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ABSTRACT

Counterfactuals, serving as one of the emerging type of model inter-
pretations, have recently received attention from both researchers
and practitioners. Counterfactual explanations formalize the explo-
ration of “what-if” scenarios, and are an instance of example-based
reasoning using a set of hypothetical data samples. Counterfac-
tuals essentially show how the model decision alters with input
perturbations. Existing methods for generating counterfactuals are
mainly algorithm-based, which are time-inefficient and assume the
same counterfactual universe for different queries. To address these
limitations, we propose a Model-based Counterfactual Synthesizer
(MCS) framework for interpreting machine learning models. We
first analyze the model-based counterfactual process and construct
a base synthesizer using a conditional generative adversarial net
(CGAN). To better approximate the counterfactual universe for
those rare queries, we novelly employ the umbrella sampling tech-
nique to conduct the MCS framework training. Besides, we also
enhance the MCS framework by incorporating the causal depen-
dence among attributes with model inductive bias, and validate
its design correctness from the causality identification perspective.
Experimental results on several datasets demonstrate the effective-
ness as well as efficiency of our proposed MCS framework, and
verify the advantages compared with other alternatives.

CCS CONCEPTS

+ Computing methodologies — Causal reasoning and diag-
nostics; Neural networks; Generative and developmental ap-
proaches; Supervised learning by classification.
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1 INTRODUCTION

Recently, machine learning (ML) models have been widely deployed
in many real-world applications, and achieved a huge success in
many domains. For high-stake scenarios, such as medical diagno-
sis [23] and policy making [3], explaining the behaviors of ML
models is necessary for humans to be able to scrutinize the model
outcomes before making a final decision. Various interpretation
techniques [6] have thus been proposed to handle the ML explain-
ability issue. Feature attribution [6], for example, is one commonly
used interpretation technique in many ML tasks, including image
captioning, machine translation and question answering, where im-
portant features that contribute most are highlighted as evidences
for model predictions.

However, most ML interpretations like feature attribution typi-
cally lack the reasoning capability, since they are not discriminative
in nature [5], which makes them limited in understanding how. To
further investigate the decision boundaries of ML models, counter-
factual explanation [39], emerging as a new form of interpretation,
has gradually raised attentions in recent years. Counterfactuals are
essentially a series of hypothetical samples, which are synthesized
within a certain data distribution and can flip the model decisions
to preferred outcomes. With valid counterfactuals, humans can
understand how model predictions change with particular input
perturbations, and further conduct reasoning under "what-if" cir-
cumstances. Given a loan rejection case for instance, attribution
analysis simply indicates those important features for rejection (e.g.,
applicant income), while counterfactuals are able to show how the
application could be approved with certain changes (e.g., increase
the annual income from $50, 000 to $30, 000).

Several initial attempts on generating counterfactuals have been
made in recent work. The first, and most straightforward, line of
methodology is to utilize the adversarial perturbations to synthe-
size the hypothetical samples [29, 30], where the search process is
conducted in the input data space. One significant drawback of this
methodology is that out-of-distribution (OOD) samples cannot be
avoided, which can largely limit the reasoning capability of gener-
ated counterfactuals. To cope with this issue, another line of method-
ology proposes to synthesize the counterfactuals in the latent code
space with the aid of pre-trained generative models [16, 32, 42]. In
this way, the generated counterfactuals are then well guaranteed
to be within certain data distribution for interpretation purposes.
Besides, considering the huge computational complexity for deriv-
ing high-dimensional samples (e.g., images), there is also a line of
methodology using feature composition in data space to synthesize
counterfactuals [11, 38]. The extra requirement for this methodol-
ogy is a proper distractor instance (could be the query itself), which
provides relevant feature resources for synthesis.
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Despite existing efforts, effective generation of counterfactuals
still remains challenging. First, common counterfactual frameworks
are mostly algorithm-based ones, which makes them inefficient
for sample generation, because each new query necessitates solv-
ing one specific optimization problem at one time. For cases with
multiple inputs, algorithm-based frameworks could be extremely
time-consuming. Second, the counterfactual universe is unknown
in advance, and its high-quality approximation is preferred for
better explanation. Existing frameworks mostly assume the same
counterfactual universe for different queries, though this may not
be consistent with the settings of real-world counterfactuals which
are related to the inputs. Third, causal dependence among attributes
needs be considered for counterfactual feasibility. Although there
are a few work [18, 25] trying to incorporate causal constraints
into counterfactuals, they simply achieve it by adding extra regu-
larization terms, and do not have any theoretical guarantees on the
generation process from a causality perspective.

To address the aforementioned challenges, we propose a Model-
based Counterfactual Synthesizer (MCS) framework, which can
faithfully capture the counterfactual universe and properly incorpo-
rate the attribute causal dependence. Specifically, by analyzing the
counterfactual process, we are motivated to employ conditional gen-
erative adversarial net (CGAN) [27] as the base, and further build
a model-based synthesizer by introducing relevant counterfactual
objectives. To make MCS better approximate the potential counter-
factual universe, we novelly apply the umbrella sampling [19] in
synthesizer training, aiming to properly consider the influence of
those rare events in data on counterfactual reasoning. Moreover, we
also use model inductive bias to design the generator architecture
in our proposed MCS framework, so as to incorporate the causal de-
pendence of attributes into the generated samples, which is further
validated from the causality identification perspective. Our main
contributions are summarized as follows:

Design a model-based counterfactual explanation framework
(i.e., MCS) based on CGAN, whose goal is to help humans better
understand the decision boundaries of deployed ML models;
Apply the umbrella sampling technique in MCS training, which
significantly enhances the synthesizer in capturing the influence
of those rare events in data for counterfactual explanation;

Use the concept of model inductive bias to design the generator
architecture in the proposed MCS, and further validate the design
correctness through a causality identification process;
Demonstrate the advantages of our proposed MCS on different
datasets, and compare the performance with other alternatives.

