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Abstract

We present a method that takes as input a single dual-
pixel image, and simultaneously estimates the image’s de-
focus map—the amount of defocus blur at each pixel—and
recovers an all-in-focus image. Our method is inspired from
recent works that leverage the dual-pixel sensors available
in many consumer cameras to assist with autofocus, and use
them for recovery of defocus maps or all-in-focus images.
These prior works have solved the two recovery problems
independently of each other, and often require large labeled
datasets for supervised training. By contrast, we show that
it is beneficial to treat these two closely-connected prob-
lems simultaneously. To this end, we set up an optimization
problem that, by carefully modeling the optics of dual-pixel
images, jointly solves both problems. We use data captured
with a consumer smartphone camera to demonstrate that,
after a one-time calibration step, our approach improves
upon prior works for both defocus map estimation and blur
removal, despite being entirely unsupervised.

1. Introduction

Modern DSLR and mirrorless cameras feature large-
aperture lenses that allow collecting more light, but also in-
troduce defocus blur, meaning that objects in images appear
blurred by an amount proportional to their distance from
the focal plane. A simple way to reduce defocus blur is to
stop down, i.e., shrink the aperture. However, this also re-
duces the amount of light reaching the sensor, making the
image noisier. Moreover, stopping down is impossible on
fixed-aperture cameras, such as those in most smartphones.
More sophisticated techniques fall into two categories. First
are techniques that add extra hardware (e.g., coded aper-
tures [40], specialized lenses [47, 15]), and thus are imprac-
tical to deploy at large scale or across already available cam-
eras. Second are focus stacking techniques [76] that capture
multiple images at different focus distances, and fuse them
into an all-in-focus image. These techniques require long
capture times, and thus are applicable only to static scenes.

Ideally, defocus blur removal should be done using data
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Figure 1: Given left and right dual-pixel (DP) images and
corresponding spatially-varying blur kernels, our method
jointly estimates an all-in-focus image and defocus map.

Recovered defocus map

from a single capture. Unfortunately, in conventional cam-
eras, this task is fundamentally ill-posed: a captured image
may have no high-frequency content because either the la-
tent all-in-focus image lacks such frequencies, or they are
removed by defocus blur. Knowing the defocus map, i.e.,
the spatially-varying amount of defocus blur, can help sim-
plify blur removal. However, determining the defocus map
from a single image is closely-related to monocular depth
estimation, which is a challenging problem in its own right.
Even if the defocus map were known, recovering an all-
in-focus image is still an ill-posed problem, as it requires
hallucinating the missing high frequency content.
Dual-pixel (DP) sensors are a recent innovation that
makes it easier to solve both the defocus map estimation
and defocus blur removal problems, with data from a sin-
gle capture. Camera manufacturers have introduced such
sensors to many DSLR and smartphone cameras to improve
autofocus [2, 36]. Each pixel on a DP sensor is split into two
halves, each capturing light from half of the main lens’ aper-
ture, yielding two sub-images per exposure (Fig. 1). These
can be thought of as a two-sample lightfield [61], and their
sum is equivalent to the image captured by a regular sensor.
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Figure 2: Overview of our proposed method. We use input left and right DP images to fit a multiplane image (MPI) scene
representation, consisting of a set of fronto-parallel layers. Each layer is an intensity-alpha image containing the in-focus
scene content at the corresponding depth. The MPI can output the all-in-focus image and the defocus map by blending all
layers. It can also render out-of-focus images, by convolving each layer with pre-calibrated blur kernels for the left and right
DP views, and then blending. We optimize the MPI by minimizing a regularized loss comparing rendered and input images.

