
Model-Based Counterfactual Synthesizer for Interpretation
Fan Yang

1
, Sahan Suresh Alva

1
, Jiahao Chen

2
, Xia Hu

1

1
Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA

2
J.P. Morgan AI Research, New York, NY, USA

{nacoyang,sahanalva,xiahu}@tamu.edu

jiahao.chen@jpmchase.com

ABSTRACT
Counterfactuals, serving as one of the emerging type of model inter-

pretations, have recently received attention from both researchers

and practitioners. Counterfactual explanations formalize the explo-

ration of “what-if” scenarios, and are an instance of example-based

reasoning using a set of hypothetical data samples. Counterfac-

tuals essentially show how the model decision alters with input

perturbations. Existing methods for generating counterfactuals are

mainly algorithm-based, which are time-inefficient and assume the

same counterfactual universe for different queries. To address these

limitations, we propose a Model-based Counterfactual Synthesizer
(MCS) framework for interpreting machine learning models. We

first analyze the model-based counterfactual process and construct

a base synthesizer using a conditional generative adversarial net

(CGAN). To better approximate the counterfactual universe for

those rare queries, we novelly employ the umbrella sampling tech-

nique to conduct the MCS framework training. Besides, we also

enhance the MCS framework by incorporating the causal depen-

dence among attributes with model inductive bias, and validate

its design correctness from the causality identification perspective.

Experimental results on several datasets demonstrate the effective-

ness as well as efficiency of our proposed MCS framework, and

verify the advantages compared with other alternatives.

CCS CONCEPTS
• Computing methodologies → Causal reasoning and diag-
nostics;Neural networks;Generative and developmental ap-
proaches; Supervised learning by classification.

KEYWORDS
Counterfactual sample; causal explanation; model interpretation

ACM Reference Format:
Fan Yang

1
, Sahan Suresh Alva

1
, Jiahao Chen

2
, Xia Hu

1
. 2021. Model-Based

Counterfactual Synthesizer for Interpretation. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3447548.3467333

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467333

1 INTRODUCTION
Recently, machine learning (ML) models have been widely deployed

in many real-world applications, and achieved a huge success in

many domains. For high-stake scenarios, such as medical diagno-

sis [23] and policy making [3], explaining the behaviors of ML

models is necessary for humans to be able to scrutinize the model

outcomes before making a final decision. Various interpretation

techniques [6] have thus been proposed to handle the ML explain-

ability issue. Feature attribution [6], for example, is one commonly

used interpretation technique in many ML tasks, including image

captioning, machine translation and question answering, where im-

portant features that contribute most are highlighted as evidences

for model predictions.

However, most ML interpretations like feature attribution typi-

cally lack the reasoning capability, since they are not discriminative

in nature [5], which makes them limited in understanding how. To
further investigate the decision boundaries of ML models, counter-
factual explanation [39], emerging as a new form of interpretation,

has gradually raised attentions in recent years. Counterfactuals are

essentially a series of hypothetical samples, which are synthesized

within a certain data distribution and can flip the model decisions

to preferred outcomes. With valid counterfactuals, humans can

understand how model predictions change with particular input

perturbations, and further conduct reasoning under "what-if" cir-

cumstances. Given a loan rejection case for instance, attribution

analysis simply indicates those important features for rejection (e.g.,

applicant income), while counterfactuals are able to show how the

application could be approved with certain changes (e.g., increase

the annual income from $50, 000 to $80, 000).

Several initial attempts on generating counterfactuals have been

made in recent work. The first, and most straightforward, line of

methodology is to utilize the adversarial perturbations to synthe-

size the hypothetical samples [29, 30], where the search process is

conducted in the input data space. One significant drawback of this

methodology is that out-of-distribution (OOD) samples cannot be

avoided, which can largely limit the reasoning capability of gener-

ated counterfactuals. To copewith this issue, another line ofmethod-

ology proposes to synthesize the counterfactuals in the latent code

space with the aid of pre-trained generative models [16, 32, 42]. In

this way, the generated counterfactuals are then well guaranteed

to be within certain data distribution for interpretation purposes.

Besides, considering the huge computational complexity for deriv-

ing high-dimensional samples (e.g., images), there is also a line of

methodology using feature composition in data space to synthesize

counterfactuals [11, 38]. The extra requirement for this methodol-

ogy is a proper distractor instance (could be the query itself), which

provides relevant feature resources for synthesis.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1964

https://doi.org/10.1145/3447548.3467333
https://doi.org/10.1145/3447548.3467333

Despite existing efforts, effective generation of counterfactuals

still remains challenging. First, common counterfactual frameworks

are mostly algorithm-based ones, which makes them inefficient

for sample generation, because each new query necessitates solv-

ing one specific optimization problem at one time. For cases with

multiple inputs, algorithm-based frameworks could be extremely

time-consuming. Second, the counterfactual universe is unknown

in advance, and its high-quality approximation is preferred for

better explanation. Existing frameworks mostly assume the same

counterfactual universe for different queries, though this may not

be consistent with the settings of real-world counterfactuals which

are related to the inputs. Third, causal dependence among attributes

needs be considered for counterfactual feasibility. Although there

are a few work [18, 25] trying to incorporate causal constraints

into counterfactuals, they simply achieve it by adding extra regu-

larization terms, and do not have any theoretical guarantees on the

generation process from a causality perspective.

To address the aforementioned challenges, we propose a Model-

based Counterfactual Synthesizer (MCS) framework, which can

faithfully capture the counterfactual universe and properly incorpo-

rate the attribute causal dependence. Specifically, by analyzing the

counterfactual process, we are motivated to employ conditional gen-

erative adversarial net (CGAN) [27] as the base, and further build

a model-based synthesizer by introducing relevant counterfactual

objectives. To make MCS better approximate the potential counter-

factual universe, we novelly apply the umbrella sampling [19] in

synthesizer training, aiming to properly consider the influence of

those rare events in data on counterfactual reasoning. Moreover, we

also use model inductive bias to design the generator architecture

in our proposed MCS framework, so as to incorporate the causal de-

pendence of attributes into the generated samples, which is further

validated from the causality identification perspective. Our main

contributions are summarized as follows:

• Design a model-based counterfactual explanation framework

(i.e., MCS) based on CGAN, whose goal is to help humans better

understand the decision boundaries of deployed ML models;

• Apply the umbrella sampling technique in MCS training, which

significantly enhances the synthesizer in capturing the influence

of those rare events in data for counterfactual explanation;

• Use the concept of model inductive bias to design the generator

architecture in the proposed MCS, and further validate the design

correctness through a causality identification process;

• Demonstrate the advantages of our proposed MCS on different

datasets, and compare the performance with other alternatives.

2 PRELIMINARIES
In this section, we briefly introduce some involved concepts, as

well as some basics of the employed techniques.

Counterfactual Explanation. This is one particular ML inter-

pretation technique developed from example-based reasoning [35],

where hypothetical data samples are provided to promote the un-

derstandings of model boundaries. As a specific example, consider a

classification model 𝑓𝜽 : R𝑑 → {−1, 1}, with −1 and 1 respectively

denoting the undesired and desired outputs. The counterfactual

explanation problem can be generally formulated as:

x∗ = argmin

x∼C
𝑙 (x, q0) s.t. 𝑓𝜽 (q0) = −1, 𝑓𝜽 (x∗) = 1, (1)

where q0 represents the input query, and x∗ is the derived coun-

terfactual sample. Here, C indicates the counterfactual universe

of the observed data space R𝑑 , and 𝑙 : R𝑑 × R𝑑 → R+
0
denotes a

distance measure in the input space. From Eq. 1, we can see that

counterfactuals are essentially data samples within some distribu-

tions, which can flip the model decisions as desired, while keeping

similar to the query input. Conceptually, Eq. 1 can be solved either

in an algorithm-based way, or a model-based way. Algorithm-based

methods typically employ different optimization strategies to solve

Eq. 1 for each query q0, while model-based ones try to approximate

the particular C given relevant constraints and further conduct

sampling. In this paper, we mainly explore the counterfactual ex-

planation problem using the model-based methods.