2 PRELIMINARIES

In this section, we briefly introduce some involved concepts, as
well as some basics of the employed techniques.

Counterfactual Explanation. This is one particular ML inter-
pretation technique developed from example-based reasoning [35],
where hypothetical data samples are provided to promote the un-
derstandings of model boundaries. As a specific example, consider a
classification model fp : RY — {-1,1}, with —1 and 1 respectively
denoting the undesired and desired outputs. The counterfactual
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explanation problem can be generally formulated as:

st.fo(q) =-1 fo(x) =1, (1)

x" = argmin I(x, qp)
x~C

where qq represents the input query, and x* is the derived coun-
terfactual sample. Here, C indicates the counterfactual universe
of the observed data space Rd, and [ : R x RY — Rg denotes a
distance measure in the input space. From Eq. 1, we can see that
counterfactuals are essentially data samples within some distribu-
tions, which can flip the model decisions as desired, while keeping
similar to the query input. Conceptually, Eq. 1 can be solved either
in an algorithm-based way, or a model-based way. Algorithm-based
methods typically employ different optimization strategies to solve
Eq. 1 for each query qo, while model-based ones try to approximate
the particular C given relevant constraints and further conduct
sampling. In this paper, we mainly explore the counterfactual ex-
planation problem using the model-based methods.

Generative Modeling with CGAN. Generative adversarial net
is a novel way to train generative models, which typically has a
generator G and a discriminator D [9]. The training objective of
G is to capture the data distribution, while the objective of D is to
estimate the probability that a sample comes from the data rather
than G. CGAN is a natural extension of this framework, where
G and D are both conditioned on some additional information a
(e.g., labels or attributes). The min-max game between G and D
conducted in CGAN training can be expressed as:

i V(D,G) =E logD + Elog(1-D(G(z , (2
minmaxV(D,G) = E log D(xla) + Elog(1-D(G(zla))). @)

where Py indicates the data distribution over x, $, denotes a prior
noise distribution, and V represents a value function of the two play-
ers in the min-max game. With a well-trained CGAN, we can effec-
tively capture the conditional distribution given certain constraints
or regularizations. In this paper, we use the CGAN framework to
approximate the potential counterfactual universe.

Model Inductive Bias. When multiple decisions are equally
good, model inductive bias enables the learning process to prior-
itize some decisions over the others [28], which is independent
of the data observed. Model inductive bias can be incorporated in
different ways. In early days, connectionist models commonly indi-
cated their inductive bias through relevant regularization terms [26].
For conventional Bayesian models, inductive bias is typically ex-
pressed through the prior distribution [12], either from its selection
or parameterization. In other contexts, inductive bias can also be
encoded with model architectures [1, 43], where the structure itself
indicates the data-generating assumption or the potential decision
space. In this paper, we make use of the inductive bias specifically
instilled by generator architecture to properly consider the causal
dependence among attributes for generated samples.

3 MODEL-BASED COUNTERFACTUAL
SYNTHESIZER FRAMEWORK

In this section, we first analyze the counterfactual universe given a
deployed ML model, and then formulate the problem of model-based
counterfactual explanation. Further, we introduce the proposed
synthesizer design based on the CGAN framework.
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Prediction

Figure 1: The general graphical model for counterfactual
generation process given a deployed ML model.

3.1 Model-Based Counterfactual Explanation

To effectively design a counterfactual synthesizer, it is crucial to
make clear the counterfactual universe we are focusing on. Given
a deployed ML model fy, we can characterize the whole universe
with the graphical model illustrated in Fig. 1. In general, x and y rep-
resent the data and label variables respectively, while y denotes the
decision variable output from fy. The query variable q is introduced
to incorporate relevant constraints for counterfactual reasoning,
which brings about the fact that hypothetical samples (i.e., x and
y) are typically generated under the influence from q. According
to the graphical model in Fig. 1, we can further factorize the joint
distribution of the whole counterfactual universe as follows:

Paxyy = Pa- Pxiq Pyix - Pylxg = P Pyix - Prylg - )

Within Eq. 3, g is typically known as the prior, and Py is consid-
ered as fixed since the model fy is pre-deployed. Thus, the key to
capturing the counterfactual universe lies in the proper approxima-
tion of Py y|q (i.e., the joint distribution of x and y conditioned on
q), which reflects the latent sample generation process with certain
query. Thus, to achieve the model-based counterfactual analysis, we
need to investigate the hypothetical sample generation under par-
ticular query conditions. With this insight, we now formally define
the problem of model-based counterfactual explanation below.

DEFINITION 1. A model-based counterfactual is a data point
sampled from a perturbed hypothetical distribution, which statis-
tically satisfies the counterfactual requirements (indicated by Eq. 1).
Given a specific query qq, counterfactual x* can be obtained through
sampling x* ~ Cy|q,» where Cyq, is @ hypothetical distribution

marginalized from Cy y|q,- In general, Cy y|q, can be derived by

= arg min ch(Px’

xylqo

Cxyla ylao)> ©

where qq follows the prior Py, and L¢S indicates a counterfactual loss.

By definition, a model-based counterfactual does not focus on
the instance optimization for each individual query. Instead, it tries
to capture the latent sample generation process with particular
query conditions, within the whole counterfactual universe. One
significant merit brought by model-based explanations is that it
largely enhances the efficiency for counterfactual generation, since
we only need to obtain the certain hypothetical distribution once for
all potential queries following the prior $q. Nevertheless, modeling
such latent generation processes is nontrivial, and we need some
specific designs to make it effectively work.
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Figure 2: The overall framework design for the proposed
counterfactual synthesizer through conditional modeling.

