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ABSTRACT

This paper connects equal opportunity to popularity bias in implicit
recommenders to introduce the problem of popularity-opportunity
bias. That is, conditioned on user preferences that a user likes both
items, the more popular item is more likely to be recommended
(or ranked higher) to the user than the less popular one. This type
of bias is harmful, exerting negative effects on the engagement of
both users and item providers. Thus, we conduct a three-part study:
(i) By a comprehensive empirical study, we identify the existence
of the popularity-opportunity bias in fundamental matrix factor-
ization models on four datasets; (ii) coupled with this empirical
study, our theoretical study shows that matrix factorization models
inherently produce the bias; and (iii) we demonstrate the potential
of alleviating this bias by both in-processing and post-processing
algorithms. Extensive experiments on four datasets show the effec-
tive debiasing performance of these proposed methods compared
with baselines designed for conventional popularity bias.
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1 INTRODUCTION

Statistical parity and equal opportunity are two important concepts
for studying fairness and bias in classification and recommendation
tasks [7, 8, 13, 39, 42]. Statistical parity requires the same positive
rate over individuals or groups [18, 41]. On the other hand, equal
opportunity requires the same true positive rate [7, 42]. Because
statistical parity investigates algorithmic bias without conditioning
on the ground truth, the bias identified and removed based on
statistical parity is not necessarily an undesired harmful bias [7, 42].
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Figure 1: Examples of (a) uPO bias and (b) iPO bias in ML1M.

In this paper, we re-examine popularity bias from the perspective
of equal opportunity. We observe that previous studies of popularity
bias [3, 4, 6, 9, 10, 27] are mainly governed by statistical parity, and
so inherit its limitations. We then connect the concept of equal op-
portunity to this conventional popularity bias to introduce the new
problem of popularity-opportunity bias in implicit recommenders.

Suppose we consider the popularity of items as the number of
feedback actions toward each item (clicks or views). Conventional
popularity bias [3, 4, 6, 9, 10, 27] refers to the phenomenon that
high rankings are tend to assigned for popular items at the expense
of lower rankings for less popular items. These studies of conven-
tional popularity bias examine the impact of item popularity on
recommendation results alone, without taking user preferences into
account. That is, the positive rate difference over items of different
popularity is calculated for measuring the conventional popularity
bias, which is essentially aligned with the concept of statistical
parity [8, 13, 39]. However, such a bias definition is problematic
because without conditioning on user preferences, the recommen-
dation result (or positive rate) alone is not necessarily evidence
of bias. For example, for a user u, one popular item i and one less
popular item j, better ranking for the popular item i than the less
popular item j is a biased recommendation defined by conventional
popularity bias. Yet, if we know that u likes i but dislikes j, then this
ranking result is in fact reasonable and not a harmful bias. Moreover,
forcing similar rankings for i and j as in previous works [32, 33]
to remove conventional popularity bias could actually hurt user
satisfaction and engagement of the popular item i.

Thus, inspired by equal opportunity, we propose to investigate
the popularity-opportunity bias: conditioned on user preferences
that a user likes both items, is the more popular item more likely
to be recommended (or ranked higher) to the user than the less
popular one? That is, we calculate the true positive rate difference
over items of different popularity for measuring the bias during
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testing, and require the true positive rate to be the same for items
of different popularity to achieve equal opportunity. To our best
knowledge, this is the first work which studies popularity bias from
the view of equal opportunity for recommender systems.

To identify popularity-opportunity bias during testing, one criti-
cal question is how do we know user preferences to measure the
bias? That is, how do we know whether u likes i or j? In practice,
the utility of a recommender system is typically evaluated through
a train-test split, where a learned model (based on the training data)
is evaluated over the testing data, where the testing data contains
held-out evidence of user preferences (e.g., by likes, views, or clicks).
In a similar way, we can leverage the same testing data as indicators
of user preferences to identify popularity-opportunity bias.

User-side popularity-opportunity bias. More specifically, in
this paper, we investigate the proposed popularity-opportunity
bias from the views of users and items separately. To illustrate,
let’s first consider the example in Figure 1a. Here we show four
items from the MovieLens 1M dataset [14] that user ID5003 likes
during testing. That is, these items are not seen during training
but are in the test set of this user, and the user will interact with
these items once recommended (i.e., they are true positives). Item
ID116 is the most popular one with 1588 feedback actions, while
item ID1955 is the least popular with only 185 feedback records.
Then, we show the ranking positions of these four items for user
ID5003 according to two fundamental collaborative filtering models
— matrix factorization with Root Mean Square Error loss (denoted
as MF) [23] and Bayesian Personalized Ranking loss (denoted as
BPR) [30]. We observe that popular items are ranked higher than
less popular items by both models, even though we know the user
likes all of them. We refer to this as user-side popularity-opportunity
bias or uPO bias for short.

Item-side popularity-opportunity bias. Complementary to this
user-side perspective, we show an example of five items in Figure 1b.
Item ID213 is the most popular, while item ID3001 is the least pop-
ular. If we consider only the matched users who like each item in
testing data (i.e., for item i, only the ranking positions for matched
users who have i in their test set are considered), we observe that
more popular items will have better rankings and higher proba-
bilities of being ranked in the top-100. For example, item ID213 is
ranked by MF in the top-100 for 94% of all matched users, whereas
item ID3001 is never ranked in the top-100 for its matched users.
This reveals a systematic low recommendation opportunity for low-
popularity items. We refer to this as item-side popularity-opportunity
bias or iPO bias for short.