The two sub-images have different half-aperture-shaped de-
focus blur kernels; these are additionally spatially-varying
due to optical imperfections such as vignetting or field cur-
vature in lenses, especially for cheap smartphone lenses.
We propose a method to simultaneously recover the de-
focus map and all-in-focus image from a single DP cap-
ture. Specifically, we perform a one-time calibration to de-
termine the spatially-varying blur kernels for the left and
right DP images. Then, given a single DP image, we op-
timize a multiplane image (MPI) representation [77, 91] to
best explain the observed DP images using the calibrated
blur kernels. An MPI is a layered representation that ac-
curately models occlusions, and can be used to render both
defocused and all-in-focus images, as well as produce a de-
focus map. As solving for the MPI from two DP images is
under-constrained, we introduce additional priors and show
their effectiveness via ablation studies. Further, we show
that in the presence of image noise, standard optimization
has a bias towards underestimating the amount of defocus
blur, and we introduce a bias correction term. Our method
does not require large amounts of training data, save for
a one-time calibration, and outperforms prior art on both
defocus map estimation and blur removal, when tested on
images captured using a consumer smartphone camera. We
make our implementation and data publicly available [85].

2. Related Work

Depth estimation. Multi-view depth estimation is a well-
posed and extensively studied problem [30, 71]. By con-
trast, single-view, or monocular, depth estimation is ill-
posed. Early techniques attempting to recover depth from a
single image typically relied on additional cues, such as sil-
houettes, shading, texture, vanishing points, or data-driven

supervision [5, 7, 10, 13, 29,37, 38,42, 44,51, 67,70, 72].
The use of deep neural networks trained on large RGBD
datasets [17, 22, 50, 52, 69, 74] significantly improved
the performance of data-driven approaches, motivating ap-
proaches that use synthetic data [4, 28, 56, 60, 92], self-
supervised training [23, 25, 26, 39, 54, 90], or multiple data
sources [18, 66]. Despite these advances, producing high-
quality depth from a single image remains difficult, due to
the inherent ambiguities of monocular depth estimation.

Recent works have shown that DP data can improve
monocular depth quality, by resolving some of these ambi-
guities. Wadhwa et al. [82] applied classical stereo match-
ing methods to DP views to compute depth. Punnappurath
et al. [64] showed that explicitly modeling defocus blur dur-
ing stereo matching can improve depth quality. However,
they assume that the defocus blur is spatially invariant and
symmetric between the left and right DP images, which is
not true in real smartphone cameras. Depth estimation with
DP images has also been used as part of reflection removal
algorithms [65]. Garg et al. [24] and Zhang et al. [87]
trained neural networks to output depth from DP images,
using a captured dataset of thousands of DP images and
ground truth depth maps [3]. The resulting performance
improvements come at a significant data collection cost.

Focus or defocus has been used as a cue for monocular
depth estimation prior to these DP works. Depth from defo-
cus techniques [19, 63, 78, 84] use two differently-focused
images with the same viewpoint, whereas depth from fo-
cus techniques use a dense focal stack [27, 33, 76]. Other
monocular depth estimation techniques use defocus cues as
supervision for training depth estimation networks [75], use
a coded aperture to estimate depth from one [46, 81, 89]
or two captures [88], or estimate a defocus map using syn-
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Figure 3: A regular sensor and a DP sensor (a) where each
green pixel is split into two halves. For a finite aperture
lens (b), an in-focus scene point produces overlapping DP
images, whereas an out-of-focus point produces shifted DP
images. Adding the two DP images yields the image that
would have been captured by a regular sensor. (c) shows the
corresponding pinhole camera where all scene content is in
focus. Ignoring occlusions, images in (b) can be generated
from the image in (c) by applying a depth-dependent blur.