3.2 Conditional Synthesizer Design

Designing a model-based synthesizer typically involves how to
build an effective generative model for counterfactuals. According
to the previous analysis, we know that the key lies in the approx-
imation of hypothetical distribution Cy y|q, which can be formu-
lated as a conditional modeling problem. To this end, we propose a
conditional generative framework based on CGAN in this paper,
specifically designing for counterfactual explanation. The overall
architecture is illustrated by Fig. 2.

In the designed framework, D represents the discriminator mod-
ule, and G denotes the generator module. Similar as CGAN, D and
G are jointly trained as adversaries to each other, aiming to achieve
a min-max game. The major difference with CGAN comes from
how we prepare the conditional vectors for the framework training.
Here, instead of simply employing label information, we use the
query as conditions for counterfactual generation. Besides, to guar-
antee the quality of generated counterfactual samples, we further
incorporate a distance measure [ and the deployed model f to regu-
larize the training of G. Throughout this process, we aim to obtain
the counterfactuals which are similar to the query q and have the
preferred output decision y’. Specifically, the training objective of
this counterfactual min-max game can be indicated as:

min max E log D(x|q) +E log[1-D(G(z|q))] +ch(G(z|q)) , (5)

G D x~Py Z~P,

q~Pq q~%q
where z represents the noise vector following a distribution #.
Within Eq. 5, the counterfactual loss term L¢/ can be further ex-
pressed as follows:

L (G(zlq) = L (f(G(zlg). ¥') +1(Glzlg). @), (6)
in which L¢ indicates the cross-entropy loss between the pre-
dictions from f and the preferred decision y’, regarding to the
generated samples. Overall, L/ is expected to be minimized for
counterfactual reasoning purposes, and it can be treated as an addi-
tional regularization term appended with the conventional CGAN
training. By utilizing this conditional design, we can then employ
the well-trained generator G to synthesize a series of hypotheti-
cal distributions parametrized by query q, and further achieve the
model-based counterfactual generation through sampling.
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Imbalanced Feature Values Conditional Synthesization Statistics

15000

Query % of % of
Condition Married Widowed
1 10000
§ Married = True 85.63 1.69
5000
Widowed = True  46.87 5.12

Divorced Married Separated Single Widowed

Figure 3: Case results for base synthesizer on conditional
performance of the ‘marital-status’ attribute in Adult data.

4 ENHANCEMENT FOR COUNTERFACTUALS

With the previous design, we now consider two practical enhance-
ments for model-based counterfactuals. First, we propose a novel
training scheme for counterfactual synthesizer based on the um-
brella sampling technique. Second, we utilize the model inductive
bias to consider the causal dependence among attributes.

4.1 Effective Synthesizer Training

4.1.1 Query imbalance during training. To effectively train the
designed counterfactual synthesizer shown in Fig. 2, we need to let
G well capture the conditions indicated by q. However, this may not
be as straightforward as in conventional CGAN, since Pg is typically
imbalanced among different attribute values. Such query imbalance
results in the fact that the hypothetical distributions conditioned
on those rare values cannot be effectively approximated, due to
the limited number of instances. To illustrate the point, we show
some case results of the base synthesizer on Adult dataset! in Fig. 3.
Here, we assume that q and x share a same prior distribution (i.e.,
Pq = Px), because queries are usually collected from similar data
sources in most real-world scenarios. According to the results, we
note that the imbalanced values of ‘marital-status’ attribute? lead
to significantly different conditional performance on synthesis.
When conditioned on those majority values (e.g., Married), the
synthesizer can reasonably capture the corresponding hypothetical
distribution. In contrast, the synthesizer fails when conditioned on
minority values (e.g., Widowed), and its conditional performance is
bad. Thus, to better train the designed counterfactual synthesizer,
we need to prepare a proper set of training queries, which contains
sufficient samples with attribute values in the tails of prior Pq.

4.1.2  Umbrella sampling for rare instances. To properly reflect the
influence of rare values, we need some enhanced sampling strate-
gies for training, instead of the simple random way. An intuitive
way is to relatively increase the probability mass for rare values.
In work [41], the authors used the frequency logarithm to curve
the probability mass, aiming to make the sampling process have
higher chances in obtaining those "tail" values. However, such mass
curves may not be well suited for our training scenario, because it
distorts the prior Pq and further leads to an unfaithful hypothetical
distribution Cy y|q. Considering this, we novelly apply the umbrella
sampling technique here to enhance the synthesizer training, which
was originally used in computational physics and chemistry for

!http://archive.ics.uci.edu/ml/datasets/Adult
2We merge Married-civ-spouse, Married-spouse-absent, Married-AF-spouse in
‘marital-status’ attribute all to value Married for simplicity.
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Figure 4: Case study on counterfactual samples (selected)
generated by DiCE algorithm in Adult data.

molecular simulation [19]. Umbrella sampling recasts the whole
sampling process into several unique samplings over umbrella-
biased distributions in a weighted-sum manner, where the added
artificial umbrellas are expected to cover the full value domain
with overlaps. By calculating the weight of each biased distribu-
tion, we can then reconstruct the original distribution and conduct
evaluations with the umbrella samples obtained. Specifically for
counterfactual synthesizer training, we can thus guarantee the suf-
ficient number of queries with balanced values by sampling under
different umbrella biases. In particular, the corresponding weight
of each biased distribution for query preparation can be calculated
as below.