Both this user-side and item-side bias raise critical issues. User-
side (uPO) bias is harmful because a user’s need corresponding to
these low-popularity items is not acknowledged and not satisfied by
the recommender. Moreover, low-popularity items sometimes are
more important than popular items because they can be serendip-
itous and novel for users, crucial for extending the area of users’
interests and promoting user engagement [6, 31]. Item-side (iPO)
bias brings damaging outcomes that long-tail items may not have
any chance to become popular or even known, and providers of
these items will receive less engagement in the system. In the
long-term, iPO bias could accumulate, leading to a recommender
dominated by well-known popular items.
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Our contributions. Hence, this paper proposes a three-part study
of both user-side and item-side popularity-opportunity bias.

i) Figure 1 shows cases of the bias, but is it prevalent beyond these
examples? To answer this, we conduct a comprehensive data-driven
study over four datasets to investigate the presence of popularity-
opportunity bias. We focus on two fundamental collaborative filter-
ing approaches (MF and BPR) that serve as foundations of many
recommenders including recent neural ones [16]. We empirically
demonstrate both models produce user-side and item-side bias.

ii) While this data-driven study showcases the prevalence of
the bias, is it truly inherent to these models or an artifact of these
datasets? To answer this, we theoretically analyze the impact of
item popularity on ranking by MF and BPR to confirm the existence
of the bias in both methods.

iii) Last, we investigate the potential of two approaches to reduce
this bias: a post-processing approach to compensate for popularity
in recommendation; and an in-processing approach that regularizes
predicted scores and item popularity. Through experiments on four
datasets, we explore the trade-offs between debiasing effectiveness
and recommendation utility, showing the more effective debiasing
performance of the two proposed methods over existing debiasing
baselines designed for conventional popularity bias.

2 RELATED CONCEPTS

In this section, we discuss two topics that are highly related to the
studied popularity-opportunity bias: conventional popularity bias,
and item-side recommendation fairness.

Conventional Popularity Bias refers to the phenomenon that
recommenders tend to assign high rankings for popular items at the
expense of lower recommendation opportunities for less popular
items [3, 4, 6, 9, 10, 27]. This concept and its influence on recom-
mendations has been studied in [6, 9, 27], and later, Jannach et
al. [17] empirically showed that different recommendation algo-
rithms have different vulnerabilities to popularity bias. Long-tail
items are considered valuable because they often represent novelty
and serendipity [6, 11, 31], thus, they are important in terms of
promoting user satisfaction and preventing the monopoly by big
brands [3]. To mitigate the harmful effects of popularity bias, many
debiasing approaches have been proposed [2-4, 20, 32, 33].

However, existing works [3, 4, 10, 20] mainly study the effects
of item popularity on the ranking results themselves - e.g., are
popular items recommended more often or ranked higher than
less popular ones? — without considering what are the user prefer-
ences toward them (aligned with the concept of statistical parity).
This is problematic because without conditioning on user prefer-
ences, recommendation difference is not necessarily evidence of
bias. Thus, we propose popularity-opportunity bias in this work,
which studies the impact of item popularity conditioned on user
preferences (which is aligned with the concept of equal opportu-
nity). Furthermore, most prior works study the group-level impact
of popularity on recommendations by grouping items based on
their popularity [2-5, 10, 17, 20]. These studies often consider two
groups — popular items vs. long-tail items — which ignores the
subtle distinction between individual items at different ranking
positions. In contrast, this paper directly investigates rankings and
popularity of individual items.
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Item-side Recommendation Fairness is another related concept
to the popularity-opportunity bias, which studies whether the rec-
ommender system treats different groups of items differently. These
groups are often determined by sensitive attributes (e.g., gender,
race). For example, some works study statistical parity based fair-
ness [18, 19, 21, 25, 38, 41], to see whether different groups of
items receive equal exposure in the recommender. Some recent
works take user preferences into account to study equal opportu-
nity based item group fairness [7, 12, 28], which is similar to the
philosophy of this paper, but we consider the equal opportunity for
individual items based on their item popularity. Many researchers
have explored methods to enhance recommendation fairness for
items [7, 12, 18, 19, 21, 25, 28, 38, 41]. Our work complements these
prior efforts as popularity is one key reason driving unfairness for
different groups of items.

3 PRELIMINARIES

In this section, we first describe the implicit recommendation prob-
lem, then introduce matrix factorization based collaborative filter-
ing models with two different objective functions.

Implicit Recommendation. Suppose we have a user set U =
{1,2,...,N} and an item set 7 = {1,2,..., M}. We need to recom-
mend a list of k items to every user u based on her implicit feedback
record Of = {i, j,...}, where i, j, ... are the items u has provided
positive feedback to before, which are used as training data for
model learning. Besides, we have another item set 5;' to represent
the items that user will like during testing, which are the test data
for evaluating recommendation utility and recommendation bias.

Matrix Factorization. Matrix factorization based collaborative
filtering [23, 30] is the foundation of many state-of-the-art rec-
ommendation models [15, 24], as well as recent neural-network
based models [16, 35, 36] that use matrix factorization as the final
layer for predicting preference scores. The main idea is to learn
low-dimensional latent representations for users and items based
on existing user-item interactions, and then to predict preference
scores for unobserved user-item pairs by the dot-product of latent
representations: ﬁu,i =P} Q;, where P, € RHX1 ig the latent repre-
sentation of user u, Q; € RF*1 is the latent representation of item
i, and H is the latent dimension.

