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ABSTRACT 

To adapt to their environments, animals must generate behaviors that are closely aligned 

to a rapidly changing sensory world. However, behavioral states such as foraging or courtship 

typically persist over long time scales to ensure proper execution. It remains unclear how neural 

circuits generate persistent behavioral states while maintaining the flexibility to select among 

alternative states when the sensory context changes. Here, we elucidate the functional architecture 

of a neural circuit controlling the choice between roaming and dwelling states, which underlie 

exploration and exploitation during foraging in C. elegans. By imaging ensemble-level neural 

activity in freely-moving animals, we identify stereotyped changes in circuit activity 

corresponding to each behavioral state. Combining circuit-wide imaging with genetic analysis, we 

find that mutual inhibition between two antagonistic neuromodulatory systems underlies the 

persistence and mutual exclusivity of the neural activity patterns observed in each state. Through 

machine learning analysis and circuit perturbations, we identify a sensory processing neuron that 

can transmit information about food odors to both the roaming and dwelling circuits and bias the 

animal towards different states in different sensory contexts, giving rise to context-appropriate 

state transitions. Our findings reveal a potentially general circuit architecture that enables flexible, 

sensory-driven control of persistent behavioral states.  

 

INTRODUCTION  

The behavioral state of an animal—whether it is active, inactive, mating, or sleeping—

influences its perception of and response to the environment1–5. In contrast to fast motor actions, 

behavioral states are often highly stable, lasting from minutes to hours. Despite this remarkable 

stability, animals can flexibly choose their behavioral state based on the sensory context and switch 
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states when the context changes6–8. How the brain generates persistent behavioral states while 

maintaining the flexibility to select among alternative states is not well understood.  

At the neural level, persistent behavioral states are often associated with stable patterns of 

neural activity. For example, continuous activation of pCd neurons in male Drosophila underlies 

persistent courtship and aggressive behaviors9. In addition, recent large-scale recordings of neural 

activity have revealed that behavioral states such as sleep and active locomotion are represented 

as stable, stereotyped activity patterns in neurons spanning multiple brain regions5,6,10–13. While 

the encoding of a behavioral state can be broadly distributed, the neurons that control the onset 

and duration of a state are often a smaller subset of those that comprise the full circuit6,14. To gain 

mechanistic insights into how persistent behavioral states are generated and controlled, it will be 

critical to elucidate the functional interactions among key control neurons and understand how 

they incorporate incoming sensory inputs that influence behavioral states.  

Past studies have proposed recurrent circuitry and neuromodulation as two central 

mechanisms that contribute to the generation of persistent behavioral states. While theoretical 

studies have shown that recurrent excitatory or inhibitory feedback can underlie stable firing 

patterns15–18, direct experimental evidence linking recurrent circuitry with persistent activity 

during minutes-long behavioral states remains scarce (the role of recurrent inhibition in fast 

timescale switching is better established19,20). Neuromodulators are known to control persistent 

behaviors like sleep and wake states, as well as states of stress and hunger21–24. However, our 

understanding of how ongoing neuromodulator release in vivo promotes persistent circuit activity 

remains limited. In addition, it is unclear how dynamic sensory inputs interact with recurrent 

circuitry and neuromodulation to elicit behavioral state transitions in a changing sensory 

environment.   
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In this study, we investigate the neural circuit mechanisms that give rise to circuit-level 

activity patterns during persistent foraging states in C. elegans. While foraging on bacterial food, 

C. elegans alternate between roaming states, characterized by high-speed forward movement and 

occasional reorientations, and dwelling states, marked by slow forward and backward 

movements25–28. Each state can last up to tens of minutes and the transitions between states are 

abrupt. The fraction of time an animal spends in each state is influenced by its satiety, ingestion of 

bacterial food, and sensory cues such as odors25,26,29–31. Consistent with the notion that these states 

reflect an exploration-exploitation tradeoff, animals favor dwelling in food-rich environments and 

after starvation, but favor roaming in poor-quality food environments and after aversive 

stimulation.  

We and others previously found that serotonin (5-HT) and the neuropeptide pigment-

dispersing factor (PDF) act as opposing neuromodulators that stabilize dwelling and roaming states, 

respectively31–35. Serotonin acts through the serotonin-gated chloride channel MOD-1 to promote 

dwelling, with a smaller contribution from the other serotonin receptors33. PDF-1 and -2 

neuropeptides act through a single PDF receptor, PDFR-1, to drive roaming33. Cell-specific genetic 

perturbations uncovered the neurons that produce and detect these neuromodulators to control the 

stability of each behavioral state33. However, these identified neurons are densely interconnected 

with one another and with other neurons in the C. elegans connectome, making it infeasible to 

infer the core functional circuitry that shapes the roaming and dwelling states from these previous 

genetic studies. Crucially, it remains unclear how 5-HT and PDF impact overall circuit activity to 

promote persistent behavioral states. In addition, while it is known that the sensory environment 

can influence roaming and dwelling, how sensory inputs converge onto this core neuromodulatory 

circuit to influence behavioral states remains an open question. 
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To address these questions, we performed simultaneous calcium imaging of defined 

neurons throughout the roaming-dwelling circuit in freely-moving animals. We identified 

stereotyped, circuit activity patterns corresponding to each foraging state. By combining circuit 

imaging with genetic perturbations, we identified a mutual inhibitory loop between the 

serotonergic NSM neuron and the 5-HT and PDF target neurons. We found that this mutual 

inhibition is critical for the persistence and mutual exclusivity of the neural activity patterns 

observed during roaming and dwelling. Furthermore, we found that the AIA sensory processing 

neuron sends parallel outputs to both neuromodulatory systems and can bias the circuit towards 

either roaming or dwelling, depending on the overall sensory context. Together, these results 

identify a functional circuit architecture that allows for flexible, sensory-driven control of 

persistent behavioral states. 

 

RESULTS 

Roaming and dwelling states are associated with stereotyped changes in circuit activity 

To understand how roaming and dwelling states arise from circuit-level interactions 

between neurons, we sought to monitor the activity of neurons throughout the core roaming-

dwelling circuit in wild-type animals and additionally during perturbations that alter signaling 

among the neurons. We built a calcium imaging platform with a closed-loop tracking system that 

allows for simultaneous imaging of many neurons as animals freely move (Fig. 1A and Figure 1-

Figure Supplement 1A-B)36–38. We generated a transgenic line where well-defined promoter 

fragments were used to express GCaMP6m in a select group of 10 neurons (Fig. 1B; Figure 1-

Figure Supplement 1C-D; Figure 1-Figure Supplement 2). These neurons were selected based on 

their classification into at least one of the three following groups: (1) neurons expressing 5-HT, 
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PDF, or their target receptors MOD-1 or PDFR-133, (2) neurons that share dense synaptic 

connections with those in group 1, and (3) premotor or motor neurons whose activities are 

associated with locomotion20,39. A small subset of neurons that had been implicated in roaming 

and dwelling states were omitted from the multi-neuron GCaMP6m line because their cell bodies 

were not located in the head (HSN, PVP33). We performed circuit-level imaging (at a volume rate 

of 2 Hz) of these transgenic animals as they foraged on uniformly-seeded bacterial lawns (Fig. 1C 

and Fig. 1 – Figure Supplement 3). Imaging this defined subset of neurons allowed us to leverage 

prior knowledge and easily determine the identity of each neuron in each recording, thereby 

circumventing the challenge of determining neuronal identity in a densely-labeled brain.  

While dwelling, animals move forwards at low speed and frequently display short, low-

speed reversals. Roaming animals travel at high speed in forward runs that are punctuated by long, 

high-speed reversals, which change the animal’s heading direction. To determine how neural 

activity in the roaming-dwelling circuit encodes locomotion parameters and/or behavioral states, 

we first examined whether each neuron’s activity was associated with the animal’s axial velocity 

(i.e. velocity projected along the body axis), axial speed, movement direction (forward or reverse) 

or foraging state (roaming or dwelling; a Hidden Markov Model used to segment roaming and 

dwelling states is described in the Methods; see also Fig. 1-Supplement 4).  Six of the ten recorded 

neurons displayed calcium levels that correlated with axial velocity and movement direction (Fig. 

1D-E; Fig. 1-Supplement 5A). Consistent with previous reports, we observed that the PDF-1-

expressing neuron AVB and PDFR-1-expressing neurons AIY and RIB, known to promote 

forward runs11,20,39–42, exhibited increased activity during forward runs, while the premotor neuron 

AVA, known to promote reversals11,20,42,43, exhibited heightened activity during reversals. A 

partially overlapping group of neurons, including the serotonergic neuron NSM, displayed activity 
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that co-varied with animal speed (Fig. 1-Supplement 5A). Moreover, we found that nine of the ten 

recorded neurons exhibited changes in activity as animals transitioned between roaming and 

dwelling states (Fig. 1D-E). Interestingly, almost all neurons whose activity correlated with axial 

velocity and/or movement direction, in particular AVB, AIY, RIB, and AVA, exhibited reduced 

activity during dwelling, compared to roaming (overall and/or surrounding moments of state 

transitions; Fig. 1D-E). This observation is consistent with the known roles of these neurons in 

driving locomotion, insofar as locomotion is reduced during dwelling. These effects can also be 

clearly detected when comparing the joint activity distributions of forward- and reverse-active 

neurons during roaming versus dwelling (Fig. 1-Supplement 6). In contrast, the serotonergic 

neuron NSM was more active during dwelling. Together, these data reveal that changes in the 

roaming/dwelling state of the animal are accompanied by changes in the activities of multiple 

neurons, including NSM and a set of neurons that have previously been shown to control forward 

and reverse locomotion.  

The encoding of locomotion and behavioral state across many neurons suggests a circuit-

level representation of the animal’s behavior. To test whether the dominant modes of activity in 

the circuit were associated with the animal’s behavior, we performed Principal Component 

Analysis (PCA) using the activity profiles of all the recorded neurons. Indeed, the top two principal 

components (PC1 and PC2), which together explained 44% of the total variance, exhibited clear 

behavioral correlates (Fig. 1F-G). Neural activity along PC1 was coupled to the animal’s forward 

and reverse locomotion (Fig. 1F), while activity along PC2 was coupled to the animal’s axial speed 

and foraging state (Fig. 1G). PC1 consisted of positive contributions from forward-run-active 

neurons (e.g. AVB, AIY, RIB, and RME), a negative contribution from the reversal-active neuron 

AVA, and almost no contribution from the serotonergic neuron NSM (Fig. 1-Supplement 7). These 
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results provide a clear match to our single-neuron analyses above and suggest that PC1 primarily 

encodes movement direction. In contrast, PC2 consisted of a strong positive contribution from 

NSM, which is active at low speeds, and negative contributions from both forward-run- and 

reversal-active neurons (Fig. 1-Supplement 7). These results are also consistent with our single 

neuron analyses and suggest that PC2, which primarily encodes dwelling, is associated with 

elevated NSM activity and decreased activity in the forward-run- and reversal-active neurons. 

These results indicate that the main modes of dynamics in this circuit are associated with the 

animal’s movement direction and foraging state.  

Finally, to test whether neural activity in the roaming-dwelling circuit was sufficient to 

accurately predict behavior, we trained statistical models to predict animal velocity and behavioral 

state from neural activity (Fig. 1H-I; Fig. 1-Supplement 8). A nonlinear regression model was able 

to predict animal velocity from concurrent neural activity data with a high degree of accuracy (Fig. 

1H). This observation provides a rough match to a previous study44 and is consistent with the 

known roles of several of these neurons in controlling velocity11,19,20,39,42,43. In addition, a logistic 

regression model trained to predict the roaming and dwelling state achieved over 95% accuracy 

when using activity from all 10 neurons, and exhibited classification accuracy significantly above 

baseline when using data from only NSM or the roaming-active neurons AIY, RIB, and AVB (Fig. 

1I). Thus, ongoing neural activity in the roaming-dwelling circuit can predict the animal’s 

locomotion and foraging state. This robust mapping between circuit activity and behavior raised 

the possibility that stable activation of one or more neurons in this circuit might underlie persistent 

roaming and dwelling states. 
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Persistent NSM activation and associated circuit activity changes correspond to the 

dwelling state 

 Among the neurons recorded, the serotonergic neuron NSM was unique in that its 

persistent activation was closely aligned to the dwelling state (Fig. 1D-E; Fig. 1-Supplement 5). 

NSM activity was increased during dwelling as compared to roaming, resulting in a negative 

correlation with animal speed, which differs across the two states (Fig. 2A). However, NSM 

activity was not correlated with speed within the roaming state and it was not associated with 

movement direction during any state (Fig. 2A, Fig. 1D-E). An increase in NSM activity 

consistently preceded dwelling, with an average latency of 23 seconds (Fig. 2B-C). Dwelling states 

frequently ended with a decrease in NSM activity, though with a more variable latency (Fig. 2C 

and Fig. 2-Supplement 1A). Across wild-type animals, the durations of individual dwelling states 

were positively correlated with the durations of co-occurring bouts of NSM activity, which both 

typically lasted many minutes (Fig. 2D). Together, these observations indicate that NSM displays 

persistent dwelling state-associated neural activity.  

