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ABSTRACT
In collaborative filtering, the quality of recommendations critically
relies on how easily a model can find similar users for a target user.
Hence, a niche user who prefers items out of the mainstream may
receive poor recommendations, while a mainstream user sharing
interests with many others will likely receive recommendations
of higher quality. In this work, we study this mainstream bias cen-
tering around three key thrusts. First, to distinguish mainstream
and niche users, we explore four approaches based on outlier de-
tection techniques to identify a mainstream score indicating the
mainstream level for each user. Second, we empirically show that se-
vere mainstream bias is produced by conventional recommendation
models. Last, we explore both global and local methods to mitigate
the bias. Concretely, we propose two global models: Distribution
Calibration (DC) and Weighted Loss (WL) methods; and one local
method: Local Fine Tuning (LFT) method. Extensive experiments
show the effectiveness of the proposed methods to improve utility
for niche users and also show that the proposed LFT can improve
the utility for mainstream users at the same time.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Recommender systems play an increasingly important role in con-
necting users to interesting items to alleviate the information over-
load issue. Most recommendation systems, including those based
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Figure 1: Mainstream vs. niche users from MovieLens data.
on classic linear models [9, 17, 27] and recent neural-network mod-
els [15, 23, 34], predict user preference and provide recommenda-
tions based on Collaborative Filtering (CF). The main idea is to
estimate the preference from a user to an item depending on the
attitudes from other similar users to the item. By finding other users
with similar interests as the target user, these CF approaches have
demonstrated strong recommendation performance.

Naturally, the quality of recommendations critically relies on
how easily the model can find similar users for a target user. A niche
(or “indie”) user who prefers items that are out of the mainstream
may have few if any nearby users, resulting in poor recommen-
dations. In contrast, a mainstream user who shares interests with
many other users will likely receive many high-quality recom-
mendations. To illustrate, Figure 1 shows three mainstream users
and two niche users from the MovieLens dataset [14], who are
identified based on a method introduced in this paper. All three
mainstream users share similar preferences for blockbuster films:
the recommendations from a recent variational autoencoder (VAE)
model [23] result in high NDCG@20. In contrast, we see that for the
two niche users – one of whom prefers classic silent films, while
one prefers award-winning films of the late 80s/early 90s – the
resulting recommendation quality is quite poor. Indeed, we find
similar patterns for mainstream vs. niche users across multiple
datasets (including Yelp [1] and Epinions [33]) and for different
models (including matrix factorization [17], BPR [27], and local
collaborative autoencoders [7]).

This mainstream bias – the tendency for recommendation
models to favor mainstream users over niche users – is a crit-
ical challenge for the ongoing success of recommendation systems.
But how do we identify mainstream users vs. niche ones? What im-
pact does the degree of mainstream-ness have on recommendation
utility? And can we develop methods to ameliorate this mainstream
bias? Can we improve the recommendation utility for users of low
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mainstream levels while preserving or even increasing the utility
for mainstream users at the same time? Toward answering these
research questions, this paper is organized around three key thrusts:

First, to understand the impact of mainstream bias on recommen-
dation, we first propose to identify a mainstream score to indicate
the mainstream level for each user. We explore four different meth-
ods based on outlier detection techniques to compute the main-
stream scores for users, including similarity-based, density-based,
distribution-based, and DeepSVDD-based approaches. While all
provide good ability to assess mainstream-ness, we empirically find
that the DeepSVDD-based method is most effective for distinguish-
ing mainstream and niche users.

Second, based on this assessment of each user’s mainstream level,
we empirically show that conventional recommendation models do
indeed produce severe mainstream bias. We find that after grouping
users based on their mainstream scores, the users with highest
mainstream level receive recommendation utility more than twice
larger than users with the lowest mainstream level.

Finally, we explore how to mitigate such mainstream bias. We
introduce both global methods and local methods to improve the
recommendation quality for niche users. Global methods achieve
this by learning a single model that promotes the importance of
niche users during model training. Concretely, we propose i) a
Distribution Calibration method (DC) to debias by data augmen-
tation; and ii) a Weighted Loss model (WL) to debias by adding
weights to the loss function. On the other hand, local methods aim
to customize specialized models for different users so that niche
users receive better recommendations from their customized mod-
els. For this, we propose the Local Fine Tuning algorithm (LFT) that
improves the model utility for every user by fine tuning a global
base model with partial data that is most informative for this user.
Unlike global methods and other local baselines which maintain a
trade-off between the utility for mainstream and niche users, we
find that LFT improves the utility for both of them.

In sum, this paper makes the following contributions: i) To an-
alyze the impact of mainstream bias, we explore four different
methods to calculate mainstream scores for users based on outlier
detection techniques, followed by empirical studies comparing the
effectiveness of these approaches and further showing the severe
bias produced by conventional recommendation models; ii) We
introduce global and local methods for bias mitigation, where for
global method, we propose the Distribution Calibration model (DC)
and the Weighted Loss model (WL), for local method, we propose
the Local Fine Tuning algorithm (LFT); iii) Extensive experiments
show that all proposed solutions are able to improve utility for
niche users, while LFT is more effective and can preserve or even
improve the utility for mainstream users at the same time.

2 RELATEDWORK
Many issues related to bias and fairness in recommender systems
have been studied in recent years. Some prominent examples in-
clude exposure bias, popularity bias, and item fairness, among oth-
ers. In exposure bias, the training data to train a newmodel is usually
collected from an existing recommender system where items are
recommended to users with different probabilities. Hence, the new
model cannot learn true user-item relevance from the data but will

follow the behavior of the existing system [20, 29, 30, 41]. With
respect to popularity bias, many studies have identified how rec-
ommendation models tend to over-recommend popular items but
overlook long-tail items [2, 3, 35, 38, 39, 42]. Item fairness refers to
the situation where different item groups (often determined by item
content features) are treated differently by recommendation models
with some groups being overly exposed to users while others being
rarely recommended [5, 13, 24, 37, 43].

