2021 IEEE International Conference on Computational Photography (ICCP) | 978-1-6654-1952-9/21/$31.00 ©2021 IEEE | DOI: 10.1109/I1CCP51581.2021.9466265

EventGAN: Leveraging Large Scale Image
Datasets for Event Cameras

Alex Zihao Zhu, Ziyun Wang, Kaung Khant, Kostas Daniilidis

Abstract—Event cameras provide a number of benefits over traditional cameras, such as the ability to track incredibly fast motions,
high dynamic range, and low power consumption. However, their application into computer vision problems, many of which are
primarily dominated by deep learning solutions, has been limited by the lack of labeled training data for events. In this work, we
propose a method which leverages the existing labeled data for images by simulating events from a pair of temporal image frames,
using a convolutional neural network. We train this network on pairs of images and events, using an adversarial discriminator loss and
a pair of cycle consistency losses. The cycle consistency losses utilize a pair of pre-trained self-supervised networks which perform
optical flow estimation and image reconstruction from events, and constrain our network to generate events which result in accurate
outputs from both of these networks. Trained fully end to end, our network learns a generative model for events from images without
the need for accurate modeling of the motion in the scene, exhibited by modeling based methods, while also implicitly modeling event
noise. Using this simulator, we train a pair of downstream networks on object detection and 2D human pose estimation from events,
using simulated data from large scale image datasets, and demonstrate the networks’ abilities to generalize to datasets with real
events. The code and dataset in this paper are available here: https:/github.com/alexzzhu/EventGAN.

1 INTRODUCTION

Deep learning has led a revolution for many computer
vision tasks which had been considered incredibly challeng-
ing. The ability to leverage immense amounts of data to
train neural networks has resulted in significant improve-
ments in performance for many tasks. As a vision modality,
event cameras have a lot to gain from deep learning. By
combining the neural networks with the advantages of
event cameras, we stand to be able to extend the operat-
ing volume of speeds and lighting conditions significantly
beyond that which is achievable by traditional cameras.

However, these networks for events are limited by the
amount of labeled training data available, due to the cam-
era’s relative infancy and the cost of acquiring accurate
ground truth labels. While some works have been able to
bypass this issue with self-supervised approaches [1], [2],
[3], some problems, such as detection and classification,
cannot currently be solved without a large corpus of labeled
training data. In this work, we focus on an alternative to
costly data labelling, by leveraging the large set of labeled
image datasets via image to event simulation.

The highest fidelity event camera simulators today [4],
[5], [6] all operate with a similar framework, by simulating
optical flow in the image either through 3D camera motion,
or a parametrized warping (e.g. affine) of the image, in order
to precisely track the generation of events as each point in
the image moves to a new pixel. However, these scenarios
either require simulation of the full 3D scene, or severely
constrain the motion in the image. In addition, modeling
event noise, both in terms of erroneous events and noise in
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the event measurements, is a challenging open problem.

In this work, we present EventGAN, a novel method for
image to event simulation, where we apply a convolutional
neural network as the function between images and events.
By learning this function with data, our method does not
require any explicit knowledge of the scene or the rela-
tionship between images and events, but is instead able to
regress a realistic set of events given only images as input. In
addition, our network is able to learn the noise distribution
over the events, which are currently not modeled by the
competing methods. Finally, our proposed method has a
fast, constant time simulation which is easily parallelizable
on GPUs and integrable into any modern neural network
architecture, as opposed to the prior work which requires
3D simulations of the scene.

Our network is trained on a set of image and event
pairs, which are directly output by event cameras such as
the DAVIS [7]. At training time, we apply an adversarial
loss to align the generated events with the real events. In
addition, we pre-train a pair of CNNs to perform optical
flow estimation and image reconstruction from real events,
and constrain our generator to produce events which allow
these pre-trained networks to generate accurate outputs. In
other words, we constrain the generated events to retain the
motion and appearance information present in the real data.

Using this event simulation network, we train a set of
downstream networks to perform object detection on cars
and 2D human pose estimation, given images and labels
from large scale image datasets such as KITTI [8], MPII [9]
and Human3.6M [10]. We then evaluate performance on
these downstream tasks on real event datasets, MVSEC [11]
for car detection, and DHP19 [12] for human pose, demon-
strating the generalization ability of these networks despite
having mostly seen simulated data at training time.
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Our main contributions can be summarized as:

e A novel pipeline for supervised training of deep
neural networks for events, by simulating events
from existing large scale image datasets and training
on the simulated events and image labels.