Since previous work showed that optogenetic NSM activation can drive animals into 

dwelling states31,33, our observation that NSM is persistently active during dwelling raised the 

possibility that NSM activation may play an important role in organizing the circuit-wide activity 

changes that accompany dwelling. To further explore this possibility, we examined how circuit 

activity evolved in PC space during periods of NSM activation (Fig. 2E-F). NSM activity serves 

as a major component of PC2 and is only weakly represented on PC1 (Fig. 1-Supplement 7). As a 

result, high and low NSM activity segregates well along PC2, but not PC1 (Fig. 2E; Figure 2-

Figure Supplement 1B). By aligning circuit activity to the onset of NSM activity bouts and 

projecting the activity in PC space, we found that NSM activation often began when circuit activity 
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was in the region of the PC space with high PC1 activity and low PC2 activity, typical of forward 

locomotion during roaming (Fig. 2F, compare with Fig. 1F). As NSM became active, circuit 

activity rose rapidly along PC2 and stayed within the positive half of PC2 (a region typically 

associated with low speed and dwelling; see Fig. 1F-G). Afterwards, circuit activity slowly 

traveled towards low values of both PC1 and PC2 (a region typically associated with reversals; see 

Fig. 1F). This observation suggests that the persistent activation of NSM during dwelling is 

associated with stereotyped changes in overall circuit dynamics. To test whether NSM activation 

was sufficient to drive these changes in circuit dynamics, we stimulated NSM using the red-shifted 

opsin Chrimson while imaging circuit activity. Indeed, optogenetic stimulation of NSM 

(performed at a low all-trans-retinal (ATR) concentration to avoid background activation; see 

Methods) inhibited the activity of the roaming-active neurons AVB, AIY, and RIB and led to a 

decrease in animal speed (Fig. 2G). These effects were largely abolished in mutants lacking the 5-

HT-gated chloride channel mod-1 (Fig. 2 – Figure Supplement 1C), consistent with previous 

reports that the mod-1 receptor is critical for 5-HT-induced locomotion changes33-35. Taken 

together, these results indicate that NSM activation is associated with and can drive, at least in part, 

stereotyped changes in circuit activity characteristic of the dwelling state.  

 

Persistent activity in serotonergic NSM neurons requires feedback from its target neurons 

that express the MOD-1 serotonin receptor 

Our analyses of wild-type circuit dynamics revealed that stereotyped changes in circuit 

activity are associated with the roaming and dwelling states. We next examined how these neural 

dynamics are influenced by neuromodulatory connections embedded in the circuit. Although the 

5-HT and PDF systems are known to act in opposition to regulate roaming and dwelling 
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behaviors33, it is not known how these neuromodulators impact circuit dynamics. To address this 

question, we imaged neural activity in mutants deficient in 5-HT signaling, PDF signaling, or both 

(Fig. 3 and 4). Mutants that disrupt 5-HT signaling, such as those lacking a key enzyme for 

serotonin biosynthesis (tph-1) or a 5-HT-gated chloride channel (mod-1), exhibited a decrease in 

time spent in the dwelling state (Fig. 3A-B, Fig. 3-Supplement 1, Fig. 3-Supplement 2), consistent 

with previous results33. In wild-type animals, NSM activity was strongly associated with reduced 

speed, but this relationship was attenuated in tph-1 and mod-1 mutants (Fig. 3C). Surprisingly, we 

also found that the durations of the NSM activity bouts, which were minutes-long in wild type 

animals, were dramatically shortened in these mutants (Fig. 3D). This resulted in a significant 

decrease in the fraction of time that NSM is active in the mutants (Fig. 3E). These results indicate 

that 5-HT signaling is required to sustain the activity of the serotonergic neuron NSM. Because 

MOD-1 is an inhibitory 5-HT-gated chloride channel, the mod-1-expressing neurons are relieved 

from inhibition by 5-HT in mod-1 mutants. Thus, the decrease in NSM activity in these mutants 

suggests an inhibitory role for the mod-1-expressing neurons in regulating NSM activity. Previous 

work has shown that mod-1 functions in the neurons AIY, RIF, and ASI to promote dwelling33 

(Fig. 1B). Since none of these neurons directly synapse onto NSM, they must functionally inhibit 

NSM through a polysynaptic route or via the release of a neuromodulator. To directly test whether 

activation of these neurons inhibits NSM, we activated the mod-1-expressing neurons with 

Chrimson while recording NSM activity. We delivered the optogenetic stimuli specifically when 

NSM activity was high and observed a sustained inhibition of NSM activity throughout the 

stimulation (Fig. 3F). Together, these results indicate that the serotonergic NSM neuron promotes 

its own activity via mutual inhibition with neurons expressing the inhibitory 5-HT receptor MOD-

1 (Fig. 3G). 
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PDF receptor-expressing neurons inhibit NSM to promote mutual exclusivity between NSM 

and AVB  

We next examined the impact of PDF signaling on circuit dynamics by imaging animals 

carrying a null mutation in the PDF receptor gene pdfr-1 (Fig. 4A and Fig. 4-Supplement 1A). In 

wild-type animals, the serotonergic neuron NSM and the PDF-1-producing neuron AVB exhibited 

a mutually exclusive activity pattern, wherein NSM activity was high and AVB activity was low 

during dwelling, while NSM activity was low and AVB was dynamically active during roaming 

(Fig. 4C; here we define “mutual exclusivity” to be a lack of concurrent high activity in NSM and 

AVB; see Methods and Figure 4 – Figure Supplement 2A for thresholding approach to segment 

low versus high activity). This mutual exclusivity was strongly disrupted in pdfr-1 mutants (Fig. 

4C-D). In addition, an analysis of graded AVB activity changes during periods of NSM activation 

confirmed that the overall decrease in AVB activity during periods of high NSM activity was 

disrupted in pdfr-1 mutants (Fig. 4-Supplement 2). In these mutant animals, the two neurons were 

frequently co-active, giving rise to a positive correlation between the activities of the two neurons 

(Fig. 4D and Figure 4-Figure Supplement 3). Positive correlations also appeared between NSM 

and other roaming-active neurons, including the pdfr-1-expressing neurons AIY and RIB (Figure 

4-Figure Supplement 3). This increased co-activity of NSM and AVB was observed when using 

multiple distinct GCaMP normalization methods and when sampling from matched speed 

distributions in wild-type and mutant animals (Fig. 4 – Figure Supplement 4). We observed that 

pdfr-1 animals frequently moved at speeds mid-way between those typically seen for roaming and 

dwelling states in wild-type animals (Figure 4-Figure Supplement 5A-B; this observation 

prompted us to not perform roaming-dwelling state calls on the pdfr-1 mutant). One likely 
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explanation for this behavioral phenotype is that ectopic co-activation of NSM and the roaming-

active neurons results in mixed behavioral outputs that differ from either roaming or dwelling. 

These findings indicate that PDF signaling is required for the neural circuit to maintain mutual 

exclusivity between NSM and the locomotion-controlling neurons that are active during roaming.  

In contrast to the tph-1 animals, NSM activity bouts in pdfr-1 mutants were more persistent 

than they were in wild-type animals (Fig. 4E-F). This result suggests that PDF signaling plays an 

important role in suppressing NSM activity. Consistent with this interpretation, constitutive 

activation of PDFR-1 signaling, via expression of the hyperactive PDFR-1 effector ACY-1(P260S) 

in the pdfr-1-expressing neurons, strongly inhibited NSM activity (Fig. 4B; Fig. 4E-F; Fig. 4-

Supplement 4B). In addition, optogenetic activation of the pdf-1-expressing neurons led to an acute 

and robust inhibition of NSM (Fig. 4G; Fig. 4-Supplement 5C). Together, these findings indicate 

that PDF signaling is necessary and sufficient to keep NSM inactive during roaming, a key 

requirement for generating the opposing roaming and dwelling states. 

 

PDFR-1 neurons act downstream of MOD-1 neurons to inhibit NSM activity and promote 

roaming 

To probe whether the MOD-1- and PDFR-1-expressing neurons act in the same pathway 

to impact NSM activity, we performed epistasis analysis by examining tph-1;pdfr-1 double 

mutants. Similar to the pdfr-1 single mutants, these animals exhibited prolonged bouts of NSM 

activation, an increased probability of NSM being active, and a near two-fold increase in the 

probability of co-activation between NSM and AVB (Fig. 4C-F). At the behavioral level, tph-

1;pdfr-1 animals spent over a third of their time moving at intermediate speeds, similar to the pdfr-
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1 animals (Figure 4-Figure Supplement 5A-B). Together, these results suggest that pdfr-1 

functions downstream of tph-1 to control NSM activity and locomotion.  

It has been shown that 5-HT targets the mod-1-expressing neurons to inhibit roaming while 

pdfr-1 functions in multiple pdfr-1-expressing neurons, including RIM, AIY, RIA, and RIB, to 

promote roaming31,45. To test whether mod-1-expressing neurons and pdfr-1-expressing neurons 

act in the same neuronal pathway to control foraging states, we optogenetically activated mod-1-

expressing neurons in either wild-type animals or pdfr-1 mutants. We found that optogenetic 

activation of the mod-1-expressing neurons, which triggered high-speed locomotion in wild-type 

animals, failed to do so in pdfr-1 mutants (Fig. 4H). These results indicate that the pdfr-1-

expressing neurons act downstream of the mod-1-expressing neurons to promote roaming (Fig. 4I), 

consistent with the epistasis analysis described above. Altogether, these results indicate that the 

mutually inhibitory interaction between NSM and the neurons that express the MOD-1 and PDFR-

1 receptors is necessary to stabilize the opposing neural activity and behavioral patterns underlying 

roaming and dwelling.  

 

A CNN classifier reveals stereotyped circuit dynamics that precede roaming-to-dwelling 

transitions  

Based on the C. elegans connectome46 and previous studies39,42,47–49, many of the MOD-1- 

and PDFR-1-expressing neurons receive dense inputs from sensory neurons and are functionally 

involved in sensorimotor behaviors (Fig. 1B). Therefore, the functional circuit architecture 

revealed through our calcium imaging analyses raised the possibility that incoming sensory inputs 

that act on the MOD-1- and PDFR-1-expressing neurons might influence the transitions between 
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roaming and dwelling. One prediction of this hypothesis is that these neurons that receive sensory 

inputs may display stereotyped activity patterns prior to state transitions.  

To test the above hypothesis, we sought to predict state transitions from the circuit-wide 

activity patterns that precede them. Our calcium imaging results showed that the onset of NSM 

activity reliably coincided with the onset of dwelling states (Fig. 2B and C). We thus focused on 

uncovering potential circuit elements that function upstream of NSM to drive the roaming-to-

dwelling transition. We adopted a supervised machine learning approach by training a 

Convolutional Neural Network (CNN) classifier to predict NSM activation using the preceding 

multi-dimensional activity profile from all other neurons imaged (Figure 5A-B and Figure 5-

Figure Supplement 1; see Methods). We chose the CNN classifier because of its flexible 

architecture, which can model complex nonlinear relationships between the input and output 

variables and detect multiple relevant activity patterns via the same network50–52. Successfully 

trained networks achieved over 70% test accuracy, equaling or exceeding other supervised learning 

methods (Figure 5-Figure Supplement 2A). This result indicates that stereotyped circuit activity 

patterns frequently precede NSM activation. 

We examined the parameters of the trained networks to define the activity patterns that 

were being used to make successful predictions about upcoming NSM activation. Successfully 

trained networks consistently employed a convolutional filter where the largest positive weights 

were associated with the sensory processing neuron AIA and the largest negative weights were 

linked to RIB and AVA, which promote forward and reverse movement, respectively (Fig. 5B). 

These weights suggest that NSM activation is most likely to occur following increased activity in 

AIA and decreased activity in RIB and AVA. Withholding AIA, RIB, and AVA from the training 

data abolished the predictive power of the trained network, while withholding AIA activity alone 
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also led to a significant reduction in test accuracy (Fig. 5B and Figure 5-Figure Supplement 2B). 

Moreover, networks trained on the activities of only AIA, RIB, and AVA performed nearly as well 

as those trained on all the neurons (Figure 5-Figure Supplement 2B). Training a CNN classifier to 

directly predict dwelling state onset from all of the neurons except NSM led to a similar 

convolutional filter; including NSM in the training data yielded a classifier that predicts dwelling 

state onset solely using NSM activity (Figure 5-Figure Supplement 3A). These observations 

suggest that the combined activities of AIA, RIB, and AVA can frequently predict the onset of 

NSM activity, which is strongly associated with roaming-to-dwelling state transitions. 