thetic data [45]. Lastly, some binocular stereo approaches
also explicitly account for defocus blur [12, 49]; compared
to depth estimation from DP images, these approaches as-
sume different focus distances for the two views.
Defocus deblurring. Besides depth estimation, measur-
ing and removing defocus blur is often desirable to pro-
duce sharp all-in-focus images. Defocus deblurring tech-
niques usually estimate either a depth map or an equiva-
lent defocus map as a first processing stage [ 14, 40, 62, 73].
Some techniques modify the camera hardware to facilitate
this stage. Examples include inserting patterned occlud-
ers in the camera aperture to make defocus scale selection
easier [40, 81, 89, 88]; or sweeping through multiple fo-
cal settings within the exposure to make defocus blur spa-
tially uniform [59]. Once a defocus map is available, a
second deblurring stage employs non-blind deconvolution
methods [46, 21, 43, 83, 57, 86] to remove the defocus blur.
Deep learning has been successfully used for defocus de-
blurring as well. Lee et al. [45] train neural networks to
regress to defocus maps, that are then used to deblur. Abuo-
laim and Brown [ 1] extend this approach to DP data, and
train a neural network to directly regress from DP images
to all-in-focus images. Their method relies on a dataset of
pairs of wide and narrow aperture images captured with a
DSLR, and may not generalize to images captured on smart-
phone cameras, which have very different optical charac-
teristics. Such a dataset is impossible to collect on smart-
phone cameras with fixed aperture lenses. In contrast to
these prior works, our method does not require difficult-to-
capture large datasets. Instead, it uses an accurate model of
the defocus blur characteristics of DP data, and simultane-
ously solves for a defocus map and an all-in-focus image.

3. Dual-Pixel Image Formation

We begin by describing image formation for a regular
and a dual-pixel (DP) sensor, to relate the defocus map and
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the parametric kernels (e) from [64], calibrated kernels are
spatially-varying, not circular, and not left-right symmetric.

the all-in-focus image to the captured image. For this, we
consider a camera imaging a scene with two points, only
one of which is in focus (Fig. 3(b)). Rays emanating from
the in-focus point (blue) converge on a single pixel, creating
a sharp image. By contrast, rays from the out-of-focus point
(brown) fail to converge, creating a blurred image.

If we consider a lens with an infinitesimally-small aper-
ture (i.e., a pinhole camera), only rays that pass through its
center strike the sensor, and create a sharp all-in-focus im-
age I, (Fig. 3(c)). Under the thin lens model, the blurred
image I,, of the out-of-focus point equals blurring I, with
a depth-dependent kernel k,;, shaped as a d-scaled ver-
sion of the aperture—typically a circular disc of radius
d = A+ B/z, where Z is the point depth, and A and B
are lens-dependent constants [24]. Therefore, the per-pixel
signed kernel radius d, termed the defocus map D, is a lin-
ear function of inverse depth, thus a proxy for the depth
map. Given the defocus map D, and ignoring occlusions,
the sharp image I; can be recovered from the captured im-
age I, using non-blind deconvolution. In practice, recover-
ing either the defocus map D or the sharp image I from a
single image I, is ill-posed, as multiple (I, D) combina-
tions produce the same image I,. Even when the defocus
map D is known, determining the sharp image I is still ill-
posed, as blurring irreversibly removes image frequencies.

DP sensors make it easier to estimate the defocus map.
In DP sensors (Fig. 3(a)), each pixel is split into two halves,
each collecting light from the corresponding half of the lens
aperture (Fig. 3(b)). Adding the two half-pixel, or DP, im-
ages I! and I” produces an image equivalent to that cap-
tured by a regular sensor, i.e., I, = I + I”. Furthermore,
DP images are identical for an in-focus scene point, and
shifted versions of each other for an out-of-focus point. The
amount of shift, termed DP disparity, is proportional to the



blur size, and thus provides an alternative for defocus map
estimation. In addition to facilitating the estimation of the
defocus map D, having two DP images instead of a single
image provides additional constraints for recovering the un-
derlying sharp image I;. Utilizing these constraints requires
knowing the blur kernel shapes for the two DP images.
Blur kernel calibration. As real lenses have spatially-
varying kernels, we calibrate an 8 x 6 grid of kernels. To
do this, we fix the focus distance, capture a regular grid of
circular discs on a monitor screen, and solve for blur ker-
nels for left and right images independently using a method
similar to Mannan and Langer [55]. When solving for ker-
nels, we assume that they are normalized to sum to one, and
calibrate separately for vignetting: we average left and right
images from six captures of a white diffuser, using the same
focus distance as above, to produce left and right vignetting
patterns W; and W,.. We refer to the supplement for details.
We show the calibrated blur kernels in Fig. 4. We
note that these kernels deviate significantly from parametric
models derived by extending the thin lens model to DP im-
age formation [64]. In particular, the calibrated kernels are
spatially-varying, not circular, and not symmetric.