¢ A novel network, EventGAN, for event simulation
from a pair of images, trained using an adversarial
loss and cycle consistency losses which constrain the
generator network to generate events from which
pre-trained networks are able to extract accurate
optical flow and image reconstructions.

e A test dataset for car detection, with manually la-
beled bounding boxes for cars from the MVSEC [11]
dataset.

¢ Experiments demonstrating the generalizability of
the networks trained on simulated data to real event
data, by training object detection and human pose
networks on simulated data, and evaluating on real
data.

2 RELATED WORK
2.1 Event Simulation

Prior works on event simulation have focused on differenc-
ing log intensity frames, in order to simulate the condition
required to trigger an event:

[ log(Zz+1(x)) — log(Z(x))| > ¢ 1)

Earlier works by Bi et al. [13] and Kaiser et al. [14] simu-
lating events by directly applying this equation to the log
intensity difference between each pair of successive images.
These methods were limited by the temporal resolution
of these images, and as such could only handle relatively
slow moving scenes. To improve fidelity, Rebecq et al. [4],
Mueggler et al. [5] and Li et al. [6] perform full 3D sim-
ulations of a scene. This allows them to simulate images
at arbitrary temporal resolution, while also having access to
the optical flow within the scene, allowing for accurate event
trajectories. However, these methods are limited to fully
simulated scenes, or images where the motion is known (or
where a simplified motion model such as an affine transform
is applied). Performing 3D simulations is also a relatively
expensive procedure, requiring complex rendering engines.
In addition, these methods do not properly model the noise
properties of the sensor. Rebecq et al. [4] apply Gaussian
noise to the trigger threshold, 6, as an approximation, but
no true model of the event noise distribution exists to our
knowledge. Later, this approach is further improved in
Vid2E [15] by applying a Super SlowMo [16] step before
simulating events in order to preserve finer temporal infor-
mation.

Our work, in contrast, runs in constant time using a
CNN which is easily parallelizable and optimized for mod-
ern GPUs. The network learns both the motion information
in the scene, as well as the noise distribution of the events.

2.2 Sim2Real/Domain Adapation

Learning from simulations and other modalities has been
a rapidly growing topic, with deep learning approaches
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for many robotics problems in particular requiring much
more training data than is practical to collect on a phys-
ical platform. However, this remains a challenging open
problem, as conventional simulators often cannot perfectly
model the data distribution in the real world, resulting in
many methods attempting to bridge this gap [17], [18]. One
popular approach to this problem in the image space is
the use of Generative Adversarial Networks (GANSs) [19],
which consists of a generator trained to model the data
distribution of the training set, while a discriminator is
trained to differentiate between outputs from the fake and
real data. With particular relevance to this work, conditional
GANSs [20], [21] are able to model relationships between
data distributions, while CycleGANs apply additional cycle
consistency losses [22].

A successful application of cross modality transfer is
in the field of image to lidar transform. A number of
recent works [23], [24], [25] have approached the problem
of simulating lidar measurements from images, which allow
networks to better reason about 3D scenes more efficiently.

With a similar motivation to our work, Iacono et al. [26]
and Zanardi et al. [27] address the issue of transferring
learning from images to events by running a network
trained on images on the grayscale images produced by
some event cameras such as the DAVIS [7], and using
these outputs as ground truth to train a similar network for
events. However, these methods treat the frame based out-
puts as ground truth, and so will learn biases and mistakes
made by the frame based network (e.g. the best mAP of the
grayscale network in Zanardi et al. [27] is 0.59, resulting in
a mAP for the event based network of 0.26).

As an alternative approach, our work follows the phi-
losophy of using GANs for image to event simulation. We
then use the simulated events to train directly on the ground
truth labels for the corresponding images, which should be
at least as accurate if not better than outputs from a frame
based network trained on these labels.

3 METHOD

The generative portion of our pipeline consists of a U-
Net [28] encoder-decoder network, as used in Zhu et al. [29]
and Rebecq et al. [2]. The generator takes as input a pair
of grayscale images, concatenated along the channel dimen-
sion, and outputs a volumetric representation of the events,
described in Section 3.1. To constrain this output, we apply
an adversarial loss, described in Section 3.2, as well as a pair
of cycle consistency losses, described in Section 3.3. The full
pipeline for our method can be found in Figure 1.