There are two main categories of objective functions for matrix
factorization models: point-wise objective functions (include Root
Mean Square Error (RMSE) [23], Cross-Entropy [16], among others)
and pair-wise objective functions (include Bayesian Personalized
Ranking loss (BPR) [30], Hinge loss [40], and others). Since RMSE
and BPR are two of the most widely applied objective functions, we
focus on these two in the rest of the paper. We denote the matrix
factorization model with RMSE as MF, and the one with BPR loss
as BPR. The formulations are shown below:

m@i)n LymE = Z Z Y (ﬁu,i - Ru,i)Z,

(1)
uelU ieOfUO;
min LppR =~ Z Z Ino(Ryi = Ruy,j),
uell €0}, @)
j€o,
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Table 1: Characteristics of the four public datasets.

| #users #items density pop_avg pop_std

ML1IM 6,040 3,260 3.55% 214.41 276.85
Ciao 5,047 8,102 0.21% 10.82 19.13
Epinions | 12,168 11,283 0.18% 21.88 33.07
App 16,201 4,869 0.23% 37.96 66.34

where O, is the randomly sampled negative item set for u; o(-) is
the Sigmoid function; and © represents the model parameters, i.e.,
the latent representations for users and items P and Q.

4 DATA-DRIVEN STUDY

In this section, we conduct a data-driven study of popularity-opportunity

bias over four datasets, and show how MF and BPR are vulnerable
to this bias on both user (uPO bias) and item (iPO bias) sides. While
many previous studies have identified conventional popularity bias,
this is the first to identify popularity-opportunity bias.

We adopt four widely used datasets from different domains:
ML1M [14], Ciao [34], Epinions [34], Amazon-App [26]. For all
datasets, we consider the rating or reviewing behaviors as positive
feedback from users to items, and regard the number of feedback
actions an item receives as its popularity. We first filter out users and
items with interactions fewer than 10, and then randomly split them
into 60%, 20%, and 20% for training, validation, and testing. The
details of these datasets are presented in Table 1, where pop_avg
shows the average popularity of the items and pop_std shows the
standard deviation of item popularity.

We train MF and BPR models by the training sets of these
datasets; tune hyper-parameters by grid search on validation sets;
and report the results on test sets. Further details of the experimen-
tal setup can be found in Section 7.1.

4.1 Measuring uPO and iPO Bias

First, we introduce two metrics to measure uPO and iPO bias. Sim-
ilar to recommendation utility metrics, such as NDCG, the two
introduced bias metrics are calculated based on the test item set
Oy for each user u.

Measuring uPO bias. For uPO bias, we want to know for each
user u, among all items u will like during testing (items in 5{: ),
whether less popular items are ranked lower than more popular
ones, i.e., whether the rankings are correlated with popularity given
items are liked by the user. Thus, for each user u, we calculate the
Spearman’s rank correlation coefficient between the popularity of
items in 5; and their ranking positions, then average all users to
have the popularity-rank correlation for users (denoted as PRU):

PRU = —~ 3" SRC(pop(T;). rank,,(T)),
N ueld

®)

where SRC(+, -) calculates Spearman’s rank correlation; pop(-) re-
turns item popularity (it counts the number of feedback actions
for each item) for given items; and rank, (5; ) returns the rank-
ings (from 0 to M — 1, 0 represents the top-most ranking) of given
items for user u by a specific model. Spearman’s rank correlation
coeflicient assesses the monotonic relationship between two vari-
ables and has values in the range [-1, 1]. Hence, a large positive
value (note that we add a negative sign before SRC(-, -) to flip the
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Table 2: Measuring uPO bias (PRU) and iPO bias (PRI) for MF
and BPR on four datasets. * indicates that the Spearman’s
rank correlation coefficients are statistically significant for
p < 0.01 judged by t-test.

ML1IM Ciao Epinions App
MF BPR MF BPR MF BPR MF  BPR
PRU | 0.835 0.779 | 0.542 0.591 | 0.684 0.708 | 0.567 0.636
PRI | 0.980" 0.969" | 0.363* 0.433* | 0.535" 0.573" | 0.609* 0.692*

sign) of PRU means that low popularity leads to low rankings for
items a user likes during testing, which violates the requirement of
equal opportunity for items of different popularity as discussed in
Section 1, i.e., high uPO bias.

Measuring iPO bias. For iPO bias, we want to know whether
the expected rankings of low-popularity items for matched users
are lower than the expected rankings of high-popularity items, i.e.,
whether the expected ranking position of an item for a matched user
is correlated with its popularity. Hence, we calculate the Spearman’s
rank correlation coefficient between the popularity of all items and
their average ranking positions over matched users (for each item
i, fetch all the users who have i in test set 5:: , and then average the
ranking positions in the ranking lists of these users) to have the
popularity-rank correlation for items (denoted as PRI):

PRI = =SRC(pop (1), avg_rank(I)),

where avg_rank(i) = ranky (i) returns the average

70 Zued
ranking for item i over the set of matched user U; (i.e., for each
ueU,iisin 5; ). A large positive value of PRI means that lower
popularity leads to worse rankings, violating the requirement of
equal opportunity, i.e., high iPO bias. In our experiments, we also
evaluate the iPO bias by calculating the probability of being ranked
in top-k for a matched user (as examples in the Figure 1b), which
shows similar pattern as the introduced metric PRI. Thus, in this
paper, we will only report results based on PRL

Compare PRU and PRI. Both PRU and PRI measure popularity-
opportunity bias. The main difference is how they calculate the
popularity-ranking correlation and aggregate across users. Due to
this calculation difference, PRU and PRI measure different aspects
of popularity-opportunity bias. PRU represents the expectation of
popularity-ranking correlation of matched items a random user
will get from a model, which is to say, it quantifies the bias from
the view of users. On the other hand, PRI measures the correlation
between item popularity and the expectation of ranking position
from matched users for items, which is to say, it quantifies the bias
from the view of items. Although in practice, these two metrics
usually show similar patterns, they are essentially not the same.
It is possible that a model generates high uPO bias measured by
PRU while low iPO bias measured by PRI, or vice versa. Hence,
it is necessary to study the proposed popularity-opportunity bias
from both PRU and PRI perspectives.