These prior works mainly focus on the item perspective. Yet,
how users are treated is an equally important topic. The majority
of research works investigating the bias on users aim to analyze the
utility difference among different user groups determined by user
demographic attributes, such as age or gender [10, 12, 22, 31, 40].
For example, Schedl et al. [31] study the music preference difference
among different user age groups and shows that the recommenda-
tion performance for these age groups are also different. Ekstrand et
al. [10] empirically study multiple types of recommendation models
and demonstrate that all of the investigated models produce a utility
difference across user demographic groups. To address this problem,
Fu et al. [12] propose to take advantage of the rich information from
knowledge graphs, and Li et al. [22] create a re-ranking algorithm
to reduce the utility gap among user groups.

Different from the aforementioned works studying bias based
on demographic groups, we aim to recognize the mainstream and
niche users and study the utility difference between them. Also
note that user demographic attributes may not necessarily explain
the interests and behaviors of a user. A similar work to this paper is
[21], whose goal is to improve the utility for niche users. Neverthe-
less, the major differences are: in [21], the mainstream and niche
users are determined purely based on recommendation utility they
receive rather than based on the true user preference reflected by
historical feedback; and the algorithm proposed in [21] requires
additional auxiliary information of users and items (such as the
review text users give to items), while we aim to debias relying
merely on feedback from users.

In this work, we find that local recommendation models [7, 8, 18,
19], although not designed for this purpose, can mitigate the bias to
some degree by improving the utility for niche users. The main idea
of these methods is to use different local models to serve different
types of users. Among existing methods, the recently proposed
local collaborative autoencoder (LOCA) [7] produces the state-of-
the-art performance, which uses multiple variational autoencoders
(VAE) [23] as local models to capture the special patterns of different
sub-communities. Hence, in our experiments, we follow LOCA to
consider VAE as the base model for our proposed local method, and
we empirically compare our proposed methods with LOCA.

3 ANALYZING MAINSTREAM BIAS
In this section, we begin with the first research question: what is
the impact of the mainstream bias on recommendation? To answer
this, we first formalize the problem and introduce four approaches
based on outlier detection techniques for identifying mainstream
and niche users to analyze the mainstream bias. We then conduct
experiments to investigate the impact the degree of mainstream-
ness has on the quality of recommendations.
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Table 1: NDCG@20 of different subgroups determined by
different mainstream level evaluation approaches.

User subgroups of different mainstream levels
low med-low medium med-high high

Similarity 0.2056 0.2666 0.2915 0.3563 0.4566
Density 0.2219 0.2658 0.2789 0.3431 0.4669

Distribution 0.2059 0.2666 0.2862 0.3408 0.4771
DeepSVDD 0.2092 0.2642 0.2832 0.3368 0.4831

3.1 Formalizing the Recommendation Task
Formally, we have a set of 𝑁 users as U = {1, 2, . . . , 𝑁 } and a
set of 𝑀 items as I = {1, 2, . . . , 𝑀}. We denote the set of implicit
feedback from users to items as O = {(𝑢, 𝑖)} where 𝑢 ∈ U indexes
one user, and 𝑖 ∈ I indexes one item. We use this feedback set as
the training data to train a recommendation model and provide
recommendations to users. For a user 𝑢, we use a binary vector of
size𝑀 , denoted as O𝑢 ∈ {0, 1}𝑀 , to represent the feedback record
vector of user 𝑢, with 1 representing 𝑢 likes the corresponding
item. During evaluation, the trained model provides a ranked list
of items for each user as recommendations, and we evaluate the
recommendation list based on the ranking positions of positive
items in a testing set for every user. Many ranking evaluation
metrics can be used, such as NDCG@k and recall@k [23], which
are typically averaged over all users.

3.2 Evaluating Mainstream Level of Users
Since the typical way to evaluate a recommender system is to av-
erage the recommendation utility over all users, the performance
difference among users is ignored. So, to analyze mainstream bias,
we first need to divide users into subgroups based on their main-
stream levels, and then compare the recommendation utility across
these subgroups. Therefore, we aim to calculate a mainstream score
for each user to indicate the mainstream level of the user. A large
mainstream score means that the user is more likely to be a main-
stream user. Then, we can analyze the mainstream bias by dividing
users into subgroups based on their mainstream scores and com-
paring the utility across subgroups.

The problem of assessing a user’s mainstream level can be easily
turned to an outlier detection problem: we consider niche users who
have different preferences from the majority as the outlier samples
to detect. So, inspired by various outlier detection techniques [4],
we explore four different approaches and want to determine which
approach performs the best for assessing user mainstream level.
Similarity-based approach. First, we propose a similarity-based
approach to evaluate a user’s mainstream level. The main intuition
is that mainstream users should have more similar users sharing
similar feedback records, while niche users have fewer similar users.
Thus, we first calculate the user-user similarity by Jaccard similarity
for all user-user pairs. The similarity between users 𝑢 and 𝑣 is
denoted as 𝐽𝑢,𝑣 . Then, we use the average similarity between a user
𝑢 and other users as the mainstream score of 𝑢:

𝑀𝑆𝑠𝑖𝑚𝑢 =
∑︁

𝑣∈U\𝑢
𝐽𝑢,𝑣/(𝑁 − 1). (1)

Density-based approach. The next approach we propose is based
on the density-based outlier detection method, which determines
whether one sample is an outlier by investigating the density of

Table 2: Niche users classifying accuracy of four approaches.
Similarity Density Distribution DeepSVDD

Accuracy 0.66 0.31 0.68 0.73

the sample’s neighbors. In this work, we propose to directly apply
the well-known local outlier factor (LOF) algorithm [6] to the user
feedback records to identify niche users. The LOF algorithm outputs
the local outlier factor value for each user, which indicates an outlier
if its value is large. Thus, we add a negative sign to the local outlier
factor value as the mainstream score for a user 𝑢:

