2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) | 978-1-6654-1714-3/21/$31.00 ©2021 IEEE | DOI: 10.1109/IROS51168.2021.9635975

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

September 27 - October 1, 2021. Prague, Czech Republic

Self-Supervised Optical Flow with Spiking Neural Networks and Event
Based Cameras

Kenneth Chaney', Artemis Panagopoulou’, Chankyu Lee?, Kaushik Roy?, and Kostas Daniilidis'

Abstract— Optical flow can be leveraged in robotic systems
for obstacle detection where low latency solutions are critical
in highly dynamic settings. While event-based cameras have
changed the dominant paradigm of sending by encoding stimuli
into spike trails, offering low bandwidth and latency, events are
still processed with traditional convolutional networks in GPUs
defeating, thus, the promise of efficient low capacity low power
processing that inspired the design of event sensors. In this
work, we introduce a shallow spiking neural network for the
computation of optical flow consisting of Leaky Integrate and
Fire neurons.

Optical flow is predicted as the synthesis of motion orien-
tation selective channels. Learning is accomplished by Back-
propapagation Through Time. We present promising results
on events recorded in real “in the wild” scenes that has the
capability to use only a small fraction of the energy consumed
in CNNs deployed on GPUs.

I. INTRODUCTION

Spiking Neural Networks (SNNs) and event based cameras
(DVSs) have recently seen many advancements that have
opened up the field of deep learning based computing
models. In Zhu et al. [2], a dense input representation
was introduced that maintained the temporal fidelity for
a properly chosen set of events. This work allowed for
accurate prediction of optical flow, depth and ego motion.
SNNs have recently seen gradient approximation methods
in multiple works (recently [3] and [4]). These surrogate
gradient methods have enabled the training of models for
classification tasks. The asynchronous nature of the sensor
and computing paradigm enable SNNs and DVSs to work
together to perform tasks that are similar to their biological
counterparts.

Optical flow calculations are used in numerous down-
stream robotics tasks such as obstacle avoidance, UAV
landing, UAV hovering, and odometry [5]. The importance of
motion recognition is seen by the prevalence throughout the
animal kingdom; Drosophila [6], Falcons [7], and humans
[8]) all utilize this information for similar tasks which we
task robots with.

In silicon, the DVS sensor [9] provides an approximation
of retina cells, transmitting spike information only when
the photoreceptor changes in intensity. When compared to
standard cameras, which rely upon integrated frames, the
DVS shows gains in power efficiency, bandwidth, latency,
and dynamic range. The core drawback for most systems
is the lack of decades of research in tasks such as feature

IUniversity of Pennsylvania {chaneyk, artemisp, kostas}
@seas.upenn.edu
2Purdue University {1lee2216, kaushik} @purdue.edu

tracking, optical flow, structure from motion, and object
detection.

Recently, these downstream tasks have mainly been tack-
led on conventional CPU or GPU. Recent advances in lever-
aging deep learning to complete tasks such as optical flow
[10], obstacle avoidance [11], [12], and image reconstruction
[13], [14] perform at a high degree of accuracy. However,
they fall behind in the power efficiency and asynchronicity
of the DVS. Spiking Neural Networks (SNNs) have recently
seen dedicated hardware emerge to address each of these
needs. Most notably IBM TrueNorth [15], SpiNNaker [16],
and Loihi [17] all provide a silicon based neuron simulation
that can be configured to run functional subsets of a brain.
These recent advances in silicon has allowed for small scale
experiments such as SLAM [18] and error correction in path
integration [19].

Supervised SNN training is difficult due to the lack
of a gradient through the spike function itself. Surrogate
gradient methods have allowed for approximations of the
gradient through this function to be used to train networks.
Methods such as SLAYER [3], require spikes to be present
at every layer to construct a gradient that is non-zero. This
is a requirement to start the learning process. The gradient
approximation methods have been shown to work for classi-
fication tasks and rate encoding tasks, because solutions are
able to be reached over time. Regression tasks such as optical
flow from event based cameras have continuously changing
outputs that do not allow for large amounts of time to elapse
before resulting in an answer.