3.1 Event Representation

The most compact way to represent a set of events is as a
set of 4-tuples, consisting of the z,y position, timestamp, ¢,
and polarity, p. However, regressing points in general is a
difficult task, and faces challenges such as varying numbers
of events and permutation invariance.

In this work, we bypass this issue by instead regressing
an intermediate representation of the events as proposed
by Zhu et al. [29]. In this representation, the events are
scattered into a fixed size 3D spatiotemporal volume, where
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Fig. 1: Overview of the EventGAN pipeline. A pair of grayscale images are passed into the generator, which predicts a
corresponding event volume. This output is constrained by an adversarial loss, as well as a pair of cycle consistency losses
which constrain the generated volume to encode image and flow information.

each event, (z,y, t, p) is inserted into the volume, which has
B =9 temporal channels, with a linear kernel:

t; =(B=1)(ti —t1)/(tn — t1) )
V(il‘,y,t) :Zmax(ovl - |t_t;<|) (3)

This retains the distribution of the events in x-y-t space, and
has shown success in a number of tasks [2], [29], [30].

However, we deviate from the prior work in that we gen-
erate separate volumes for each polarity, and concatenate
them along the time dimension. This results in a volume
which is strictly non-negative, allowing for a ReLU as the
final activation of the network, such that the sparsity in the
volume is easily preserved.

In addition, we normalize this volume similar to Rebecq
et al. [2], with an additional clipping step, as follows:

V(.’E,:%t) :mln(v($7y:t)an98) (4)
7198

where )95 is the 98th percentile value in the set of non-zero
values of V. This equates to a clipping operation, followed
by a normalization such that the volume lies in [0, 1]. The
clipping is designed to reduce the effect of hot pixels, which
have an erroneously low contrast thresholds and thus gen-
erate a disproportionately many events, skewing the range.

3.2 Adversarial Loss

Perhaps the most direct way to supervise this network is
to apply a direct numerical error, such as a L1 or L2 loss,
between the predicted and real events. However, given a
pair of images, the number of plausible event distributions
between the images is extremely large (two images can not
constrain the exact motion in between them). Such a direct
loss would likely cause the network to overfit to the trajec-
tories observed in the training set and fail to generalize.
Instead, we apply an adversarial loss [19]. This loss sim-
ply constrains the generated events to follow the same dis-
tribution as the real ones, and avoids directly constraining

the network to memorizing the trajectories seen at training
time. For each event-image pair, (z,y), we regress a gener-
ated event volume using our network, G, and then pass the
generated events and real events through a discriminator
network, D, which predicts the probability that its input is
from real data. Our discriminator is a 4 layer PatchGAN
classifier [21]. We alternatingly train the generator and dis-
criminator, with the discriminator trained 2 steps for every
1 of the generator, using the hinge adversarial loss [31], [32]:

‘CD == E(I1y)diata [min(07 -1 + D(:Ea y))]
= Eypgy, [min(0, =1 = D(G(y), y))] ®)
L& =—Eyp. D(G(Y),y) (6)

3.3 Cycle Consistency Losses

However, GANs are typically difficult to train, especially
with a high dimensional output space such as an event vol-
ume. In addition, there are no guarantees on the simulated
events retaining the salient information in the images, such
as accurate motion and intensity information.

To this end, we apply an additional pair of losses which
constrain the generated events to encode this motion and
intensity information. In particular, we pre-train a pair of
networks for optical flow estimation and image reconstruc-
tion from real events, using the pipeline in EV-FlowNet [1].

The flow network takes as input the event volume, and
outputs a per pixel optical flow. Supervision is applied
by warping the previous image to the time of the next
image using the predicted flow, and applying an L1 loss
between the warped and original image, as well as a local
smoothness constraint.