4. Proposed Method

The inputs to our method are two single-channel DP im-
ages, and calibrated left and right blur kernels. We cor-
rect for vignetting using W; and W,., and denote the two
vignetting-corrected DP images as 1! and I’ and their cor-
responding blur kernels at a certain defocus size d as k!, and
k!, respectively. We assume that blur kernels at a defocus
size d’ can be obtained by scaling by a factor @'/ [64, 88].
Our goal is to optimize for the multiplane image (MPI) rep-
resentation that best explains the observed data, and use it to
recover the latent all-in-focus image I, and defocus map D.
We first introduce the MPI representation, and show how to
render defocused images from it. We then formulate an MPI
optimization problem, and detail its loss function.

4.1. Multiplane Image (MPI) Representation

We model the scene using the MPI representation, previ-
ously used primarily for view synthesis [80, 91]. MPIs dis-
cretize the 3D space into N fronto-parallel planes at fixed
depths (Fig. 5). We select depths corresponding to linearly-
changing defocus blur sizes [dy, ..., dy]. Each MPI plane
is an intensity-alpha image of the in-focus scene that con-
sists of an intensity channel ¢; and an alpha channel o;.
All-in-focus image compositing. Given an MPI, we com-
posite the sharp image using the over operator [53]: we sum
all layers weighted by the transmittance of each layer ¢;,
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Figure 5: The multiplane image (MPI) representation con-
sists of discrete fronto-parallel planes where each plane
contains intensity data and an alpha channel. We use it to
recover the defocus map, the all-in-focus image, and render
a defocused image according to a given blur kernel.

kernels k{ "} for each layer, we render defocused images
by convolvmg each layer with its corresponding kernel, then
compositing the blurred layers as in Eq. (1):

i =3 | (Kl ) 1

i=1 =i+1

~kvag) | @)

where * denotes convolution. In practice, we scale the cali-
brated spatially-varying left and right kernels by the defocus
size d;, and apply the scaled spatially-varying blur to each
intensity-alpha image c; ;. We note that we render left and
right views from a single MPI, but with different kernels.

4.2. Effect of Gaussian Noise on Defocus Estimation

Using Eq. (2), we can optimize for the MPI that mini-

=Hl,r Lr
1) 1)

mizes the Lo-error ||I; between rendered im-

ages igl’r} and observed DP images I}""}. Here we show
that, in the presence of noise, this optimization is biased
toward smaller defocus sizes, and we correct for this bias.

Assuming additive white Gaussian noise Nt/"} dis-
tributed as (0, 0%), we can model DP images as:

Iil,r} _ Iél,r} + N{l,r} , (3)

where Iil’r} are the latent noise-free images. For simplic-
ity, we assume for now that all scene content lies on a sin-
gle fronto-parallel plane with ground truth defocus size d*.
Then, using frequency domain analysis similar to Zhou et
al. [88], we prove in the supplement that for a defocus size
hypothesis d;, the expected negative log-energy function
corresponding to the MAP estimate of the MPI is:

B(di| K o) Zc (K3 o, )’Kd*Kd _ kLK.

+C2(0), @

4o Z |Kh|* + | K |* + 0% @]
|KG 12+ | K |2 + 0] @)?