Utilizing this same approach, we also trained CNN classifiers to predict the termination of 

NSM activity bouts and the onsets of roaming states (Figure 5-Figure Supplement 3B-C). The 

resulting convolutional kernels displayed strong positive weight on AVB and RIB. Strong negative 

weight on NSM was also a feature of the convolutional kernel predicting roaming state onset. 

These results are consistent with the mutual inhibitory loop described above and suggest that 

activation of the AVB and other roaming-active neurons, concurrent with NSM inactivation, 

predicts dwelling-to-roaming transitions. 

Given that AIA, RIB, and AVA activities could predict the onset of NSM activity and 

dwelling states, we next examined how the activities of these neurons changed during transitions 

from roaming to dwelling (Fig. 5C-G). During roaming, AIA activity was positively correlated 

with that of forward run-promoting neurons, such as RIB, and negatively correlated with the 

reversal-promoting neuron AVA. Within 30 seconds of NSM activation, AIA often exhibited a 

further increase in activity, while RIB and AVA activity stayed at similar levels or decreased. As 

NSM activity rose and the animal entered the dwelling state, RIB and AVA activity declined 

sharply while AIA became correlated with NSM. AIA then declined to baseline over the following 
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minutes. Thus, AIA activity co-varies with the forward-active neurons during roaming and with 

NSM at the onset of dwelling. This native activity pattern is consistent with the convolutional 

kernel from the CNN classifier, where heightened activity of AIA relative to the locomotion-

promoting neurons RIB and AVA predicts NSM activation. Together, these results reveal a 

stereotyped, multi-neuron activity pattern that predicts NSM activation.  

 

AIA activation can elicit both roaming and dwelling states 

 Because AIA activity co-varied with both roaming- and dwelling-active neurons and was 

required for the prediction of NSM activation, we hypothesized that AIA might play an active role 

in controlling the transitions between roaming and dwelling. To test this, we optogenetically 

activated AIA in foraging animals exposed to uniform lawns of bacterial food (Fig. 6A-B). 

Behavioral responses to AIA activation depended on the state of the animal at the time that AIA 

was activated. Roaming animals exhibited a rapid and transient decrease in speed upon AIA 

activation, while dwelling animals showed a gradual increase in speed upon AIA activation (Fig. 

6A-B). These results indicate that optogenetic activation of AIA can affect state transitions on two 

different time scales: triggering the roaming-to-dwelling transition within a few seconds and 

promoting entry into the roaming state upon tens of seconds of continued activation. 

To determine if AIA promotes behavioral switching by modulating 5-HT- or PDF-

releasing neurons, we optogenetically activated AIA in mutants defective in 5-HT or PDF 

signaling (tph-1 and pdfr-1 animals, Fig. 6A-B). For the tph-1 mutant, animals that were roaming 

pre-stimulation no longer displayed rapid entry into dwelling and showed a higher probability of 

staying in the roaming state later into the stimulation. tph-1 animals that were dwelling pre-

stimulation displayed a higher probability of entering roaming compared to control animals. These 
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results suggest that tph-1 is critical for the effect of AIA activation on triggering entry into dwelling 

and for preventing AIA-induced entry into the roaming state. In contrast, AIA activation in pdfr-1 

mutants that were dwelling pre-stimulation failed to promote transitions into roaming. Roaming 

states in these mutants were too infrequent and brief to warrant meaningful analysis of AIA 

activation during that state. Together, these results suggest that AIA promotes dwelling via 5-HT 

signaling and promotes roaming via PDF signaling.  

Previous work has characterized neuronal cell types in mammals that exhibit similar trial-

by-trial variation where optogenetic activation can elicit opposing behavioral effects24,53. In some 

of these previous examples, stimulation intensity influenced the behavioral outcome of the 

optogenetic activation. Thus, we examined whether stimulation intensity influenced the ability of 

AIA to promote roaming or dwelling. Indeed, AIA activation at lower light intensities primarily 

elicited roaming-to-dwelling transitions, while activation at higher intensities elicited dwelling-to-

roaming transitions (Fig. 6C). Because the AIA-induced slowing response and speeding response 

depend on different neuromodulatory systems and can be elicited independently at different light 

intensities, these results are suggestive that AIA provides independent outputs to the PDF and 5-

HT systems to control roaming and dwelling states, respectively (Fig. 6D).  

  

AIA can promote either roaming or dwelling, depending on the sensory context 

Based on the C. elegans connectome54,55, AIA receives the majority of its synaptic inputs 

(~80%) from chemosensory neurons (Figure 6-Figure Supplement 1), many of which detect 

temporal changes in the concentrations of olfactory and gustatory cues56–58. Previous work has 

shown that AIA is activated by an increase in the concentration of attractive odorants present in 

bacterial food57,59. In the absence of food, AIA promotes forward runs when animals detect 
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increases in attractive odors57. AIA sends synaptic output to multiple neurons in the sensorimotor 

pathway, including several mod-1- and pdfr-1-expressing neurons, though its role in roaming and 

dwelling behaviors has not been examined.  

Based on AIA’s established role in sensory processing and our observations that AIA can 

drive both roaming- and dwelling-like behaviors, we hypothesized that AIA promotes either 

roaming or dwelling, depending on the sensory cues in the environment. To test this hypothesis, 

we examined the foraging behaviors of wild-type animals in different sensory contexts, and 

compared them to animals in which AIA had been silenced (AIA::unc-103gf). Given that AIA 

responds to food odors, we developed a patch foraging assay in which animals placed on a sparse 

food patch can navigate a food odor gradient to approach an adjacent dense food patch (Fig. 7A). 

This assay is notably different from standard chemotaxis assays, where animals are not in contact 

with any food source and therefore do not display roaming or dwelling behaviors. We also 

examined AIA’s impact on roaming and dwelling in the absence of an olfactory gradient by 

performing a second assay where wild-type or AIA-silenced animals were presented with uniform-

density bacterial food (Fig. 7F).  

In the patch foraging assay, wild-type animals exhibited directed motion towards the dense 

food patch and alternated between roaming and dwelling as they approached it (Fig. 7A, bottom). 

Compared to control plates without the dense food patch, animals in the patch foraging assay spent 

more time in the roaming state (Fig. 7B), and biased their movement towards the dense food patch 

as they roamed (Figure 7-Figure Supplement 1A). Animals preferentially switched from roaming 

to dwelling when their direction of motion (measured as heading bias; Fig. 7C) began to deviate 

away from the dense food patch (Fig. 7D). Because the animal’s heading direction impacts the 

change in odor concentration that it experiences, these results indicate that dynamic changes in the 
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concentration of food odors influences the transition rates between roaming and dwelling. 

Consistent this interpretation, we found that chemosensation-defective tax-4 mutants60 subjected 

to the patch foraging assay failed to exhibit elevated roaming and failed to couple the roaming-to-

dwelling transition with their direction of motion (Fig. 7B and D). 

We next asked whether AIA was necessary for the sensory-induced modulation of roaming 

and dwelling states in the patch foraging assay. We found that AIA-silenced animals (AIA::unc-

103gf) exhibited an overall decrease in roaming compared to wild-type animals and did not 

selectively enter dwelling states when their movement direction deviated away from the dense 

food patch (Fig. 7E and Figure 7-Figure Supplement 1B). These results indicate that AIA is 

necessary for animals to display elevated roaming in the presence of a food odor gradient and for 

animals to couple their movement direction with roaming-to-dwelling transitions.  

We also examined the roles of 5-HT and PDF in the patch foraging assay. We found that 

pdfr-1 mutants failed to increase their roaming in the odor gradient but still displayed some 

coupling of the roaming-to-dwelling transition to their direction of motion (Figure 7-Figure 

Supplement 1C-D). In contrast, tph-1 mutants displayed increased time in the roaming state but 

did not couple the roaming-to-dwelling transition to their direction of motion (Figure 7-Figure 

Supplement 1C-D).  

Lastly, to examine the role of AIA in controlling roaming and dwelling in the absence of a 

strong sensory gradient, we compared the behavior of wild-type and AIA-silenced animals in 

environments with uniformly-seeded bacterial food. We tested two different bacterial densities 

(Fig. 7F). In both cases, AIA-silenced animals displayed a significant decrease in the fraction of 

time spent dwelling (Fig. 7F). These results suggest that AIA functions to promote the dwelling 

state in a constant sensory environment. This contrasts sharply with the role of AIA in promoting 
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roaming in the presence of a strong sensory gradient (Fig. 7E). Taken together, these results 

indicate that AIA can promote either roaming or dwelling, depending on the overall sensory 

environment.  

 

DISCUSSION 

Our findings reveal the functional architecture of a neural circuit that generates persistent 

behavioral states. Circuit-wide calcium imaging during roaming and dwelling identified several 

neurons whose activities differ between the two states, most notably the serotonergic NSM neuron 

that displays long bouts of activity during dwelling and inactivity during roaming. By combining 

circuit imaging with genetic perturbations, we found that mutual inhibition between the 

serotonergic NSM neuron and the 5-HT and PDF target neurons promotes the stability and mutual 

exclusivity of the neural activity patterns observed during roaming and dwelling. Furthermore, we 

found that the AIA sensory processing neuron that responds to food odors sends parallel outputs 

to both neuromodulatory systems and biases the network towards different states in different 

sensory contexts. This circuit architecture allows C. elegans to exhibit persistent roaming and 

dwelling states, while flexibly switching between them depending on the sensory context.  

 

Neural circuit mechanisms that generate persistent behavioral states 

 The recordings in this study provide new insights into how neural activity changes as 

animals switch between stable, alternative behavioral states. Previous work had shown that 5-HT 

and PDF were critical for dwelling and roaming behaviors33, but how they impact circuit activity 
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was not known. We found that NSM displayed long bouts of activity during dwelling and was 

inactive during roaming. In addition, several neurons that were previously shown to drive forward 

and reverse movement11,19,20,39,42,43, including the PDF-producing neuron AVB, were more active 

during roaming than they were during dwelling. However, whereas NSM displayed long bouts of 

persistent activity during dwelling, the locomotion neurons displayed fast timescale dynamics 

associated with forward and reverse movements during roaming, matching their previously 

described roles in controlling locomotion. tph-1 mutants that lack 5-HT had an imbalance in the 

winner-take-all dynamics of this circuit, such that NSM activity was less persistent. pdfr-1 mutants 

that lack PDF signaling displayed ectopic co-activation of NSM neurons along with AVB and 

other roaming-active neurons, as well as exaggerated persistence in NSM. These results suggest 

that neuromodulation is critical to establish the overall structure of circuit-level activity. Our data 

also suggest that there is mutual inhibition between NSM and the neurons that express MOD-1 (an 

inhibitory 5-HT receptor) and PDFR-1. The MOD-1- and PDFR-1-expressing neurons, which are 

more active during roaming, synapse onto the PDF-producing neuron AVB  that is also more active 

during roaming, suggesting that they excite AVB. Thus, although NSM and AVB display mutually 

exclusive high activity states and produce opposing neuromodulators, they do not have direct 

connections with one another, as is typical in a flip-flop switch. Instead, they coordinate their 

activities by both interacting with the same network of neurons that expresses the 5-HT and PDF 

receptors. This architecture might allow for more flexible regulation of behavioral state switching. 

 The circuit states that correspond to roaming and dwelling differ in several respects. 

Dwelling states are characterized by persistent activity in serotonergic NSM neurons and reduced 

activity in several, but not all, locomotion-associated neurons. NSM activation always occurred 

within seconds of dwelling state onset and persisted for minutes, though NSM inactivation in some 
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cases occurred one or two minutes from roaming state onsets.  It is unclear whether this variable 

time lag involves the perdurance of 5-HT in extracellular space or other effects. Previous work has 

identified sub-modes of dwelling where animals display distinct subsets of postures61, but our 

datasets here, which lack detailed posture information, did not permitted us to identify neural 

correlates of these sub-modes. Roaming states are characterized by fast fluctuations in the 

activities of neurons that have previously been shown to drive forward (AVB, AIY, RIB) and 

reverse (AVA) movement11,19,20,39,42,43. We did not identify a neuron that is persistently active 

throughout roaming in a manner analogous to NSM activation during dwelling. While it is possible 

that such a neuron may exist (and that we did not record it in our study), it is also possible that the 

roaming state might be the “default” state of the C. elegans network and thus does not require 

devoted, persistently-active neurons to specify the state. Consistent with this possibility, circuit 

dynamics similar to roaming are observed in the absence of food and even in immobilized 

animals11,37,38. The correlational structure of neural activity also differs between roaming and 

dwelling. For example, the sensory processing neuron AIA is active in both states, but is coupled 

to NSM during dwelling, and to the forward-active neurons (AVB, AIY, RIB) during roaming. 