TuEOREM 1. Consider the sampling process q ~ Pq for coun-
terfactual synthesizer training. Let w = [wy,---,wyn] denote the
weight vector for N umbrella-biased distributions [19], where w; in-
dicates the normalized weight of the i-th biased distribution PE, and
u = [uy, - ,un] denote the profile of the added artificial umbrellas.
Then, the optimal w can be derived by solving the equation WM = w,
where M = M(w) represents the overlap matrix defined as:

i )
7

Here, the operation (-)p indicates the average over distribution #.
The proof for deriving w is shown in Appendix A.

uj/wi
-~ )
S e/ Wi

4.2 Causal Dependent Generation

4.2.1 Causality for generated counterfactuals. To make the gen-
erated counterfactuals have better feasibility on reasoning, it is
also preferred to consider the causality among different input at-
tributes. We here use another case study on the Adult data, shown
in Fig. 4, to illustrate the point. In particular, we employ an existing
counterfactual explanation method, DiCE [30], to generate related
counterfactual samples. The results show in Fig. 4 that DiCE is
not able to reflect the causality between the attribute ‘education’
and ‘age’, since it suggests to improve the education level without
changing the age for flipping model decisions. In real-world settings,
such counterfactuals are usually considered infeasible, because in-
put attributes cannot be altered independently in counterfactuals.
Specifically in this example, education level typically improves with
age, so feasible counterfactuals should indicate such causality for
human reasoning. We now enhance our proposed MCS by showing
how to incorporate such causal dependencies among attributes.
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Feed-Forward
Module

Generator Design Causal Graph
Figure 5: Example design of G for incorporating the causa-
tion: A — B, as well as the represented causal graph.

4.2.2  Model inductive bias for causal dependence. In contrast with
the algorithm-based counterfactuals, model-based counterfactu-
als provide new possibilities to incorporate domain-specific causal
dependence for explanation, instead of simply adding extra regular-
ization or constraints for generation [25]. In particular, we propose
to utilize the inductive bias of G to encode relevant causal depen-
dence, where the architecture of G is intentionally designed to
mimic the structural equations [13] of corresponding causation.
Fig. 5 shows an example of designing G for the causal relationship
A — B, where A indicates the cause and B denotes the effect. Es-
sentially, by purposely manipulating the generator architecture,
we encode the causal structure as inductive biases in G, so as to
achieve the causal dependent generation for counterfactuals. We
now state a theorem proving the correctness of this approach from
the perspective of causality identification, where the correspond-
ing considered causal dependence is shown to be existed from the
generated counterfactual samples.

THEOREM 2. Let D = (A, E) represent a causal graph with vertex
set A = {A1, Ay, -+, Ag} being attributes used for counterfactual
generation, and edge set & consisting of directed edges from causes
to effects. Then, the generator G can be designed with S feed-forward
modules G = [F1,Fy,- -, Fs], mimicking the corresponding struc-
tural equations of D, such that As can be generated by

As = Fs ({Ap}pepa? ,zAs), Vse[1,---,S], ®)
where Pa2 denotes the set of parent attributes (i.e., causes) for Ag in
graph D. As a result, the counterfactual samples generated by G are
further guaranteed to have the incorporated causality, which can be
identified from the observational perspective.

The relevant discussion & proof are shown in Appendix B.

5 IMPLEMENTATION

In this section, we briefly introduce the employed practical tech-
niques when implementing the proposed MCS framework. We also
show the overall pipeline of MCS for counterfactual generation.
Data Representation. When implementing MCS, we employ
different modeling techniques for different types of data attributes.
We use Gaussian mixture models [2] to encode continuous at-
tributes, and normalize the values according to the selected mixture
mode. We represent discrete attributes directly using one-hot en-
coding. Furthermore, one specific data instance r;,s can be then
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Algorithm 1: Building Pipeline of MCS for Interpretation

# Setup Phase

- Prepare f for explanation, and select [ for measurement;

- Design the generator G with domain 9D based on Theo. 2;

# Training Phase

- Data Modeling with Eq. 9;

- for training batch k do
Utilize umbrella sampling to prepare a set of queries qy;
Weigh batch k with w over q based on Theo. 1;
Update G and D in the min-max game of Eq. 5;

# Interpretation Phase

- Feed the user query q to G for counterfactual generation.

represented as

Tins =" @@y @d™ @@ dyy, ©9)
where N, and N indicate the number of continuous and discrete
attributes in the data respectively. Also, we represent the query q
by value masking, thus giving humans control over the semantics
of the counterfactuals as appropriate for any particular use case.

Umbrella Sampling for Discrete Attributes. Conventional
umbrella sampling technique only applies to continuous distri-
butions. For discrete attributes, we use the Gumbel-Softmax [15]
method to relax the categorical distribution into a continuous one.
This reparameterization trick is proved to be faithful and effec-
tive in many cases with appropriate temperature 7, which controls
the trade-off of the distribution relaxation. When r — 0, the re-
laxed distribution becomes into the original discrete one. When
T — oo, it gradually converges into a uniform distribution. In our
proposed MCS framework, we conduct the implementation with a
fixed temperature as 7 = 0.5.

Overall MCS Pipeline. To clearly show the procedures of build-
ing MCS for counterfactual explanation, we give an overview of the
pipeline, illustrated by Algorithm 1. Compared with the existing
algorithm-based counterfactuals, the proposed MCS is much more
efficient during the interpretation phase, since it avoids the itera-
tive perturbation step regarding to each input q. In exchange, MCS
pushes the computational complexity to the setup and training
phase, which largely depends on the data scale as well as the value
space we focus on.

6 EXPERIMENTS

In this section, we empirically evaluate the proposed MCS on both
synthetic and real-world datasets from several different aspects,
and aim to answer the following key research questions:

e How effective and efficient is MCS in generating counterfactual
samples, compared with existing algorithm-based methods?
How well does MCS model the original observational distribution
as well as the conditional counterfactual distribution, with the
umbrella sampling technique?

Can we identify the incorporated domain-specific causal depen-

dence from the counterfactual samples generated by MCS?
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Table 1: Data statistics in experiments.