GenerativeModelingwith CGAN.Generative adversarial net
is a novel way to train generative models, which typically has a

generator 𝐺 and a discriminator 𝐷 [9]. The training objective of

𝐺 is to capture the data distribution, while the objective of 𝐷 is to

estimate the probability that a sample comes from the data rather

than 𝐺 . CGAN is a natural extension of this framework, where

𝐺 and 𝐷 are both conditioned on some additional information a
(e.g., labels or attributes). The min-max game between 𝐺 and 𝐷

conducted in CGAN training can be expressed as:

min

𝐺
max

𝐷
𝑉 (𝐷,𝐺) = E

x∼Px
log𝐷 (x|a) + E

z∼Pz
log(1−𝐷 (𝐺 (z|a))), (2)

where Px indicates the data distribution over x, Pz denotes a prior
noise distribution, and𝑉 represents a value function of the two play-

ers in the min-max game. With a well-trained CGAN, we can effec-

tively capture the conditional distribution given certain constraints

or regularizations. In this paper, we use the CGAN framework to

approximate the potential counterfactual universe.

Model Inductive Bias. When multiple decisions are equally

good, model inductive bias enables the learning process to prior-

itize some decisions over the others [28], which is independent

of the data observed. Model inductive bias can be incorporated in

different ways. In early days, connectionist models commonly indi-

cated their inductive bias through relevant regularization terms [26].

For conventional Bayesian models, inductive bias is typically ex-

pressed through the prior distribution [12], either from its selection

or parameterization. In other contexts, inductive bias can also be

encoded with model architectures [1, 43], where the structure itself

indicates the data-generating assumption or the potential decision

space. In this paper, we make use of the inductive bias specifically

instilled by generator architecture to properly consider the causal

dependence among attributes for generated samples.

3 MODEL-BASED COUNTERFACTUAL
SYNTHESIZER FRAMEWORK

In this section, we first analyze the counterfactual universe given a

deployedMLmodel, and then formulate the problem ofmodel-based

counterfactual explanation. Further, we introduce the proposed

synthesizer design based on the CGAN framework.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1965

xq

y

ŷQuery Data

Label

Prediction

𝑓𝜃

Figure 1: The general graphical model for counterfactual
generation process given a deployed ML model.

3.1 Model-Based Counterfactual Explanation
To effectively design a counterfactual synthesizer, it is crucial to

make clear the counterfactual universe we are focusing on. Given

a deployed ML model 𝑓𝜽 , we can characterize the whole universe

with the graphical model illustrated in Fig. 1. In general, x and y rep-
resent the data and label variables respectively, while ŷ denotes the

decision variable output from 𝑓𝜽 . The query variable q is introduced
to incorporate relevant constraints for counterfactual reasoning,

which brings about the fact that hypothetical samples (i.e., x and

y) are typically generated under the influence from q. According
to the graphical model in Fig. 1, we can further factorize the joint

distribution of the whole counterfactual universe as follows:

Pq,x,y,ŷ = Pq · Px |q · Pŷ |x · Py |x,q = Pq · Pŷ |x · Px,y |q . (3)

Within Eq. 3, Pq is typically known as the prior, and Pŷ |x is consid-
ered as fixed since the model 𝑓𝜽 is pre-deployed. Thus, the key to

capturing the counterfactual universe lies in the proper approxima-

tion of Px,y |q (i.e., the joint distribution of x and y conditioned on

q), which reflects the latent sample generation process with certain

query. Thus, to achieve the model-based counterfactual analysis, we

need to investigate the hypothetical sample generation under par-

ticular query conditions. With this insight, we now formally define

the problem of model-based counterfactual explanation below.

Definition 1. Amodel-based counterfactual is a data point
sampled from a perturbed hypothetical distribution, which statis-
tically satisfies the counterfactual requirements (indicated by Eq. 1).
Given a specific query q0, counterfactual x∗ can be obtained through
sampling x∗ ∼ Cx |q0 , where Cx |q0 is a hypothetical distribution
marginalized from Cx,y |q0 . In general, Cx,y |q0 can be derived by

Cx,y |q0 = argmin

Px,y|q
0

𝐿𝑐 𝑓 (Px,y |q0), (4)

where q0 follows the prior Pq, and 𝐿𝑐 𝑓 indicates a counterfactual loss.

By definition, a model-based counterfactual does not focus on

the instance optimization for each individual query. Instead, it tries

to capture the latent sample generation process with particular

query conditions, within the whole counterfactual universe. One

significant merit brought by model-based explanations is that it

largely enhances the efficiency for counterfactual generation, since

we only need to obtain the certain hypothetical distribution once for

all potential queries following the prior Pq. Nevertheless, modeling

such latent generation processes is nontrivial, and we need some

specific designs to make it effectively work.

G(z|q)

G

z

x

q

RealFake

D Conditional Loss

f

l

Distance Measure

Deployed Model

q

y’

Figure 2: The overall framework design for the proposed
counterfactual synthesizer through conditional modeling.

3.2 Conditional Synthesizer Design
Designing a model-based synthesizer typically involves how to

build an effective generative model for counterfactuals. According

to the previous analysis, we know that the key lies in the approx-

imation of hypothetical distribution Cx,y |q, which can be formu-

lated as a conditional modeling problem. To this end, we propose a

conditional generative framework based on CGAN in this paper,

specifically designing for counterfactual explanation. The overall

architecture is illustrated by Fig. 2.

In the designed framework, 𝐷 represents the discriminator mod-

ule, and 𝐺 denotes the generator module. Similar as CGAN, 𝐷 and

𝐺 are jointly trained as adversaries to each other, aiming to achieve

a min-max game. The major difference with CGAN comes from

how we prepare the conditional vectors for the framework training.

Here, instead of simply employing label information, we use the

query as conditions for counterfactual generation. Besides, to guar-

antee the quality of generated counterfactual samples, we further

incorporate a distance measure 𝑙 and the deployed model 𝑓 to regu-

larize the training of 𝐺 . Throughout this process, we aim to obtain

the counterfactuals which are similar to the query q and have the

preferred output decision 𝑦′. Specifically, the training objective of
this counterfactual min-max game can be indicated as:

min

𝐺
max

𝐷
E
x∼Px
q∼Pq

log𝐷 (x|q) +E
z∼Pz
q∼Pq

log[1−𝐷 (𝐺 (z|q))] +𝐿𝑐 𝑓 (𝐺 (z|q)) , (5)

where z represents the noise vector following a distribution Pz.

Within Eq. 5, the counterfactual loss term 𝐿𝑐 𝑓 can be further ex-

pressed as follows:

𝐿𝑐 𝑓 (𝐺 (z|q)) = 𝐿𝑐𝑒
(
𝑓 (𝐺 (z|q)), 𝑦′

)
+ 𝑙 (𝐺 (z|q), q) , (6)

in which 𝐿𝑐𝑒 indicates the cross-entropy loss between the pre-

dictions from 𝑓 and the preferred decision 𝑦′, regarding to the

generated samples. Overall, 𝐿𝑐 𝑓 is expected to be minimized for

counterfactual reasoning purposes, and it can be treated as an addi-

tional regularization term appended with the conventional CGAN

training. By utilizing this conditional design, we can then employ

the well-trained generator 𝐺 to synthesize a series of hypotheti-

cal distributions parametrized by query q, and further achieve the

model-based counterfactual generation through sampling.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1966

Imbalanced Feature Values

Query

Condition

% of

Married

% of

Widowed

Married = True 85.63 1.69

Widowed = True 46.87 5.12

Conditional Synthesization Statistics

Figure 3: Case results for base synthesizer on conditional
performance of the ‘marital-status’ attribute in Adult data.