2231



where K™ and K {1 are the Fourier transforms of ker-

nels kg"r} and k™ respectively, & is the inverse spectral
power distribution of natural images, and the summation is
over all frequencies. We would expect the loss to be mini-
mized when d; = d*. The first term measures the inconsis-
tency between the hypothesized blur kernel d; and the true
kernel d*, and is indeed minimized when d; = d*. How-
ever, the second term depends on the noise variance and de-
creases as |d;| decreases. This is because, for a normalized

blur kernel (||kc{£-‘r}||1 = 1), as the defocus kernel size |d;|

decreases, its power spectrum ||K§:’T} ||2 increases. This
suggests that white Gaussian noise in input images results in
a bias towards smaller blur kernels. To account for this bias,
we subtract an approximation of the second term, which we
call the bias correction term, from the optimization loss:

B(aIKi™ o) ~ oy, s
d

0.2|¢.|2

g

(3)

We ignore the terms containing ground truth d*, as they are
significant only when d* is itself small, i.e., the bias favors
the true kernels in that case. In an MPI with multiple layers
associated with defocus sizes [dy, . . ., d ], we subtract per-
layer constants B (d;) computed using Eq. (5).

We note that we use a Gaussian noise model to make
analysis tractable, but captured images have mixed Poisson-
Gaussian noise [31]. In practice, we found it beneficial to
additionally denoise the input images using burst denois-
ing [32]. However, there is residual noise even after denois-
ing, and we show in Sec. 5.1 that our bias correction term
still improves performance. An interesting future research
direction is using a more accurate noise model to derive a
better bias estimate and remove the need for any denoising.

4.3. MPI1 Optimization

We seek to recover an MPI {¢;, ai;} ,4 € [1,..., N]such
that defocused images rendered from it using the calibrated
blur kernels are close to the input images. But minimiz-
ing only a reconstruction loss is insufficient: this task is
ill-posed, as there exists an infinite family of MPIs that all
exactly reproduce the input images. As is common in defo-
cus deblurring [46], we regularize our optimization:

(6)

where Lgata is a bias-corrected data term that encourages
rendered images to resemble input images, £, is an auxil-
iary data term applied to each MPI layer, and the remaining
are regularization terms. We discuss all terms below.

Bias-corrected data loss. We consider the Charbon-

nier [11] loss function £ (z) VZ' /42 + 1, and define
a bias-corrected version as ¢g (z,B) = /(@ -B)/y* +1,

where we choose the scale parameter v = 0.1 [6] . We use
this loss function to form a data loss penalizing the differ-
ence between left and right input and rendered images as:

L= Cdata + Acau.x + Cil'lt.ensit.y + Aca]pha + Acent.rnpy y

[e]

Laa =Y 5 (1 2.9) ~ 17 (2,9),B57) . @
T,y
N N

B =% [k.ﬁ‘” sai [] (1 — kT aj)] B(d:). (8)
i=1 j=i+1

We compute the total bias correction Bz{lf{r} as the sum of all
bias correction terms of each layer, weighted by the corre-
sponding defocused transmittance. Eq. (8) is equivalent to
Eq. (2) where we replace each MPI layer’s intensity chan-
nel ¢; with a constant bias correction value B (d;). To com-
pute B (d,;) from Eq. (5), we empirically set the variance to
0? = 5-107°, and use a constant inverse spectral power
distribution |®|* = 102, following previous work [79].

Auxiliary data loss. In most real-world scenes, a pixel’s
scene content should be on a single layer. However, be-
cause the compositing operator of Eq. (2) forms a weighted
sum of all layers, Lgata can be small even when scene con-
tent is smeared across multiple layers. To discourage this,
we introduce a per-layer auxiliary data loss on each layer’s
intensity weighted by the layer’s blurred transmittance:

Lox = (kfti’“] * ti(z,y)) ©

T,Y,1

s (K57 + ei(z,9) 187 (2,9),B(d)) , ©)

where ® denotes element-wise multiplication. This auxil-
iary loss resembles the data synthesis loss of Eq. (7), except
that it is applied to each MPI layer separately.