In this paper, we propose a novel optical flow pipeline
that builds upon the recent advances in supervised SNN
training as well as recent advances in methods training
standard convolutional neural networks (CNN) for event
based cameras. The technical contributions of this paper are
as follows:

o Fully self-supervised convolutional SNN for optical
flow from events.

« A novel vector output encoding scheme for spikes that
minimizes the activity levels in the final layer.

o A novel architecture and pipeline that leverages mul-
tiple temporal delays, surrogate gradient methods, and
rate-population encoding to perform dense optical flow
estimation from events.

« Evaluation of low resolution and parameter count net-
works on MVSEC [1].

978-1-6654-1714-3/21/$31.00 ©2021 IEEE 5892

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 27,2022 at 21:57:11 UTC from |IEEE Xplore. Restrictions apply.

%0y *0or | | *03,

LIF

] LIF
tr_3

tr—o| |
tr

by

o

P _ﬁ:ﬂ

LIF LIF

tr

Fig. 1: Our network model consists of four populations of Leaky Integrate and Fire neurons that are connected by
convolutional and synaptic delay connections. The synaptic delays allow for the network to observe what has happened
in the past. These neuron populations contain state that evolves overtime as new inputs are fed into the network. The output
populations are then decoded into optical flow, the decoding process can be seen in Figure 3.

II. SPIKING NEURAL NETWORKS

Their asynchronous nature and low power consumption
make SNNs a natural match for sparse processing of tem-
poral information. SNNs provide a frame-free alternative
to ANNSs (standard deep networks, either convolutional or
fully connected) allowing dedicated hardware to exploit
highly parallelizable and efficient temporal computations.
The natural use of sparse temporal information allows for
these networks to exploit the efficiencies internal to event
based sensors such as DVS cameras [20], as they are not
restricted by the temporal latency associated with frame-
based methods [21].

SNNs encode temporal information for individual spikes,
instead of solely keeping track of the firing rate of indi-
vidual neurons; in this way SNNs can efficiently encode
spatio-temporal information that would be lost through rate-
encoding. In this section we discuss in more detail how SNNs
are formalized with the aim to elucidate why they are a
natural counterpart to event based sensors.

We employ a Leaky Integrate and Fire (LIF) model that
provide basic computational functionality and modalities;
tonic spiking, class 1 excitability, and integration [22]. These
properties enable this neuron to respond proportionally to
external stimulus as well as have memory of what recently
occurred. The basic dynamics of a LIF neuron can be
described as a simple resistor and capacitor in parallel [23].

The discrete time model used:

V[t — 1] — Vrest

oft] = vft — 1] - w0 ¢ Linpua[t] (1)

Tm

The spike inputs from the previous layer can be delayed
through §; and weighted through w;. Output spikes are gener-
ated when v[t] > © which in turn resets v[¢t]. The similarities
between SNNs and ANNSs can be seen when the LIF model is
abstracted and treated as any other non-linear layers common
in deep learning (e.g., ReLU, sigmoid, Tanh). The advantage
is that the temporal information is handled directly and can
be manipulated to create more complex data paths through
manipulation of §;. While there exist more complex and more
complete models that estimate the functionality of physical
neurons, in the context of deep learning the LIF model’s
simplicity enables the burden of complex behaviors to be
spread out amongst whole populations.

III. RELATED WORKS
A. Event Based Cameras

Early DVS cameras consisted of low spatial resolution,
128 x 128 sensors [24], [20] that exemplified the ability
of the temporal resolution to make up for the lack of
spatial resolution. Recently the spatial resolution has been
increasing up to the VGA [25] range.

Tracking egomotion of an event based camera can be
done at low computational cost with a high effective frame

5893

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 27,2022 at 21:57:11 UTC from |IEEE Xplore. Restrictions apply.

Ground Truth Flow

Event Image

Ours DB40OP4 Ours DB40OP2 Ours DB10OP8 Ours DB10P4 Ours DB10P2

Predicted Flow

Masked Ground
Truth Flow

Masked Predicted
Flow

Fig. 2: Qualitative results are produced by running the networks over event streams from MVSEC [1]. The output of the
spiking neural network is a stream of spikes over time. At every pixel, in x and y, we have a population of neurons that
transmit updates through spikes. This information is decoded into optical flow by weighting each spike by the neuron’s
corresponding direction vector and averaging over the population and over time. The networks produce varying results in
noisy regions, but once masked with the event image, this goes away.

rate. These works leverage depth maps [26], keyframes [27],
and feature tracks [28]. While these works pull concepts
from frame based cameras, they leverage the asynchronous
features to solve issues of motion blur, allowing them to
operate in high velocity scenarios.