4 ENHANCEMENT FOR COUNTERFACTUALS
With the previous design, we now consider two practical enhance-

ments for model-based counterfactuals. First, we propose a novel

training scheme for counterfactual synthesizer based on the um-

brella sampling technique. Second, we utilize the model inductive

bias to consider the causal dependence among attributes.

4.1 Effective Synthesizer Training
4.1.1 Query imbalance during training. To effectively train the

designed counterfactual synthesizer shown in Fig. 2, we need to let

𝐺 well capture the conditions indicated by q. However, this may not

be as straightforward as in conventional CGAN, sincePq is typically
imbalanced among different attribute values. Such query imbalance

results in the fact that the hypothetical distributions conditioned

on those rare values cannot be effectively approximated, due to

the limited number of instances. To illustrate the point, we show

some case results of the base synthesizer on Adult dataset1 in Fig. 3.

Here, we assume that q and x share a same prior distribution (i.e.,

Pq = Px), because queries are usually collected from similar data

sources in most real-world scenarios. According to the results, we

note that the imbalanced values of ‘marital-status’ attribute
2
lead

to significantly different conditional performance on synthesis.

When conditioned on those majority values (e.g., Married), the
synthesizer can reasonably capture the corresponding hypothetical

distribution. In contrast, the synthesizer fails when conditioned on

minority values (e.g., Widowed), and its conditional performance is

bad. Thus, to better train the designed counterfactual synthesizer,

we need to prepare a proper set of training queries, which contains

sufficient samples with attribute values in the tails of prior Pq.

4.1.2 Umbrella sampling for rare instances. To properly reflect the

influence of rare values, we need some enhanced sampling strate-

gies for training, instead of the simple random way. An intuitive

way is to relatively increase the probability mass for rare values.

In work [41], the authors used the frequency logarithm to curve

the probability mass, aiming to make the sampling process have

higher chances in obtaining those "tail" values. However, such mass

curves may not be well suited for our training scenario, because it

distorts the prior Pq and further leads to an unfaithful hypothetical

distribution Cx,y |q. Considering this, we novelly apply the umbrella

sampling technique here to enhance the synthesizer training, which

was originally used in computational physics and chemistry for

1
http://archive.ics.uci.edu/ml/datasets/Adult

2
Wemerge Married-civ-spouse, Married-spouse-absent, Married-AF-spouse in

‘marital-status’ attribute all to value Married for simplicity.

Query

age workclass education … …
hours_per

_week
Prediction

22.0 Private HS-Grad … … 45.0 <=50K

--
Self-

Employ
Doctorate … … -- >50K

-- --
Some-
College

… … 53.0 >50K

CF 1

CF 2

*(CF → Counterfactual; -- → No Changes)

Figure 4: Case study on counterfactual samples (selected)
generated by DiCE algorithm in Adult data.

molecular simulation [19]. Umbrella sampling recasts the whole

sampling process into several unique samplings over umbrella-

biased distributions in a weighted-sum manner, where the added

artificial umbrellas are expected to cover the full value domain

with overlaps. By calculating the weight of each biased distribu-

tion, we can then reconstruct the original distribution and conduct

evaluations with the umbrella samples obtained. Specifically for

counterfactual synthesizer training, we can thus guarantee the suf-

ficient number of queries with balanced values by sampling under

different umbrella biases. In particular, the corresponding weight

of each biased distribution for query preparation can be calculated

as below.

Theorem 1. Consider the sampling process q ∼ Pq for coun-
terfactual synthesizer training. Let w = [𝑤1, · · · ,𝑤𝑁] denote the
weight vector for 𝑁 umbrella-biased distributions [19], where𝑤𝑖 in-
dicates the normalized weight of the 𝑖-th biased distribution P𝑖

q, and
u = [𝑢1, · · · , 𝑢𝑁] denote the profile of the added artificial umbrellas.
Then, the optimal w can be derived by solving the equation wM = w,
where M = M(w) represents the overlap matrix defined as:

𝑀𝑖 𝑗 =

〈
𝑢 𝑗/𝑤𝑖∑𝑁

𝑘=1
𝑢𝑘/𝑤𝑘

〉
P𝑖
q

. (7)

Here, the operation ⟨·⟩P indicates the average over distribution P.

The proof for deriving w is shown in Appendix A.

4.2 Causal Dependent Generation
4.2.1 Causality for generated counterfactuals. To make the gen-

erated counterfactuals have better feasibility on reasoning, it is

also preferred to consider the causality among different input at-

tributes. We here use another case study on the Adult data, shown
in Fig. 4, to illustrate the point. In particular, we employ an existing

counterfactual explanation method, DiCE [30], to generate related

counterfactual samples. The results show in Fig. 4 that DiCE is

not able to reflect the causality between the attribute ‘education’

and ‘age’, since it suggests to improve the education level without

changing the age for flippingmodel decisions. In real-world settings,

such counterfactuals are usually considered infeasible, because in-

put attributes cannot be altered independently in counterfactuals.

Specifically in this example, education level typically improves with

age, so feasible counterfactuals should indicate such causality for

human reasoning. We now enhance our proposed MCS by showing

how to incorporate such causal dependencies among attributes.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1967

zB

zA A

Feed-Forward
Module

A B

zA zB

Causal GraphGenerator Design

B

Figure 5: Example design of 𝐺 for incorporating the causa-
tion: 𝐴 → 𝐵, as well as the represented causal graph.

4.2.2 Model inductive bias for causal dependence. In contrast with

the algorithm-based counterfactuals, model-based counterfactu-

als provide new possibilities to incorporate domain-specific causal

dependence for explanation, instead of simply adding extra regular-

ization or constraints for generation [25]. In particular, we propose

to utilize the inductive bias of 𝐺 to encode relevant causal depen-

dence, where the architecture of 𝐺 is intentionally designed to

mimic the structural equations [13] of corresponding causation.

Fig. 5 shows an example of designing 𝐺 for the causal relationship

𝐴 → 𝐵, where 𝐴 indicates the cause and 𝐵 denotes the effect. Es-

sentially, by purposely manipulating the generator architecture,

we encode the causal structure as inductive biases in 𝐺 , so as to

achieve the causal dependent generation for counterfactuals. We

now state a theorem proving the correctness of this approach from

the perspective of causality identification, where the correspond-

ing considered causal dependence is shown to be existed from the

generated counterfactual samples.

Theorem 2. LetD = (A, E) represent a causal graph with vertex
set A = {𝐴1, 𝐴2, · · · , 𝐴𝑆 } being attributes used for counterfactual
generation, and edge set E consisting of directed edges from causes
to effects. Then, the generator 𝐺 can be designed with 𝑆 feed-forward
modules 𝐺 = [𝐹1, 𝐹2, · · · , 𝐹𝑆], mimicking the corresponding struc-
tural equations of D, such that 𝐴𝑠 can be generated by

𝐴𝑠 = 𝐹𝑠

(
{𝐴𝑝 }𝑝∈PaD𝑠 , z𝐴𝑠

)
, ∀𝑠 ∈ [1, · · · , 𝑆], (8)

where PaD𝑠 denotes the set of parent attributes (i.e., causes) for 𝐴𝑠 in
graph D. As a result, the counterfactual samples generated by 𝐺 are
further guaranteed to have the incorporated causality, which can be
identified from the observational perspective.

The relevant discussion & proof are shown in Appendix B.

5 IMPLEMENTATION
In this section, we briefly introduce the employed practical tech-

niques when implementing the proposed MCS framework. We also

show the overall pipeline of MCS for counterfactual generation.