The image reconstruction network takes as input the
previous image and the event volume, and outputs the
predicted next image, and is directly supervised by a L1
loss between the reconstructed and original image. The
previous image is provided as input as we found that
the image reconstruction network tended to overfit to the
training set without it. Prior work by Rebecq et al. [7]
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Fig. 2: Outputs from models trained with subsets of our proposed loss, all models trained with the same hyperparameters.
Events are visualized as average timestamp images, i.e. the average timestamp at each pixel. Any voxel with non zero value
will generate a color in the average timestamp image, allowing us to see the sparsity of the volume. (a): L1 reconstruction
loss in place of the adversarial loss, causing artifacts in the events, and no sparsity achieved, as observed in the interior
of the ‘LOVE’ symbol in the time image. (b): Adversarial loss only. Model struggles to converge, and requires significant
hyperparameter tuning in order to achieve good results. (c): Adversarial loss and reconstruction loss. Model is now stable,
but the events do not have motion information. The image should have a gradient in the motion direction. (d): Adversarial
loss and flow loss. Motion direction can now be seen in the time image, but events are not generated in many areas. (e):
Adpversarial loss, flow and reconstruction losses. Motion trails can now be clearly seen in the time image (see letters). (f):
Real events. Note that our method typically underestimates the amount of motion in the scene.

has circumvented this by training in a recurrent fashion,
but doing so would require multiple passes through the
recurrent network, which is undesirably expensive when
the goal is to train the generator network. In addition, we
summarize the event volume by summing along the time
dimension. This is to maintain the invariance to permutation
across time of the events. For example, two events occurring
at the start of the window vs. two events at the end of the
window should generate the same output image. The input,
then, to the reconstruction network, is a 2-channel image
consisting of the previous image and the summed event
volume.
In summary, the cycle consistency losses are:

Lp =Y |lo(x—F(x;G)) = L(x)[h

dF dF
o ([ 1+H;y<x£> ) o
Lr=>_|L(x;G,Io) — L(x)|h ®)
['cycle =Lr+Lg 9)

When training the generator network, we pass the out-
put from the generator as input to each of the pre-trained
networks, and apply the same losses used to train each.
However, in this case, we freeze the weights of each pre-

trained network, such that the generator must tune its out-
put to generate the best input for each pre-trained network.
Both cycle consistency networks share the same architecture
as the generator network, with the losses applied each time
the generator is updated in the adversarial framework. The
final losses at each step are:

(10)
(11)

Generator step: Las = La + Leycle

Lps=~Lp

Discriminator step:

These losses provide useful gradients early in training,
when the adversarial loss is typically unstable, and embed
motion and appearance information in the predicted event
volumes. Figure 2 shows the effect of each loss on the output
of the generator.

In summary, the adversarial loss enforces sparsity in the
event volume and similarity between the fake and real event
distributions. The flow loss enforces motion information to
be present within the volume, while the reconstruction loss
enforces regularity in the number of events generated by the
same point. This is particularly evident when one visualizes
the image of the average timestamp at each pixel, where
extremely low (but non-zero) values may be hidden in the
count image, and where motion trails are clearly visible.

We also implement the tips prescribed by Gulrajani
et al. [33] and Brock et al. [34]. In particular, we apply
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spectral normalization [35] in the encoder of the generator,
and batch normalization [36] for the entire generator, while
the discriminator has neither types of normalization. We
also add noise to the labels seen by the discriminator by
randomly flipping the labels from real to fake 10% of the
time, as recommended by Chintala et al. [37].

4 EXPERIMENTS

We train our network using the RAdam [39] optimizer for
100 epochs on events and images from the indoor_flying
and outdoor_day sequences in the MVSEC dataset [11], as
well as a newly collected dataset consisting of recordings
from a DAVIS-346b camera [7], consisting of short (<60s)
sequences with a number of different scenes and motions,
in order to capture a large range of event distributions. As
the objective of this work is to produce an event simulator
which operates well on existing image datasets, we did not
train on scenes which are challenging for images (e.g. night
time driving). In total, the training set consists around 30
mins of data. During training, we perform weighted sam-
pling from this dataset, with a 80%/20% split between the
new data and MVSEC. Each input to the network consists of
a pair of images, randomly picked between 1 and 6 frames
apart, and the events between them.

Quantitative evaluations of generative models is diffi-
cult, as measuring how well the predicted events fit the
true event distribution requires knowledge of the true event
distribution. In general, the mapping from images to events
is one-to-many. For images, networks trained a large corpus
of image data are used to model these distributions, and
metrics such as the Inception Score [40] or the Fréchet
Inception Distance [41] are applied using these networks.
However, this results in a second chicken and egg problem,
as no such corpus of event data currently exists.

Instead, we primarily evaluate our method directly on
a set of downstream tasks, and demonstrate that our sim-
ulated events are able to train networks for complex tasks
which generalize to data with real events. In Sections 4.1
and 4.2 we describe our experiments for 2D human pose
estimation and object detection, respectively.