4.2 Observations

In the following, we report our observations of uPO and iPO bias
for MF and BPR over the four datasets.
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Figure 2: Scatter plots of ranking results by MF on ML1M.

Observations of uPO bias. First, we show PRU for both MF and
BPR across all four datasets in Table 2. We can see that for both
MF and BPR on all datasets, PRU values are large positive numbers,
indicating both MF and BPR produce uPO bias. More precisely, for
a user, even if we know that two items are equally liked by the user,
the more popular one will have better ranking position than the less
popular one. Note that we do not show the significance test results
for PRU because the size of 5;“ in Equation 3 is small for most of the
users which makes the significance test uninformative (because the
p-value is always large when only few instances are included). An
example of such uPO bias in ML1M dataset is shown in Figure 1a,
which is consistent with our observations from Table 2.
Observations of iPO bias. Next, we focus on the metric PRI to
evaluate the iPO bias in Table 2. For all four datasets and both
models, PRI are large positive values, which means in the recom-
mendations by MF and BPR, items with high popularity have better
expected rankings for their matched users, while the opposite holds
for low-popularity items. Thus, we can confirm that MF and BPR
produce the iPO bias.

To better show the effects of iPO bias, we present two scatter
plots in Figure 2 for ranking results of MF on ML1M data (BPR
and other datasets have similar patterns). Each dot represents one
item. In the left figure, we plot the average rankings of items over
matched users (y-axis) vs. popularity (x-axis), from which we can
observe a monotonic decreasing trend for the average rankings
as the popularity increases. In the right figure, for each item, we
plot the probability of being ranked in the top-100 for matched
users (y-axis) vs. popularity (x-axis), where we see a monotonic
increasing trend for the recommendation probabilities when the
popularity increases. These observations are consistent with the
conclusions drawn from the bias metric shown in Table 2 that more
popular items have better rankings for matched users than less
popular items do. Real examples of such iPO bias in ML1M dataset
are presented in Figure 1b.

5 THEORETICAL STUDY

After empirically confirming the existence of bias in MF and BPR,
we turn in this section to theoretically analyze the relationship
between item popularity and ranking results generated by MF and
BPR under two simplifying assumptions, to confirm the existence
of uPO and iPO bias in MF and BPR.

5.1 Existence of Bias in MF

We first formulate the input and output of the MF model. Given
a training user-item interaction matrix R € {0, 1M with N
users, M items, 1 represents a known user-item interaction, and 0
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represents an unknown user-item relationship. If we train an MF
model on R, we can get a user latent representation matrix P €
RN and an item latent representation matrix Q € RF*M, Now
we have Assumption 1: we assume the model is trained in an ideal
condition where the loss function in Equation 1 is minimized close
to 0. Then the dot product of the latent matrices will reconstruct
R with very minor error: PTQ = R and ||§ R||12: < €. This is to

say that Rul ~1ifRy;=1,and Rul ~ 0 if Ry ; = 0. We represent
the reconstructed interaction matrix as R € {~ 0, ~ 1}V where
~ 0 and ~ 1 are numbers very close to 0 and 1. Without loss of
generality, we assume values in R are non-negative because we can
always add a positive constant to R to make all elements positive
without changing the ranking results.

Because the number of ~ 1 values in columns of R can indi-
cate the item popularity, we introduce the item popularity infor-
mation to the formulations of P and Q by R. Given a user u, the
predicted preference scores for her toward all items can be calcu-
lated by P Q = ﬁu,:, where ﬁu,: € {~ 0,~ 1}"*M js the u-th row
inR. Moving Q to the right-hand side by pseudo-inverse, we can
have P} = R,,.QT(QQT)~!. Similarly, we have Qi= (PPT)"'PR.,
where R.; € {~ 0, ~ 1}V*! s the i-th column in R.

Based on the new formulations of P,, and Q;, we define several
new matrices for the analysis. First, we define the normalized user
latent representation: A = (PPT)~1P, which normalizes P by the
variances of its principal components over the principal component
directions. The explanation for A is that PPT can be factorized as
PPT = UAUT by Eigen-Decomposition, where U is an orthogonal
matrix (UT = U™!) with eigenvectors of PPT as columns, and A is
a diagonal matrix with eigenvalues of PPT as diagonal elements.
Then based on the definition of Principal Component Analysis [37],
UTP are the principal components of P, A are the variances of these
principal components. As a result, A = (PPT)~!P = UA"IUTP,
i.e., P is first transformed to the principal component space by
UT, then normalized by the variances of principal components by
A1, and last, transformed back to the original space by U. In the
same way, we can have the normalized item latent representation:
B = (QQ")~1Q, and the normalized preference matrix: Z = ATB €
RN*M (values in Z are non-negative because all calculations do
not change sign).