Dataset #Row  #Col Attribute Type
Syn_Moons 500 3 Continuous
Syn_Circles 500 3 Continuous

Adult 48,842 9  Continuous & Categorical
Home_Credit 344,971 39 Continuous & Categorical

6.1 Evaluation on Counterfactual Generation

In this part, we evaluate the effectiveness and efficiency of MCS,
comparing with existing algorithm-based counterfactual methods.

6.1.1 Experimental settings. We consider two synthetic datasets
and two real-world datasets for counterfactual generation evalua-
tion. Specifically, the statistics of the datasets are shown in Tab. 1.

o Synthetic®: We synthesize two datasets for classification pur-
pose, i.e., “Syn_Moons” and “Syn_Circles”, with different sepa-
ration boundaries. To facilitate visualization, the synthetic data
only contains two continuous attributes. These two synthetic
datasets are mainly used to evaluate the MCS effectiveness.
Adult: This is a real-world benchmark dataset for income pre-
diction, where each instance is labelled as “>50K” or “<=50K”.
In the experiments, the counterfactuals on this data aim to help
understand how to flip model decisions from “<=50K” to “>50K”.
To facilitate our task, we only consider a subset of the attributes.
Home_Credit*: This is a larger real-world dataset for client risk
assessment, where the goal is to predict clients’ repayment abili-
ties of given loans. The counterfactuals here are to help reason
how to make improvements for risky clients to become non-risky.
We drop some unimportant attributes in experiments.

As for the deployed classifier, we prepare three different f for
counterfactual generation evaluation as below. Those classifiers are
all trained with 80% of the data, and tested with the rest 20%.

e RBF SVM: This is a pre-trained support vector machine (SVM)
with the RBF kernel, where a squared I penalty is applied. Related
SVM hyperparameter y is set to 2, and C is set to 1.

e Random Forest (RF): This is a pre-trained tree-based RF classi-
fier with 10 estimators. The maximum depth of each tree is set
as 5. We use the Gini impurity as our splitting criterion.

o Neural Net (MLP): This is a pre-trained ReLU neural classifier
with multi-layer perceptron (MLP). Here, we have 1 hidden layer
and 100 hidden units. The relevant I3 regularization coefficient is
set to 1, and the maximum iteration number is set as 1000.

Furthermore, we select four recent algorithm-based counterfac-
tual explanation methods as our baselines for comparison. These
methods are all set up with their default settings.

o DiCE [30]: This method generates diverse counterfactual samples
by providing feature-perturbed versions of the query, where the
perturbations are derived by iterative optimization.

e C-CHVAE [32]: This method utilizes a pre-trained variational
auto-encoder (VAE) to transform the data space into a latent
embedding space, and then perturbs the latent representation of
the query for counterfactual generation.

3https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
“https://www.kaggle.com/c/home-credit-default-risk/data
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Figure 6: Visualization of the generated counterfactual sam-
ples by the proposed MCS on two synthetic datasets.

o CADEX [29]: This method employs the gradient-based scheme to
perturb the query for flipping outcomes, which is an application
of adversarial attack methods for counterfactual generation.

o CLEAR [40]: This method uses the concept of b-perturbation
to construct potential counterfactuals through local regression,
where the corresponding fidelity error is minimized iteratively.

6.1.2  Counterfactual generation effectiveness. To demonstrate the
effectiveness of MCS, we visualize the generated counterfactuals
on two synthetic datasets, illustrated by Fig. 6. In this set of ex-
periments, we select a fixed query qo for each synthetic dataset
with negative model decision (i.e., predicted as ‘~1’), and randomly
show 5 samples generated by MCS. Fig. 6 shows that all generated
samples successfully flip the query prediction from the negative
‘~1’ to the positive ‘1’, across different classifiers f. Thus, it is noted
that MCS is capable of synthesizing valid counterfactuals for predic-
tion reasoning. To further evaluate the counterfactuals generated
by MCS, we employ the average Euclidean distance as the metric,
indicated by Eq. 10, to reflect how close of the generated samples
regarding to the input query:

S8 Zee Sef Euclid_Dist(qp, e) / sef

, (10)

where 8¢/ denotes the set of the generated counterfactuals. In our
experiments, we set |S¢/| = 20, and compare §2¥8 among different
counterfactual methods under different f over different datasets.
Fig. 7 shows that counterfactuals generated by MCS are generally
farther to the queries, compared with those generated by baselines
(except C-CHVAE). This observation suggests that algorithm-based
methods are good at finding those “nearest” counterfactuals through
iterative perturbations, while MCS mainly focus on the counterfac-
tual distribution approximation instead of sample searching. For
C-CHVAE, it is designed to conduct perturbations in the latent
space, and hence its generated counterfactuals are also observed to
be farther than those from DiCE, CADEX and CLEAR in the data
space. C-CHVAE can be treated as a data density approximator,
thus the corresponding 628 are almost the same over different f
within the same dataset. Overall, we know that MCS can effectively
generate valid counterfactuals for reasoning, but its synthesized
samples may not be as close to the query as those generated from
existing algorithm-based methods (i.e., DiCE, CADEX, CLEAR),
which becomes more significant with the increase of the data scale.
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Figure 7: The average Euclidean distance comparison between the query and the generated counterfactuals.
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Figure 8: The time efficiency comparison with MLP.

6.1.3 Counterfactual generation efficiency. To evaluate the effi-
ciency of different counterfactual explanation methods, we compare
the time cost of sample generation process regarding to multiple
queries. In this set of experiments, we only consider the Adult and
Home_Credit dataset for illustration, with a MLP classifier f, and
test the counterfactual generation under 10, 20 and 30 queries. The
relevant results are reported by averaging 5 runs over different sets
of input. Fig. 8 shows that MCS consumes significantly less time
for counterfactual generation, and such merit over algorithm-based
methods is more remarkable with a larger scale of input. Besides,
we can also observe that MCS is much more stable (i.e., lower stan-
dard deviation) among different queries, and its unit time cost for
each query almost keeps identical despite the specific inputs.