𝑀𝑆𝑑𝑒𝑛𝑢 = −𝐿𝑂𝐹 (𝑢). (2)

Distribution-based approach. In the third method, we first gen-
erate a distribution vector d that captures the probability of each
item being liked by users. We assume the probability is based on a
binomial distribution and the distribution vector is calculated by
averaging the feedback records of all users. Then, we calculate the
mainstream score for 𝑢 by the Cosine similarity between the feed-
back record vector O𝑢 of 𝑢 and the distribution vector d. Given a
function 𝑐𝑜𝑠 (·, ·) to compute Cosine similarity between two vectors,
we calculate the mainstream score:

𝑀𝑆𝑑𝑖𝑠𝑢 = 𝑐𝑜𝑠 (O𝑢 , d) . (3)

DeepSVDD-based approach. Last, we apply the recent deep learn-
ing based outlier detection algorithm – deep support vector data
description (DeepSVDD) [28] – to identify niche users. DeepSVDD
attempts to map most of the data samples (belonging to one class)
into a hypersphere by neural networks and considers the samples
far from the center of the hypersphere as outliers. Moreover, since
in a recommender system, there can be more than one mainstream
preference, resulting in more than one user class in terms of prefer-
ence. Hence, we further replace the multi-layer perceptron in the
mapping component in the original DeepSVDD to a mixture-of-
experts structure [32], so that the model can have different mapping
functions for different classes to handle the multi-class situation
more effectively. In our experiments, we set a 2-layer perceptron
of size (400, 300) as one expert component and adopt 10 experts in
total. After the mapping, we have a vector c in the new hyper-space
representing the center of the hypersphere covering the majority
of users, and we also have a vector 𝐷𝑒𝑒𝑝𝑆𝑉𝐷𝐷 (O𝑢 ) to represent
user 𝑢 in the mapped hyper-space. For a user 𝑢, we use the negative
distance from 𝐷𝑒𝑒𝑝𝑆𝑉𝐷𝐷 (O𝑢 ) to center c as the score:

𝑀𝑆
𝑑𝑒𝑒𝑝
𝑢 = −∥𝐷𝑒𝑒𝑝𝑆𝑉𝐷𝐷 (O𝑢 ) − c∥F . (4)

After calculating the mainstream scores for all users, we sort
users by the scores and divide them into subgroups. We then can
compare the average utility across subgroups: if the subgroups with
high mainstream scores have higher utility than subgroups with
lower scores, then severe mainstream bias is observed.

3.3 Empirical Studies
Given these four approaches to evaluate mainstream-ness of users,
we conduct experiments to answer two questions: i) do commonly
used recommendation models produce mainstream bias? and ii)
how effective are proposed approaches to identify niche users?
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3.3.1 Recommendation models produce mainstream bias. To an-
swer the first question, we conduct experiments with real-world
datasets and state-of-the-art recommendation models. More specif-
ically, we first run a VAE [23] on the MovieLens 1M dataset [14].
Then, we apply the introduced four approaches to calculate main-
stream scores for all users. Last, we sort users based on calculated
mainstream scores in non-descending order and divide them into
five subgroups with equal size. Note that we also run experiments
with other models including MF [17], BPR [27], and LOCA [7], and
other datasets including Yelp [1] and Epinions [33]. These experi-
ments show similar patterns. Code and data can be found at https:
//github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias.

The average NDCG@20 for subgroups corresponding to different
mainstream-ness measuring ways are shown in Table 1, where we
denote the first 20% of users with lowest mainstream scores as users
of ‘low’ mainstream level, the subgroup of 20%-40% users as users
of ‘med-low’ mainstream level, and so on for 40%-60% (‘medium’),
60%-80% (‘med-high’), and 80%-100% (‘high’). From the table, we can
observe that all four proposed approaches show a similar pattern –
users with larger mainstream scores receive higher NDCG@20. For
example, for all four bias measuring cases, the average NDCG@20
of ‘high’ mainstream level users is more than twice larger than
those of ‘low’ mainstream level users. This result reveals that all
proposed approaches are able to identify niche users who are under-
served by the recommendation model and severe mainstream bias
is produced by the recommendation model.

3.3.2 Proposed approaches effectively identify niche users. Next,
we aim to quantitatively evaluate the effectiveness of identifying
niche users of these four introduced approaches. To do this, we
need to have a dataset with ground-truth labels of niche users,
which is not easy to get from real-world systems. Hence, we use
synthetic data to compare the proposed approaches. To generate the
synthetic data, we assume we have four item groups, each of which
includes 250 items. For each item group, we randomly generate 100
sets of Gaussian distribution parameters. Based on the Gaussian
distribution parameters, we randomly generate a 100-dimension
embedding for each of the 250 items in this group. We consider the
first two item groups as mainstream items and the other two groups
as non-mainstream items. Then, we create two user groups of size
800 as the mainstream users, where the first user group likes the
first item group and the second user group likes the second item
group. We also create two user groups of size 200 as niche users,
where each of them likes one of the non-mainstream item groups.
We use the Gaussian distribution parameters of corresponding item
groups to generate user embeddings for these user groups. Last,
we generate the user-item interaction data by randomly sampling
from the completed user-item relevance matrix, which is from the
dot product of the generated user and item embeddings.

Given this setup, we run the four proposed approaches to iden-
tify niche users in this dataset. Here, we can formalize a binary
classification task, where we consider the 400 users with lowest
mainstream scores from each approach as the predicted niche users,
and the 400 users from the last two generated user groups are the
ground-truth labels. The classification accuracy is shown in Table 2,
from which we can observe that with the help of deep learning
techniques, the DeepSVDD-based approach performs the best. The

next best approaches are similarity-based and distribution-based
approaches, which perform similarly because both of them rely on
the similarity calculation between users by their feedback records.
Density-based approach performs the worst, which may be because
the LOF algorithm cannot work effectively for high-dimensional
and sparse data. As a result, we adopt the DeepSVDD-based ap-
proach as the best choice to analyze mainstream bias.