Now we can derive the predicted score for a user-item pair. Given
user u will like item i during testing (i is in 5;' ):

ﬁ;)i = PJQI = ﬁu,:BTlﬁﬁz,i = ﬁu,:ZTﬁ:,i = Z ﬁ;:;ﬁ:,i © ZT, (4)

where R+l. represents the predicted preference score from u to
i given the ground truth for this user-item pair is positive; © is
the Hadamard product; and ), D (D is a matrix) is to sum up all
elements of D. The intuitive way to interpret Equation 4 needs two
steps: i) First, ﬁ;ﬁl € {~ 0, ~ 1}M*N js the process to select key
user-item pairs from a user candidate set U; and an item candidate
set 7,, that help to indicate preference from u to i, where U; are
the users who like i in the training set, and 7, are the items u likes
in the training set. Because U; reveals characteristics of i and 7,
reveals preferences of u, we can infer ﬁu,i based on the preferences
of U; toward I, and elements with value ~ 1 in ﬁ;l’ :ﬁz,i indicates
these key user-item pairs. ii) Then, }; l’i;f :ﬁz,i © Z7 retrieves the
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preference scores of the selected key user-item pairs in Z and sums
them up as R

To s1mphfy Equatlon 4, we have Assumption 2: we assume
the preference scores in Z for key user-item pairs follow the same
distribution. The intuitive interpretation of this assumption is that
similar users (and similar items) share similar feedback patterns.
Or from another aspect, any positive user-item interaction can be
inferred by other user-item relationships. Based on this assumption,
we denote the expectation of the preference score in Z for a key
user-item pair as E[Z,] (E[Z,] is non-negative). We can further
derive Equation 4 as:

= D RIR0Z= () Ru) () RE[Z4].

THEOREM 5.1. Given Assumption 1 and 2, MF produces uPO bias.

ProOF. Suppose user u will like items i and j during testing,
and i is more popular than j, i.e, (X R.;) > (X R.;), which is also
equivalent to (3] ﬁ;,i) > (X R 1), the difference between predicted
preference scores of the two is:

R~ (RS R0 - (SR Biz) =0

which is to say for user u, even though both items are liked by u,
the lower popularity of j makes it have a worse ranking than i in
the recommendation list for u, i.e., MF produces uPO bias. m]

THEOREM 5.2. Given Assumption 1 and 2, MF produces iPO bias.

Proor. First, we formulate the expectation of the preference
score of item i from matched users as:

[ R REIZ4],

where E[ (2 ﬁu)] is the expectation of the sum of predicted scores
for a user, which is independent with items. Hence, given two items
i, j, where i is more popular than j, we calculate the difference
between expected scores of i and j:

E[RY] - E[RY] =E[() Ry Roi) = (O R )E[Z4] > 0,

which is to say that the lower popularity of j brings worse expected
ranking for users who like j than i, i.e., MF produces iPO bias. O

5.2 Existence of Bias in BPR

In a similar fashion, we analyze the bias in BPR. Due to the pair-wise
BPR loss, we cannot directly apply the same process in Section 5.1
to BPR. Thus, we need to first transform a BPR model to an MF one.
Because the pair-wise objective function in BPR is calculated
by fixing a user and then computing the difference of predicted
scores between one pair of positive and negative items, the output
matrix R is not an approximated version of R as in MF. Instead,
a well trained BPR model will have R where a(ﬁu,i - ﬁu j) =
given R, ; = 1 and Ry j = 0. Without loss of generality, we can
remove the Sigmoid function, and assume that ﬁu,i - ﬁu, j=ala
is a large positive number) for R,,; = 1 and Ry, j = 0. Besides, we
define a vector x € RV¥! to record the expectations of predicted
scores for items not in the training set (i.e., I \ O}) for each user
as Xy = [Ru 1\0:1- Now, for user u, R,,. is a vector consisting of
values close to x;, and x,, +a, denoted as ~ x,, values and ~ (x, +a)
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values, where ~ x,, are for items in 7 \ O} and ~ (x, + a) are for
items in O;.

Next, we define a centralized preference matrix R ¢ {~ 0,~
1}N*M by subtracting x,, and dividing a for each user: R= %(ﬁ—_]o
x), where J = {1}N*M; and o times elements of x to corresponding
rows of J. R contains ~ 0 and ~ 1 values, which is exactly the
same as the R in for MF. Meanwhile, R maintains the item ranking
orders for all users compared with R generated by BPR because
the ranking is executed for each row of ﬁ thus, subtracting and
dividing constants will not change the order of the elements in one
row. Then, we have a new user latent representation matrix:

P=-(P-JoxQ (0O

so that PTQ = R. Now, we transform the original BPR model with
latent matrices P and Q to a new model with P and Q, where the
two models have the same recommendation results. Last, we can
easily apply the same analysis process for MF to the new model to
prove the existence of uPO and iPO bias in BPR.

6 DEBIASING APPROACHES

After empirically and theoretically studying popularity-opportunity
bias in matrix factorization models, we next explore several ap-
proaches to alleviate this bias. Many methods [2-4, 20, 32, 33] have
been studied for alleviating conventional popularity bias, which
aim to promote the rankings of low-popularity items in the recom-
mendations. These methods can also help promote the rankings of
low-popularity items for matched users, which may mitigate the
popularity-opportunity bias investigated in this paper. However,
this could also promote the rankings of low-popularity items for
unmatched user, which could significantly degrade the overall rec-
ommendation utility. Hence, we explore debiasing methods that
are designed explicitly for the popularity-opportunity bias.

Typically, there are three categories of methods: pre-processing [29],
post-processing [4, 25], and in-processing [3, 7, 38] methods. Pre-
processing approaches modify the training data so that models
trained on the purified data are free of undesired issues (like bias).
However, these kinds of algorithms are usually hard to design and
may be ineffective since they cannot remove the algorithmic bias
inherent in model architectures.

Hence, we focus here on the potential of post-processing and in-
processing approaches to alleviate the bias. Concretely, we propose
a simple but effective post-processing algorithm — Popularity Com-
pensation (PC for short) and a regularization-based in-processing
debiasing model (Reg for short).