Finally, in Section 5.3, we provide experiments where we
measure the difference between our predicted events and
the observed ones. While this is an imperfect measure, we
show that we outperform competing work in Vid2E [15].

4.1 2D Human Pose Estimation

We train a 2D human pose detector for events based on
the publicly available code from Xiao et al. [42], which
uses an encoder-decoder style network to regress a heatmap
for each desired joint. We use a ResNet-50 [43] encoder,
pretrained on ImageNet [44]. For event inputs, we modify
the number of input channels in the first layer, and ran-
domly initialize the weights of this layer. The network is
then trained on a 80%/20% split between the MPII [9] and
Human3.6M [10] datasets. For each ground truth pose, the
pair of images either 1 or 2 frames before and after the target
frame are selected at random, and passed into the generator
network to generate a simulated event volume.

We evaluate our method on the DHP19 [12] dataset,
which consists of 3D joint positions of a human subject,

5

recorded with motion capture, with events from four cam-
eras surrounding the subject. Using the camera calibrations,
we project these 3D joint positions into 2D image positions
for each camera. Following the experiment schedule by
Calabrese et al. [12], we use as a test set data from subjects
13-17 and cameras 2-3. As our method does not include
any temporal consistency, we remove sequences with hand
motions only, where most of the body is static and does
not generate any events. This results in 16 motions across 5
subjects and 2 cameras. Following Calabrese et al. [12], we
divide each sequence into chunks of 7500 events per camera,
and evaluate on the average pose within each window. One
issue with this direct evaluation is that the marker positions
for DHP19 vary significantly from those in MPII and H36M.
In order to overcome this offset between the joint positions,
we freeze all but the final linear layer of our network, and
fine tune this layer on the DHP19 training set (subjects 1-12,
cameras 2-3). This is equivalent to training a linear model on
the activations from the second to last layer, as is common
in the self-supervised learning literature [46].

4.2 Object Detection

We train a detection network using the YOLOv3
pipeline [38]. We initialize the network from a pretrained
YOLOvV3 network with spatial pyramid pooling, with the
first input layer randomly initialized. The network is trained
on simulated events from the KITTI Object Detection
dataset [8], with the target frame and either the frame one
or two frames prior.

4.3 The Event Car Detection Dataset

For evaluation, we generated a novel dataset for car bound-
ing box annotations for event data. Our dataset consists of
250 labeled images from the MVSEC [11] outdoor driving
dataset, with corresponding timestamps. For each image,
raters label bounding boxes for all cars within the scene,
while also separating the cars into easy (large, no occlusion),
hard (medium, or partial occlusion) or don’t care (mostly
occluded or too small) categories. In total, there are 451 easy
instances, 506 hard instances and 959 don’t care instances.
This dataset will be publicly available.

4.4 Competing Methods

We additionally simulate the MPII, H36M and KITTI
datasets using ESIM [4], by simulating a random affine
transform of each image in the dataset, similar to the method
used by Rebecq et al. [2]. Using this simulated data, we
train the same networks described in Sections 4.1 and 4.2.
For both experiments, we also train networks on real data
as a baseline. For object detection, we train a network
on the grayscale frames from KITTI, and evaluate on the
grayscale frames from MVSEC and DDD17. For human pose
estimation, we train a network on the events in the training
set (subjects 1-12) of DHP19.

5 RESULTS
5.1 2D Human Pose Estimation
We evaluate our method on the mean per joint position

error (MPJPE) [12], % va |x; — &:||2, as well as PCKh@50
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(a) Input Frame (b) EventGAN (c) ESIM

Fig. 3: Sample outputs generated by EventGAN, compared to ESIM [2], visualized as images of the average timestamp at
each pixel. Top images are from the KITTI dataset [5], bottom are from MPII [9]. Compared to ESIM, our method is able to
more accurately capture the motion in the scene, and capture fine grain information.

Training Data ‘ Precision ‘ Easy recall ‘ Hard recall ‘ Comb recall ‘ AP ‘ F-1

EventGAN 0.42 0.57 0.34 0.45 0.30 | 0.44
ESIM 0.23 0.08 0.02 0.05 0.02 | 0.09
Frame 0.57 0.48 0.27 0.37 0.29 | 0.45

TABLE 1: Object detection results on the Event Car Detection dataset. Metrics adopted from the PASCAL VOC chal-
lenge [45]. The EventGAN and ESIM models are trained on simulated events from the KITTI dataset, while the Frame
model is trained on the real image frames from the KITTI dataset.