4 MITIGATING MAINSTREAM BIAS
In the previous section, we observed a significant utility gap be-
tween mainstream and niche users. The question then is: can we
mitigate this mainstream bias by increasing the utility for niche
users? In this section, we explore both global and local methods
to mitigate mainstream bias. Global methods learn a single model
with the importance of niche users being promoted during model
training. Local methods, on the other hand, train customized local
models for different users. In the following, we first detail these
two different solution directions and then empirically test them.

4.1 Global Methods
One of the reasons mainstream bias is induced is that a model
trained based on a loss function averaging all users tends to focus
more on how to accurately predict for mainstream users while
overlooking niche users so that it can minimize the loss function
more effectively. Therefore, a straightforward way to debias is to
keep the model structure the same but increase the importance
of niche users in the model training process. Because this type
of method uses one model globally for all users, we call this a
global method. In the following, we introduce two different methods
belonging to this category: a Distribution Calibration method and
a Weighted Loss method.

4.1.1 Distribution Calibration Method (DC). This first method is
a data augmentation based approach, whose main intuition is to
generate synthetic users similar to existing niche users so that these
niche users become mainstream in the training dataset. To achieve
this, we adapt the Distribution Calibration method [36] for few-shot
learning to the recommendation task. In the original paper [36],
the distributions of few-shot classes are calibrated by transferring
statistics from similar classes with abundant data. Then, synthetic
examples of few-shot classes can be sampled based on the calibrated
distributions to augment the training data. In a recommendation
task, we can consider each niche user as a single class. Then, in a
similar way, we can calibrate the distribution for each niche user
by transferring statistics from other similar users and generate
synthetic users based on the calibrated distribution.

Specifically, we first identify niche users by any of the proposed
approaches in Section 3.2. For example, we consider the 50% users
with lowest mainstream scores from DeepSVDD-based approach
as niche users. Then, for one niche user 𝑢, we fetch similar users to
𝑢, and have the calibrated distribution vector p𝑢 of 𝑢:

p𝑢 = 𝛼O𝑢 + (1 − 𝛼) 1
|N𝑢 |

∑︁
𝑣∈N𝑢

O𝑣, (5)

whereN𝑢 is the set of similar users to𝑢 in terms of Jaccard similarity
on feedback records; and 0 ≤ 𝛼 ≤ 1 is a hyper-parameter to control
the importance of original feedback of𝑢 in the resulting distribution.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

1500

https://github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias
https://github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias


Last, we sample synthetic users based on p𝑢 for𝑢. Given a budget for
synthetic users (we use the total number of real users in this work),
the number of synthetic users for each niche user is proportional
to the reciprocal mainstream score of the user. At the end, a model
trained by such an augmented dataset can mitigate the mainstream
bias and improve utility for niche users.

4.1.2 Weighted Loss Method (WL). Instead of expanding the train-
ing data by synthetic users, another way to promote the impor-
tance of niche users during model training is to directly increase
the weights of niche users in the loss function. Take the VAE model
as an example, we can have a weighted loss for the model:

L𝑊𝐿 =
∑︁
𝑢∈U

𝑤𝑢 · L𝑉𝐴𝐸 (𝑢), 𝑤𝑢 ∝ ( 1
𝑀𝑆𝑢

)𝛽 , (6)

whereL𝑉𝐴𝐸 (𝑢) is the original VAE loss for user𝑢;𝑤𝑢 is the weight
for user 𝑢, which is proportional to ( 1

𝑀𝑆𝑢
)𝛽 ; and 𝛽 ≥ 0 is a hyper-

parameter to control the strength of debiasing: larger 𝛽 means
stronger debiasing strength, and 0 means no debiasing at all. By
this weighted loss, we can promote the importance of niche users:
a user with lower mainstream score can be promoted more in the
loss function and thus receive better utility after debiasing.

4.2 Local Method
Although the two introduced global methods are able to improve
the utility for niche users, one major drawback is that there can be a
trade-off between the utility of mainstream users and niche users in
these global methods. In other words, the global methods increase
utility for niche users but decrease utility for mainstream users at
the same time. Due to the limited expression capability of one single
recommendation model, these global methods cannot support high
utility for so many users with different or even opposite preferences.
Hence, another direction to tackle the mainstream bias problem
is to customize local models for different types of users instead of
applying the same global model to all users.

Local recommendationmethods have been studied in priorworks [7,
8, 18, 19]. The main idea is to first select anchor users and train spe-
cialized anchor models for each of the anchor users. Then, during
inference, given a user, we can customize a local model for this user
by ensembling anchormodels based on the relationship between the
target user and anchor users. Although these local recommendation
algorithms are not specifically designed for addressing mainstream
bias, we empirically find that they can improve utility for niche
users. Hence, in this section, we move further based on these lo-
cal recommendation models to propose a Local Fine Tuning (LFT)
method to effectively mitigate the mainstream bias, whose goal is to
increase the utility for niche users with the utility for mainstream
users preserved or even increased.

4.2.1 Local Fine Tuning. The fundamental motivation is that feed-
back data from very different users may not be helpful or can even
play negative roles when learning a model for one or a small group
of similar users. Moreover, niche users can be very different from
the majority incurring poor utility. Thus, we consider recommend-
ing for each user as an independent task requiring a unique local
model. And for each user, we propose to learn the local model with
partial data that is selected to be most useful for serving this user.

Figure 2: The proposed Local Fine Tuning method.