Neurons that can affiliate to different networks and switch their affiliations over time have also 

been observed in the stomatogastric ganglion and other systems62. The correlational changes that 

we observe here might allow for state-dependent sensory processing. 

 

Sensory control of roaming and dwelling states 

Previous work showed that chemosensory neurons regulate roaming and dwelling 

behaviors: mutants that are broadly defective in chemosensation display excessive dwelling, while 
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mutants that are defective in olfactory adaptation display excessive roaming26. However, the neural 

circuitry linking sensory neurons to roaming and dwelling had not been characterized. Using a 

machine learning-based approach, we identified AIA as a pivotal neuron for roaming-dwelling 

control. AIA receives synaptic inputs from almost all chemosensory neurons in the C. elegans 

connectome and displays robust responses to appetitive food odors57,59. We observed apparently 

spontaneous AIA dynamics in freely foraging animals, which could reflect responses to small 

changes in the sensory environment or feedback from other neurons. Here we found that AIA 

provides dual outputs to both the dwelling-active NSM neuron and the roaming-active neurons. 

Three lines of evidence support this interpretation: (1) native AIA activity correlates with NSM 

during dwelling and with forward-active neurons during roaming, (2) optogenetic activation of 

AIA can drive behaviors typical of both states, and (3) AIA silencing strongly alters roaming and 

dwelling states, but has different effects in different sensory contexts: AIA is necessary for 

roaming while animals navigate up food odor gradients, but is necessary for dwelling while 

animals are in uniform feeding environments. Thus, AIA is required to couple the sensory 

environment to roaming and dwelling states.  

The dual output of AIA onto both roaming and dwelling circuits is an unusual aspect of the 

circuit architecture uncovered here. However, similar functional architectures, where a common 

input drives competing circuit modules, have been suggested to underlie behavior selection in 

other nervous systems1,24,63. One possible function of this motif in the roaming-dwelling circuit is 

that it might allow both the roaming- and dwelling-active neurons to be latently activated when 

the animal is exposed to food odors detected by AIA. AIA-transmitted information about food 

odors could then be contextualized by other sensory cues that feed into this circuit. For example, 

NSM is not directly activated by food odors, but instead is directly activated by the ingestion of 



 25 

bacteria via its sensory dendrite in the alimentary canal31. Thus, when animals detect an increase 

in food odors that is accompanied by increased ingestion, this might promote dual AIA and NSM 

activation to drive robust dwelling states. In contrast, when animals detect an increase in food 

odors that is not accompanied by increased ingestion, this might activate AIA and the other side 

of the mutual inhibitory loop, biasing the animal towards roaming. This flexible architecture could 

therefore allow animals to make adaptive foraging decisions that reflect their integrated detection 

of food odors, food ingestion, and other salient sensory cues. 

 

Mutual inhibition as a network motif for generating opposing activity states 

Long-standing theoretical work64–67 and recent experimental evidence65,68 has highlighted 

the role of recurrent circuitry in driving persistent neural activity. In particular, mutual inhibition 

has long been proposed to underlie opposing cognitive states69–72. Recent modeling and 

experimental studies of the locomotion circuit of C. elegans has shown that fast timescale 

behavioral changes involve stochastic switching of flip-flop circuits, and nested oscillatory 

dynamics that depend on the ongoing state of these circuits19,20,73. Our results here suggest that a 

neural circuit with mutual inhibition mediated by neuromodulatory signals can generate behavioral 

switching over a much longer timescale, giving rise to persistent behavioral states that can be 

flexibly generated depending on the demands of the sensory environment. 

 

MATERIALS AND METHODS 
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Key Resources Table 

Reagent 
type 
(species) 
or resource 

Designati
on 

Source 
or 
referen
ce 

Identifiers Additional information 

strain, strain 
background 
(C. elegans) 

N2 CGC 
ID_Flavell
Database: 
N2 

Wild-type Bristol N2 

strain, strain 
background 
(C. elegans) 

SWF90 This 
study 

ID_Flavell
Database: 
SWF90 

flvEx46[[tph-1::GCaMP6m, 
mod-1::GCaMP6m, sto-
3::GCaMP6m, glr-
3::GCaMP6m, odr-
2b::GCaMP6m, gcy-
28.d::GCaMP6m, lgc-
55(short)::GCaMP6m, nmr-
1::GCaMP6m, tph-
1::wrmScarlett, mod-
1::wrmScarlett, nmr-
1::wrmScarlett, sto-
3::wrmScarlett]; lite-1(ce314), 
gur-3(ok2245)].  
 
See: Figure 1. 

strain, strain 
background 
(C. elegans) 

SWF113 This 
study 

ID_Flavell
Database: 
SWF113 

flvIs1[tph-1::GCaMP6m, mod-
1::GCaMP6m, sto-
3::GCaMP6m, glr-
3::GCaMP6m, odr-
2b::GCaMP6m, gcy-
28.d::GCaMP6m, lgc-
55(short)::GCaMP6m, nmr-
1::GCaMP6m, tph-
1::wrmScarlett, mod-
1::wrmScarlett, nmr-
1::wrmScarlett, sto-
3::wrmScarlett]; lite-1(ce314), 
gur-3(ok2245).  
 
See: Figures 1-5, Figure 1 – 
Figure Supplements 1-8, Figure 
2 – Figure Supplement 1, 
Figure 3 – Figure Supplement 
1, Figure 4 – Figure 
Supplements 2-5, Figure 5 – 
Figure Supplements 1-3. 
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strain, strain 
background 
(C. elegans) SWF186 This 

study 

ID_Flavell
Database: 
SWF186 

flvIs1; lite-1(ce314); gur-3 
(ok2245); mod-1(ok103). 
 
See: Figures 3-4, Figure 3 – 
Figure Supplements 1-2, Figure 
4 – Figure Supplements 4-5.   

strain, strain 
background 
(C. elegans) SWF124 This 

study 

ID_Flavell
Database: 
SWF124 

flvIs1; lite-1(ce314); gur-3 
(ok2245); pdfr-1(ok3425) 
 
See: Figure 4, Figure 4 – 
Figure Supplements 1-5. 

strain, strain 
background 
(C. elegans) SWF263 This 

study 

ID_Flavell
Database: 
SWF263 

flvIs1; lite-1(ce314); gur-3 
(ok2245); flvEx129[pdfr-1::acy-
1gf, elt-2::nGFP]. 
 
See: Figure 4, Figure 4 – 
Figure Supplements 1-5. 

strain, strain 
background 
(C. elegans) 

SWF125 This 
study 

ID_Flavell
Database: 
SWF125 

flvEx46; lite-1(ce314); gur-3 
(ok2245); tph1(mg280); pdfr-
1(ok3425). 
 
See: Figures 3-4, Figure 3 – 
Figure Supplements 1-2, Figure 
4 – Figure Supplements 2-5 

strain, strain 
background 
(C. elegans) 

SWF168 This 
study 

ID_Flavell
Database: 
SWF168 

flvIs1; lite-1(ce314); gur-3 
(ok2245); flvEx86[tph-
1(short)::chrimson, elt-
2::nGFP]. 
 
See: Figure 2, Figure 2 – 
Figure Supplement 1, Figure 4 
– Figure Supplement 5. 

strain, strain 
background 
(C. elegans) 

SWF801 This 
study 

ID_Flavell
Database: 
SWF801 

flvIs1; lite-1(ce314); gur-
3(ok2245); mod-1(ok103); 
flvEx86[tph-1(short)::chrimson, 
elt-2::nGFP]. 
 
See: Figure 2 – Figure 
Supplement 1. 

strain, strain 
background 
(C. elegans) CX14684 This 

study 

ID_Flavell
Database: 
CX14684 

pdfr-1(ok3425); kyIs580[mod-
1::nCre, myo-2::mCherry]; 
kyEx4816[ttx-3::ChR2(C128S)-
GFP, odr-2b::inv[ChR2-sl2-
GFP], myo-3::mCherry]. 
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See: Figure 4.  

strain, strain 
background 
(C. elegans) SWF194 This 

study 

ID_Flavell
Database: 
SWF194 

flvIs1; lite-1(ce314); gur-3 
(ok2245); flvEx98[gcy-
28.d::Chrimson, elt-2::nGFP]. 
 
See Figure 6. 

strain, strain 
background 
(C. elegans) SWF216 This 

study 

ID_Flavell
Database: 
SWF216 

flvIs1; lite-1(ce314); gur-3 
(ok2245);tph-1(mg280);  
flvEx98[gcy-28.d::Chrimson, 
elt-2::nGFP]. 
 
See Figure 6. 

strain, strain 
background 
(C. elegans) SWF326 This 

study 

ID_Flavell
Database: 
SWF326 

flvIs1; lite-1(ce314); gur-3 
(ok2245); pdfr-1(ok3425);  
flvEx98[gcy-28.d::Chrimson, 
elt-2::nGFP]. 
 
See Figure 6. 

strain, strain 
background 
(C. elegans) CX14597 

Larsch 
et al, 
2015 

ID_Flavell
Database: 
CX14597 

kyEx4745[gcy-28.d::unc-
103gf::sl2-mCherry, elt-
2::mCherry]. 
 
See Figure 7, Figure 7 – Figure 
Supplement 1. 

strain, strain 
background 
(C. elegans) CX13078  This 

study 

ID_Flavell
Database: 
CX13078  

tax-4(p678) [5x backcrossed to 
N2]. 
 
See Figure 7, Figure 7 – Figure 
Supplement 1. 

strain, strain 
background 
(C. elegans) CX14295 

Flavell 
et al, 
2013 

ID_Flavell
Database: 
CX14295 

pdfr-1(ok3425). 
 
See: Figure 7 – Figure 
Supplement 1. 

strain, strain 
background 
(C. elegans) MT15434 CGC 

ID_Flavell
Database: 
MT15434 

tph-1(mg280). 
 
See: Figure 7 – Figure 
Supplement 1. 

strain, strain 
background 
(C. elegans) SWF392 This 

study 

ID_Flavell
Database: 
SWF392 

lite-1(ce314); gur-3(ok2245); 
flvEx148[gcy-28.d::Chrimson, 
myo-3::mCherry]. 
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See Figure 6. 

strain, strain 
background 
(C. elegans) SWF167 This 

study 

ID_Flavell
Database: 
SWF167 

flvIs1; lite-1(ce314), gur-
3(ok2245); flvEx85[pdf-
1::Chrimson, elt-2::nGFP]. 
 
See: Figure 4, Figure 4 – 
Figure Supplement 5. 

strain, strain 
background 
(C. elegans) SWF166 This 

study 

ID_Flavell
Database: 
SWF166 

flvIs1; lite-1(ce314), gur-
3(ok2245); flvEx84[mod-
1::Chrimson, elt-2::nGFP]. 
 
See: Figure 3, Figure 4 – 
Figure Supplement 5. 

software, 
algorithm MATLAB 

MathW
orks 
(www.
mathw
orks.co
m) 

RRID:SCR
_001622 v2019a 

software, 
algorithm 

NIS 
Elements 

Nikon 
(www.
nikonin
strume
nts.co
m/prod
ucts/so
ftware) 

RRID:SCR
_014329 v5.02.00 

software, 
algorithm Streampix 

Norpix(
www.n
orpix.c
om/pro
ducts/s
treamp
ix/strea
mpix.p
hp) 

RRID:SCR
_015773 v7.0 

 

Growth conditions and handling 
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Nematode culture was conducted using standard methods74. Populations were maintained 

on NGM agar plates with E. coli OP50 bacteria. Wild-type was C. elegans Bristol strain N2. For 

genetic crosses, all genotypes were confirmed using PCR. Transgenic animals were generated by 

injecting DNA clones plus fluorescent co-injection marker into gonads of young adult 

hermaphrodites. One day old hermaphrodites were used for all assays. All assays were conducted 

at room temperature (~22°C). 

 

Construction and characterization of multi-neuron GCaMP strain 

 To generate a transgenic strain expressing GCaMP6m in a specific subset of neurons 

involved in roaming and dwelling, we first generated pilot strains where one or two plasmids were 

injected at a time to optimized DNA concentrations. This also allowed us to determine the precise 

GCaMP6m and/or Scarlett expression pattern from each promoter. We then injected these 

plasmids as a mixture into lite-1;gur-3 double mutants, which are resistant to blue light delivered 

during calcium imaging. We selected a line for use that had normal behavioral parameters and 

showed relatively balanced expression of GCaMP6m and Scarlett in the target cells (SWF90). To 

obtain more consistent expression, the transgene was integrated by UV to generate flvIs1 

(SWF113). The integrated strain was outcrossed 4 times. 

 

Microscope Design and Assembly 

Overview. The tracking microscope design was inspired and based off previously 

described systems36–38, with several modifications aimed at reducing motion artifacts and 

extending the duration of calcium imaging, so that long-lasting behavioral states could be 
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examined. As illustrated in Figure 1-Figure Supplement 1, two separate light paths, below and 

above the specimen, were built onto a Ti-E inverted microscope (Nikon). 