Pretrained only 1 Epoch 30 Epochs 140 epochs
EventGAN ESIM | EventGAN ESIM Real | EventGAN ESIM  Real Real
MPJPE | 14.55 19.57 6.76 7.58 8.94 6.44 6.54 6.75 6.39
PCKh@50 45.47 40.53 87.70 85.89  80.55 90.19 89.93 87.53 89.86

TABLE 2: Human pose estimation results in MPJPE (pix.) (lower is better) and PCKh@50 (higher is better). All EventGAN
and ESIM models are first pretrained on simulated events from the MPII and H36M datasets, and then the final linear layer
is fine tuned on the DHP19 training set for the specified number of epochs. The Real models are trained directly (whole
model) on the DHP19 training set for the specified number of epochs.

(percentage of correct keypoints) [9], which measures the percentage of joint predictions with error less than 50% of
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EventGAN

Frame

Fig. 4: Selected qualitative results of our car detection pipeline using the YOLOv3 network [

]. Detections are in blue, GT

labels in green, and don't care regions in red. For explanation of the methods, please see Table 1.

ESIM-fine-30

EventGAN Evaluated on Custom Data

Fig. 5: Qualitative results of our human pose estimation on real event data. The first three sets are evaluated on samples

from the DHP19 dataset [

1, where ground truth is in white and predictions are in blue. Our model is able to achieve

accuracy on par with a model directly trained on the real data after 30 epoch of fine tuning only the last linear layer. The
last set shows our YOLOV3 detection pipeline combined with our human pose estimator. The detection network is trained
on MPII to detect the human in the scene (blue box), which is fed into the human pose estimator to estimate the 2D joint

positions (MPII format). Best viewed in color.

the head size. We define head size as 0.6x the distance
between the head and the midpoint between the shoulders.

In Table 2, we compare a network trained on simulated
events from EventGAN, ESIM, and a network trained di-
rectly on the DHP19 training set. We also report results
from fine tuning the final linear layer of the network on
the DHP19 training set for both EventGAN and ESIM.
Qualitative results from both DHP19 and out of sample
data can be found in Figure 5. From these results, we can
see that the data generated by EventGAN is able to train a
network to learn representations that are very close to the
true data. After only one epoch of fine tuning, and only of
the final layer, we are able to achieve significantly higher
accuracy than training on the real data, and come close to
the accuracy of a network trained for 140 epochs on real
data. However, the gap between ESIM and our method is

also relatively small. This is largely due to the low difficulty
of the dataset, as even training on real events converges to
a relatively good solution after only one epoch of training.
This was observed even when testing with much smaller
networks, although they converge to a lower accuracy. The
dataset is also much cleaner, and as such is closer to the
ESIM outputs.

5.2 Object Detection

We evaluate our method according to the precision-recall
statistics defined by the PASCAL VOC challenge [45]. Pre-
dictions with confidence < 0.2 are removed, and non-
maximum suppression is applied for boxes with IoU > 0.2.
In total, we report precision, recall on the easy and hard
classes, as well as the AP and F-1 scores for each training
input in Table 1. We provide qualitative results in Figure 4.
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From these results, we observed that our method is
able to achieve reasonably strong results, and comes close
to matching the performance of the network with frame
inputs, which was trained on real data. The difference in
performance implies a small sim-to-real gap, but may also
simply be due to a stronger signal in the images for certain
frames (although this may also be true the other way round).
On the other hand, the sim-to-real gap is significant when
training on ESIM. As the true event distribution differs
largely from the simulated data, the network is only able to
perform accurate detections when the input has relatively
low noise (e.g. Figure 4 right), resulting in very low recall.

5.3 Direct Quantitative Evaluation

In addition to the evaluation based on the downstream
tasks, we provide quantitative and qualitative evaluation
of our method against competing methods on the night
sequence of MVSEC [11]. We compare our method against
the approach described in Vid2E [15], where a video inter-
polation [16] step is performed before feeding the images
to the ESIM [4] simulator. Note that EventGAN could also
take advantage of the interpolated image frames, which
is why we directly compare with the ESIM generator in
the main experiments. Quantitative Evaluation We directly
calculate the L2 distance and classification score between
the generated volumes and the ground truth volumes. For a
volume F and ground truth E, the L2 distance is calculated
by:

