computing the auto-correlation of the full frame, the correlation

is considerably noisier even for small displacements. Correlations

between far illuminators are even harder to detect due to the lim-

ited ME range.

Range and density. As discussed in Section 6, a fundamental lim-

itation of imaging-through scattering algorithms is the density of

illuminators they can recover. To demonstrate this, in Figure 11,

we compare recovery results for illuminator patterns of the same

range and layout, but at different densities. In each case, we dis-

play the densest subset at which the full-frame and our local auto-

correlation algorithms successfully recovered the latent pattern,

with our local approach often handling order-of-magnitude larger

densities. We captured the data by imaging speckle patterns cre-

ated by individual point sources placed at different locations and

summing the speckle images in post-processing, allowing us to

form test images at any density of interest. Details on the full-

frame phase-retrieval algorithm we used, as well as a comparison

to the sparse approach of Chang andWetzstein [2018] are provided

in Section 8.4.

As we have access to the speckle images generated at each il-

luminator location, we can compute the decay of ME across the

frame. Denoting by I i
1
, I i

2
the individual speckle images from illu-

minator locations i1, i2, and settingΔ1,2 = i
2
x,y − i1x,y , we evaluate:

C (Δ1,2) =

∑
xy Ī

i
1
(x ,y) · Ī i2 ((x ,y) + Δ1,2)√∑

xy Ī i
1
(x ,y)2

√∑
xy Ī i

2
(x ,y)2

. (26)

We plot this correlation at the right of Figure 12, as a function of

|Δ|. We note that for the smile pattern, which was captured with

a thin tissue layer, the ME range covers the entire frame (empir-

ical correlation does not decrease below 0.8 even for the widest

displacement). Even under these favorable conditions for the full-

frame auto-correlation algorithm, our local algorithm recovers a

denser set of illuminators.

In Figure 12 and additionally in Figure 24 of Appendix A.4, we

demonstrate the increased range that our algorithm provides. To

achieve this, we select a few local subwindows from the patterns

in Figure 11 and display the maximal window for which the full-

frame auto-correlation was successful—each pair of subwindows

demonstrates a small window with reasonable reconstruction and

a slightly bigger one where reconstruction already failed. Overall,

in Figure 11 our local algorithm successfully handles patterns that
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Fig. 11. Comparison of our local and the full-frame auto-correlation algorithms. For each example, we show the densest arrangement of illuminators

for which the full-frame auto-correlation algorithm succeeded. In the top example, our algorithm successfully recovered ×32 more illuminators. Even in

the lower example where the ME extends over the entire frame (see correlation plots in Figure 12), our local approach outperforms the full-frame one. The

tissue thickness of each example, from top to bottom, is 330μm, 340μm, and 200μm.
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Fig. 12. Full-frame auto-correlation algorithm applied to small crops of the patterns in Figure 11. The yellow and cyan sub-windows demonstrate

areas where reconstruction roughly succeeds, and the magenta and green ones a slightly larger window where reconstruction fails. To the right, we plot

correlation as a function of displacement length |Δ |, as measured for the corresponding tissue slice. Tissue thickness from top to bottom, are 340μm and

200μm.

Fig. 13. Classical setup illustration. In the classical full-frame auto-

correlation setup, the latent image is usually significantly smaller than the

sensor width, and the number of speckle features it includes is about ×104
higher than the number of independent illuminators.

are an order of magnitude wider than the maximal patterns recov-

ered by the full-frame approach in Figure 12. There is no inherent

limit preventing us from handling an even larger range, except that

in the specific experimental setup we used, increasing the range

would exceed the aperture width.

For the small images of Figure 12, our algorithm is equivalent to

the full-frame auto-correlation algorithm, as the images are small

enough that they do not fit more than onewτ window. While both

approaches fail on small images (Figure 12), the local approach

is successful when applied to larger images, where the full-frame

algorithm still fails (Figure 11). This is because, when considering a

larger image, our algorithm computes correlationwith speckle pat-

terns at other parts of the frame, providing additional constraints.

Contrasting with classical setup. The patterns recovered in our

implementation are very different from the ones used in previous

full-frame auto-correlation implementations [Katz et al. 2014]. The

patterns in Figure 11 included about 103 illuminators spread near-

uniformly across the area of a 2-megapixel sensor. By contrast,

Figure 13 shows a typical input for previous full-frame implemen-

tations, where the target pattern is concentrated within a small

area of about 100 × 100 pixels. Yet, the speckle support is much

larger, covering the entire sensor. To achieve this wide speckle

spread, previous implementations either imaged the sample with a

lensless sensor rather than a focused one or used scattering layers

that are thicker or have wider phase functions. In synthetic simu-

lations of such a full-frame setup, the phase retrieval algorithm by

Fienup [1982] usually fails if more than 100 sources are included;

The number of sources can slightly increase with a better phase

retrieval approach.