Data Representation. When implementing MCS, we employ

different modeling techniques for different types of data attributes.

We use Gaussian mixture models [2] to encode continuous at-

tributes, and normalize the values according to the selected mixture

mode. We represent discrete attributes directly using one-hot en-

coding. Furthermore, one specific data instance r𝑖𝑛𝑠 can be then

Algorithm 1: Building Pipeline of MCS for Interpretation

Setup Phase
- Prepare 𝑓 for explanation, and select 𝑙 for measurement;

- Design the generator 𝐺 with domain D based on Theo. 2;

Training Phase
- Data Modeling with Eq. 9;

- for training batch 𝑘 do
Utilize umbrella sampling to prepare a set of queries q𝑘 ;
Weigh batch 𝑘 with w over q𝑘 based on Theo. 1;

Update 𝐺 and 𝐷 in the min-max game of Eq. 5;

Interpretation Phase
- Feed the user query q to 𝐺 for counterfactual generation.

represented as

r𝑖𝑛𝑠 = c𝑖𝑛𝑠
1

⊕ · · · ⊕ c𝑖𝑛𝑠𝑁𝑐
⊕ d𝑖𝑛𝑠

1
⊕ · · · ⊕ d𝑖𝑛𝑠𝑁𝑑

, (9)

where 𝑁𝑐 and 𝑁𝑑 indicate the number of continuous and discrete

attributes in the data respectively. Also, we represent the query q
by value masking, thus giving humans control over the semantics

of the counterfactuals as appropriate for any particular use case.

Umbrella Sampling for Discrete Attributes. Conventional
umbrella sampling technique only applies to continuous distri-

butions. For discrete attributes, we use the Gumbel-Softmax [15]

method to relax the categorical distribution into a continuous one.

This reparameterization trick is proved to be faithful and effec-

tive in many cases with appropriate temperature 𝜏 , which controls

the trade-off of the distribution relaxation. When 𝜏 → 0, the re-

laxed distribution becomes into the original discrete one. When

𝜏 → ∞, it gradually converges into a uniform distribution. In our

proposed MCS framework, we conduct the implementation with a

fixed temperature as 𝜏 = 0.5.

Overall MCS Pipeline. To clearly show the procedures of build-

ing MCS for counterfactual explanation, we give an overview of the

pipeline, illustrated by Algorithm 1. Compared with the existing

algorithm-based counterfactuals, the proposed MCS is much more

efficient during the interpretation phase, since it avoids the itera-

tive perturbation step regarding to each input q. In exchange, MCS

pushes the computational complexity to the setup and training

phase, which largely depends on the data scale as well as the value

space we focus on.

6 EXPERIMENTS
In this section, we empirically evaluate the proposed MCS on both

synthetic and real-world datasets from several different aspects,

and aim to answer the following key research questions:

• How effective and efficient is MCS in generating counterfactual

samples, compared with existing algorithm-based methods?

• Howwell does MCSmodel the original observational distribution

as well as the conditional counterfactual distribution, with the

umbrella sampling technique?

• Can we identify the incorporated domain-specific causal depen-

dence from the counterfactual samples generated by MCS?

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1968

Table 1: Data statistics in experiments.

Dataset #Row #Col Attribute Type

Syn_Moons 500 3 Continuous

Syn_Circles 500 3 Continuous

Adult 48, 842 9 Continuous & Categorical

Home_Credit 344, 971 39 Continuous & Categorical

6.1 Evaluation on Counterfactual Generation
In this part, we evaluate the effectiveness and efficiency of MCS,

comparing with existing algorithm-based counterfactual methods.

6.1.1 Experimental settings. We consider two synthetic datasets

and two real-world datasets for counterfactual generation evalua-

tion. Specifically, the statistics of the datasets are shown in Tab. 1.

• Synthetic3: We synthesize two datasets for classification pur-

pose, i.e., “Syn_Moons” and “Syn_Circles”, with different sepa-

ration boundaries. To facilitate visualization, the synthetic data

only contains two continuous attributes. These two synthetic

datasets are mainly used to evaluate the MCS effectiveness.

• Adult: This is a real-world benchmark dataset for income pre-

diction, where each instance is labelled as “>50K” or “<=50K”.

In the experiments, the counterfactuals on this data aim to help

understand how to flip model decisions from “<=50K” to “>50K”.

To facilitate our task, we only consider a subset of the attributes.

• Home_Credit4: This is a larger real-world dataset for client risk

assessment, where the goal is to predict clients’ repayment abili-

ties of given loans. The counterfactuals here are to help reason

how to make improvements for risky clients to become non-risky.

We drop some unimportant attributes in experiments.

As for the deployed classifier, we prepare three different 𝑓 for

counterfactual generation evaluation as below. Those classifiers are

all trained with 80% of the data, and tested with the rest 20%.

• RBF SVM: This is a pre-trained support vector machine (SVM)

with the RBF kernel, where a squared 𝑙2 penalty is applied. Related

SVM hyperparameter 𝛾 is set to 2, and 𝐶 is set to 1.

• Random Forest (RF): This is a pre-trained tree-based RF classi-

fier with 10 estimators. The maximum depth of each tree is set

as 5. We use the Gini impurity as our splitting criterion.

• Neural Net (MLP): This is a pre-trained ReLU neural classifier

with multi-layer perceptron (MLP). Here, we have 1 hidden layer

and 100 hidden units. The relevant 𝑙2 regularization coefficient is

set to 1, and the maximum iteration number is set as 1000.

Furthermore, we select four recent algorithm-based counterfac-

tual explanation methods as our baselines for comparison. These

methods are all set up with their default settings.

• DiCE [30]: Thismethod generates diverse counterfactual samples

by providing feature-perturbed versions of the query, where the

perturbations are derived by iterative optimization.

• C-CHVAE [32]: This method utilizes a pre-trained variational

auto-encoder (VAE) to transform the data space into a latent

embedding space, and then perturbs the latent representation of

the query for counterfactual generation.

3
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets

4
https://www.kaggle.com/c/home-credit-default-risk/data

Input Query Generated Counterfactuals

Sy
n

_C
ir

cl
es

Sy
n

_M
o

o
n

s

Figure 6: Visualization of the generated counterfactual sam-
ples by the proposed MCS on two synthetic datasets.

• CADEX [29]: This method employs the gradient-based scheme to

perturb the query for flipping outcomes, which is an application

of adversarial attack methods for counterfactual generation.

• CLEAR [40]: This method uses the concept of 𝑏-perturbation

to construct potential counterfactuals through local regression,

where the corresponding fidelity error is minimized iteratively.

6.1.2 Counterfactual generation effectiveness. To demonstrate the

effectiveness of MCS, we visualize the generated counterfactuals

on two synthetic datasets, illustrated by Fig. 6. In this set of ex-

periments, we select a fixed query q0 for each synthetic dataset

with negative model decision (i.e., predicted as ‘−1’), and randomly

show 5 samples generated by MCS. Fig. 6 shows that all generated

samples successfully flip the query prediction from the negative

‘−1’ to the positive ‘1’, across different classifiers 𝑓 . Thus, it is noted
that MCS is capable of synthesizing valid counterfactuals for predic-

tion reasoning. To further evaluate the counterfactuals generated

by MCS, we employ the average Euclidean distance as the metric,

indicated by Eq. 10, to reflect how close of the generated samples

regarding to the input query:

𝛿avg =
∑

e∈S𝑐𝑓
Euclid_Dist(q0, e)

/���S𝑐 𝑓
��� , (10)

where S𝑐 𝑓
denotes the set of the generated counterfactuals. In our

experiments, we set |S𝑐 𝑓 | = 20, and compare 𝛿avg among different

counterfactual methods under different 𝑓 over different datasets.