High-magnification light path for GCaMP imaging. The light path used to image 

GCaMP6m and Scarlett at single cell resolution is an Andor spinning disk confocal system. Light 

supplied from a 150mW 488nm laser and a 50mW 560nm laser passes through a 5000rpm 

Yokogawa CSU-X1 spinning disk unit with a Borealis upgrade (with a dual-camera configuration). 

A 40x/1.15NA CFI Apo LWD Lambda water immersion objective (Nikon) with a P-726 PIFOC 

objective piezo (PI) was used to image the volume of the worm’s head. A custom quad dichroic 

mirror directed light emitted from the specimen to two separate Andor Zyla 4.2 USB3 cameras, 

which had in-line emission filters (525/50, and 625/90). Data was collected at 2x2 binning in a 

512x512 region of interest in the center of the field of view. 

Low-magnification light path for closed-loop tracking. A second light path positioned 

above the animal collected data for closed-loop tracking. Light supplied from a Sola SE2 365 Light 

Engine (Lumencor) passed through a DSRed (49005, Chroma) filter set and a 10x/0.3NA air 

objective to excite Scarlett in the head of the worm. Red light emitted from the specimen passed 

through the filter set to an acA2000-340km Basler CMOS camera. Data was collected at 100 Hz. 

Synchronized control of camera exposures and illumination light sources. The Andor 

Zyla cameras used for calcium imaging were run in rolling shutter mode. A trigger signal was 

generated by one of the two cameras whenever the camera shutter is fully open (~2 ms per 

exposure). This trigger signal served as a master control that synchronized several devices (Figure 

1-Figure Supplement 1B). First, it was used to drive the 488nm and 560nm lasers, such that 

illumination is only provided when the full field of view is open. Second, the same trigger signal 

was used controlled the movement of the objective piezo, such that fast piezo movement occurs 
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largely outside the window of laser illumination. Lastly, this signal was used to time the green 

LED used by the closed-loop tracking system. The LED was turned on only when the calcium 

imaging cameras were not actively acquiring images (i.e. outside the window when the rolling 

shutter is fully open) and when the lasers were off. Together, these approaches minimize photo-

bleaching, photo-toxicity, and motion artifacts induced by movable parts of the microscope.  

Closed-loop tracking software. A custom C/C++ software was used to process incoming 

frames from the tracking camera and to instruct the movement of a motorized stage (96S107-N3-

LE2, Ludl; with a MAC6000 controller) to keep the head region of the animal at the center in the 

field of view. This software was adapted from Nguyen et al. with two key modifications: First, at 

each control cycle, the future velocity of the stage was calculated to match the predicted future 

velocity of the animal (i.e. predictive control as opposed to proportional control employed in 

previous study). Specifically, 

!!"#$%(# + 1) = 	!#&'(#)(#) +
(!#&'(#)(#) − !#&'(#)(# − 1))

∆# 	 

where !!"#$%(#)  is the instantaneous velocity of the stage and !#&'(#)(#)  the instantaneous 

velocity of the animal. The latter was estimated as described below (see Estimation of 

instantaneous animal location and velocity). The right side of the formula was found empirically 

to be sufficient for predicting future animal velocity. The second modification was that we used 

the motion of the head region of the animal to extrapolate the locomotory state of the animal. This 

approach results in a loss of postural information, but circumvents the need for a third light path 

for imaging the full body of the animal. 

 Optogenetic stimulation during calcium imaging. For experiments where we activated 

Chrimson while performing circuit-wide imaging, L4 animals were picked to plates with 1 uM 
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ATR (or not, in the case of -ATR controls) for overnight growth. They were then subjected to our 

standard calcium imaging methods described above, except the 561nm laser light to image Scarlett 

in neurons was omitted due to concerns of cross-activation of Chrimson. For optogenetic 

stimulation, an overhead spotlight LED (Mightex 617nm Type-H) directed towards the sample 

was illuminated for 30s at a time. Animals were stimulated 1-3 times each. 

 

Behavioral Assays  

Patch foraging assay. For the patch foraging assays, we used 24.5cm x 24.5cm NGM 

plates. Plates were uniformly seeded with sparse OP50 bacteria (OD 0.5 diluted 300x), and one 

half of the plate was seeded with dense bacteria (OD 0.5 concentrated 20x). The border between 

the sparse and dense food was always sharp and typically very straight. Plates were left overnight 

at room temperature. The following day, one-day-old adult animals were picked to the sparse side 

of the food plate, approximately 1.5 cm from the dense food patch. Video recordings were started 

immediately, though for all analyses the first 20 min of data (equilibration time) was not analyzed. 

Videos were recorded at 3 fps using Streampix 7.0, a JAI SP-20000M-USB3 CMOS cameras 

(41mm, 5120x3840, Mono) with a Nikon Micro-NIKKOR 55mm f/2.8 lens. Backlighting was 

achieved using a white panel LED (Metaphase Technologies Inc. White Metastandard 10” X 25”, 

24VDC). Assay plates were placed on glass 3” above LEDs to avoid heat transfer to plates. Videos 

were processed using custom Matlab scripts, which included a step to manually confirm the exact 

frame of dense food patch encounter for each animal. Segmentation of behavior into roaming and 

dwelling was conducted as previously described (Flavell et al, 2013). 
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Foraging at different food densities. To examine animal behavior in uniform 

environments with different food densities, we seeded NGM plates (either circular 10 cm or 

24.5x24.5cm) with different densities of food. For the experiments in Fig. 7, low-density was OP50 

bacteria at OD 0.5 diluted 300x; high-density was OD 0.5 concentrated 20X. Plates grew overnight 

at room temperature. The following day, one-day-old adult animals were picked to these plates 

and allowed to equilibrate for 45 mins, after which video recordings began. Videos were recorded 

and analyzed as described above. 

Optogenetic stimulation during foraging behavior. For optogenetic stimulation of 

free-behaving animals, we picked one-day-old adult animals (grown on 50uM ATR the night 

before) to NGM plates seeded with 300X diluted OD 0.5. Animals were permitted to equilibrate 

for 45 min, after which videos were recorded using the setup described above. In these videos, 

light for optogenetic stimulation was delivered using a 625nm Mightex BioLED at 30 uW/mm2. 

Patterned light illumination was achieved using custom Matlab scripts, which were coupled to a 

DAQ board (USB-6001, National Instruments) and BioLED Light Source Control Module 

(Mightex). Videos were analyzed as described above. 

 

Data Analysis for Calcium Imaging  

 Semi-automated image segmentation to obtain neuron outlines. All image analyses 

were performed on maximum intensity projections of the collected z-stacks, since the neurons 

were well separated along the x-y axes. We used data from the side of the animal (left or right) 

that was closest to the microscope objective, due to better optical quality of these data. First, 

feature points and feature point descriptors were extracted for each frame of the calcium imaging 
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video. Next, an N-by-N similarity matrix (N = number of frames in a video) was generated 

where each entry equals the number of matched feature points between a pair of frames. The 

columns of this matrix were clustered using hierarchical clustering. Around 30 frames (typically 

1-2% of frames from a video) were chosen across the largest 15 clusters. These frames were then 

segmented manually. The user was asked to outline the region for interest (ROI) around each 

neuronal structure of interest (axonal segment for the AIY neurons; soma for all other neurons). 

After manual segmentation, the automatic segmentation software looped through each of the 

remaining frames. For each unsegmented frame (target frame), a best match (reference frame) 

was found among the segmented frames based on the similarity matrix. Then, geometrical 

transformation matrices were estimated using the locations of the matched feature points. The 

estimated transformation was then applied to the boundary vertices of each ROI in the reference 

frame to yield the estimated boundary of the same region in the target frame. Once done, the 

target frames with their automatically computed ROIs were included into the pool of segmented 

frames and could serve as a reference frame for the remaining unsegmented frames. This 

procedure was repeated iteratively through the rest of the video. 

 Calcium signal extraction and pre-processing. The fluorescent signal from each 

neuron in a given frame was calculated as the median of the brightest 100 pixels within the ROI 

(or all pixels if the size of the ROI was smaller than 100 pixels) of that neuron. This approach 

was adopted to render the estimation of calcium signal insensitive to the exact segmentation 

boundary of the neuron, which could inadvertently contain background pixels. This was done for 

both the green and the red channels. The following pre-processing steps were then applied to the 

time-series signals from both channels: 1) To reduce spurious noise, a sliding median filter with 

a window size of 5 frames were applied to the time series (Figure 1-Figure Supplement 2D). 2) 
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To correct for the decay in fluorescent signal due to photobleaching, an exponential function was 

first fit to the time series. Next, the estimated exponential was normalized by its initial value and 

divided away from the denoised time series (Figure 1-Figure Supplement 2E). 3) To control for 

fluctuations in fluorescent signal due to the movement of the animal, we calculated the 

ratiometric signal. Specifically, the denoised and bleach-corrected time series from the green 

channel was divided by that from the red channel. 4) Lastly, to control for the variations in the 

dynamic range of the calcium signal due to variations in the expression of the fluorescent 

indicators, we normalized the ratio-metric signal such that the 1st percentile of the signal takes a 

value of 0 while the 99th percentile takes the value of 1. To control for cases where a given 

neuron never became active in a given recording (e.g. NSM in pdfr-1::acy-1gf animals), 

exceptions were made if a neuron’s peak activity in a given recording was less than 10% of the 

average across all recordings. In this case, the original DR/R0 value was used without 

normalization. Apart from this exception, the normalized ratio-metric signal was used for 

subsequent data analyses, except where indicated. These data processing steps (dividing by 

mScarlett; normalizing to a 0-1 scale) did not change the distributions of GCaMP intensity 

values (Figure 1-Figure Supplement 2H). 

Estimation of instantaneous animal location and velocity. The instantaneous location 

of the animal +,#-#. was calculated based on the following formula: 

+,#-#. = +,!-!. + / ∗ +
1234 −3564
3564 1234 . ∙ +

,*
-*. 

where +,!-!. is the instantaneous location of the microscope stage, +,*-*. is the position of the head 

region of the animal as seen on the frame captured by the tracking camera, 4 is the rotation angle 

between the field of view of the tracking microscope and the sensor of the tracking camera, and / 
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is the pixel size of the frames taken through the tracking camera. The velocity of the animal was 

calculated by dividing the displacement vector of the animal between adjacent time points by the 

duration of the time interval. 

Classification of roaming and dwelling states. Previous methods to segment roaming 

and dwelling defined these states based on the speed and angular speed of animal movement 

measured over 10s time windows (Ben Arous et al, 2009; Flavell et al, 2013). These prior 

datasets were recorded on multi-worm trackers with lower resolution than that of our confocal 

microscope. High-amplitude angular speed measurements from the low-resolution trackers 

primarily reflected paused movement and/or low-speed forward/backward movement. Under 

high-resolution confocal recordings, angular speed was measured with greater precision and, 

thus, displayed a different profile, in part reflecting body oscillations. Therefore, we utilized a 

slightly different approach to segment roaming and dwelling from our confocal recordings: (i) 

we computed the median and variance of animal speed using a sliding window of 20 seconds, 

which transformed the 1-dimensional speed data into two dimensions (Fig. 1 – Figure 

Supplement 4A). We then (ii) fit a Hidden Markov Model with Gaussian mixture emissions to 

this two-dimensional dataset. This yielded a model with three Gaussian components and two 

hidden states. The two hidden states successfully captured periods of persistent fast and slow 

movements, which we define as roaming and dwelling, respectively (Figure 1 and Figure 1-

Figure Supplement 3). Roaming and dwelling segmentation of multi-worm tracking data (Fig. 6-

7) was performed using previous methods (Flavell et al, 2013) and is described above. 

 Aligning calcium imaging data with behavioral data. As described in the Microscope 

Design and Assembly section, the trigger signal for the confocal laser was simultaneously sent to 

the computer controlling the tracking microscope. This computer thereby stores two sets of time 
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stamps, one for the laser illumination sequence and the other for the behavioral tracking video. 

Since the internal clock is the same, we can interpolate both the calcium activity data and the 

behavioral data onto the same time axis. Specifically, we interpolated both the calcium activity 

and behavior time series to obtain a common sampling frequency of 2 Hz.  

 Principal component analysis (PCA). An N-by-M data matrix was assembled with the 

rows representing neuron identity (N = 10) and the columns time points. Data across different 

recording sessions were concatenated together along the time dimension. PCA was performed by 

first subtracting the mean from each row and then applying singular value decomposition to the 

matrix. We chose this method over the previously described approach of performing PCA on the 

time derivatives of the calcium signals11. We found that applying PCA on the time derivatives 

did not yield PCs with intuitive behavioral correlates when applied to our data. This may have 

resulted from the higher sensitivity of the time derivatives to measurement noise in these freely-

moving animals or from our recordings consisting of a different subset of neurons, compared to 

previous studies. 