Finally, it is worth noting that, as illuminator density increases,

the local approach eventually fails as well. We include an example

of such a failure case in Figure 22 of Appendix A.4.

LED illumination. In Figure 14 and in Appendix A.4, we show

reconstructions from the single-shot setup of Figure 9, where the

entire area of a target mask is illuminated by spatially incoher-

ent LED light. The main challenge in this case arises from the fact

that the illumination is no longer purely monochromatic: Differ-

ent wavelengths are diffracted in slightly different angles, blurring
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Fig. 14. Far-field reconstruction using a single shot acquisition setup. Our local correlation approach outperform the classical full-frame auto-

correlation.

Fig. 15. Near-field comparisons.We compare our local and the full-frame auto-correlation algorithms on thin tissue examples (L = 100 − 140μm). Despite

the seemingly small degradation, the full-frame approach fails unless provided an input composed of a considerably sparser set of illuminators. To the right,

we plot correlation decay as measured using images of individual sources through the corresponding tissue slice.

speckle contrast. In the mid-order scattering examples that we are

considering, this is mitigated by the fact that the speckle support

size is limited, meaning that speckle patterns are less affected by

blur. To reduce this effect, we placed a 10nm band-pass filter at the

LED output.

8.3 Near-field Experiments

In Figure 1 and Figures 15 and 16, we show reconstruction re-

sults from our near-field setup. The first set of examples (Figures 1

and 15) come from thinner tissue layers (L = 100 − 150μm),

for which scattering is modest and the latent pattern may be
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Fig. 16. More near-field comparisons.We now use a thicker tissue slice (L = 200μm). The lower rows zoom on two of the digits in the second row, demon-

strating reconstruction at a few different densities. Reconstruction degrades as density increases. The full-frame approach was successful at a considerably

lower density than our local approach.

recognizable from the degraded input image. Our algorithm still

improves the pattern quality significantly and reconstructs fine de-

tails obscured by the speckle. However, even this modest degrada-

tion is challenging for the full-frame approach, which fails unless

applied on a significantly sparser set of illuminators (last rows of

Figures 1 and 15).

For the second set of examples in Figure 16, the sample thickness

is larger at L ≈ 200μm, and thus the degradation is stronger. This

reconstruction task is more challenging for two reasons: First, the

ME range is limited, as seen by the correlation curve at the right of

Figure 16. Second, the illuminator density is large. Our local algo-

rithm outperforms the full-frame auto-correlation approach, but

its reconstruction is not free of artifacts either. In the lower rows,

we zoom on two of the digit patterns, showing reconstructions for

different illuminator densities. Our local approach performs worse

as density increases, but still outperforms the full-frame approach,

which is successful only at considerably smaller densities.

To demonstrate the difference between the far-field and near-

field settings, in Figure 17, we compare reconstructions of a line

pattern of the exact same length, from far-field and near-field mea-

surements. We can see that the far-field speckles cover a much

larger area of the sensor than the near-field ones. These addi-

tional speckle-covered pixels help improve the SNR of the far-field

correlation estimates. The explanation for this difference is the

same as for the difference between the small and medium supports

in Figure 7(b) and (c): The near-field image in Figure 17, due to the

many pixels that do not receive light, has a larger effective illu-

minator density than the far-field image. This larger density re-

sults in worse correlation SNR, and thus reduced reconstruction

quality. As another way to see this, we show in Figure 18 speckle

patterns from a single point source captured under near-field and

far-field conditions and the corresponding auto-correlation S̄ � S̄ .
Both auto-correlations resemble an impulse, up to noise. However,

we observe that the near-field speckle image includes much fewer

speckle features than the far-field one. Consequently, there is more

noise in the near-field auto-correlation image than in the far-field

one. This increased noise results in the reduced quality of the near-

field reconstructions.

Previous near-field implementations. The only reported attempt

to apply speckle auto-correlation techniques in the near-field

setting that we are aware of is by Chang and Wetzstein [2018]. A

direct comparison between our results and theirs is not possible,

as the two sets of experiments use very different scattering

samples. In particular, the speckle images captured by Chang and

Wetzstein [2018] are similar to the ones used by Katz et al. [2014],

comprising a target pattern concentrated with a small sensor area,
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Fig. 17. Comparison of near-field and far-field settings for a line

pattern. Even though the ground truth pattern is similar, the near-field

speckle pattern has amuch smaller support size. As more speckle pixels are

provided, the far-field correlation is less noisy, improving reconstruction

quality.

producing non-localized speckle patterns covering the entire sen-

sor. The ME range reported by Chang and Wetzstein [2018] was

approximately equal to a 10μm displacement. Accordingly, their

experiments recovered illuminator patterns of size 10μm × 10μm.