Intensity smoothness. Our first regularization term encour-
ages smoothness for the all-in-focus image and the MPI in-
tensity channels. For an image I with corresponding edge
map E, we define an edge-aware smoothness based on total
variation V'(-), similar to Tucker and Snavely [20]:

VE(LE)=t(V(D))+(1-E)otV (D), 10

where £(-) is the Charbonnier loss. We refer to the supple-
ment for details on E and V'(-). Our smoothness prior on
the all-in-focus image and MPI intensity channels is:

Ci1'1t.ar|sil:3.' = Z VE (ing (is)) + Z VE (tici-. E (t‘tC;')) . (1 ])

Alpha and transmittance smoothness. We use an ad-
ditional smoothness regularizer on all alpha channels and
transmittances (sharpened by computing their square root),
by encouraging edge-aware smoothness according to the to-
tal variation of the all-in-focus image:

Lappa = |Ve (Ve B (1)) + Ve (VE.E (1.))] - (12

z,y,i

Alpha and transmittance entropy. The last regularizer
is a collision entropy penalty on alpha channels and trans-
mittances. Collision entropy, defined for a vector = as



S(x) = —logll=ll3/jj|2, is a special case of Renyi en-
tropy [6£], and we empirically found it to be better than
Shannon entropy for our problem. Minimizing collision en-
tropy encourages sparsity: S (2) is minimum when all but
one elements of & are 0, which in our case encourages scene
content to concentrate on a single MPI layer, rather than
spread across multiple layers. Our entropy loss is:

Centrony =S (Va2 (2,1) ., Van (z,9)]")
+ZS([\/E(z,y),...,\/E(z,y)]T). (13)

We extract the alpha channels and transmittances of each
pixel (z,y) from all MPI layers, compute their square root
for sharpening, compute a per-pixel entropy, and average
these entropies across all pixels. When computing entropy
on alpha channels, we skip the farthest MPI layer, because
we assume that all scene content ends at the farthest layer,
and thus force this layer to be opaque (a; = 1).

5. Experiments

We capture a new dataset, and use it to perform quali-
tative and quantitative comparisons with other state of the
art defocus deblurring and defocus map estimation meth-
ods. The project website [25] includes an interactive HTML
viewer [£] to facilitate comparisons across our full dataset.

Data collection. Even though DP sensors are common, to
the best of our knowledge, only two camera manufactur-
ers provide an API to read DP images—Google and Canon.
However, Canon’s proprietary software applies an unknown
scene-dependent transform to DP data. Unlike supervised
learning-based methods [1] that can learn to account for
this transform, our loss function requires raw sensor data.
Hence, we collect data using the Google Pixel 4 smart-
phone, which allows access to the raw DP data [16].

The Pixel 4 captures DP data only in the green chan-
nel. To compute ground truth, we capture a focus stack
with 36 slices sampled uniformly in diopter space, where
the closest focus distance corresponds to the distance we
calibrate for, 13.7 cm, and the farthest to infinity. Follow-
ing prior work [64], we use the commercial Helicon Fo-
cus software [35] to process the stacks and generate ground
truth sharp images and defocus maps, and we manually cor-
rect holes in the generated defocus maps. Still, there are
image regions that are difficult to manually inpaint, e.g.,
near occlusion boundaries or curved surfaces. We ignore
such regions when computing quantitative metrics. We cap-
ture a total of 17 scenes, both indoors and outdoors. Simi-
lar to Garg et al. [24], we centrally crop the DP images to
1008 x 1344. We refer to the supplement for more details.
Our dataset is available at the project website [35].

5.1. Results

We evaluate our method on both defocus deblurring and
depth-from-defocus tasks. We use N = 12 MPI layers for
all scenes in our dataset. We manually determine the ker-
nel sizes of the front and back layers, and evenly distribute
layers in diopter space. Each optimization runs for 10,000
iterations with Adam [1], and takes 2 hours on an Nvidia
Titan RTX GPU. We gradually decrease the global learning
rate from 0.3 to 0.1 with exponential decay. Our JAX [9]
implementation is available at the project website [£5].