 Cross-correlation in neural activity. To estimate the time-lagged similarity between the 

activity of two neurons for a given genotype, the cross-correlation function (XCF) was first 

calculated individually for each data set of that genotype and then averaged. Bootstrapping was 

done to obtain confidence intervals on the mean. To examine the functional coupling between 

two neurons over time, average XCFs were calculated for data from a series of 60 second time 

windows spanning from 90 seconds before NSM activation to 90 seconds after. For each time 

window, the point with the largest absolute value along the average XCF was identified. The 

mean and 95% CI values of these extrema points were concatenated chronologically to generate 

plots.  
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Classification of NSM activity states. We first computed the local median and variance 

of NSM activity using a sliding window of 20 seconds. This transformed the 1-dimensional 

activity data into 2 dimensions (Figure 1 – Figure Supplement 4B). We then fit a Hidden Markov 

Model with Gaussian mixture emissions to this 2-dimensional dataset. This yielded a model with 

3 Gaussian components and 2 hidden states. As the average NSM activity under these two 

hidden states differed significantly, we interpreted these hidden states as states of high and low 

NSM activity.   

General Linear Model to predict animal speed from calcium activity. The model 

performs linear regression on a set of linear and nonlinear terms derived from the instantaneous 

calcium activity of individual neurons. These include an intercept term, linear and squared terms 

of each neuron’s activity, and all pairwise products of neural activity across all 10 neurons 

measured. The model then computes a linear fit of these predictor variables to the concurrent 

speed of the animal using QR decomposition. 

Logistic regression to predict foraging state from calcium activity. Logistic 

regression was performed using the instantaneous activity of all or a subset of the 10 neurons to 

predict the concurrent foraging state (i.e. roaming or dwelling). Model parameters was 

regularized through the elastic net algorithm, which implements a combination of L1 and  L2 

normalization.  

Segmentation of NSM and AVB activities via thresholding. For analyses in Fig. 4, we 

segmented NSM and AVB activities into high versus low values. The threshold values for 

defining the high versus low values were determined using the Otsu method. This was 

implemented using the "multithresh" function in MATLAB (with the source data set to the wild 
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type activity of NSM or AVB, and the parameter N set to 1). Thresholds determined from wild-

type animals were uniformly applied to all genotypes. 

 Convolutional neural network (CNN) classifier. The classifier was implemented using 

the Deep Learning Toolbox in MATLAB. The architecture of the network consists of a single 

convolutional layer with a single channel of two 9-by-3 convolutional kernels with no padding, 

followed by a Rectified Linear Unit (ReLu) layer, a fully connected layer with two neurons, a 

two-way softmax layer and a classification output layer. The last layer is specifically required for 

the Matlab implementation and computes the cross-entropy loss. We used two 9-by-3 

convolutional kernels to allow for the possibility that two separate activity patterns might be 

necessary for accurate predictions, though in reality only one convolutional kernel had 

informative values (the other was typically comprised of values close to zero). Calcium activity 

from all neurons imaged, except for the 5-HT neuron NSM, were used for training, validation 

and testing. To specifically predict the transition from roaming to dwelling, only data during 

roaming were used to predict the onset of NSM activity. For each wild-type data set, calcium 

activity during each roaming state was first down-sampled by averaging data from time bins of 

various widths (7.5-50s, see Fig. 5 – Figure Supplement 1) starting from immediately prior to the 

onset of a dwelling state and going back in time to the beginning of the roaming state. The 30-

second bin width was selected after a systematic examination of how well CNNs performed 

when trying a range of different bin widths and total numbers of bins (Fig. 5 – Figure 

Supplement 1). Each data point in the down-sampled data was assigned a label of 1 or 0: 1 if it is 

immediately prior to an episode of NSM activation, and 0 otherwise. Positive and negative 

samples were balanced by weighting the prediction error of each sample by the number of 

samples in that class. The positive and negative sample groups were each partitioned at random 
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into the training, validation, and test sets at an 8:1:1 relative ratio. This random partition was 

repeated 200 times. For each data partition, network training was performed 10 times with 

random initial conditions, using Stochastic Gradient Descent with Moment (SGDM) with the 

following hyper-parameters: 

Hyper-parameter name Value 
Initial Learning Rate  0.09 
L2 Regularization Rate 0.0001 
Learning Rate Drop Factor 0.1 
Learning Rate Drop Period 10 
Momentum 0.9 
Validation Frequency  30 
Max number of epochs 150 

 

To identify convolutional kernels that consistently contribute to classifier accuracy, 

convolutional kernels from networks that achieved greater than 50% test accuracy were recorded 

and k-means clustering was performed. Within each cluster, the distribution of weights at each 

kernel location was used to extract a confidence interval for the mean value of that kernel 

element. Elements of the kernel with mean values significantly different from 0 were taken to 

indicate important neural activity profiles for predicting NSM activation. Since each kernel 

element maps to the activity of a given neuron at a particular time window, the preferred sign of 

a kernel element would suggest whether a neuron is preferentially active (when the preferred 

sign is positive) or inactive (when the preferred sign is negative) at that time window.  

Feature selection was performed to identify key neurons whose activity critically 

contribute to classification accuracy. To generate the results in Fig. 5B, data from a chosen 

neuron was removed from the 9-neuron data set, and the resulting partial data set was used to 

train CNNs following the procedure described above. To generate the results in Figure 5-Figure 

Supplement 2B, two types of partial data sets were used. In the first category, data from 6 out of 
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9 neurons were used for training. We tested all possible 9-choose-6 neuron combinations. In 

second category, we tested using data from only RIB, AIA, and AVA for network training.    

 

Data Analysis for Behavioral Assays 

Extraction of locomotory parameters. Animal trajectories were first extracted using 

custom software described previously 31. Speed and angular speed were calculated for all time 

points of each trajectory, and then averaged over 10 second intervals. 

Identification of roaming and dwelling states. Roaming and dwelling states were 

identified as previously described33. Briefly, the speed and angular speed measured for each 

animal at each time point was assigned into one of two clusters. This allowed each animal 

trajectory to be converted into a binary sequence. A two-state HMM was fit to these binary 

sequences to estimate the transition and emission probabilities. This was done separately for each 

genotype under each experimental condition.   

Calculation of heading bias. The instantaneous heading bias 1(#) was defined as: 

1(#) = (8 ⋅ :)
(‖8‖	×	‖:‖) 

where 8  is the instantaneous velocity of the animal, and : is the unit vector that points from the 

animal’s current location to the nearest point on the boundary between the sparse food patch and 

the dense food patch. Here, : is used as the proxy for the gradient of olfactory cues at the 

animal’s current location. Equivalently, 1(#) is the cosine of the angle between the animal’s 

instantaneous direction of motion and the direction of the chemotactic gradient at its current 

location. 
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Statistical Analysis 

Comparison of sample means. The Wilcoxon ranksum test was applied pair-wise to 

obtain the raw p-values. When multiple comparisons were done for the same type of experiment 

(e.g. comparing the fraction of animal roaming during the patch foraging assay for different 

genotypes), the Benjamini-Hochberg correction was used to control the false discovery rate. A 

corrected p-value less than 0.05 was considered significant. 

Bootstrap confidence intervals. Bootstrapping was performed by sampling with 

replacement N times from the original data distribution (N equals the size of the original 

distribution). This procedure was repeated 1000 times and the test statistic of interest (e.g. the 

sample mean) was calculated each time on the bootstrapped data. The 5th and 95th percentiles of 

the calculated values then constitute the lower and upper bounds of the 95% confidence interval. 
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FIGURE LEGENDS 

Figure 1. Circuit-wide calcium imaging reveals a stable, low-dimensional neural 

representation of foraging states. (A) (Top) Movement trajectory of a C. elegans animal foraging 

on bacterial food under the tracking microscope. Red and black dots mark the beginning and end 

of the trajectory, respectively. Orange indicates that the animal was in the roaming state, while 

blue indicates the animal was in dwelling state. (Bottom) The speed of the animal during the same 

period. (B) Putative neural circuit that mediates the sensory control of the roaming and dwelling 

states, based on the C. elegans connectome46 and genetic analyses from a previous study33. Each 

C. elegans neuron has a three-letter name. Blue highlights indicate sites of serotonin signaling and 

orange highlights indicate sites of PDF signaling. Gray arrows are synapses from the C. elegans 

connectome. The thickness of these arrows indicate the number of synapses at a given connection. 

Dotted blue and orange arrows indicate neuromodulatory connections from Flavell et al., 2013. (C) 

Example dataset from multi-neuron calcium imaging in a free-moving wild-type animal. The 

calcium activity of each neuron is shown in black. The green-red heat map in the background 

indicates axial velocity of the animal, and the behavioral state of the animal is shown on top. 

GCaMP6m data were divided by co-expressed mScarlett fluorescence levels and normalized to a 

0-1 scale, based on the 1st and 99th percentiles of the neuron’s signal (see Methods). (D) Event-

triggered averages of individual neuron activity aligned to transitions between roaming (“R”) and 

dwelling (“D”) (left column), or transitions between forward runs (“F”) and reversals (“RV”) (right 

column). Data are shown as means and 95% confidence interval (95% CI). (E) Histograms of 

individual neuron’s activity during roaming (orange), dwelling (blue), forward runs (green), or 

reversals (red). Note that shifts of distributions to the right indicate increased neural activity. (F) 
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Simultaneously recorded activity of the 10 neurons projected onto the space spanned by the 1st and 

2nd principal components (i.e. PC1 and PC2). Individual data points are colored according to the 

ongoing axial velocity. Histograms above and to the right of the scatterplot indicate distribution of 

PC1 and PC2 values for 3 ranges of axial velocity (!):  ! ≤ -0.0165mm/s (red), -0.0165mm/s < ! 

≤ 0.0165mm/s (gray), !  ≥ 0.0165mm/s (green). (G) Projection of neural activity in principal 

component space, colored by the ongoing foraging state. Histograms show distributions of PC1 or 

PC2 values conditioned on the foraging state. H) Comparison of measured velocity (x-axis) to the 

velocity predicted by a General Linear Model that was trained from the neural data (y-axis). The 

density of datapoints in this space is represented as a two-dimensional histogram. I) Average 

Receiver Operating Curves from logistic regression models trained to predict foraging states using 

ongoing neural activity data from all 10 neurons or subsets of neurons (see Supplemental Methods 

for details). Dotted line indicates level expected by chance. Data in D-H are from the same set of 

wild-type animals (N=17). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Wilcoxon rank-sum 

test. 

 

Figure 2. Persistent NSM activity is associated with the dwelling state. (A) Joint distribution 

of NSM activity and the concurrent axial velocity during the dwelling (left column) or the roaming 

(right column) state. Histograms on top show marginal distributions of NSM activity during 

dwelling (left) or roaming (right). Histogram to the right show marginal distributions of axial 

velocity during dwelling (blue) or roaming (orange) states. (B) NSM activity aligned to the onset 

of dwelling states. (Top) Average NSM activity around the onset of dwelling states. (Bottom) Heat 

map of NSM activity around individual instances of roaming-to-dwelling transitions. Dotted black 

line denotes the onsets of dwelling states. Black ticks on the heat map mark the onset of an NSM 
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activity bout. (C) Left: latencies of roaming-to-dwelling transitions relative to the closest onset of 

an NSM activity bout. Right: latencies of dwelling-to-roaming transitions relative to the closest 

offset of an NSM activity bout. NSM activity bouts are defined through Gaussian Mixture 

Clustering (see Methods for details). (D) Scatterplot of the durations of individual dwelling states 

and the durations of their coinciding NSM activity bouts. (E) Projection of neural activity in 

principal component space, colored by concurrent NSM activity. Histograms show distributions 

of NSM activity along both axes. (F) Average circuit activity dynamics in principal component 

space aligned to the onset of NSM activation. Each colored arrow represents average activity 

dynamics over a 15 second interval. Color indicates ongoing NSM activity. Faint lines show 

bootstrap samples of the average dynamics. (G) Event triggered averages of individual neuron 

activity and animal speed aligned to the optogenetic activation of NSM. Red and green traces 

represent data from animals raised on all-trans retinal (ATR) (N = 6 animals), while gray traces 

represent data from control animals raised without ATR (N = 4 animals). Light red patch indicates 

the time window in which the red light is turned on. Comparisons are made between 1 second 

before the onset of the red light stimulation and 18 seconds into the stimulation. Data are shown 

as means and 95% C.I.s **p<0.01, ***p<0.001, ****p<0.0001, Wilcoxon rank-sum test with 

Benjamini-Hochberg (BH) correction. 