By contrast, the size of the near-field illuminator patterns we

recovered scales up to 65μm × 65μm. Below, we additionally

compare with their robust phase-retrieval algorithm, using

measurements captured with our imaging setups.

8.4 Comparison to Alternative Algorithms and

Limitations

In all of the previous figures, the reconstructions for the full-

frame approach are achieved using an ADAM optimization pro-

cedure [Kingma and Ba 2014] with non-negativity constraints.

This is analogous to Wirtinger flow optimization for phase re-

trieval [Candes et al. 2014; Chakravarthula et al. 2019]. We found

that this approach works better than the classical optimization al-

gorithm by Fienup [1982]. We show comparisons between these

two algorithms in Figure 19, using sparse and dense sets of il-

luminators for both the far-field and near-field examples from

Figures 11 and 16. For these examples the Fienup-based full-frame

variant (Figure 19(b)) did not converge, whereas the ADAM-based

full frame variant converged on the sparse set and failed to con-

verge on the dense one. We additionally attempted to optimize the

full-frame approach with the ADMM-based phase retrieval algo-

rithm of Chang and Wetzstein [2018], which uses an L1 regular-

ization term. As shown in Figure 19(c), this performed better than

the Fienup-based variant, but provided results very similar to the

ADAM-based variant for most examples. We believe this is be-

cause the non-negativity constraints we enforce during ADAMop-

timization already leads to sparse solutions. We note in Figure 19

that all variants of the full-frame approach fail as we further in-

crease the illuminator density. By contrast, our local correlation

approach is successful in the higher density case, as shown in

Figures 11 and 16.

Fig. 18. Single-point-source auto-correlation. The auto-correlation of

speckle images due to a single source S̄ � S̄ resembles an impulse plus

noise, in both the near-field and far-field cases. However, in the near-field

case, this auto-correlation is noisier, as fewer speckle features are aver-

aged. The single-source speckle images S̄ are shown in the insets.

Given the local extent of the ME, another option one may

consider is cropping local windows from the full speckle image,

running the full-frame auto-correlation approach on each local

window, and then seaming the individual local solutions. How-

ever, as shown in Figure 19(e), the independent solutions are rarely

consistent and the seamed result has strong artifacts. We also note

that the solution of the full-frame approach in each local window

is only defined up to an arbitrary flip or shift. For the result in

Figure 19(e), we favored this algorithm by flipping and shifting

each window to best match the groundtruth. Even under this sim-

plification, this algorithm is inferior to our approach that jointly

optimizes all local windows.

Finally, in Figure 19(f), we compare against the approach of

Wang et al. [2019] for extending the range of imaging-through-

scattering algorithms. Their model assumes the latent image O
can be decomposed into two parts O1,O2 of a smaller extent, and

the ME applies in each window separately. Mathematically, they

model the image formation as I = O1 � S1 +O2 � S2, where S1 and
S2 are the speckle patterns from a single illuminator in each region,

and which are assumed to be decorrelated, S1 � S2 = 0. They then

try to simultaneously solve for two smaller support imagesO1,O2

satisfyingO1 �O1 +O2 �O2 = I � I . As seen in Figure 19, this ap-

proach was successful on the far-field sparse examples, but failed

on the denser and near-field examples. The reason for this is that,

in our examples, the correlation decays gradually, and thus the as-

sumption by Wang et al. [2019] that speckle patterns at different

parts of the image are completely decorrelated does not hold. Ad-

ditionally, the range of the latent illuminators is much larger than

twice the ME range.

Runtime. Compared to the full-frame auto-correlation approach,

one disadvantage of our algorithm is increased computational cost.

In particular, our unoptimized Matlab implementation, when run-

ning on an NVIDIA Quadro RTX 8000 GPU, requires a few hours

to converge for each of the results in this section. Gradient evalu-

ations make up the bulk of this runtime. Gradient evaluations are

essentially a sequence of convolution operations, which we imple-

ment using Matlab’s GPU-based fast Fourier transform function.

These gradient evaluations can potentially be accelerated using

more sophisticated GPU-based convolution libraries. We also note

that our optimization procedure only needs to be run once, as its
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Fig. 19. Comparisonwith alternative reconstruction algorithms.Considering far- and near-field examples visualized in Figures 11 and 16, we evaluate

a few alternative strategies. (b)–(d) show different full-frame phase retrieval approaches. Classical Fienup optimization [Fienup 1982] is rather noise-

sensitive. Chang and Wetzstein [2018] proposed a better algorithm introducing a sparse prior and ADMM optimization. In this work, we used gradient

decent update with ADAM step selection size, with similar results. These algorithms can solve the full frame phase retrieval on a sparse subset of the sources,

but fail on a denser one. In contrast, our local cost led to much better results, as presented in Figures 11 and 16. (e) Solving the standard phase retrieval

problem on independent local windows and seaming the results in post-processing leads to noticeable artifact. (f) Seeing beyond the ME range [Wang et al.