Fig. 7 shows that counterfactuals generated by MCS are generally

farther to the queries, compared with those generated by baselines

(except C-CHVAE). This observation suggests that algorithm-based

methods are good at finding those “nearest” counterfactuals through

iterative perturbations, while MCS mainly focus on the counterfac-

tual distribution approximation instead of sample searching. For

C-CHVAE, it is designed to conduct perturbations in the latent

space, and hence its generated counterfactuals are also observed to

be farther than those from DiCE, CADEX and CLEAR in the data

space. C-CHVAE can be treated as a data density approximator,

thus the corresponding 𝛿avg are almost the same over different 𝑓

within the same dataset. Overall, we know that MCS can effectively

generate valid counterfactuals for reasoning, but its synthesized

samples may not be as close to the query as those generated from

existing algorithm-based methods (i.e., DiCE, CADEX, CLEAR),

which becomes more significant with the increase of the data scale.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1969

Figure 7: The average Euclidean distance comparison between the query and the generated counterfactuals.

Figure 8: The time efficiency comparison with MLP.

6.1.3 Counterfactual generation efficiency. To evaluate the effi-

ciency of different counterfactual explanationmethods, we compare

the time cost of sample generation process regarding to multiple

queries. In this set of experiments, we only consider the Adult and
Home_Credit dataset for illustration, with a MLP classifier 𝑓 , and

test the counterfactual generation under 10, 20 and 30 queries. The

relevant results are reported by averaging 5 runs over different sets

of input. Fig. 8 shows that MCS consumes significantly less time

for counterfactual generation, and such merit over algorithm-based

methods is more remarkable with a larger scale of input. Besides,

we can also observe that MCS is much more stable (i.e., lower stan-

dard deviation) among different queries, and its unit time cost for

each query almost keeps identical despite the specific inputs.

6.2 Evaluation on Distribution Modeling
In this part, we evaluate the modeling performance of MCS aided

by umbrella sampling technique. Overall, we aim to demonstrate

the faithfulness of the generated counterfactuals.

6.2.1 Experimental settings. We only consider the two real-world

datasets (i.e., Adult and Home_Credit data) for this part of evalu-
ation. For the artificial umbrellas used during MCS training, we

respectively set 𝑁 = 8 and 𝑁 = 32 for training query sampling

in the Adult and Home_Credit dataset. Detailed hyper-parameters,

as well as the related influence studies, of the umbrella sampling

process are introduced in Appendix C.

6.2.2 Observational distribution modeling. To evaluate the MCS

modeling on observational data distribution, we use the metric

model compatibility in [31] focusing on learning efficacy. The intu-

ition behind this metric is that, models trained on data with similar

Table 2: Average F-score of testing on learning efficacy.

Dataset

F𝑜 F𝑡 F𝑝
RF MLP RF MLP RF MLP

Adult 0.616 0.435 0.593 0.429 0.586 0.431

Home_Credit 0.602 0.386 0.421 0.307 0.418 0.306

distributions should have similar test performances. Furthermore,

to conduct such evaluation, we prepare three different sets of classi-

fiers (i.e. F𝑜 , F𝑡 and F𝑝) for test comparison, which are respectively

trained on the original data, table-GAN [31] synthesized data and

MCS synthesized data. Here, we employ table-GAN as a baseline

synthesizer, since it has been proven to be an effective way to cre-

ate hypothetical samples which follow a particular observational

distribution. As for MCS, we regard the label y as an additional

attribute for synthesis in this part, and remove 𝐿𝑐 𝑓 in Eq. 5 during

training. The final synthesized data is then generated by 𝐺 in an

unconstrained manner with q set to None (all zero). In experiments,

we consider two types of classifiers (RF & MLP), and report the

average F-score over five rounds. The results in Tab. 2 show that

classifiers in F𝑝 have competitive test performances with those

in F𝑡 , and thus demonstrates that MCS can reasonably model the

observational distribution with its synthesized data samples.

6.2.3 Counterfactual distribution modeling. Evaluating MCS in

modeling counterfactual distribution is essentially to assess the

conditional generation performance under particular human priors.

When users request hypothetical samples for reasoning, a good

synthesizer should have a reasonable conditional performance in

generating those in-need samples which are consistent with human

priors. In the experiments herein, we select the ‘marital-status’ and

‘housing-type’ attributes in Adult and Home_Credit data for illus-
tration, considering assumptive priors on rare values for testing.

In particular, we evaluate with priors on ‘marital-status=Widowed’
and ‘housing-type=Office-apt’. Originally, Widowed takes around
3%, and Office-apt takes around 1%. The derived counterfactual

distributions from MCS of ‘marital-status’ and ‘housing-type’ are il-

lustrated by Fig. 9. Here,MCS-base indicates the synthesizer trained
directly with Eq. 5,MCS-LF represents the synthesizer trained with

logarithm frequency curve [41], and MCS-US denotes the synthe-
sizer trained with the umbrella sampling technique. Based on the

results, it is noted that, aided with umbrella sampling, our proposed

MCS can effectively approximate the hypothetical distribution pre-

sumed by human priors, and generate in-need counterfactuals to

facilitate the reasoning process.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1970

Figure 9: The counterfactual distributions derived by MCS.

6.3 Evaluation on Causal Dependence
In this part, we evaluate the causal dependence over the samples

from MCS, and test the causation reflected by model inductive bias.

6.3.1 Experimental settings. We only use Adult and Home_Credit
data for causal dependence evaluation. When designing the gener-

ator 𝐺 , we consider the following cause-effect pairs for synthesis:

𝐴𝑑𝑢𝑙𝑡 : education → age;

𝐻𝑜𝑚𝑒_𝐶𝑟𝑒𝑑𝑖𝑡 : income_type → income_total.
(11)

To validate such pairwise causality in synthesized data, we employ

two different methods that are commonly used as below:

• ANM [14]: It is a popular approach for pairwise causality iden-

tification, which bases on the data fitness to the additive noise

model on one direction and the rejection on the other direction.

• CDS [7]: It measures the variance of marginals after conditioning

on bins, which indicates statistical features of joint distribution.

6.3.2 Pairwise causation identification. To conduct the evaluation

on pairwise causal dependence, we utilize a simple causation score

𝜏𝑐 to indicate the strength of particular cause-effect pairs. Specifi-

cally for 𝐴 → 𝐵, the causation score can be calculated as follows:

𝜏𝑐𝐴→𝐵 = 𝜏
𝑓

𝐵→𝐴
− 𝜏

𝑓

𝐴→𝐵
, (12)

where 𝜏 𝑓 denotes the data fitness score for a given direction. For

different methods, 𝜏 𝑓 has different statistical meanings. In our case,

𝜏 𝑓 indicates an independence test
5
score for ANM, and represents

the standard deviation of fitness for CDS. Thus, we know that, the

larger the 𝜏 𝑓 is, the causation on the given direction is less likely

to happen from the observational perspective. In practice [17], the

causation𝐴 → 𝐵 is considered to exist when 𝜏𝑐
𝐴→𝐵

≥ 1, and 𝐵 → 𝐴

when 𝜏𝑐
𝐴→𝐵

≤ −1. When −1 < 𝜏𝑐
𝐴→𝐵

< 1 holds, it usually indicates

that there is no obvious causal dependence identified based on

statistical analysis. In experiments, we test the causation pairs in

Eq. 11, and show the relevant results in Fig. 10. Here, we compare 𝜏𝑐

between the original and synthesized data with both ANM and CDS

under different data scale. We observe a stronger causal dependence

for the considered pairs in the synthesized data, which demonstrates

the effectiveness of MCS on causal dependent generation. With

such advantages, humans can easily obtain feasible counterfactuals

by properly incorporating relevant domain-specific knowledge into

MCS for interpretation.

5
We test the independence using the Hilbert-Schmidt independence criterion (HSIC).

Figure 10: The scores of considered pairwise causation.