The proposed LFT is illustrated in Figure 2. Concretely, we first
assume we have a global base model 𝜙 which is trained by the
entire dataset as the step (1) in Figure 2, such as an ordinary VAE
model in Section 3.3.1. Then, demonstrated as the step (2): for a
target user 𝑢, we fetch the neighbor users N𝑢 (including 𝑢 herself)
that are similar to 𝑢 in terms of preference, and create a sub-dataset
ON𝑢

= {O𝑣 |𝑣 ∈ N𝑢 } only containing feedback data of neighbor
users. Last, during inference, for a target user 𝑢, we further train
the base model 𝜙 by the sub-dataset ON𝑢

to fine tune the model as
step (3) in Figure 2, so that it can provide accurate prediction for 𝑢
without influence from irrelevant users. We denote the local model
after fine tuning for 𝑢 as 𝜙𝑢 . In this way, niche users can receive
better utility by the local models since influence from mainstream
users and other niche users with different preference is eliminated.
Furthermore, mainstream users also benefit from their local models
since they also suffer from the influence of niche users and other
mainstream users with different preferences.

Now, the key question is: how to find the neighbor usersN𝑢 of a
user 𝑢 so that the feedback data of them ON𝑢

can help improve the
fine tuning effectiveness and eliminate the influence from irrelevant
users? A naive way is to fetch the users with highest similarity (e.g.,
Jaccard or Cosine similarity) based on feedback records. However,
the limitation is that the similarity between users based on discrete
and sparse feedback records does not consider the latent relation-
ship between users. For example, if a user only likes item A and
another user only likes item B, the similarity between them will
be 0 based on their feedback records. However, if item A and B are
very similar, then the ground truth similarity between them should
be high. Therefore, the naive neighbor user searching method could
omit important neighbor users. Instead, we propose to fetch the
neighbor users based on the similarity between the calibrated dis-
tributions of users introduced in Section 4.1.1. More specifically, we
calculate the Cosine similarity between users by their calibrated
distributions p𝑢 calculated by Equation 5. For a target user 𝑢, we
regard users with similarity over a threshold 𝑡 as her neighbor users:
N𝑢 = {𝑣 |𝑐𝑜𝑠 (p𝑢 , p𝑣) > 𝑡}. Because the calibrated distribution of
a user tries to approximate the preference probability of the user
toward items, it can help to capture the latent relationship between
users that naive method cannot achieve.1

4.2.2 Choice of Base Model. Another key factor that can influence
the performance of the proposed LFT is the choice of base model
1Because conventional recommendationmodels, such asMF [17], BPR [27], or VAE [23],
are vulnerable to various bias including the mainstream bias, it is not appropriate to
use the generated embeddings from these regular models to fetch neighbor users.
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𝜙 . To allow the base model to be fine tuned effectively, the base
model should not be overly optimized for specific users and neglect
other users, i.e., the base model should produce low mainstream
bias. Otherwise, even if local fine tuning is applied, the final pre-
diction will still be biased and in low quality for users overlooked
by the base model. Hence, we propose to use the global debiasing
model DC or WL in Section 4.1 as the base model. Besides, another
desirable property of the base model is to adapt quickly to a specific
user to provide accurate prediction for this user after few epochs
of fine tuning training. Thus, we also consider meta-learning tech-
niques [11, 25] to train a base model that can be easily fine tuned to
serve specific users. For these meta-learning approaches, we regard
every user as an independent learning task and use the same way
in Section 4.2.1 to get the sub-dataset O𝑢 as the training data for
each user 𝑢. In Section 5, we will show the empirical comparison
of these difference choices of base model, where we find that with
WL as the base model, LFT performs the best. Hence, in the rest of
this paper, we consider WL as the default choice of the base model.

4.2.3 Ensemble Model. Since the proposed LFT requires additional
fine-tuning training every time a user visits the recommendation
platform, it requires more computational resources than conven-
tional inference paradigm without additional fine-tuning training.
Although we can control the consuming of time and computational
resources by choosing appropriate fine-tuning epoch number and
the size of neighbor user set, it may still not be feasible for platforms
with limited computational resources and high concurrency of user
visits. Hence, we also provide an ensemble version of the propose
LFT, which finishes all the model training and stores the model dur-
ing the training phase, and provides predictions without additional
training during inference. Similar to existing local recommendation
models [7, 18, 19], during training, we select anchor users and train
anchor models for them by the proposed LFT. During inference,
for each target user, we ensemble anchor models based on the rela-
tionship between the target user and anchor users. So, the key is:
how to select anchor users so that they can cover as diverse user
preference as possible?

Prior local recommendation models either randomly select an-
chor users [18] or select mainstream users to maximize the neighbor
user coverage by anchor users [7], which tends to select main-
stream users as anchor users. Both of these are not ideal for ad-
dressingmainstream bias. Hence, in this work, we propose a similar-
dissimilar anchor user selection algorithm to adequately cover main-
stream and non-mainstream preference. The proposed similar-
dissimilar algorithm is a greedy algorithm, whose core idea is to
select the user who is most similar to unselected users and dis-
similar to already selected users in each iteration. Concretely, we
define an anchor user set A beginning as an empty set. Then, we
iteratively add users into A until reach a pre-defined set size. In
each iteration, we select the user by:

arg min
𝑢∈U−A

1
|U − A|

∑︁
𝑣∈U−A

𝑐𝑜𝑠 (p𝑢 , p𝑣) − 𝜆
1
|A|

∑︁
𝑣∈A

𝑐𝑜𝑠 (p𝑢 , p𝑣),

(7)
where we calculate the Cosine similar between users by their cali-
brated distributions from Section 4.1.1; and 𝜆 controls the balance
between similarity to unselected users and dissimilarity to selected
users during the current anchor selection.