2019] by decomposing the speckle auto-correlation into two independent parts is sometimes successful on the sparse data, yet fails on the dense one.

results are insensitive to initialization. By contrast, iterative phase

retrieval algorithms such as the algorithm by Fienup [1982] typi-

cally require multiple runs with different initializations.

9 DISCUSSION

We provided a comprehensive study of algorithms using the

speckleME to image through scattering. Using theory, simulations,

and real experiments, we investigated the inherent limits of these

approaches. In particular, we explored whether these approaches

can be applied to practical biomedical imaging scenarios, where

illumination sources are located inside, rather than far behind, a

scattering sample such as a tissue layer.

We reported the following important findings of our study: First,

we showed that the ME is affected by the angular difference be-

tween illumination sources and not by their actual displacement.

Second, we showed that the correlation of speckle intensities can

be improved through simple design choices in the imaging setup;

in particular, we found that the ME range is maximized when us-

ing a lens focused at the illuminator plane. Third, we showed that

it is important to closely replicate near-field imaging conditions

by ensuring that illuminators are accurately placed exactly behind

the scattering sample, as doing otherwise can artificially increase

the ME range. Fourth, we found that, in the near-field setting,

the angular displacement for which significant correlations exist

can correspond to actual displacements smaller than the illumi-

nation wavelength. As a consequence, ME approaches are only

applicable to the near-field setting when considering scattering

samples of modest thickness, where mid-order scattering is domi-

nant. This thickness range still corresponds to penetration depths

considerably beyond those achievable by a standard microscope.

Therefore, analyzing and developing new ME approaches for

imaging through scattering in this range can benefit biomedical

imaging applications.

Our study additionally highlighted an important property of

speckle intensity patterns formed due to samples where mid-order
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Fig. 20. Reconstructing fluorescent beads. We demonstrate single-

shot near-field imaging of fluorescent beads attached at the back of a

[̂100]μm chicken breast slice and the reconstruction produced by the full-

frame and our local auto-correlation approach. Speckle contrast is low

due to the weak emission of fluorescent beads (see a close-up on imag-

ing noise in the inset) and due to the fact that the emission is not fully

monochromatic.

scattering is dominant when imaged with a focused lens. These

patterns have a small support size, typically much smaller than

the sensor size. We showed theoretically and experimentally that

using this local support to create a matched filter when comput-

ing speckle correlations can boost the SNR of latent illuminator

detection by orders of magnitude. We additionally developed an

algorithm that takes advantage of this property by operating as

a local version of classical full-frame auto-correlation techniques.

Through experiments on real measurements captured using

both far-field and near-field imaging configurations, we showed

that our algorithm provides an order-of-magnitude improve-

ment in terms of both the range and the density of recoverable

illuminators.

Furthermore, our study shed light on two fundamental chal-

lenges associated with the near-field case. The first challenge is

the fact that the ME holds for very small displacements. The sec-

ond challenge relates to the fact that, even after exploiting the local

support, only sparse latent patterns are recoverable. These chal-

lenges still leave ample room for applications in medical imaging

settings where sparse targets are considered, for example STORM

imaging of blinking fluorescent molecules, sparse nuclei, or other

cell components.

Additional challenges can arise due to reduced speckle con-

trast and signal-to-noise ratio in measurements captured under

real near-field fluorescent imaging conditions. To highlight these

challenges, in Figure 20, we show captured speckled patterns gen-

erated by a sparse set of fluorescent beads placed at the back of

a tissue sample, as well as the reconstructions produced by the

full-frame and our local auto-correlation techniques. Details on

the experimental setup are provided in Appendix A.6. The qual-

ity of the input speckle images is severely affected by two factors.

First, as in Figure 14, the light emitted by the fluorescent beads is

spectrally broadband, reducing speckle contrast. Second, the flu-

orescent emission is very weak, leading to noisy images. Despite

these challenges, we observe that our local auto-correlation algo-

rithm significantly improves reconstruction quality compared to

the full-frame baseline. Therefore, our results showcase both the

strong potential of local auto-correlation techniques compared to

full-frame variants, and the need for further research towards ME

techniques that are fully robust to real experimental conditions in

applications such as fluorescence microscopy.

Last but not least, by drawing attention to the local support char-

acteristics of near-field speckle images, our results open the door

for future research on using different image processing approaches

for imaging through scattering, such as local deconvolution [Wu

et al. 2020] and sharpening operations. A particularly promising

direction is adapting the large array of mature blind deconvolu-

tion techniques to the imaging-through-scattering setting by de-

veloping appropriate prior models for the scatter-free images and

(spatially varying) speckle blur kernels. Our study on the statistics

of speckle patterns, and their dependence on the scattering layer

geometry and material properties, can help inform the develop-

ment of such priors.
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