Event based cameras naturally encode motion within a
scene in the generated events. In a large number of cases, the
events construct a local geometry that can be broken down
into surfaces inside of the spatial temporal volume. This local
geometry can be viewed as planes; local plane fitting [29]
creates optical flow vectors that can track a wide variety
of motion, but lacks in performance of corner cases (e.g.,
corners, circles). In contrast, leveraging optical flow methods
from video processing for event based cameras has yielded
results. Block matching [30] inspired by video compression
methods becomes more efficient with meaningful binarized
data. Combining an external high resolution sensor via a
beam splitter allows for a best of both worlds approach to
continuously estimate the optical flow gradient through time

at a high spatial resolution [31].

Deep learning has been utilized to predict optical flow
using synchronized image stream from the DAVIS sensors
to construct the photometric loss with an event based input
[10]. Zhu et al. [2] construct an event volume representation
to maintain the temporal fidelity of the DVS sensor. The
network is then trained purely on event data using a motion
compensation loss proposed by Mitrokhin et al. [32].

Most relevant to this paper, Paredes et al. [33] proposed a
method for unsupervised optical flow. While unsupervised,
the network was tuned and trained for each scene shown.
The learning implementented poses a challenge as it requires
shared weights to be updated simultaneously. The problem
arises because this weight-sharing is not natively supported
on low power SNN processors such as the Loihi and instead
would require a GPU to accompany a deployment.

5894

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 27,2022 at 21:57:11 UTC from |IEEE Xplore. Restrictions apply.

0 1 0
0 0 0
0 0 0
I I I
to t; tn
— J
Y

Fig. 3: The output of the spiking neural network is a stream
of spikes over time. At every pixel, in x and y, we have a
population of neurons that transmit updates through spikes.
This information is decoded into optical flow by weighting
each spike by the neuron’s corresponding direction vector
and averaging over the population and over time.

B. Spiking Neural Networks

The computational capacity of Spiking Neural Networks
relies heavily upon the underlying computational model
that describes the neurons. Izhikevich [22] discusses models
ranging from Integrate and Fire, a simple model which is
not capable of complex firing patterns, to Hodkin-Huxley,
a complex biophysical model which exhibits most firing
patterns observed in the brain.

Neftci et al. [4] and Shrestha et al. [3] examine approxi-
mating the gradient function of the spike operator to allow
backpropagation through this non-differentiable function.
Shrestha et al. focus on a function that assigns the errors
appropriately through time, explicitly leveraging the temporal
nature of SNNs. These methods have provided the basis
for learning functions within the context of deep learning
frameworks. Predicting angular velocity with an SNN [34]
shows the a global regression problem. A hybrid SNN/CNN

optical flow network [35] tackles the problem of splitting
a network efficiently between two devices to product full
resolution and high accuracy optical flow.

Hazan et al. [36] provide BindsNET, a general library for
SNN simulation that leverages the PyTorch CPU and GPU
computations. BindsNET only supports local learning rules
(e.g., STDP [37]) and does not leverage the built in autograd
internal to PyTorch.

Bekolay et al. [38] designed Nengo to leverage the Neural
Engineering Framework, Semantic Pointer Architecture [39],
and online local error rules to tackle dynamical and symbolic
systems. SPAUN [40] was constructed through composing
many subsystems that were designed to each perform specific
tasks.