Table 3: Characteristics of three datasets.
#users #items density

ML1M 6,040 3,472 4,75%
Yelp 12,171 9,252 0.38%

Epinions 10,507 9,552 0.32%

After selecting anchor users and training anchor models for them
by proposed LFT, during inference, we ensemble results of anchor
models weighted by similarity to anchor users for a target user 𝑢:

R̂𝑢 =

∑
𝑣∈A 𝑐𝑜𝑠 (p𝑢 , p𝑣)𝜙𝑣 (𝑢)∑

𝑣∈A 𝑐𝑜𝑠 (p𝑢 , p𝑣)
. (8)

We denote the ensemble version of LFT as EnLFT. Compared
with the state-of-the-art local recommendation model LOCA [7],
EnLFT has two major improvements. First, EnLFT adopts the more
effective similar-dissimilar algorithm to maximize the coverage of
different user preference for anchor user selection. Second, EnLFT
can train more effective anchor models by fine tuning a global base
model with precise neighbor users following LFT.

5 DEBIASING EXPERIMENTS
In this section, we conduct extensive experiments to investigate the
effectiveness of the proposed debiasing methods and the impact of
model design and hyper-parameters.

5.1 Experimental Setup
5.1.1 Data and Metric. We use three public datasets for the experi-
ments:ML1M [14], Yelp [1], and Epinions [33]. For all datasets,
we consider the ratings or reviews as positive feedback from users
to items. Then, we randomly split each dataset into 70%, 10%,
and 20% for training, validation, and testing. The details of these
datasets are shown in Table 3. Since in Section 3.3.2 we show
that DeepSVDD-based bias measuring approach is more effective
than other approaches, in this section, we only report the results
based on DeepSVDD-based approach for evaluating the mainstream
bias. Concretely, we apply DeepSVDD-based approach to all three
datasets to compute mainstream scores for users. Then, we sort
users in non-descending order based on mainstream scores and
divide them into five subgroups evenly. Last we report the aver-
age NDCG@20 for each subgroup to show the mainstream bias.
The goal of debiasing is to improve the average NDCG@20
for subgroups with low mainstream scores while preserv-
ing or even increasing the utility for subgroups with high
mainstream scores at the same time.

5.1.2 Methods. In the experiments, we adopt the variational au-
toencoder (VAE) [23] as the base and develop different debiasing
models based on the VAE. By focusing on the same base model, we
can isolate and directly analyze the effects of different debiasing
algorithms. VAE is also a baseline method representing the vanilla
recommendation model without any debiasing. For debiasing, we
consider both global and local methods as introduced in Section 4.
For global methods, we have our proposed Distribution Calibration
(DC) and Weighted Loss (WL) methods. For local methods, we in-
clude the state-of-the-art Local Collaborative Autoencoders (LOCA)
model [7] as a strong local method baseline that has demonstrated
superior performance over other local recommendation models like
LLORMA [18, 19] and GLSVD [8]. LOCA adopts VAE as its local
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Table 4: Comparing overall utility and utility for different subgroups across methods and datasets.

ML1M Yelp Epinion
NDCG
@20

Subgroups of mainstream levels NDCG
@20

Subgroups of mainstream levels NDCG
@20

Subgroups of mainstream levels
low med-low medium med-high high low med-low medium med-high high low med-low medium med-high high

VAE .3153 .2092 .2642 .2832 .3368 .4831 .0893 .0586 .0711 .0812 .0966 .1387 .0823 .0601 .0712 .0758 .0908 .1136
DC .3170 .2223 .2655 .2824 .3347 .4798 .0901 .0632 .0744 .0827 .0935 .1368 .0817 .0634 .0710 .0745 .0892 .1102
WL .3190 .2315 .2724 .2838 .3318 .4755 .0903 .0632 .0763 .0820 .0938 .1365 .0820 .0657 .0738 .0752 .0880 .1076

LOCA .3230 .2415 .2763 .2861 .3350 .4762 .0921 .0647 .0786 .0833 .0964 .1374 .0842 .0654 .0727 .0784 .0917 .1126
EnLFT .3328 .2521 .2847 .2963 .3434 .4876 .0959 .0688 .0840 .0872 .0994 .1400 .0859 .0671 .0758 .0802 .0926 .1139
LFT .3372 .2549 .2876 .2982 .3492 .4963 .0984 .0706 .0860 .0917 .1035 .1403 .0876 .0697 .0779 .0825 .0930 .1150

Δ𝐿𝑂𝐶𝐴 (%) 4.40** 5.55** 4.09** 4.23** 4.24** 4.22** 6.84** 9.12** 9.41** 10.08* 7.37* 2.11* 4.04** 6.57** 7.15** 5.23** 1.42 2.13*

component. Further, we consider our proposed Local Fine Tuning
method with WL as the base model (LFT), and we also have the
ensemble version of the LFT model (EnLFT).

5.1.3 Reproducibility. All models are implemented in PyTorch [26]
and optimized by Adam algorithm [16]. For the baseline VAE and
the VAE component in other models, we set one hidden layer of
size 100. For all methods involving the Distribution Calibration
step, including the DC model, LFT, and EnLFT, we set 𝛼 = 0.7.
For the WL model, we set 𝛽 = 1.5 for ML1M, 𝛽 = 3 for Yelp and
Epinions. For both LFT and EnLFT: we set the fine tuning epoch
number as 30 for ML1M and Yelp, as 5 for Epinions; and we set the
similarity threshold 𝑡 for fetching neighbor users as 0.2 for ML1M,
0.01 for Yelp, and 0.05 for Epinions. For both ensemble models
LOCA and EnLFT, we set the number of anchor models as 100. And
we set 𝜆 = 1.5 in EnLFT. All code and data can be found at https:
//github.com/Zziwei/Measuring-Mitigating-Mainstream-Bias.

5.2 Compare Debiasing Performance
First, we compare different methods and answer three research
questions: i) which method performs the best in terms of overall
utility and bias mitigating? ii) how do the two proposed global
methods perform compared to each other? and iii) how do the pro-
posed local method and its ensemble version perform compared
with the state-of-the-art local recommendation baseline? To answer
these, we present the overall NDCG@20 and average NDCG@20
for 5 user subgroups of different mainstream levels for all methods
and datasets in Table 4, where the best results of all metrics for each
dataset are marked in bold, and the improvement rate from pro-
posed LFT over the best baseline LOCA is exhibited as well (results
are significant judged by paired t-test). The ‘low’ row represents
the 20% users with lowest mainstream score, ‘med-low’ represents
20% to 40% users in the sorted user sequence, and so on for 40%-60%
(‘medium’), 60%-80% (‘med-high’), and 80%-100% (‘high’).