6.2 Evaluation on Distribution Modeling

In this part, we evaluate the modeling performance of MCS aided
by umbrella sampling technique. Overall, we aim to demonstrate
the faithfulness of the generated counterfactuals.

6.2.1 Experimental settings. We only consider the two real-world
datasets (i.e., Adult and Home_Credit data) for this part of evalu-
ation. For the artificial umbrellas used during MCS training, we
respectively set N = 8 and N = 32 for training query sampling
in the Adult and Home_Credit dataset. Detailed hyper-parameters,
as well as the related influence studies, of the umbrella sampling
process are introduced in Appendix C.

6.2.2  Observational distribution modeling. To evaluate the MCS
modeling on observational data distribution, we use the metric
model compatibility in [31] focusing on learning efficacy. The intu-
ition behind this metric is that, models trained on data with similar

1970

Table 2: Average F-score of testing on learning efficacy.

Fo i} Fp
Dataset RF MLP | RE MLP | RE  MLP
Adult | 0.616 0435 | 0593 0429 | 0.586 0431
Home Credit | 0.602 0.386 | 0.421 0.307 | 0.418 0.306

distributions should have similar test performances. Furthermore,
to conduct such evaluation, we prepare three different sets of classi-
fiers (i.e. o, ¥+ and F) for test comparison, which are respectively
trained on the original data, table-GAN [31] synthesized data and
MGCS synthesized data. Here, we employ table-GAN as a baseline
synthesizer, since it has been proven to be an effective way to cre-
ate hypothetical samples which follow a particular observational
distribution. As for MCS, we regard the label y as an additional
attribute for synthesis in this part, and remove L¢/ in Eq. 5 during
training. The final synthesized data is then generated by G in an
unconstrained manner with q set to None (all zero). In experiments,
we consider two types of classifiers (RF & MLP), and report the
average F-score over five rounds. The results in Tab. 2 show that
classifiers in %, have competitive test performances with those
in ¥, and thus demonstrates that MCS can reasonably model the
observational distribution with its synthesized data samples.

6.2.3 Counterfactual distribution modeling. Evaluating MCS in
modeling counterfactual distribution is essentially to assess the
conditional generation performance under particular human priors.
When users request hypothetical samples for reasoning, a good
synthesizer should have a reasonable conditional performance in
generating those in-need samples which are consistent with human
priors. In the experiments herein, we select the ‘marital-status’ and
‘housing-type’ attributes in Adult and Home_Credit data for illus-
tration, considering assumptive priors on rare values for testing.
In particular, we evaluate with priors on ‘marital-status=Widowed’
and ‘housing-type=0ffice-apt’. Originally, Widowed takes around
3%, and Office-apt takes around 1%. The derived counterfactual
distributions from MCS of ‘marital-status’ and ‘housing-type’ are il-
lustrated by Fig. 9. Here, MCS-base indicates the synthesizer trained
directly with Eq. 5, MCS-LF represents the synthesizer trained with
logarithm frequency curve [41], and MCS-US denotes the synthe-
sizer trained with the umbrella sampling technique. Based on the
results, it is noted that, aided with umbrella sampling, our proposed
MCS can effectively approximate the hypothetical distribution pre-
sumed by human priors, and generate in-need counterfactuals to
facilitate the reasoning process.
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Figure 9: The counterfactual distributions derived by MCS.

6.3 Evaluation on Causal Dependence

In this part, we evaluate the causal dependence over the samples
from MCS, and test the causation reflected by model inductive bias.

6.3.1 Experimental settings. We only use Adult and Home_Credit
data for causal dependence evaluation. When designing the gener-
ator G, we consider the following cause-effect pairs for synthesis:

Adult : education — age;
11
Home_Credit : income_type — income_total. (11)
To validate such pairwise causality in synthesized data, we employ
two different methods that are commonly used as below:

e ANM [14]: It is a popular approach for pairwise causality iden-
tification, which bases on the data fitness to the additive noise
model on one direction and the rejection on the other direction.

e CDS [7]: It measures the variance of marginals after conditioning
on bins, which indicates statistical features of joint distribution.

6.3.2 Pairwise causation identification. To conduct the evaluation
on pairwise causal dependence, we utilize a simple causation score
7 to indicate the strength of particular cause-effect pairs. Specifi-
cally for A — B, the causation score can be calculated as follows:

A (12)

B—A ™~ "A-B’

where 7/ denotes the data fitness score for a given direction. For
different methods, tf has different statistical meanings. In our case,
/ indicates an independence test® score for ANM, and represents
the standard deviation of fitness for CDS. Thus, we know that, the
larger the ¢/ is, the causation on the given direction is less likely
to happen from the observational perspective. In practice [17], the
causation A — Bis considered to exist when 7§ _ ;> 1,and B — A
when rf‘_) g <L When -1 < Tfl—» g <1 holds, it usually indicates
that there is no obvious causal dependence identified based on
statistical analysis. In experiments, we test the causation pairs in
Eq. 11, and show the relevant results in Fig. 10. Here, we compare 7¢
between the original and synthesized data with both ANM and CDS
under different data scale. We observe a stronger causal dependence
for the considered pairs in the synthesized data, which demonstrates
the effectiveness of MCS on causal dependent generation. With
such advantages, humans can easily obtain feasible counterfactuals
by properly incorporating relevant domain-specific knowledge into
MCS for interpretation.

Cc —
TA—»B =

SWe test the independence using the Hilbert-Schmidt independence criterion (HSIC).
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Figure 10: The scores of considered pairwise causation.