 

Figure 3. Serotonin signaling promotes persistent activation of serotonergic NSM neurons 

via a mutual inhibitory circuit. (A-B) Example circuit-wide calcium imaging datasets from tph-

1 (A) and mod-1 (B) mutant animals, shown as in Fig. 1C. (C) Association of NSM activity and 

axial speed in the indicated genotypes. Data are shown as probability density plots. (D) Duration 

of NSM activity bouts for the indicated genotypes. Data points represent individual NSM activity 
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bouts and violin plots show distributions across animals of the same genotype. Blue “+” marks the 

median of each distribution. (E) Probability of NSM being active in wild type animals and 

serotonin mutants. Data points represent individual animals and violin plots show distributions 

across animals of the same genotype. Blue “+” marks the median of each distribution. For (D-E), 

N = 17, 10, and 8 animals for WT, tph-1, and mod-1, respectively. (F) Event triggered averages of 

NSM activity and animal speed aligned to the optogenetic activation of mod-1 expressing neurons. 

Red and green traces represent data from animals raised on all-trans retinal (ATR) (N = 7 animals), 

while gray traces represent data from control animals raised without ATR (N = 4 animals). Data 

are shown as means and 95% C.I.s. Light red patch indicates the time window in which the red 

light is turned on. For NSM calcium activity, the comparison is made between 1 second before the 

onset of the red light stimulation and 30 seconds into the stimulation. For animal speed, the 

comparisons is made between 1 second before the onset of the red light stimulation and 60 seconds 

into the stimulation. (G) Circuit schematic based on results from the tph-1 and mod-1 mutants, 

showing cross inhibition between the NSM and the MOD-1 expressing neurons. For (D-F), 

**p<0.01, ***p<0.001, ****p<0.0001, Wilcoxon rank-sum test with Benjamini-Hochberg (BH) 

correction. 

 

Figure 4. PDF signaling is required for mutual exclusivity between circuit states and acts 

downstream of the 5-HT target neurons in the mutual inhibitory circuit. (A) Example circuit-

wide calcium imaging dataset from pdfr-1 mutants lacking PDF neuropeptide signaling, shown as 

in Fig. 1C. No roaming/dwelling ethogram is shown for pdfr-1 animals due to changes in their 

speed distribution that implicate altered or new behavioral states (see Figure 4-Figure Supplement 

4A-B). (B) Example circuit-wide calcium imaging dataset from transgenic animals expressing the 
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hyperactive PDFR-1 effector ACY-1(P260S) specifically in pdfr-1 expressing neurons. For NSM, 

the un-normalized ∆=/=+ is shown since the ∆=/=+ values never exceeded 10% of the average 

peak NSM activity wild-type animals. (C) Scatterplots of NSM and AVB activity in pdfr-1 mutants, 

transgenic pdfr-1::acy-1(P260S)gf animals, and tph-1; pdfr-1 double mutants. Data points are 

colored by the instantaneous speed of the animal. Color scale was chosen so that blue colors 

correspond to speeds typical of the dwelling state, orange correspond to speeds typical of the 

roaming states, while gray colors indicate speeds in-between the former. Dotted lines show the 

threshold values for NSM and AVB activity used for defining “co-activity” (determined using the 

Otsu method; see Methods). Insets show the density of data points in each of the quadrants defined 

by these threshold activity levels. (D) Probability of NSM and AVB being co-active for genotypes 

shown in (C). ***p<0.001; ****p<0.0001, bootstrap estimates of the mean with BH correction. 

(E) Duration of NSM activity bouts for the indicated genotypes. Data points corresponds to 

individual NSM activity bouts. Each violin plot represent data from animals of the same genotype. 

“+” denotes the median of each distribution. (F) Probability of NSM being active in wild-type and 

mutant animals. Data points corresponds to individual NSM activity bouts. Each violin plot 

represent data from animals of the same genotype. “+” denotes the median of each distribution. 

For (C-F), N = 17, 10, 8, 11, 9 and 8 animals for WT, tph-1, and mod-1, pdfr-1, pdfr-1::acy-1gf, 

and tph-1;pdfr-1 animals. (G) Event triggered averages of NSM activity and animal speed aligned 

to the optogenetic activation of pdf-1 expressing neurons. Red and green traces represent data from 

animals raised on all-trans retinal (ATR) (N = 5 animals), while gray traces represent data from 

control animals raised without ATR (N = 4 animals). Data are shown as means and 95% C.I.s. For 

NSM calcium activity and animal speed, comparisons are made between 1 second before the onset 

of the red light stimulation and 30 seconds into the stimulation.  (H) Speed of wild-type and pdfr-
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1 mutant animals in response to optogenetic activation of the MOD-1 expressing neurons (red 

shading). Average speeds during the window spanned by the black line were compared between 

animals of the two genotypes. (I) Circuit schematic summarizing results shown in (C-H): the 

PDFR-1 expressing neurons act downstream of the MOD-1 expressing neurons to inhibit the 5-

HT neuron NSM. Black arrows indicate anatomical connections based on the C. elegans 

connectome55. For (D- H), **p<0.01, ***p<0.001, ****p<0.0001, Wilcoxon rank-sum test with 

BH correction. 

 

Figure 5. A CNN classifier identifies circuit activity patterns predictive of roaming-to-

dwelling state transitions. (A) Schematic illustrating the architecture of the Convolutional Neural 

Network (CNN) trained to predict NSM activation events. (B) Left: a common convolutional 

kernel found across successfully trained CNNs. Only weights that are significantly different from 

zero are colored. Right: Feature selection results. Each black bar depicts the average area under 

the curve for the Receiver Operating Characteristic curve (AUC-ROC) from networks trained 

using data with one neuron held out at a time. The identity of the held-out neuron is indicated to 

the far left. The gray stripe in the background denotes the 95% CI of the AUC-ROC from networks 

trained using data from all 9 neurons. Error bars are 95% CI of the mean. **p<0.01, bootstrap 

estimate of the mean with BH correction. (C) Example activity traces from NSM, AVB, and the 

three neurons with significant weights in the convolutional kernel. Activity traces were taken 

during roaming (left), dwelling (right) and roaming-to-dwelling transition. (D) Scatterplots of 

simultaneously measured neural activity of the indicated pairs of neurons. Orange data points are 

taken during roaming states at least 1 minute before the onset of the next dwelling states and before 

NSM becomes active. Green data points are taken within 1 minute before the onset of dwelling 
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states. Along the x- and the y- axes are marginal probability distributions of the data points shown 

in the scatterplots. (E) Scatterplots of simultaneously measured neural activities of AIA and NSM. 

Orange data points are taken within 1 minute before the onset of the next dwelling states and before 

NSM becomes active. Blue data points are taken within 30 seconds after the onset of dwelling 

states. Along the x- and the y- axes are marginal probability distributions of the data points shown 

in the scatterplots. (F) Average cross-correlation functions between the indicated pairs of neurons 

during roaming (orange, data taken from 100-70 seconds before the onset of the next dwelling 

state), roaming-to-dwelling transition (green, data taken from 30-0 second before the NSM 

activation event prior to the onset of the next dwelling state), or dwelling (blue, data taken from 

10-40 seconds after dwelling onset). Error bars are standard error of the mean. Arrowheads denote 

the point of maximum in absolute magnitude of the cross-correlation function. (G) Average cross-

correlation coefficients computed at peak points indicated in (F). For (B, D-G), N = 17 WT animals. 

For (D-E and G), *p<0.05, **p<0.01, ****p<0.0001, Wilcoxon rank-sum test with BH correction. 

 

Figure 6. The AIA sensory processing neuron can drive behavioral state switching. (A) 

Average locomotion speed before, during, and after AIA::Chrimson activation for wild-type (left), 

tph-1 (middle), and pdfr-1 (right) animals. Animals were grouped by whether they were roaming 

(orange) or dwelling (blue) prior to AIA stimulation. Pink patches in the background denote the 

one-minute stimulation window. Gray lines indicate no-all-trans-retinal (no-ATR) controls. 

N=1032 wild-type animals were compared to N=370 no-ATR controls. N= 927 tph-1 mutants were 

compared to N = 284 no-ATR control. N= 383 pdfr-1 mutants were compared to N = 237 no-ATR 

controls. Note that roaming in pdfr-1 animals was too rare and brief to be included for analysis on 

AIA-induced slowing. Orange and blue arrowheads denote time points used for analyses in (B). 
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Error bars are 95% CI of the mean. (B) Fraction of animals in the roaming state at different phases 

of AIA::Chrimson stimulation. Top: Among animals that were roaming pre-stimulation, the 

fraction of them that were roaming after 4 seconds or 40 seconds from the onset of AIA stimulation. 

Bottom: Among animals that were dwelling pre-stimulation, the fraction of them that were 

roaming after 20 seconds or 40 seconds from the onset of AIA stimulation. Same analyses were 

performed for wild-type (left), tph-1 (middle), and pdfr-1 (right) animals. See panel (A) for full 

traces. (C) AIA-induced changes in roaming and dwelling at different optogenetic stimulation 

intensities. For (B-C), error bars are 95% CI of the mean and ****p<0.0001, Wilcoxon rank-sum 

test. (D) Functional architecture of the circuit controlling the roaming and dwelling states, based 

on results from Figures 2-5.  

 

Figure 7. The AIA sensory processing neuron can promote either roaming or dwelling, 

depending on the sensory context. (A) Top: Cartoon depicting the patch foraging behavioral 

assay. Horizontal bar with gradient signifies the food odor gradient emanating from the dense food 

patch. Bottom: example trajectories of two animals from a patch foraging assay. Color scale 

indicates speed, with orange corresponding to roaming-like speeds and blue dwelling-like speeds. 

Red dots denote the starting points of the animals. (B) Average fraction of animals roaming on the 

sparse food patch in the patch foraging assay. Comparisons are made between wild-type animals 

in the patch foraging assay (n=288), wild-type animals assayed on uniform sparse food with no 

dense patch around (n=194), and tax-4 animals in the patch foraging assay (n=81). (C) Schematic 

depicting how heading bias is calculated. (D) Event-triggered averages showing average heading 

bias of animals for two minutes prior to transitions into dwelling states. Experimental conditions 

are depicted with same color scheme as in (B).  Data are shown as means ± SEM. The average 
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heading bias within two time windows, one from 60-50 seconds prior to dwelling onset, the other 

from 20-10 seconds prior to dwelling onset, were compared. (E) Left: Average fraction of animals 

roaming on sparse food in the patch foraging assay in wild-type (black) versus AIA silenced 

(AIA::unc-103gf)  animals (green). Right: Heading bias of AIA-silenced animals (green) two 

minutes prior to the transition into the dwelling state. n=197. Wild type data (black with gray error 

bar) are shown for comparison. (F) Left: schematic of behavioral assays in uniformly-seeded food 

environments. Right: Average fractions of animals roaming for wild-type (black bars) and AIA-

silenced (green bars) animals exposed to two different densities of uniformly-distributed sparse 

food. For all calculations on fraction of animals roaming, error bars are 95% CI of the mean. For 

all calculations of heading bias, error bars are SEM.  For all comparisons, **p<0.01, ****p<0.0001, 

Wilcoxon rank sum test with BH correction.  

 

SUPPLEMENTARY FIGURE LEGENDS 

Figure 1 – Figure Supplement 1. Design and calibration of the spinning-disk confocal 

tracking scope. (A) Design of the microscope. Orange and green shaded boxes indicate the 

confocal and behavioral tracking parts of the microscope, respectively. An example image from 

the behavior tracking camera is shown, with the worm outlined in white. mScarlett-expressing 

neurons can be robustly detected in the animal’s head. (B) To minimize photo-bleaching, 

movement artifacts, and animal disturbance, the laser illumination of animals was timed to camera 

exposure and objective piezo movement during volume acquisition, as is illustrated. The tracking 

LED was also only illuminated in between GCaMP/mScarlett volume acquisitions, so as to prevent 

cross-talk between the upper and lower microscope paths. Laser illumination permitted animal 

tracking during volume acquisition. (C) A sample volume captured by the confocal microscope. 
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Neurons expressing the GCaMP6m and the mScarlett fluorescent proteins are annotated. For AIY, 

the neurite is labeled. (D) Semi-automated segmentation of neuron boundaries using the SURF 

algorithm. For a subset of frames in a video, the neuron boundaries are manually outlined. Then, 

the boundaries are propagated from one frame to others, based on image transformations that are 

defined by matching SURF features across frames. 

 

Figure 1 – Figure Supplement 2. Calibration of behavioral tracking accuracy and the effect 

of motion on calcium imaging data. (A) Example trajectory of an animal recorded under the 

tracking confocal microscope. (B) An image of this animal’s head region captured through the 

behavior tracking camera. Bright pixels correspond to neurons expressing the mScarlett transgene. 

(C) Probability distribution of the location of the head region as seen through the behavior tracking 

camera across all of the frames of the recording shown in (A). All scale bars in (A-C) represent 

0.1 mm. (D-F) Extraction of calcium activity from dual-channel fluorescent intensities from a 

representative neuron. (D) Time series of red (emission wavelength 603-678nm) and green 

(emission wavelength 502-538nm) fluorescent intensities were first denoised by median filtering. 