6.1 Post-processing: Popularity Compensation

We begin by investigating a post-processing approach that modifies
the predicted user-item preference matrix R by adding compen-
sation to items with small popularity so that they have higher
preference scores and thus higher ranking positions. We propose
such a popularity compensation that follows three key guidelines:

Guideline 1: Compensation should follow item popularity: items
with lower popularity should be compensated more.
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Guideline 2: Compensation should follow user preferences: items
with higher probabilities of being liked by a user should be com-
pensated more.

Guideline 3: Compensation should follow the value scale of each
user: for a user who has a larger value scale for Ry, item candidates
for her should be compensated more.

Guideline 1 promotes low-popularity items to mitigate the bias.
Guideline 2 ensures that items a user does not like but with low pop-
ularity will not be mistakenly promoted by the algorithm. Guideline
3 makes sure that users with large value scales of predicted pref-
erence scores will have large compensation to items so that the
algorithm is effective to all users.

Based on these guidelines, we propose the Popularity Compensa-
tion (PC) debiasing algorithm. Given a user u, we have the user-item
interaction records in the training data Ry, . € {0, 1M the inter-
acted item set in the training data O}, and the predicted preference
scores from u to items generated by MF or BPR ﬁu € RM The PC
algorithm has three steps. First, we calculate the norm of predicted
scores for user u by:

ny = [|(Ry: @ (1= Ry))/ (M= 05D lr,

where we only consider the predicted preference scores to items
that are not in the training data (by ﬁu,; © (1 — Ry,;)) because
the ranking is executed only on these un-interacted items and we
should exclude the influence of items in the training set. Second, we
calculate the popularity compensation score for one item i given u:

(Rui - f+1- ),

wi=
pop(i)

where there are two parts: 1/pop(i) is to achieve Guideline 1, and
(Ry,i - p+1—P) is to achieve Guideline 2 by using the predicted
score as the indicator of user preference to i. § € [0, 1] is a trade-off
weight to control the ratio of predicted preference score in the
compensation: larger  means higher ratio for predicted scores.
Last, following Guideline 3, we need to scale the compensation to
match the user preference score scale and add it to Ry, ;:

ﬁ*

wi = Ryi+a-Cyj-ny/my,

where ﬁ:l is the new preference score from u to i; my, = ||(Cy, ©
(1=Ry))/(M - |Of])||r is the norm of compensation scores of u
excluding those for items in O}; n, /my, is to normalize the com-
pensation scores based on Guideline 3; and « is the trade-off weight
for the whole PC algorithm. With new preference scores for all
candidate items, we can provide a debiased ranking list for u.

6.2 In-processing: Regularization

In this section, we introduce a regularization-based in-processing
way to debias. The proposed method is inspired by previous work
enhancing equal opportunity based recommendation fairness for
different item groups [7], which try to decrease the correlation be-
tween item group variable and model output scores to achieve fair-
ness. We adapt this idea to the context of alleviating the popularity-
opportunity bias by decreasing the correlation between item popu-
larity and model output scores.
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We adopt the square of the Pearson correlation coefficient between
predicted preference scores for positive user-item pairs and cor-
responding item popularity as a regularization term, and mitigate
the bias by minimizing this regularization term together with the
recommendation error:

min Lec + yPCC(Ry, pop(1))?,

where Lgec is the loss of recommendation models as shown in
Section 3; PCC(ﬁ+,pop (7)) computes Pearson correlation coeffi-
cient between predicted scores for positive user-item pairs and the
popularity of corresponding items; and y is the trade-off weight.

The proposed Reg is designed to decouple the item popularity
with the model preference predictions to alleviate the popularity-
opportunity bias. However, minimizing the correlation between
item popularity and the predicted score is a challenging task because
item popularity is continuous and unevenly distributed. Thus, a
decrease in recommendation utility is expected when we aim to
reduce the bias significantly by Reg, which will be further examined
in Section 7. We leave the improvement for future work.

7 EXPERIMENTS

In this section, we investigate the impact of the proposed debiasing
methods w.r.t. recommendation utility and debiasing performance,
compared with biased base models and baselines of removing con-
ventional popularity bias. Then, we illustrate these impacts over
the same examples from Figure 1 to better understand their effects.
Last, we study the impact of hyper-parameters on the two proposed
debiasing algorithms.

7.1 Experiment Setup

Data and Baselines. We use the same four datasets introduced
in Section 4. We compare the biased models MF and BPR with
their debiased versions: MF-PC and BPR-PC denote the debiased
versions based on the Popularity Compensation algorithm, while
MF-Reg and BPR-Reg denote the debiased versions based on the
regularization-based model. Besides, we also include two baselines
which are designed to remove the conventional popularity bias
for comparison, in other words, models forcing items of different
popularity to receive similar rankings for all users.

The first baseline removes the conventional popularity bias by
weighted matrix factorization [32], which assigns weights to train-
ing samples in the recommendation loss in Equation 1 and Equa-
tion 2 based on the popularity of involved items — items of low pop-
ularity will be assigned with high weights to promote the predicted
scores for them. The weight for item i is chosen as w; o« 1/pop(i)¢,
where e is an exponent to control the strength of the debiasing
effect. We denote the corresponding versions with MF and BPR as
base models as MF-weight and BPR-weight.