7 RELATED WORK

Counterfactuals are one of many interpretation techniques for ML
models. In general, according to the format of explanation carrier
(i.e., how explanations are delivered to humans), related interpreta-
tion methods can be categorized as follows.

The first category of interpretation methods uses instance fea-
tures as indicators to demonstrate which part of the input con-
tributes most to the model predictions. A representative work is
LIME [33], which uses linear models to approximate the local de-
cision boundary and derive feature importance by perturbing the
input sample. Some other methods, utilizing input perturbations for
feature importance calculation, can also be found in Anchors [34]
and SHAP [24]. Besides, employing model gradient information
for feature attribution is another common methodology under this
category. Related examples can be found in GradCAM [36] and
Integrated Gradients [37].

The second category uses abstracted concepts as high-level fea-
tures to indicate the prediction attribution process. One of the earli-
est work in this category is TCAV [21], which trains linear concept
classifiers to derive concept representations, and measures the con-
cept importance based on sensitivity analysis. Besides, the authors
in [45] decompose the model prediction semantically according to
the projection onto concept vectors, and quantify the contributions
over a large concept corpus. Inspired by SHAP, a corresponding
attribution method with human concepts, named ConceptSHAP, is
proposed in [44] to quantify the concept contributions with game
theories. Some other follow-up work based on TCAV can also be
found in [8, 10].

The third category uses data samples to deliver relevant expla-
nations to humans. One line of research is to select out prototype
or criticism data samples in training set to interpret model be-
haviors [4, 20]. Similarly in [22], influential training samples to
particular model predictions are selected, with the aid of influence
functions in measuring sample importance. Furthermore, beyond
the real samples in training set, synthesized hypothetical one (e.g.,
counterfactual sample) is yet another way to interpret predictions
for model reasoning. Several representative work along this direc-
tion can be found in [16, 30, 32]. Our work generally lies in this
category of methods for interpreting ML model behaviors.

8 CONCLUSIONS

In this paper, a general interpretation framework, named MCS,
has been proposed to synthesize model-based counterfactuals for
prediction reasoning. By analyzing the focusing counterfactual
universe, we first formally defined the problem of model-based
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counterfactual explanation, and then employed the CGAN struc-
ture to train our proposed MCS in an end-to-end manner. To bet-
ter capture the hypothetical distributions, we novelly applied the
umbrella sampling technique to enhance the synthesizer training.
Furthermore, we also showed a promising way to incorporate the
attribute causal dependence into MCS with model inductive bias,
aiming to achieve better feasibility for the derived counterfactu-
als. Experimental results on both synthetic and real-world data
validated several advantages of MCS over other alternatives. Fu-
ture work extensions may include the model-based counterfactual
explorations under more challenging contexts, such as involving
high-dimensional data space, time-series sequential nature, or some
ethical concerns.
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A PROOF OF THEOREM 1

Through the umbrella sampling process, we aim to reconstruct the
target distribution $q with N biased distributions Pé by a weighted
sum manner, where i = 1, - - - , N. In the following, we demonstrate
how to derive the corresponding weight vector w with the aid of
the pre-defined overlap matrix M in Eq. 7.

Without loss of generality, we here assume q only contains con-
tinuous attributes. By adding the umbrella profile u;, the biased
distribution SDé can then be indicated by:

Py = ui - Pq/ wi, (13)

where w; denotes the normalized weight for 7’& we aim to obtain.

Since / P& dq = 1 always holds for each biased distribution, we
can further represent w; as follows:

wi:/uiiz’q dq=<ui>7)q. (14)
To evaluate the generator G over $q, we have
ui/wi
G)p, -/G?’qdq / Zimy /1 Pq dq
Xyujlw
—P d
DIETELE ®
N N
i G
P4 dq = <—> .
q
;/ 2= 1“J/WJ ; Z;\;“J‘/Wj P

Thus, we know that the original evaluation of G over Pq can be
possibly conducted over the sum of N biased distributions with
proper weights. Here, the distribution sum operation can be simply
achieved by the direct sampling over each P&, wherei=1,---,N.

To finally obtain the weights, we utilize the overlap matrix M
defined in Eq. 7. Within M, it is noted that M;; equals to 0 if there is
no overlap between 7’& and u;. Further, we can derive the product
of the weight vector w and the j-th column of M as below, based
on Eq. 14 and Eq. 15.

N
W1~Mij22<
i=1

Now, considering all the columns of M, we can then obtain the
weight vector w by solving the equation wM = w. This finalize the
proof of the Theorem 1.

uj

i=1

> = <uj>7>q =wj. (16)
?i

N
Zk:I uk/wk

B PROOF OF THEOREM 2

For simplicity without loss of generality, we here only consider
the case with causal dependence between two attributes, which is
illustrated by Fig. 5. According to the causal graph of A — B, we
can express the corresponding structural equations as below:

{ B =Fg(A, Zg)

Al Zg, A~Pp, Zg~Pzy (17)

where Zp generally indicates the disturbance term of the structural
equation for B. However, the generated samples from Eq. 17 may
not necessarily be identified with the causality A — B purely from
the observational perspective, since there could exist a symmetric

1973
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case for B — A which derives the same joint distribution of A and
B. Take the following two set of structural equations for example:

B=aA+Zg, AL Zp
A~ N(pa,0%)
Zg ~ N(uzy. 03,)

A=pB+Zs, B Zy
B~ N(up, %) ,
~ N(VZA’OéA)

(18)

where a, ff are constants, and 1, o respectively denotes the mean and
standard deviation of the normal distribution N. Now, assuming
we have the following relationships satisfied:

B = ac? o2

2 2
A/ oat 7
UB = apia + Uz, UB = azo:i + oé ;
74 = (1= aP)ua = Puzy. o5, (1—05.3)20i+/32023

the two set of structural equations in Eq. 18 then derives the exact
same joint distribution for A and B, from which we cannot identify
the related causal dependence with the generated samples.