||E_EA‘H2: Z (E($7y7t,p)—E($,y7t7p))2

x,y,t,p

For classification score, we first scale the predicted event
volumes so that the max value matches that of the ground
truth, to minimize the effect of the contrast threshold.
Then, we classify an event bin as correct if its value is
within some threshold of the ground truth. We use two
of such thresholds: 0.5 and 1, and report the proportion
of correct classifications for each volume. The values in an
event volume can be seen as the number of events, and
a threshold of 1 means the error in prediction is within 1
event, although this is dominated by no event voxels. To get
the best performance from Vid2E [15], we run a parameter
sweep of contrast threshold from 0.1 to 1.7 and refractory
period from 1075 to 10~. For the sake of space, we report
the result for the best refractory period for each contrast
threshold based on L2 distance.

As shown in Table 3, EventGAN outperforms different
configurations of the competing methods in all of these
metrics. Note that the best contrast threshold found in this
search was outside the default range (0 to 1) specified in
the V2E paper, which shows it is a difficult task to find the
contrast threshold that best emulates the event generation
for a real event-based camera. In contrast, our network
learns this information from the dataset and avoids the
expensive search procedure. Normalizing the event volumes
alleviates the problem to some extent, but it fails to account
for the change of event distribution because thresholding
the log-intensity is inherently a non-linear function. We
observe this in Table 3, where different contrast thresholds

Method L2 Acc(0.1) | Acc(0.5) | Acc(1)
Vid2E, ¢=0.1 | 101.489 0.867 0.945 0.977
Vid2E, ¢=0.3 | 100.727 | 0.889 0.946 0.978
Vid2E, ¢=0.5 | 100.281 0.906 0.943 0.979
Vid2E, ¢=0.7 | 99.917 0.916 0.945 0.979
Vid2E, ¢=0.9 | 99.071 0.924 0.949 0.979
Vid2E, c=1.1 | 99.282 0.931 0.952 0.979
Vid2E, c=1.3 | 98.480 0.940 0.958 0.981
Vid2E, c=1.5 | 99.414 0.942 0.960 0.981
Vid2E, ¢=1.7 | 98.092 0.948 0.964 0.984

EventGAN 91.786 0.957 0.972 0.992

TABLE 3: Comparison between EventGAN and [15] on
samples of MVSEC [11] night driving sequence 1. For L2,
We normalize the generated volumes by setting the max
value of each volume to 1. We evalute the accuracy with
three different thresholds.

produce vastly different errors. On the other hand, Event-
GAN provides an effective method for generating events
without expensive video interpolation or hyperparameter
search.

5.4 Qualitative Evaluation

To provide concrete examples of the quality of generated
events, we show a pair of zoom-in views of the event
volumes generated with EventGAN versus those generated
with the competing methods in Figure 6. It can be seen
from these images that EventGan is able to produce the
noise properties that resemble those from the actual camera.
Competing methods produce reasonable but overly clean
events. Qualitatively, we find the events from ESIM to be
closer to the events generated with direct L1/L2 super-
vision in our experiments. By including a pair of adver-
sarial losses, EventGAN takes advantage GAN'’s ability to
model complex image distributions and produces realistics
events without making simplifying assumptions about the
noise distribution. In addition, EventGan retains more fine-
grained details of the captured scene without the need to
tuning the contrast threshold.

6 IMPLEMENTATION DETAILS
6.1 Training

Our generator network, and flow and reconstruction net-
works, share the same U-Net style architecture used by Zhu
et al. [29] and Rebecq et al. [2]. In particular, the network
has four encoder layers and four decoder layers, with two
residual blocks [43] in between. The input is a discretized
event volume with nine bins along the temporal dimension,
resulting in a 18 channel input when accounting for polarity.
The activations of the first layer have 32 channels, and
double for each encoder layer, reaching a max of 512, and
then halving for each decoder layer. We train using the
RAdam [39] optimizer for 100 epochs.

We also implement the tips prescribed by Gulrajani et
al. [33] and Brock et al. [34]. In particular, we apply spectral
normalization [35] in the encoder of the generator, and
batch normalization [36] for the entire generator, while the
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Fig. 6: Qualitative comparison between events generated from EventGAN and from ESIM [4]. Top two figures: events from

EventGAN. Bottom two figures: events from ESIM [4].

discriminator has either types of normalization. We also add
noise to the labels seen by the discriminator by randomly
flipping the labels from real to fake 10% of the time, as
recommended by Chintala et al. [37].