From the table we see that for all datasets, the proposed LFT
produces the best overall NDCG@20 and also provides the best
NDCG@20 for each subgroup of different mainstream levels. Com-
pared with the original VAE, utility for niche users belonging to
‘low’, ‘med-low’, and ’medium’ subgroups is greatly promoted (im-
provement rate is 13.8% in average). At the same time, LFT also
improves the utility for mainstream users belonging to ‘med-high’
and ‘high’ subgroups (improvement rate is 3.1%). Hence, we can
conclude that the proposed LFT is able to mitigate the mainstream
bias by significantly improving the utility for niche users and can
improve the utility for mainstream users at the same time.

Second, we compare the two global methods. We can observe
that the two proposed global methods – DC and WL – improve the
overall recommendation utility and improve the utility for niche
users compared with VAE. However, when they mitigate the main-
stream bias by improving the utility for niche users, they decrease
the utility for mainstream users. It is because global methods keep
a single model and have to mitigate the bias by balancing between
mainstream and niche users during training instead of improving
all of users as proposed LFT does. And comparing DC and WL,
we find that WL performs slightly better than DC, which may be
because the data augmentation method is more challenging to tune
and to find an effective setup.

Last, we compare LFT with the local recommendation baseline
LOCA. We observe that LOCA can also improve the utility for
niche users but with a lower rate compared with LFT. However,
utility for mainstream users is decreased compared with VAE. It
can be because that LOCA trains anchor models from scratch and
the neighbor users to train an anchor model are naively identified
based on raw feedback record similarity. This leads to the result
that no anchor model in LOCA can capture full information for
mainstream users. To be fair, we also propose an ensemble version
of LFT with a similar setup as LOCA. Due to the more effective an-
chor model training (based on LFT) and proposed similar-dissimilar
anchor users selection algorithm in EnLFT, we can see from the
table that EnLFT performs better than baseline LOCA in terms of
overall recommendation utility and utility for different user sub-
groups. However, EnLFT is slightly less effective than LFT, which
is expected because LFT trains a specialized model for each user
while a limited number of anchor models are shared in EnLFT.

5.3 Ablation Study
Next, we study how different choices of model component influence
the performance, including the way to select neighbor users, the
choice of base model, and the way to select anchor users in EnLFT.

5.3.1 Selecting Neighbor users. In the proposed LFT, when wewant
to fine tune a local model for one user 𝑢, we need to fetch the neigh-
bor users for 𝑢. The naive way is to directly calculate similarity
on raw feedback records of users, such as Jaccard and Cosine simi-
larity. We compare the performance of LFT by the naive way (by
Jaccard and Cosine similarity) and the proposed method of calcu-
lating similarity on calibrated distribution of users (denoted as DC),
and show the results in Table 5. For each dataset, the best results are
marked in bold. We can see that LFT with the proposed neighbor
user selecting method performs the best for all methods in terms
of both overall utility and utility for each subgroup. The superior
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Table 5: Compare different neighbor user selection methods.
Subgroups of different mainstream levels

NDCG@20 low med-low medium med-high high

ML1M
Cosine 0.3302 0.2442 0.2780 0.2896 0.3433 0.4959
Jaccard 0.3293 0.2417 0.2789 0.2903 0.3409 0.4949
DC 0.3372 0.2549 0.2876 0.2982 0.3492 0.4963

Yelp
Cosine 0.0949 0.0683 0.0822 0.0883 0.0987 0.1370
Jaccard 0.0956 0.0688 0.0811 0.0892 0.0995 0.1392
DC 0.0984 0.0706 0.0860 0.0917 0.1035 0.1403

Epinions
Cosine 0.0867 0.0688 0.0763 0.0813 0.0928 0.1140
Jaccard 0.0864 0.0690 0.0763 0.0811 0.0924 0.1133
DC 0.0876 0.0697 0.0779 0.0825 0.0930 0.1150

Figure 3: Compare different base model choices.

performance of the proposed method is because that calibrated
distribution of users can help to capture the latent relationship be-
tween users. Due to this, the improvement for niche users is larger
than for mainstream users because identifying neighbor users for
niche users heavily relies on latent relationships.

5.3.2 Choosing base model. Next, we study the impact of differ-
ent choices of base model in LFT. As discussed in Section 4.2.2,
there are many different choices of base model, including: an or-
dinary recommendation model without debiasing, such as a VAE;
a global debiasing model, such as the proposed DC or WL; and a
meta-learning model which is supposed to be easily adapted to a
specialized local model to predict accurately for a specific user, for
which we adopt the FOMAML model from [11] and Reptile model
from [25]. To train these meta-learning models, we consider every
user as an independent task and use the same way in Section 4.2.1
to get the sub-dataset O𝑢 for each user𝑢 as the training data for this
task. Besides, we also include a random model as a baseline to show
the importance of having a good base model. For ML1M dataset, the
overall NDCG@20 for choices of random, VAE, FOMAML, Reptile,
DC, and WL are 0.2979, 0.3347, 0.3351, 0.3349, 0.3353, and 0.3372,
where base model of WL performs the best. Then, we show the
average NDCG@20 for user subgroups by different choices of base
model in Figure 3, from which we observe that base model of WL
performs the best for niche users, while FOMAML and Reptile
perform similarly as WL for subgroups with higher mainstream
level. Hence, we can conclude that choosing WL as the base model
produces the best result, and adopting meta-learning techniques
does not significantly help to improve the performance. Moreover,
we find salient difference between results of random model and
other choices, showing that choosing a well-trained base model is
important, especially for niche users.