Thus, to guarantee the causality we incorporate is able to be
identified, we need to break the symmetry of potential structural
equations. One promising way for our case is to utilize the proper-
ties of additive noise model (ANM) [14], which is proved to be able
to generate the samples with related causal dependence identifiable.
To prove a set of structural equations follow ANM, there are two
key requirements for verification: (1) the transformation function
F is non-linear; (2) the influence of the disturbance term can be
isolated out of F in an additive manner. In the following, we verify
our design in Theorem 2 is consistent with the ANM formulation.

m Non-linear Transformation: In our design, the transfor-
mation F is implemented with feed-forward modules, which
consists of several dense layers for computation. As a result,
the implemented transformation is thus a non-linear map-
ping. Specifically for Eq. 17, Fp is non-linear in our scenario.
Additive Disturbance: For our case, the structural equation
in Eq. 17 can be expressed as: B = Fg(A @ Zg), where @
represents the direct sum, indicating the concatenation of A
and Zg before feeding into Fg. Since A 1L Zg, we know that

there exists relevant transformations F é and Fé’ , such that
B =Fp(A® Zp) = F4(A) + F5 (Zp), (19)

based on the homomorphism property of direct sum. In
Eq. 19, F/(Zp) can be further treated as a transformed dis-
turbance. Thus, within our scenario, we see that Eq. 17 can
isolate the influence of disturbance Zg as an additive term.

Overall, we show that our design of G in Theorem 2 essentially
builds a series of ANMs for counterfactual generation. With the
identifiable causal dependence guaranteed by ANM, we finalize the
proof of Theorem 2.

C DETAILS & ANALYSIS OF UMBRELLA
SAMPLING SETTINGS

We utilize the umbrella sampling to obtain the training queries with
rare values, aiming to effectively train the proposed MCS and let it
well capture the potential hypothetical distributions. During imple-
mentation, we divide the particular sampling space into N different
windows, where i-th window is appended with the umbrella profile
u;j. In experiments, our biased samplers are implemented with the
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Figure 11: The conditional modeling performance of MCS
with umbrella sampling on different number of windows.

Ensemble Sampler®, and N is set as 8, 32 respectively for the Adult
and Home_Credit dataset. Besides, we employ 8 walkers for each
umbrella-biased sampler, and run 1000 steps for each walker. The
samplers will stop when the maximum Gelman-Rubin estimate falls
below the threshold { = 0.01.

Typically, when N is large enough, those rare values would have
roughly the equal opportunities to be sampled compared with major
ones, which basically balances the values appeared for MCS training.
However, it is usually not acceptable with an overlarge N, because
N also affects the training efficiency significantly. Increasing N
will directly lead to the rise of computational complexity, referring
Theo. 1, and will further result in the fact that each training batch
consumes more time for updating. Thus, to achieve a reasonable
trade-off on training between the effectiveness and efficiency, we
need to select an appropriate number of windows N for umbrella
sampling. Here, we attach some additional experimental results,
considering the influences of N, shown in Fig. 11 and Fig. 12. Ac-
cording to the comparison, it is noted that MCS trained with more
umbrella samplers shows a better modeling performance on hypo-
thetical distributions. Meanwhile, the increase of N brings about
heavier time cost for training, which becomes more significant
with larger data scale and more training epochs. Therefore, prop-
erly choosing N for specific data should be an important pre-step
before deploying MCS for interpretation in practice.

D SYNTHESIZER TRAINING WITH
DIFFERENT DEPLOYED CLASSIFIERS

We show some additional results about the MCS training regard-
ing to different deployed classifiers f (i.e., SVM, RF, MLP), and
briefly discuss how f can potentially affect the training process.

Shttps://emcee.readthedocs.io/en/stable/user/sampler/#emcee. EnsembleSampler
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Figure 12: The time consumption of MCS training,.
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Figure 13: The training loss of generator G with different f.

In experiments, the dimension of the latent space (i.e., z) is set as
128, and D, G are designed with two-layer feed-forward modules
whose intermediate dimensions are set as 256. Besides, the training
batch size is fixed as 500, and the learning rate is 2 X 10~%. The
empirical results on the loss of generator G during training, with
respect to different f, are illustrated in Fig. 13. Based on the train-
ing loss curve, we note that generator G converges faster when
trained with deployed SVM and MLP, which typically takes less
epochs to reach certain loss value compared with that under the
RF case. This observation mainly results from the L term in Eq. 6,
which involves particular f to calculate the counterfactual loss.
Thus, when decision boundaries of the deployed f are not smooth,
the corresponding L® term may not be effectively minimized for
training objectives, so that it would largely increase the difficulties
of the optimizer in updating G. In our experiments, the deployed
SVM and MLP classifier seem to have smoother boundaries than
RF (intuitively validated by Fig. 6), and related training objectives
are better optimized within certain epochs. From this perspective,
it sheds light on the relationship between the counterfactual syn-
thesizer and the deployed classifier, where smoother f would boost
the MCS training towards better effectiveness.

E DATASET PREPROCESSING

In the conducted experiments of this paper, we preprocess the
two real-world datasets employed (i.e., Adult and Home_Credit) for
simplicity. The processing actions include the following aspects:
o Remove the rows with missing values. This action is mainly for the
Home_Credit data, which contains many instances with None;
Delete some columns (attributes). We ignore some columns which
may not be that significant for prediction. For example, the ‘fnl-
wgt’ attribute in Adult data is removed in our experiments.
Merge some values. We merge those values together which share
overlap semantics. For example, in Adult data, value Assoc-voc,
Assoc-acdm are merged as Assoc, and value 11th, - -+, 1st-4th
are all merged as School, within the attribute ‘education’.
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