7 RELATEDWORK
Counterfactuals are one of many interpretation techniques for ML

models. In general, according to the format of explanation carrier
(i.e., how explanations are delivered to humans), related interpreta-

tion methods can be categorized as follows.

The first category of interpretation methods uses instance fea-

tures as indicators to demonstrate which part of the input con-

tributes most to the model predictions. A representative work is

LIME [33], which uses linear models to approximate the local de-

cision boundary and derive feature importance by perturbing the

input sample. Some other methods, utilizing input perturbations for

feature importance calculation, can also be found in Anchors [34]
and SHAP [24]. Besides, employing model gradient information

for feature attribution is another common methodology under this

category. Related examples can be found in GradCAM [36] and

Integrated Gradients [37].
The second category uses abstracted concepts as high-level fea-

tures to indicate the prediction attribution process. One of the earli-

est work in this category is TCAV [21], which trains linear concept

classifiers to derive concept representations, and measures the con-

cept importance based on sensitivity analysis. Besides, the authors

in [45] decompose the model prediction semantically according to

the projection onto concept vectors, and quantify the contributions

over a large concept corpus. Inspired by SHAP, a corresponding
attribution method with human concepts, named ConceptSHAP, is
proposed in [44] to quantify the concept contributions with game

theories. Some other follow-up work based on TCAV can also be

found in [8, 10].

The third category uses data samples to deliver relevant expla-

nations to humans. One line of research is to select out prototype

or criticism data samples in training set to interpret model be-

haviors [4, 20]. Similarly in [22], influential training samples to

particular model predictions are selected, with the aid of influence

functions in measuring sample importance. Furthermore, beyond

the real samples in training set, synthesized hypothetical one (e.g.,

counterfactual sample) is yet another way to interpret predictions

for model reasoning. Several representative work along this direc-

tion can be found in [16, 30, 32]. Our work generally lies in this

category of methods for interpreting ML model behaviors.

8 CONCLUSIONS
In this paper, a general interpretation framework, named MCS,

has been proposed to synthesize model-based counterfactuals for

prediction reasoning. By analyzing the focusing counterfactual

universe, we first formally defined the problem of model-based

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1971

counterfactual explanation, and then employed the CGAN struc-

ture to train our proposed MCS in an end-to-end manner. To bet-

ter capture the hypothetical distributions, we novelly applied the

umbrella sampling technique to enhance the synthesizer training.

Furthermore, we also showed a promising way to incorporate the

attribute causal dependence into MCS with model inductive bias,

aiming to achieve better feasibility for the derived counterfactu-

als. Experimental results on both synthetic and real-world data

validated several advantages of MCS over other alternatives. Fu-

ture work extensions may include the model-based counterfactual

explorations under more challenging contexts, such as involving

high-dimensional data space, time-series sequential nature, or some

ethical concerns.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their helpful comments. This work is in part supported by NSF IIS-

1900990, and NSF IIS-1939716. The views and conclusions contained

in this paper are those of the authors and should not be interpreted

as representing any funding agencies. This work was partially done

when F. Yang was an intern at J. P. Morgan AI Research.

Disclaimer. This paper was prepared for informational purposes

in part by the Artificial Intelligence Research group of JPMorgan

Chase & Co and its affiliates (“JP Morgan”), and is not a product

of the Research Department of JP Morgan. JP Morgan makes no

representation and warranty whatsoever and disclaims all liability,

for the completeness, accuracy or reliability of the information

contained herein. This document is not intended as investment

research or investment advice, or a recommendation, offer or solici-

tation for the purchase or sale of any security, financial instrument,

financial product or service, or to be used in any way for evalu-

ating the merits of participating in any transaction, and shall not

constitute a solicitation under any jurisdiction or to any person, if

such solicitation under such jurisdiction or to such person would

be unlawful.

REFERENCES
[1] PeterWBattaglia, Jessica BHamrick, Victor Bapst, et al. 2018. Relational inductive

biases, deep learning, and graph networks. arXiv:1806.01261 (2018).
[2] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[3] Tim Brennan and William L Oliver. 2013. Emergence of machine learning tech-

niques in criminology: implications of complexity in our data and in research

questions. Criminology & Pub. Pol’y 12 (2013), 551.

[4] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K

Su. 2019. This looks like that: deep learning for interpretable image recognition.

In Advances in Neural Information Processing Systems (NeurIPS). 8928–8939.
[5] Amit Dhurandhar, Pin-Yu Chen, et al. 2018. Explanations based on the missing:

Towards contrastive explanations with pertinent negatives. In NeurIPS. 592–603.
[6] Mengnan Du, Ninghao Liu, and Xia Hu. 2019. Techniques for interpretable

machine learning. Commun. ACM 63, 1 (2019), 68–77.

[7] José AR Fonollosa. 2019. Conditional distribution variability measures for causal-

ity detection. In Cause Effect Pairs in Machine Learning. Springer, 339–347.
[8] Amirata Ghorbani, James Wexler, James Zou, and Been Kim. 2019. Towards

automatic concept-based explanations. arXiv preprint arXiv:1902.03129 (2019).
[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

et al. 2014. Generative adversarial nets. In NeurIPS. 2672–2680.
[10] Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. 2019. Explaining classifiers

with causal concept effect (cace). arXiv:1907.07165 (2019).
[11] Yash Goyal, Ziyan Wu, Jan Ernst, et al. 2019. Counterfactual Visual Explanations.

In International Conference on Machine Learning (ICML). 2376–2384.
[12] Thomas L Griffiths, Nick Chater, Charles Kemp, Amy Perfors, and Joshua B

Tenenbaum. 2010. Probabilistic models of cognition: Exploring representations

and inductive biases. Trends in cognitive sciences 14, 8 (2010), 357–364.

[13] Ned Hall. 2007. Structural equations and causation. Philosophical Studies 132, 1
(2007), 109–136.

[14] Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, et al. 2008. Nonlinear

causal discovery with additive noise models. NeurIPS 21 (2008), 689–696.
[15] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization

with gumbel-softmax. arXiv:1611.01144 (2016).
[16] Shalmali Joshi, Oluwasanmi Koyejo, Been Kim, et al. 2018. xGEMs: Generating

examplars to explain black-box models. arXiv:1806.08867 (2018).

[17] Diviyan Kalainathan, Olivier Goudet, and Ritik Dutta. 2020. Causal Discovery

Toolbox: Uncovering causal relationships in Python. JMLR 21, 37 (2020), 1–5.

[18] Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera.

2020. A survey of algorithmic recourse: definitions, formulations, solutions,

and prospects. arXiv:2010.04050 (2020).
[19] Johannes Kästner. 2011. Umbrella sampling. Wiley Interdisciplinary Reviews:

Computational Molecular Science 1, 6 (2011), 932–942.
[20] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not

enough, learn to criticize! criticism for interpretability. In NeurIPS. 2280–2288.
[21] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, et al. 2018. Interpretabil-

ity Beyond Feature Attribution: Quantitative Testing with Concept Activation

Vectors (TCAV). In ICML. 2668–2677.
[22] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via

influence functions. In ICML. 1885–1894.
[23] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso

Setio, Francesco Ciompi, et al. 2017. A survey on deep learning in medical image

analysis. Medical image analysis 42 (2017), 60–88.
[24] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model

predictions. In NeurIPS. 4765–4774.
[25] Divyat Mahajan, Chenhao Tan, and Amit Sharma. 2019. Preserving causal

constraints in counterfactual explanations for machine learning classifiers.

arXiv:1912.03277 (2019).

[26] JL McClelland. 1992. The interaction of nature and nurture in development: A

parallel distributed processing perspective (Parallel Distributed Processing and

Cognitive Neuroscience PDP. CNS. 92.6).