The second baseline removes the conventional popularity bias by
rescaling the training data [33], which multiplies rescaling values
to the binary training samples based on the popularity of involved
items to uniformly promote the scores of low-popularity items.
Then, it trains the vanilla MF or BPR models on the rescaled training
data. The rescaling values are determined by the same way as the
weights in the weighted model: w; o« 1/pop(i)¢ with the exponent
e to control the debiasing strength. We denote the corresponding
baselines as MF-rescale and BPR-rescale.
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Table 3: Evaluation of recommendation utility (NDCG@k),
uPO bias (PRU), and iPO bias (PRI) for MF based models on
four datasets. * indicates the correlation coefficients are sta-
tistically significant for p < 0.01.

NDCG@k

@20 @50 PRU PRI
MF 0.2726  0.2930 | 0.8350 | 0.9799"
MF-weight | 0.1484 0.1793 | 0.4845 | 0.6407"
ML1IM MF-rescale | 0.1361 0.1658 | 0.4365 0.6936"
MF-Reg 0.1492  0.1720 | 0.1910 | 0.59167
MF-PC 0.1435 0.1980 | 0.4552 | 0.5594"
MF 0.0717  0.0934 | 0.5420 | 0.3625
MF-weight | 0.0447 0.0675 | 0.3174 | 0.3293"
Ciao MF-rescale | 0.0425 0.0608 | 0.3219 0.2526"
MF-Reg 0.0497 0.0639 | 0.2881 | 0.1905
MF-PC 0.0647  0.0845 | 0.3073 | —0.0150
MF 0.0693  0.0938 | 0.6840 | 0.5351"
MF-weight | 0.0349 0.0526 | 0.3453 | 0.23417
Epinions | MF-rescale | 0.0343 0.0509 | 0.3678 | 0.2182"
MF-Reg 0.0386 0.0516 | 0.2175 | 0.2251"
MF-PC 0.0605 0.0848 | 0.3549 | —0.0415
MF 0.1026  0.1359 | 0.5667 0.6089"
MF-weight | 0.0388 0.0596 | 0.3552 | 0.23347
App MF-rescale | 0.0384 0.0583 | 0.3350 | 0.2147*
MF-Reg 0.0439  0.0599 | -0.0571 | 0.2207"
MF-PC 0.0965  0.1280 | 0.3527 | —0.0487

Because the two conventional popularity bias based baselines
uniformly promote low-popularity items in recommendations, the
popularity-opportunity bias is expected to be reduced as well. How-
ever, these baselines modify the recommendations without consid-
ering the potential user preferences as the two proposed debiasing
models do. Hence, it is also expected that the two baselines will
decrease the recommendation utility significantly.

Metrics. We evaluate user-side and item-side bias for all the mod-
els using the metrics introduced in Section 4.1, and compare the
recommendation utility based on NDCG@k with k = 20 and 50.

Reproducibility. All models are implemented in Tensorflow [1]
and optimized by Adam [22] algorithm. For all models and all
datasets, we fix the latent dimension as 64, set the learning rate
as 0.001, the negative sampling rate as 2, and set the mini-batch
size as 1024. Then we tune hyper-parameters for all models by grid
search over validation sets. More specifically, for post-processing
methods MF-PC and BPR-PC, we directly apply the PC algorithm
on the outputs from MF and BPR, and tune « in [0.1, 1.5] with step
0.1, tune f in [0.0, 1.0] with step 0.1. For in-processing models, we
tune y in {1e2, 1e3, 1e4, 1e5, 1e6, 1e7}. Note that for all the debiasing
models, there is a trade-off between recommendation utility and
debiasing performance. Hence, we explore hyper-parameters that
minimize the bias metrics while preserving an acceptable utility.

7.2 Comparing Debiasing Performance

We begin in Table 3 with a comprehensive study on four datasets for
all MF based models (including original biased model: MF; debiased
baselines designed for conventional popularity bias: MF-weight
and MF-rescale; and the proposed debiased ones designed for the
popularity-opportunity bias: MF-Reg and MF-PC). Here, we walk
through the key findings:
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Table 4: Evaluation of recommendation utility, uPO bias
(PRU), and iPO bias (PRI) for BPR based models on ML1M
datasets. * indicates the correlation coefficients are statisti-
cally significant for p < 0.01.

NDCG@k
@20 @50 PRU PRI
BPR 0.2983  0.3220 | 0.7793 | 0.9688"
BPR-weight | 0.1458 0.1757 | 0.5121 | 0.6249"
MLIM | BPR-rescale | 0.1446 0.1784 | 0.4349 | 0.6064*
BPR-Reg 0.1660  0.1769 | 0.2862 | 0.5633%
BPR-PC 0.2308 0.2711 | 0.5712 | 0.5080"

First, we investigate the recommendation utility of the two pro-
posed debiasing models and the two baselines compared with the
original MF. Typically there is a trade-off between recommendation
utility and debiasing effectiveness, and we observe such a trade-off
here as well. Focusing on the NDCG columns for different values
of k, we see that in all cases there is a drop in recommendation
utility between original MF and its debiased versions (proposed
MF-PC and MF-reg, and baselines for conventional popularity bias
MF-weight and MF-rescale). Then, by comparing the four debiasing
models, we observe that the MF-PC can preserve recommenda-
tion utility more effectively than the others, and MF-Reg performs
similarly to the two baselines. Given these utility results, if we
can observe lower bias by the proposed models, we can conclude
that proposed models are able to achieve more effective debiasing
performance with recommendation utility preserved.