5.3.3 Selecting anchor users in ensemble model. Last, we investi-
gate the impact of different anchor user selection methods in EnLFT.
In the baseline LOCA [7], mainstream users are selected as anchor
users to maximize the neighbor user coverage, which has limited

Table 6: Compare different anchor user selection methods.
Subgroups of different mainstream levels

NDCG@20 low med-low medium med-high high

ML1M
random 0.3257 0.2376 0.2773 0.2914 0.3387 0.4834
LOCA 0.3291 0.2428 0.2814 0.2943 0.3403 0.4865
EnLFT 0.3328 0.2521 0.2847 0.2963 0.3434 0.4876

Yelp
random 0.0922 0.0632 0.0781 0.0839 0.0983 0.1375
LOCA 0.0933 0.0651 0.0792 0.0853 0.0977 0.1393
EnLFT 0.0959 0.0688 0.0840 0.0872 0.0994 0.1400

Epinions
random 0.0838 0.0647 0.0736 0.0782 0.0895 0.1130
LOCA 0.0850 0.0656 0.0743 0.0793 0.0924 0.1136
EnLFT 0.0859 0.0671 0.0758 0.0802 0.0926 0.1139

coverage for niche users. Instead, we propose the similar-dissimilar
method to cover both niche and mainstream users to maximize the
coverage of user preference. Besides, we also include the random
method to randomly select anchor users. We compare these meth-
ods with other settings the same for EnLFT, and results are listed
in Table 6, where ‘LOCA’ represents EnLFT with anchor user selec-
tion method from LOCA, ‘EnLFT’ represents EnLFT with proposed
similar-dissimilar method, and ‘random’ represents EnLFT with
random selection method. This table shows that with the proposed
similar-dissimilar method, EnLFT performs the best. Compared
with LOCA method, we find that the major improvements are
from the niche users (the first three subgroups with lowest main-
stream levels), and utility for mainstream users are very similar for
these two methods. This is because the proposed similar-dissimilar
method improve the coverage for niche users compared with the
method from LOCA. Besides, we see that utility for mainstream
users by EnLFT with anchor user selection method from LOCA
(the ‘LOCA’ rows in Table 6) is higher than the original LOCA (the
‘LOCA’ columns in Table 4), which validates the effectiveness of
proposed LFT to learn powerful anchor models.

5.4 Hyper-parameter Study
Last, we study how two hyper-parameters in LFT – the number of
training epochs for local fine tuning; and the similarity threshold for
fetching neighbor users – influence the performance. The detailed
results are referred to Appendix A.

6 CONCLUSION AND FUTUREWORK
In this work, we study the mainstream bias centering around three
thrusts. First, to identify mainstream and niche users, we propose
and compare four approaches to calculate a mainstream score indi-
cating mainstream levels of each user. Second, we empirically show
the severe mainstream bias produced by conventional recommen-
dation models. Then, we explore both global and local methods to
mitigate such a bias. We propose two global models: Distribution
Calibration and Weighted Loss; and a local algorithm: Local Fine
Tuning. Extensive experiments show the effectiveness of these pro-
posed methods to improve utility for niche users. In the future, we
plan to study how the further improve the LFT by customizing the
training process for each local model.
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Figure 4: Hyper-parameter study: (a) how NDCG@20 changes with varying #𝑒𝑝𝑜𝑐ℎ and 𝑡 ; (b) and (c) how NDCG@20 for users
of ‘low’ and ‘high’ mainstream levels changes with varying #𝑒𝑝𝑜𝑐ℎ; (d) and (e) how NDCG@20 for users of ‘low’ and ‘high’
mainstream levels changes with varying 𝑡 .

A HYPER-PARAMETER STUDY
Here, we study how two hyper-parameters in LFT – the number of
training epochs for local fine tuning; and the similarity threshold
for fetching neighbor users – influence the performance.

Number of epochs
Here, we run LFT on ML1M dataset with the number of epochs
for local fine tuning (denoted as #𝑒𝑝𝑜𝑐ℎ) varying in {10, 20, 30, 40,
60, 70, 80, 90} and other settings the same as in Section 5.2. The
overall NDCG@20 are shown as the red line in Figure 4a, where
v0 to v8 represent 10 to 90. We can observe that the utility first
increases then decreases with increasing epochs. Then, we also
show how the average NDCG@20 changes for the user subgroup of
‘low’ mainstream level in Figure 4b and for the subgroup of ‘high’
mainstream level in Figure 4c. It shows that with increasing training
epochs, utility for niche users first increases and then converges,
which may decrease with more epochs. However, the utility for
mainstream users first increases and turns to decrease quickly,
which is because the base model already provides high accuracy
and fewer local fine tuning epochs are needed for mainstream

users. Hence, the next step of the local fine tuning research is to
personalize the training epochs for different users.

Similarity threshold
Then, we study the impact of the similarity threshold 𝑡 when we
fetch neighbor users. Lower 𝑡 leads to more neighbor users are
selected in LFT. We vary 𝑡 from 0.08 to 0.32 with step 0.03 and show
how the overall NDCG@20 changes as the blue line in Figure 4a.
In this figure, v0 to v8 represent 0.08 to 0.32. We can see that with
increasing 𝑡 , NDCG@20 first increases then decreases and reaches
peak at 0.20. We also show how the average NDCG@20 changes
for the user subgroup of ‘low’ mainstream level in Figure 4d and for
the subgroup of ‘high’ mainstream level in Figure 4e. From these
two figures, we find that with increasing 𝑡 , NDCG@20 for niche
users first increases then decreases, while for mainstream users,
the utility does not change notably. It is because niche users have
small numbers of neighbor users, and it is more challenging to find
these neighbor users. So, utility for niche users is more sensitive to
the choice of 𝑡 . But for mainstream users, there are a large number
of similar users with high similarity, thus LFT produces strong
performance for mainstream users and is not sensitive to 𝑡 within
certain value range.
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