6.2 The Event Car Detection Dataset

For this dataset, we also explored the use of the DDD17
dataset [47], while contains 12 hours of driving data
recorded from a DAVIS 346b [7/] camera. However, we
found that, due to the positioning of the camera behind
the windshield, the majority of cars in each sequence were
extremely small, and the positioning of the cameras and the
scenes viewed differed significantly from the training data
in KITTI. As a result, the trained YOLO network failed to
produce reasonable detections. Small objects are a challeng-
ing problem for detectors in general, and, as the objective
of the evaluation was to compare between the training data
and input modality, we have omitted this dataset from the
experiments.

6.3 ESIM

We generate simulated events using ESIM by following the
procedure described by Rebecq et al. [2]. In particular, we
use the Multi Objects 2D renderer ! which allows us to
simulate motion from a single image by applying a random
affine transformation to the image. In particular, we apply
a random translation, scaling and rotation to the image,
between -0.1 and 0.1 radians for rotation, and between -10%
and 10% of the image size for translation and scaling. We
then keep the first 50000 simulated events, which are used
to generate a discretized event volume which is used for
training. As this process is relatively slow ( 6s per image),
simulation is performed as a pre-processing step. Where
possible, we applied the default parameters recommended
by the package. We also experimented with the “Simulating
events from a video” option for ESIM 2 but found that the
frame rate for the datasets used in this work (KITTI, MPII
and H36M) was too low for this method.

1. https://github.com/uzh-rpg/rpg_esim/wiki/
Multi-Objects-2D-renderer

2. https:/ /github.com /uzh-rpg/rpg_esim/wiki/
Simulating-events-from-a-video

7 DISCUSSION

In this section, we discuss a few important questions that
we consider during the development of the approach. These
questions motivate us to follow the current design of Event-
Gan.

Choice of Loss Functions: to train EventGan, we choose
to combine the a pair of adversarial losses with a set of
auxiliary losses to ensure the consistency of the generated
events with the input images (flow, image reconstruction,
etc.). We chose not to use a direct L1/L2 loss, as this
would force the network to learn a direct 1-to-1 mapping
between input images and output events. This would cause
the network to struggle if presented with identical images
with different sets out events (from different intermediary
motions between the images). On the other hand, an adver-
sarial loss allows the network to learn a distribution over the
image to event mapping, and so the generator only needs to
output a feasible set of events, rather than the exact set that
was captured in the data.

On the other hand, the reconstruction loss allows the
network to learn output events that could generate the
subsequent image, but does not have any constraint over
realistic motions. For example, imagine a dot which moves
5 pixels to the right. A feasible set of events for the recon-
struction loss would be negative events over where the dot
originated, and positive events at the new location, where
the dot “teleports” in the image. The flow loss forces there
to be a smooth trajectory of events (as seen at training time
for the flow network), in order for accurate flow estima-
tion. Conversely, the flow loss does not apply a constraint
over the number of events, which the reconstruction loss
provides.

Choice of Time Slices: a natural question in dealing with
event volumes is the choice of temporal bins in the event
volume and how it affects the quality of event generation.
We agree that using a limited number of temporal bins (nine
in our experiments) might suffer in high-speed scenarios
between two consecutive frames. However, our network is
designed to be agnostic to the length of time over which
the event volume spanned, due to the normalization of the
timestamps in the volume and our random sampling of
pairs of temporal frames over different time durations. As
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such, the volume can be generated over very small time
intervals (e.g. 10ms), where each slice captures a very small
time interval. This has been demonstrated to work for very
fast motions in prior works such as [2], [29].

8 CONCLUSIONS

In this work, we have proposed a novel method for training
supervised neural networks for events using image data by
way of image to event simulation. Given events and images
from an event camera, our deep learning pipeline is able to
accurately simulate events from a pair of grayscale images
from existing image datasets. These events can be used to
train downstream networks for complex tasks such as object
detection and 2D human pose estimation, and generalize to
real events.

The largest limitation of this work is the need for a pair
of frames (video), thus prohibiting the use of larger image
datasets such as ImageNet [44] and COCO [48]. While it
is possible to train a GAN to predict events from a single
image, this would become a complex future prediction task,
as the GAN must hallucinate the motion within the image.
Other promising future directions include exploring other
event representations, more complicated adversarial archi-
tectures, and exploring more complex downstream tasks.
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