Hence, we next study the impact different approaches have on re-
ducing user-side (uPO) bias. Let’s focus on the PRU column (which
measures the popularity-rank correlation for users: high values
correspond with high bias). We observe that all debiasing algo-
rithms can significantly reduce PRU compared with the original
MF. And these findings hold across all four datasets. Comparing the
four debiasing models, in general, MF-Reg is able to improve PRU
more significantly, and MF-PC performs similarly to MF-weight
and MF-rescale. It may be because MF-Reg reduces the correlation
between popularity and model predictions, which can effectively
shuffle the rankings of matched items for each user. While the other
three debiasing models are to re-rank items based on heuristics,
which are expected to keep the original rankings to some degree.
Another reason of less effective performance of MF-PC compared
with MF-Reg is that MF-PC provide much better recommendation
utility than MF-Reg, and a lower PRU is expected if we strengthen
the debiasing effect for MF-PC.

Third, we investigate the impact different approaches have on
reducing item-side (iPO) bias. Here, we focus on the PRI column
(which measures the popularity-rank correlation for items: high
values correspond with high bias). All four debiasing methods can
improve PRI against original MF. Comparing the four debiasing
methods, the PC algorithm is much more effective, which can reduce
the PRI to a great extent. Although with a smaller improvement,
the proposed Reg algorithm is more effective than the two baselines
for removing conventional popularity bias.

Similar results can be observed from experiments on BPR and
its debiasing variations (the results on ML1M dataset is shown in
table 4). Based on these results, we can draw the conclusion that the
proposed two debiasing algorithms can indeed mitigate both uPO
and iPO bias, with the post-processing PC algorithm preserving
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ItemID116 ItemID129 ItemID552 ItemID1955
3 & | |
UseriD5003 Pop:1588 Pop:487 Pop:307 Pop:185
MF 3 106 262 557
MF-PC 19 75 141 314
MF-Reg 2195 48 64 297

Figure 3: Case study: ranking results for items that user 5003
in ML1M will like by different models.

ItemID213 ItemID632 ItemID578 IltemID1219 ItemID3001

| 1 [
Pop:1220 Pop:351 Pop:178 Pop:95 Pop:18
ME avg_rank 31 233 468 673 1915
prob@100 94% 34% 12% 0% 0%
ME-PC avg_rank 127 358 464 289 693
prob@100 78% 51% 33% 60% 20%
ME-Re avg_rank 1907 348 269 353 1322
8 prob@100 | 3% a% 2% 35% 0%

Figure 4: Case study: average ranking results of items for
matched users in ML1M by different models

recommendation utility better than the in-processing Reg approach.
Comparing the two proposed methods with the two baselines, we
can conclude that both proposed debiasing methods can alleviate
the popularity-opportunity bias and preserve the recommenda-
tion utility more effectively than baseline methods designed for
removing the conventional popularity bias.

7.3 Case Study

To further understand the effects of the proposed models, we com-
pare the recommendation results of the debiasing algorithms and
the base model MF for the same examples shown in Figure 1 (results
for BPR based models show similar pattern). First, Figure 3 shows
the ranking results for matched items of user 5003 by different
models (recall this is based on the ML1M dataset). By comparing
the debiasing models with their original base model, we can see
that both debiasing algorithms are able to promote the rankings
for unpopular items. The PC algorithm promotes unpopular items
and maintains relatively high rankings for popular ones, meaning
that it is fairly effective at overcoming popularity-opportunity bias.
But the Reg model cannot preserve high rankings for these popular
items, giving insight into the challenges Reg faced in Table 3.
Next, we show the results from the perspective of iPO bias in
Figure 4, where we compare the recommendation results for five
items by different models. We can see that compared with MF, the
debiasing models promote the less popular items to have better
ranking results. For example, MF-PC decreases the recommendation
probability (assuming 100 items are recommended for each user) for
item213 from 94% to 78%, but increases the probabilities for items
with lower popularity, especially for item1219 and item3001, which
do not have any chance to be exposed to users who like them by
MEF, but have 60% and 20% probabilities by MF-PC. Similar in spirit
to our previous observation, the Reg also increases rankings for
unpopular items but cannot preserve rankings for popular items.

7.4 Impact of Hyper-parameters

Finally, we study the impact of the hyper-parameters. Due to the
space limitation, we only show the conclusions based on the exper-
iments here but do not show the detailed results.
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For the PC algorithm, we have two hyper-parameters: a controls
the ratio of popularity compensation, with larger values mean-
ing more weight to the compensation; § controls the strength of
predicted preference scores on the popularity compensation, with
larger values meaning more weight for predicted preference scores.
Based on our experimental results, we observe that as « increases,
recommendation utility decreases and the debiasing performance
is being improved. This result is because a larger @ means a higher
ratio of the popularity compensation in the final output, leading
to worse recommendation utility but less bias. For 5, we observe
that the recommendation utility keeps increasing, and the debias-
ing effect is first improved and then degraded as ff increases. The
reason behind this is that reasonable § can indicate user prefer-
ences and help calculate accurate compensation scores, but higher
p makes preference scores dominate the compensation lead to a
decrease in the debiasing performance. For the Reg algorithm, as y
increases, the recommendation utility is reduced, and the debiasing
performance first improves then decreases due to overfitting.

8 CONCLUSION AND FUTURE WORK

In this paper, we conduct a three-part study to investigate popularity-
opportunity bias in matrix factorization based models: i) we empir-
ically show the vulnerability of two matrix factorization models to
the bias by a data-driven study on four datasets; ii) we theoretically
show how these two models inherently produce the popularity-
opportunity bias on both user and item sides; and iii) we explore
the potential of in-processing and post-processing approaches to al-
leviate the bias. Experiments on four datasets validate the debiasing
effectiveness of both proposed methods over debiasing baselines
designed for conventional popularity bias. In the future, we are
interested in exploring more effective debiasing algorithms and
studying popularity-opportunity bias in other collaborative filter-
ing algorithms like KNN, AutoEncoder, and graph neural networks.
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