We compare to state-of-the-art methods for defocus de-
blurring ( DPDNet [ 1], Wiener deconvolution [79, 88]) and
defocus map estimation (DP stereo matching [32], super-
vised learning from DP views [24], DP defocus estima-
tion based on kernel symmetry [64], Wiener deconvolu-
tion [79, 28], DMENet [45]). For methods that take a single
image as input, we use the average of the left and right DP
images. We also provide both the original and vignetting
corrected DP images as inputs, and report the best result.
We show quantitative results in Tab. 1 and qualitative re-
sults in Figs. 6 and 7. For the defocus map, we use the
affine-invariant metrics from Garg et al. [24]. Our method
achieves the best quantitative results on both tasks.
Defocus deblurring results. Despite the large amount
of blur in the input DP images, our method produces de-
blurred results with high-frequency details that are close to
the ground truth (Fig. 6). DPDNet makes large errors as it is
trained on Canon data and does not generalize. We improve
the accuracy of DPDNet by providing vignetting corrected
images as input, but its accuracy is still lower than ours.
Defocus map estimation results. Our method produces de-
focus maps that are closest to the ground truth (Fig. 7), espe-
cially on textureless regions, such as the toy and clock in the
first scene. Similar to [64], depth accuracy near edges can
be improved by guided filtering [34] as shown in Fig. 7(d).
Ablation studies. We investigate the effect of each loss
function term by removing them one at a time. Quantitative
results are in Tab. 2, and qualitative comparisons in Fig. 8.

Our full pipeline has the best overall performance in re-
covering all-in-focus images and defocus maps. Lintensity
and Laipha strongly affect the smoothness of all-in-focus
images and defocus maps, respectively. Without Leniropy
or L,ux, even though recovered all-in-focus images are
reasonable, scene content is smeared across multiple MPI
layers, leading to incorrect defocus maps. Finally, with-
out the bias correction term B, defocus maps are biased
towards smaller blur radii, especially in textureless areas
where noise is more apparent, e.g., the white clock area.
Results on Data from Abuolaim and Brown [1]. Even
though Abuolaim and Brown [1] train their model on data
from a Canon camera, they also capture Pixel 4 data for
qualitative tests. We run our method on their Pixel 4 data,
using the calibration from our device, and show that our re-
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Figure 6: Qualitative comparisons of various defocus deblurring methods. Input images (a) shown as the average of two DP
views, ground truth all-in-focus images (b) computed from focus stacks, recovered all-in-focus images (c) from our method
and other methods (d)-(f). We improve the accuracy of DPDNet (e) trained on Canon data by providing vignetting corrected
images (f). Our method performs the best in recovering high- frequency details and presents fewer artifacts.

N . . .

(c) Ours

(a) Inputimage (b) Ground truth

All-in-focus Image Defocus Map

Method PSNR1T SSIMt MAEJ | AIWE() | AIWE<2)¢ 1—lpsl 4

Wiener Deconv. [85] 25.806 0.704 0.032 0.156 0.1 0.665
DPDNet [!] 25.591 0.777 0.034 -

DMENet [45] - - - 0.144 0.1 83 0.586
Punnappurath ez al. [64] - - - 0.124 0.161 0.444
Garg et al. [24] - - - 0.079 0.102 0.208
Wadhwa et al. [82] - - - 0.141 0.177 0.540
Ours 26692  0.804 0.027 0.047 0.076 0.178
Ours w/ guided filtering | 26.692 0.804 0.027 0.059 0.083 0.193

Table 1: Quantitative evaluations of defocus deblurring and
defocus map estimation methods on our DP dataset. “-”
indicates not applicable. We use the affine-invariant metrics
from [24] for defocus map evaluation. Our method achieves
the best performance (highlighted in red) in both tasks.

covered all-in-focus image has fewer artifacts (Fig. 9). This
demonstrates that our method generalizes well across de-
vices of the same model, even without re-calibration.

6. Discussion and Conclusion

We presented a method that optimizes an MPI scene rep-
resentation to jointly recover a defocus map and all-in-focus

(d) Ours w/ GF  (e) Wiener [38] (f) DMENet [45]

(8) [64]
Figure 7: Qualitative comparisons of defocus map estimation methods. Input images (a) shown as the average of two DP

views, ground truth defocus maps (b) from focus stacks with zero confidence pixels in white, our defocus maps (c), and our
defocus maps with guided filtering (d), and defocus maps from other methods (f)-(i). Overall, our method produces results
that are closest to the ground truth, and correctly handles textureless regions as well.