[27] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets.

arXiv:1411.1784 (2014).
[28] TomMMitchell. 1980. The need for biases in learning generalizations. Department

of Computer Science, Laboratory for Computer Science Research.

[29] Jonathan Moore, Nils Hammerla, and Chris Watkins. 2019. Explaining deep learn-

ing models with constrained adversarial examples. In Pacific Rim International
Conference on Artificial Intelligence. Springer, 43–56.

[30] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining

machine learning classifiers through diverse counterfactual explanations. In

Proceedings on Fairness, Accountability, and Transparency (FAccT). 607–617.
[31] Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu

Park, and Youngmin Kim. 2018. Data synthesis based on generative adversarial

networks. arXiv:1806.03384 (2018).
[32] Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. 2020. Learning Model-

Agnostic Counterfactual Explanations for Tabular Data. In Proceedings of The
Web Conference 2020. 3126–3132.

[33] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i

trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD conference on knowledge discovery and data mining. 1135–1144.

[34] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-

precision model-agnostic explanations. In 32nd AAAI on Artificial Intelligence.
[35] Edwina L Rissland. 1991. Example-based reasoning. Informal reasoning in educa-

tion (1991), 187–208.

[36] Ramprasaath R Selvaraju, Michael Cogswell, et al. 2017. Grad-Cam: Visual

explanations from deep networks via gradient-based localization. In Proceedings
of the IEEE international conference on computer vision (ICCV). 618–626.

[37] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution

for deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 3319–3328.

[38] Tom Vermeire and David Martens. 2020. Explainable Image Classification with

Evidence Counterfactual. arXiv:2004.07511 (2020).
[39] Sandra Wachter et al. 2017. Counterfactual explanations without opening the

black box: Automated decisions and the GDPR. Harv. JL & Tech. 31 (2017), 841.
[40] Adam White and Artur d’Avila Garcez. 2019. Measurable counterfactual local

explanations for any classifier. arXiv preprint arXiv:1908.03020 (2019).
[41] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.

2019. Modeling tabular data using conditional gan. In NeurIPS. 7335–7345.
[42] Fan Yang, Ninghao Liu, Mengnan Du, et al. 2021. Generative Counterfactuals for

Neural Networks via Attribute-Informed Perturbation. arXiv:2101.06930 (2021).
[43] Fan Yang, Ninghao Liu, Mengnan Du, Kaixiong Zhou, Shuiwang Ji, and Xia Hu.

2020. Deep Neural Networks with Knowledge Instillation. In SDM. 370–378.

[44] Chih-Kuan Yeh, Been Kim, et al. 2020. On Completeness-aware Concept-Based

Explanations in Deep Neural Networks. NeurIPS (2020).
[45] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. 2018. Interpretable

basis decomposition for visual explanation. In ECCV. 119–134.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1972

A PROOF OF THEOREM 1
Through the umbrella sampling process, we aim to reconstruct the

target distribution Pq with 𝑁 biased distributions P𝑖
q by a weighted

sum manner, where 𝑖 = 1, · · · , 𝑁 . In the following, we demonstrate

how to derive the corresponding weight vector w with the aid of

the pre-defined overlap matrix M in Eq. 7.

Without loss of generality, we here assume q only contains con-

tinuous attributes. By adding the umbrella profile 𝑢𝑖 , the biased

distribution P𝑖
q can then be indicated by:

P𝑖
q = 𝑢𝑖 · Pq

/
𝑤𝑖 , (13)

where𝑤𝑖 denotes the normalized weight for P𝑖
q we aim to obtain.

Since

∫
P𝑖
q dq = 1 always holds for each biased distribution, we

can further represent𝑤𝑖 as follows:

𝑤𝑖 =

∫
𝑢𝑖Pq dq = ⟨𝑢𝑖 ⟩Pq . (14)

To evaluate the generator 𝐺 over Pq, we have

⟨𝐺⟩Pq =

∫
𝐺Pq dq =

∫
𝐺

∑𝑁
𝑖=1 𝑢𝑖/𝑤𝑖∑𝑁
𝑗=1 𝑢 𝑗/𝑤 𝑗

Pq dq

=

𝑁∑
𝑖=1

∫
𝐺∑𝑁

𝑗=1 𝑢 𝑗/𝑤 𝑗

𝑢𝑖

𝑤𝑖
Pq dq

=

𝑁∑
𝑖=1

∫
𝐺∑𝑁

𝑗=1 𝑢 𝑗/𝑤 𝑗

P𝑖
q dq =

𝑁∑
𝑖=1

〈
𝐺∑𝑁

𝑗=1 𝑢 𝑗/𝑤 𝑗

〉
P𝑖
q

.

(15)

Thus, we know that the original evaluation of 𝐺 over Pq can be

possibly conducted over the sum of 𝑁 biased distributions with

proper weights. Here, the distribution sum operation can be simply

achieved by the direct sampling over each P𝑖
q, where 𝑖 = 1, · · · , 𝑁 .

To finally obtain the weights, we utilize the overlap matrix M
defined in Eq. 7. WithinM, it is noted that𝑀𝑖 𝑗 equals to 0 if there is

no overlap between P𝑖
q and 𝑢 𝑗 . Further, we can derive the product

of the weight vector w and the 𝑗-th column ofM as below, based

on Eq. 14 and Eq. 15.

𝑁∑
𝑖=1

𝑤𝑖 ·𝑀𝑖 𝑗 =

𝑁∑
𝑖=1

〈
𝑢 𝑗∑𝑁

𝑘=1
𝑢𝑘/𝑤𝑘

〉
P𝑖
q

=
〈
𝑢 𝑗

〉
Pq

= 𝑤 𝑗 . (16)

Now, considering all the columns of M, we can then obtain the

weight vector w by solving the equation wM = w. This finalize the

proof of the Theorem 1.

B PROOF OF THEOREM 2
For simplicity without loss of generality, we here only consider

the case with causal dependence between two attributes, which is

illustrated by Fig. 5. According to the causal graph of 𝐴 → 𝐵, we

can express the corresponding structural equations as below:{
𝐵 = 𝐹𝐵 (𝐴,𝑍𝐵)
𝐴 ⊥⊥ 𝑍𝐵, 𝐴 ∼ P𝐴, 𝑍𝐵 ∼ P𝑍𝐵

, (17)

where 𝑍𝐵 generally indicates the disturbance term of the structural

equation for 𝐵. However, the generated samples from Eq. 17 may

not necessarily be identified with the causality 𝐴 → 𝐵 purely from

the observational perspective, since there could exist a symmetric

case for 𝐵 → 𝐴 which derives the same joint distribution of 𝐴 and

𝐵. Take the following two set of structural equations for example:
𝐵 = 𝛼𝐴 + 𝑍𝐵, 𝐴 ⊥⊥ 𝑍𝐵
𝐴 ∼ N(𝜇𝐴, 𝜎2𝐴)
𝑍𝐵 ∼ N(𝜇𝑍𝐵

, 𝜎2
𝑍𝐵

)


𝐴 = 𝛽𝐵 + 𝑍𝐴, 𝐵 ⊥⊥ 𝑍𝐴
𝐵 ∼ N(𝜇𝐵, 𝜎2𝐵)
𝑍𝐴 ∼ N(𝜇𝑍𝐴

, 𝜎2
𝑍𝐴

)
, (18)

where𝛼, 𝛽 are constants, and 𝜇, 𝜎 respectively denotes themean and

standard deviation of the normal distribution N . Now, assuming

we have the following relationships satisfied:
𝛽 = 𝛼𝜎2

𝐴

/
𝛼2𝜎2

𝐴
+ 𝜎2

𝑍𝐵

𝜇𝐵 = 𝛼𝜇𝐴 + 𝜇𝑍𝐵
, 𝜎2

𝐵
= 𝛼2𝜎2

𝐴
+ 𝜎2

𝑍𝐵

𝜇𝑍𝐴
= (1 − 𝛼𝛽)𝜇𝐴 − 𝛽𝜇𝑍𝐵

, 𝜎2
𝑍𝐴

= (1 − 𝛼𝛽)2𝜎2
𝐴
+ 𝛽2𝜎2

𝑍𝐵

,

the two set of structural equations in Eq. 18 then derives the exact

same joint distribution for 𝐴 and 𝐵, from which we cannot identify

the related causal dependence with the generated samples.