(E) Next, photobleaching over time was corrected by fitting and then normalizing away an 

exponential decay function. (F) Finally, the time series data from the green channels was divided 

by that from the red channel. The resulting time series was normalized to a relative scale of 0 to 1, 

with 0 corresponding to the 1st percentile and 1 to the 99th percentile of ratiometric values. (G) 

Range of variation normalized by mean calculated for the bleach-corrected red and green 

fluorescent intensities. Histograms were computed for aggregate data from all videos used in this 

study. Curved lines overlaying the red and green histograms (color matched) are mixture of 

Gaussian models fit to the corresponding histogram. (H) Distributions of fluorescence 
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measurements are not perturbed by data processing. Probability distribution functions for the 

activity of three example neurons after various stages of data pre-processing: (top) cell-specific 

fluorescent signals from the green channel after denoising, bleach correction and baseline 

subtraction; (middle) ratiometric values computed by dividing signals from the green channel with 

those from the red channel; (bottom) normalized ∆=/=+ values computed by remapping the 1st 

and 99th percentiles of the distribution to 0 and 1.  

 

Figure 1 – Figure Supplement 3. Additional examples of multi-neuron calcium activity traces 

in freely-moving wild-type animals. Data are shown as in Fig. 1C  

 

Figure 1 – Figure Supplement 4. Gaussian Mixture Models (GMM) for analyzing animal 

speed and NSM calcium activity. (A) GMM fit to the joint distribution of the normalized animal 

speed and the log-transformed variance of the normalized speed. Regions encircled by the white 

lines are centered on and encompass 50% of the probability mass of each of the 3 Gaussians that 

compose of the GMM. (B) GMM fit to the joint distribution of the normalized NSM calcium 

activity and the log-transformed variance of it. Regions encircled by the white lines are centered 

on and encompass 50% of the probability mass of each of the 4 Gaussians that compose the GMM. 

 

Figure 1 – Figure Supplement 5. Encoding of behavioral parameters by the calcium activity 

of individual neurons. (A) Joint distribution of individual neuron’s activity versus axial velocity 

(left column) or speed (right column). Colored dots indicate the Spearman’s correlation coefficient 

between neural activity and the locomotory parameters for all wild-type data or conditioned on the 
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animal’s movement direction. Green and red color indicates positive or negative correlation 

respectively, while the size the dot indicates the magnitude of the correlation coefficient. 

Insignificant correlations are represented with a small black dot. (B) Average autocorrelation 

function for the activity of each neuron across wild-type animals. The average autocorrelation 

function for animal speed is shown in green for comparison. N=17 wild-type animals, same dataset 

as in Fig. 1.  

 

Figure 1 – Figure Supplement 6. Differences in RIB and AVA joint activity during roaming 

compared to dwelling. (A) Joint distributions of AVA and RIB activity during dwelling and 

roaming in wild-type animals. (B) Quantification of data from panel (A). Distribution of AVA 

activity, conditioned on RIB activity being low, during roaming versus dwelling. **p<0.01, 

Wilcoxon rank-sum test. 

 

Figure 1 – Figure Supplement 7. Relationships between specific neurons and the principal 

components. (A) Loadings of individual neurons on to PCs 1-4. (B) Projection of neural activity 

in principal component space, colored by the concurrent activity of each of the 10 neurons. N=17 

WT animals, same dataset as in Fig. 1.  

 

Figure 1 – Figure Supplement 8. Examples showing the prediction of locomotion parameters 

using circuit activity. Prediction of foraging state (top ethograms) and axial velocity (middle 

traces) from the simultaneous activity of the 10 neurons shown in Fig. 1. Model predictions were 
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plotted side-by-side with measured data for comparison. Activity traces of NSM and AVA were 

plotted to illustrate the multi-neuron activity data used for prediction.  

 

Figure 2 – Figure Supplement 1. Further analysis of NSM activity. (A) NSM activity aligned 

to the onset of roaming states. (Top) Average NSM activity around the onset of roaming states. 

(Bottom) Heat map of NSM activity around instances of dwelling-to-roaming transition. Same 

color scale as in (D). Dotted black line denotes the onset of roaming states. Black ticks on the heat 

map mark the offset of an NSM activity bout. (B) Event-triggered averages centered on NSM 

activation (left) and termination (right) events. Data are from 17 WT animals and are shown as 

mean and 95% CI. PC4 is shown as an example to illustrate that dynamics beyond the first two 

principle components also change around the time of NSM activation. (C) Event triggered 

averages of individual neuron activity and animal speed aligned to the optogenetic activation of 

NSM for the indicated genotypes and experimental conditions. Light red patch indicates the time 

window in which the red light is turned on. Comparisons are made between 1 second before the 

onset of the red light stimulation and 22 seconds into the stimulation. N=4-5 animals per condition, 

with an average of 3 independent stimulation events (minutes apart) per animal. Wild-type control 

animals were recorded in parallel to mod-1 mutants. Data are shown as means and 95% C.I.s 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, Wilcoxon rank-sum test with Benjamini-

Hochberg (BH) correction. 

 

Figure 3 – Figure Supplement 1. Further analysis of NSM activity. (A) Fraction of time 

animals spent roaming versus dwelling for wild-type (WT), tph-1, and mod-1 animals. Data points 
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represent individual animals and violin plots show distributions across animals of the same 

genotype. Blue “+” marks the median of each distribution. N = 17, 10, and 8 animals for WT, tph-

1, and mod-1, respectively. **p<0.01, ***p<0.001, ****p<0.0001, Wilcoxon rank-sum test with 

Benjamini-Hochberg (BH) correction. 

 

Figure 3 – Figure Supplement 2. Additional examples of multi-neuron calcium activity traces 

in free-moving serotonin mutants. Data are shown as in Fig. 1C 

 

Figure 4 – Figure Supplement 1. Additional examples of multi-neuron calcium activity traces 

in free-moving serotonin mutants. Data are shown as in Fig. 1C. 

 

Figure 4 – Figure Supplement 2. Further analysis of NSM-AVB co-activity. (A) Joint 

distribution of NSM and AVB activity during roaming and dwelling. (B) Data from the indicated 

genotypes, showing the probability of AVB activity exceeding a range of different threshold values, 

while NSM activity is high. Note that in WT (black) there is a rapid decrease in P(AVB high | 

NSM high) as the threshold for calling AVB high is increased. This reflects a low incidence of 

high AVB activity during high NSM activity, which is attenuated in pdfr-1 mutants. Error bars 

show boostrapped 95% confidence intervals *p<0.05, empirical bootstrap test versus wild-type.  

 

Figure 4 – Figure Supplement 3. Correlations between neurons in wild-type and mutant 

animals. (A-D) Pairwise correlation coefficients among neurons in the roaming-dwelling circuit. 
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Same color scale (lower right) is used to represent correlation coefficients. Boxes outline the 

neurons known to promote forward runs (green) and reversals (magenta), as well as the 

correlations of NSM and other neurons (yellow). N = 17, 10, 8, 11, and 8 animals for WT, tph-1, 

and mod-1, pdfr-1, and tph-1;pdfr-1 animals. 

 

Figure 4 – Figure Supplement 4. Joint activity of NSM and AVB in serotonin and PDF 

signaling mutants. (A) Joint distribution of NSM and AVB activity, without normalizing to a 0-

1 scale, for movement speeds below (top row) or above (bottom row) a speed of 0.03 mm/s. (B-C) 

Probability of NSM and AVB being coactive for wild-type and mutant animals moving below (B) 

or above (C) 0.03mm/s, quantified without using the 0-1 normalization method. (D-E) 

Distributions of NSM (D) and AVB (E) activity, without normalizing to a 0-1 scale, across wild-

type and mutant animals. N = 17, 10, 8, 11, and 8 animals for WT, tph-1, and mod-1, pdfr-1, and 

tph-1;pdfr-1 animals. ***p<0.001, ****p<0.0001, Wilcoxon rank-sum test with Benjamini-

Hochberg (BH) correction. 

 

Figure 4 – Figure Supplement 5. Analyses of circuit dynamics and foraging behavior in 

serotonin and PDF signaling mutants. (A) Distributions of axial speed in wild-type animals and 

various 5-HT and PDF signaling mutants. Top panel shows speed distributions specific to the 

dwelling (blue) or the roaming (orange) states. Dotted blue and orange lines indicate the median 

speeds for the dwelling and roaming states, respectively. Shaded region defines the intermediate 

speed range used for the analysis in panel B. (B) Fraction of time animals moved at speeds 

intermediate between typical dwelling and roaming speeds for wild-type and mutant animals. The 
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range of intermediate speeds is defined by the shaded region shown in panel B. Data are shown as 

mean and standard error. N = 17, 10, 8, 11, 9 and 8 animals for WT, tph-1, and mod-1, pdfr-1, 

pdfr-1::acy-1gf and tph-1;pdfr-1 animals. ***p<0.001, ****p<0.0001, Wilcoxon rank-sum test 

with Benjamini-Hochberg (BH) correction. (C) Distributions of axial speed during spontaneous 

locomotion in transgenic animals used for optogenetic experiments in Figs. 2G, 3F, and 4G grown 

on (solid line) or off (dotted line) ATR. *p<0.05, **p<0.01, ****p<0.0001, comparison of 

bootstrap distributions with BH correction. 

 

Figure 5 – Figure Supplement 1.  Parameter selection for the CNN model.  (A) Convolutional 

kernels from CNN models trained to predict NSM activation using neural activity history of 

different time span and diverse temporal resolution. Kernels in the same row are trained neural 

activity history that span similar durations prior to NSM activation; kernels in the same column 

are trained with activity data of identical temporal resolution. Each kernel corresponds to a boot-

strapped average across training episodes. Only kernel weights significantly different from zero 

are represented by a blue-red color scale spanning from -1 to 1 (lower right). See Supplemental 

Methods for further details on model specification and training. (B) Average test accuracy of the 

model types presented in (A). Only models with a test accuracy greater than 0.5 (i.e. better than 

random guess) are included. The CNN architecture that uses input data span of 90 seconds at 30 

second resolution was chosen for its simplicity and accuracy and used for further analysis in Fig. 

5 and Fig. 5-S2. All models were trained using the same WT data as in Fig. 5. 
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Figure 5 – Figure Supplement 2. Evaluation of CNN classifier performance. (A) AUC-ROC 

of the CNN classifiers trained on authentic data compared to those trained on scrambled data and 

to the performance of two other common types of classifiers. Data are shown as mean and 95% CI 

from 200 training sessions. (B) AUC-ROC of CNN classifiers trained on data withholding 

different neuron triplets from the full data set, or with data from only the RIB, AIA, and AVA 

neurons. Gray band indicates the 95% CI of the accuracy of CNN classifiers trained on the full 

data set, as shown in A.  

 

Figure 5 – Figure Supplement 3. Convolutional kernels trained to predict transitions in 

foraging state or NSM activity. (A) Average convolutional kernels from CNN models trained to 

predict dwelling state onset using data from all neurons except (left panel) or including (right panel) 

NSM. Only kernel weights significantly different from zero are represented by a blue-red color 

scale spanning from -1 to 1. (B) Average convolutional kernels from CNN models trained to 

predict roaming state onset using data from all neurons except (left panel) or including (right panel) 

NSM, presented similarly as in (A). (C) Average convolutional kernel from CNN models trained 

to predict the offset of NSM activity bouts. All models were trained using the same WT data as in 

Fig. 5. 

 

Figure 6 – Figure Supplement 1. Connectivity of the AIA interneuron. Synaptic inputs and 

outputs of the AIA neuron. Data are from the C. elegans connectome. Bilaterally symmetric pairs 

of neurons (e.g. AIAL and AIAR) were merged here for display purposes. Connections supported 
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by only one single synapse were not included. Note the dense synaptic inputs onto AIA from 

chemosensory neurons. 

 

Figure 7 – Figure Supplement 1. Food-directed navigation in patch foraging assays. (A) 

Heading bias during roaming versus dwelling in the patch foraging assay (dark bars) and control 

sparse food plates (light bars), shown separate for roaming and dwelling. (B) Heading bias during 

roaming for animals of the indicated genotypes. (C) Average fractions of animals roaming on the 

sparse food patch for pdfr-1 (blue) and tph-1 (orange) mutant animals during the patch foraging 

assay. (D) Heading bias two minutes prior to the transition into the dwelling state for pdfr-1 (blue) 

and tph-1 (orange) mutant animals. n=99 for pdfr-1 and n=212 for tph-1 animals. Wild type data 

(black with gray error bar) are shown for comparison. All error bars are 95% CI of the mean. 

***p<0.001, ****p<0.0001, Wilcoxon rank sum test. 
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