(h) Garg [24] (i) Wadhwa [82]

image from a single dual-pixel capture. We showed that im-
age noise introduces a bias in the optimization that, under
suitable assumptions, can be quantified and corrected for.
We also introduced additional priors to regularize the opti-
mization, and showed their effectiveness via ablation stud-
ies. Our method improves upon past work on both defocus
map estimation and blur removal, when evaluated on a new
dataset we captured with a consumer smartphone camera.

Limitations and future directions. We discuss some lim-
itations of our method, which suggest directions for fu-
ture research. First, our method does not require a large
dataset with ground truth to train on, but still relies on a
one-time blur kernel calibration procedure. It would be in-
teresting to explore blind deconvolution techniques [20, 48]
that can simultaneously recover the all-in-focus image, de-
focus map, and unknown blur kernels, thus removing the
need for kernel calibration. The development of parametric
blur kernel models that can accurately reproduce the fea-
tures we observed (i.e., spatial variation, lack of symme-
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(a) Input image (b) Ground truth (¢) Ours full  (d) No Lintensity (€) No Lajpha () No Lentropy (g) No Laux (h) No B
Figure 8: Ablation study. Input images (a), ground truth all-in-focus images, and defocus maps (b) with zero confidence
pixels in white, our results (c), and our results with different terms removed one at a time (d)-(h). Removing Lintensity
and Laipha strongly affects the smoothness of all-in-focus images and defocus maps respectively. Results without entropy
regularization Lentropy, Laux, OF the bias correction BB, exhibit more errors in defocus maps on textureless regions (clock).

try, lack of circularity) can facilitate this research direction.
Second, the MPI representation discretizes the scene into
a set of fronto-parallel depth layers. This can potentially
result in discretization artifacts in scenes with continuous
depth variation. In practice, we did not find this to be an
issue, thanks to the use of the soft-blending operation to
synthesize the all-in-focus image and defocus map. Never-
theless, it could be useful to replace the MPI representation
with a continuous one, e.g., neural radiance fields [58], to
help better model continuously-varying depth. Third, re-
constructing an accurate all-in-focus image becomes more
difficult as defocus blur increases (e.g., very distant scenes
at non-infinity focus) and more high-frequency content is
missing from the input image. This is a fundamental lim-
itation shared among all deconvolution techniques. Using
powerful data-driven priors to hallucinate the missing high
frequency content (e.g., deep-learning-based deconvolution
techniques) can help alleviate this limitation. Fourth, the
high computational complexity of our technique makes it
impractical for real-time operation, especially on resource-
constrained devices such as smartphones. Therefore, it is
worth exploring optimized implementations.
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All-in-focus Image Defocus Map

Method PSNR1 SSIMt MAE] | ATWE(1) | AIWE(2) ] 1—|p|l

Full 26.692 0.804 0.027 0.047 0.076 0.178
NoO Lintensity | 14.882 0.158 0.136 0.047 0.078 0.185
No Laipha 24.748 0.726 0.037 0.161 0.206 0.795
No Lentropy 27.154 0.819 0.026 0.057 0.085 0.190
No Laux 26.211 0.768 0.030 0.148 0.190 0.610
No B 26.265 0.790 0.028 0.063 0.092 0214

Table 2: Quantitative comparisons of ablation studies. We
compare the full pipeline with removals of the regulariza-
tion terms Laiphas Lintensity aNd Lentropy, the auxiliary data
loss L,ux, and bias correction term B respectively. For
all ablation experiments, we set the weights on remaining
terms to be the same as the ones in the full pipeline. Best
and second best results are highlighted in red and orange.

(a) Input from [!] (b) DPDNet [1]
Figure 9: Results on data from [I1]. Our method recovers
all-in-focus images with fewer artifacts, while using the cal-
ibration data from our device.

(c) Our results
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