Thus, to guarantee the causality we incorporate is able to be

identified, we need to break the symmetry of potential structural

equations. One promising way for our case is to utilize the proper-

ties of additive noise model (ANM) [14], which is proved to be able

to generate the samples with related causal dependence identifiable.

To prove a set of structural equations follow ANM, there are two

key requirements for verification: (1) the transformation function

𝐹 is non-linear; (2) the influence of the disturbance term can be

isolated out of 𝐹 in an additive manner. In the following, we verify

our design in Theorem 2 is consistent with the ANM formulation.

■ Non-linear Transformation: In our design, the transfor-

mation 𝐹 is implemented with feed-forward modules, which

consists of several dense layers for computation. As a result,

the implemented transformation is thus a non-linear map-

ping. Specifically for Eq. 17, 𝐹𝐵 is non-linear in our scenario.

■ Additive Disturbance: For our case, the structural equation
in Eq. 17 can be expressed as: 𝐵 = 𝐹𝐵 (𝐴 ⊕ 𝑍𝐵), where ⊕
represents the direct sum, indicating the concatenation of 𝐴

and 𝑍𝐵 before feeding into 𝐹𝐵 . Since 𝐴 ⊥⊥ 𝑍𝐵 , we know that

there exists relevant transformations 𝐹 ′
𝐵
and 𝐹 ′′

𝐵
, such that

𝐵 = 𝐹𝐵 (𝐴 ⊕ 𝑍𝐵) = 𝐹 ′𝐵 (𝐴) + 𝐹 ′′𝐵 (𝑍𝐵), (19)

based on the homomorphism property of direct sum. In

Eq. 19, 𝐹 ′′
𝐵
(𝑍𝐵) can be further treated as a transformed dis-

turbance. Thus, within our scenario, we see that Eq. 17 can

isolate the influence of disturbance 𝑍𝐵 as an additive term.

Overall, we show that our design of 𝐺 in Theorem 2 essentially

builds a series of ANMs for counterfactual generation. With the

identifiable causal dependence guaranteed by ANM, we finalize the

proof of Theorem 2.

C DETAILS & ANALYSIS OF UMBRELLA
SAMPLING SETTINGS

We utilize the umbrella sampling to obtain the training queries with

rare values, aiming to effectively train the proposed MCS and let it

well capture the potential hypothetical distributions. During imple-

mentation, we divide the particular sampling space into 𝑁 different

windows, where 𝑖-th window is appended with the umbrella profile

𝑢𝑖 . In experiments, our biased samplers are implemented with the

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1973

Figure 11: The conditional modeling performance of MCS
with umbrella sampling on different number of windows.

Ensemble Sampler
6
, and 𝑁 is set as 8, 32 respectively for the Adult

and Home_Credit dataset. Besides, we employ 8 walkers for each

umbrella-biased sampler, and run 1000 steps for each walker. The

samplers will stop when the maximum Gelman-Rubin estimate falls

below the threshold 𝜁 = 0.01.

Typically, when 𝑁 is large enough, those rare values would have

roughly the equal opportunities to be sampled compared withmajor

ones, which basically balances the values appeared forMCS training.

However, it is usually not acceptable with an overlarge 𝑁 , because

𝑁 also affects the training efficiency significantly. Increasing 𝑁

will directly lead to the rise of computational complexity, referring

Theo. 1, and will further result in the fact that each training batch

consumes more time for updating. Thus, to achieve a reasonable

trade-off on training between the effectiveness and efficiency, we

need to select an appropriate number of windows 𝑁 for umbrella

sampling. Here, we attach some additional experimental results,

considering the influences of 𝑁 , shown in Fig. 11 and Fig. 12. Ac-

cording to the comparison, it is noted that MCS trained with more

umbrella samplers shows a better modeling performance on hypo-

thetical distributions. Meanwhile, the increase of 𝑁 brings about

heavier time cost for training, which becomes more significant

with larger data scale and more training epochs. Therefore, prop-

erly choosing 𝑁 for specific data should be an important pre-step

before deploying MCS for interpretation in practice.

D SYNTHESIZER TRAININGWITH
DIFFERENT DEPLOYED CLASSIFIERS

We show some additional results about the MCS training regard-

ing to different deployed classifiers 𝑓 (i.e., SVM, RF, MLP), and

briefly discuss how 𝑓 can potentially affect the training process.

6
https://emcee.readthedocs.io/en/stable/user/sampler/#emcee.EnsembleSampler

Figure 12: The time consumption of MCS training.

Figure 13: The training loss of generator 𝐺 with different 𝑓 .

In experiments, the dimension of the latent space (i.e., z) is set as
128, and 𝐷,𝐺 are designed with two-layer feed-forward modules

whose intermediate dimensions are set as 256. Besides, the training

batch size is fixed as 500, and the learning rate is 2 × 10
−4
. The

empirical results on the loss of generator 𝐺 during training, with

respect to different 𝑓 , are illustrated in Fig. 13. Based on the train-

ing loss curve, we note that generator 𝐺 converges faster when

trained with deployed SVM and MLP, which typically takes less

epochs to reach certain loss value compared with that under the

RF case. This observation mainly results from the 𝐿𝑐𝑒 term in Eq. 6,

which involves particular 𝑓 to calculate the counterfactual loss.

Thus, when decision boundaries of the deployed 𝑓 are not smooth,

the corresponding 𝐿𝑐𝑒 term may not be effectively minimized for

training objectives, so that it would largely increase the difficulties

of the optimizer in updating 𝐺 . In our experiments, the deployed

SVM and MLP classifier seem to have smoother boundaries than

RF (intuitively validated by Fig. 6), and related training objectives

are better optimized within certain epochs. From this perspective,

it sheds light on the relationship between the counterfactual syn-

thesizer and the deployed classifier, where smoother 𝑓 would boost

the MCS training towards better effectiveness.

E DATASET PREPROCESSING
In the conducted experiments of this paper, we preprocess the

two real-world datasets employed (i.e., Adult and Home_Credit) for
simplicity. The processing actions include the following aspects:

• Remove the rows with missing values. This action is mainly for the

Home_Credit data, which contains many instances with None;
• Delete some columns (attributes). We ignore some columns which

may not be that significant for prediction. For example, the ‘fnl-

wgt’ attribute in Adult data is removed in our experiments.

• Merge some values. We merge those values together which share

overlap semantics. For example, in Adult data, value Assoc-voc,
Assoc-acdm are merged as Assoc, and value 11th, · · · , 1st-4th
are all merged as School, within the attribute ‘education’.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1974

	Abstract
	1 Introduction
	2 Preliminaries
	3 Model-Based Counterfactual Synthesizer Framework
	3.1 Model-Based Counterfactual Explanation
	3.2 Conditional Synthesizer Design

	4 Enhancement for Counterfactuals
	4.1 Effective Synthesizer Training
	4.2 Causal Dependent Generation

	5 Implementation
	6 Experiments
	6.1 Evaluation on Counterfactual Generation
	6.2 Evaluation on Distribution Modeling
	6.3 Evaluation on Causal Dependence

	7 Related Work
	8 Conclusions
	Acknowledgments
	References
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Details & Analysis of Umbrella Sampling Settings
	D Synthesizer Training with Different Deployed Classifiers
	E Dataset Preprocessing