IV. METHOD

A. Layer communications

The forward pass, similar to recurrent neural networks
(RNNs), requires inputs over time and receives outputs
over time. In our case, both inputs and outputs are spikes
which can be represented most compactly in the AER
format on hardware (or software systems) that supports
this format. However, PyTorch [41] only supports dense
data representations for convolution operators, so a frame
needs to be constructed for use during training. This can be
done by placing the events at an instance in time, {e; =
(dO,i; dl,i7 L. ydn,i)}i:O,l..AM—l, into a frame:

Fy(do,dy,...d,)= > 1 2

ei€(do,d1,...dy)

This frame is a quantized version of what is proposed by
Zhu et al. [2]. However, instead of utilizing time information
as channels, each time step receives the events in [t;_1,¢;).
The primary methods for the network to retain prior informa-
tion is to store in its neurons, through recurrent connections,
or synaptic delays.

B. Backpropagation

The spike function that is central to SNNs, is non-
differentiable at the point of interest. For backpropagation,
a surrogate gradient allows for the errors to be correctly
quantified in the forward pass and an approximate gradient
used during the backward pass. In this work, the gradient
of the fast sigmoid, with a scaling factor, is used as an
approximation to the gradient of the heavy sided function,
Neftci et al. [4]:

o[t —1] > 6 3)
v[ft—1]-6>0 “)
v_[t—1] >0 &)

After removing 6 from immediate consideration, we can
see that v_[t — 1] > 0 is the Heaviside function, H, with
respect to v_[t — 1], thus the approximation of the derivative

5895

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 27,2022 at 21:57:11 UTC from |IEEE Xplore. Restrictions apply.

(a) Event Image (b) Grayscale

(f) DB10OP4 (g) DB1OPS

is:

oL oL OH(v_[t — 1)) ©)
dv_[t—1] OH(w_[t—1]) Ov_[t—1]

oL - oL 1 o
Ov_[t—1] OH(v_[t —1]) (Ju_[t — 1]| + 1)2

This approximation contains the same fundamental issues
that the sigmoid contains as a non-linear operation in larger
multi-layer networks, which is vanishing gradients. This is
slightly mitigated through augmenting (7) with a scale factor
hyper parameter, \:

oL oL 1
du_[t—1] ~ OH(v_[t —1]) (A\Jo_[t — 1] + 1)2

Applying this approximation to a full simulation over
many timesteps leads to this method being referred to as
Backpropagation Through Time (BPTT). With each timestep
being linked through the neuron’s membrane potential, even
if there are no explicit recurrent connections.

®)

C. Delay blocks

SNNs are capable of manipulating input signals through
not only the weight associated with each, but also delaying
the signals in time. The temporal aspect of optical flow
calculations are explored in energy based models [42].
In the context of network architectures, delay blocks are
constructed to delay signals by a fixed amount of time.
Combining multiple of these blocks enables the network
to compare these distinct times explicitly. In addition, the
delay blocks give the BPTT algorithm a shortcut to connect
the spatial features through time in a more explicit context.
These blocks are seen in Figure 1 as inline ., blocks.

D. Output Representation

The coding of output spikes affect a network’s ability to
describe small or rapid changes in the input signal. The

(c) Ground Truth

(h) CNN-120k
Fig. 4: Direct comparison of the separate networks in a challenging scene. The two CNNs tend to produce similar results
and fail in similar ways. For the SNNs, the addition of the delay blocks tends to improve the worst case scenarios of the
network. All images in this figure are masked with the event image to compare outputs where data is present.

(d) CNN-68k (e) DB10OP2

(i) DB40OP2 (j) DB40OP4

neural engineering framework (NEF) [43] provides mecha-
nisms for constructing optimal population-temporal coding
given an encoding into a set population size. The NEF
inspires the output representation chosen, except instead of a
given encoding, a desired decoding is given and the network
learns an encoding that leverages this decoding. For an 2
dimensional {dy € [-1,1],d; € [—1,1]} with a population
of N neurons over time T:

n
do(z,y,to, tT) = t ;t 7L<ZN(5M/,1 coS QWN)

0 T (9)
dq(z,y,to, tr) = Z Z 0z.y.n(t) sin 27rﬁ)

to<t<tT n<N

This can be visually seen in Figure 3, where each neuron
is represented as a vector which gets summed up over the
population and time.

For N >= 4, (9) provides a representation that allows
for zero to be encoded with minimal activity. Alternatively
utilizing just two neurons to represent this same signal, to
cover the full range the output would have to be shifted:

do(z,y,t0,t1) Z 2(5’%)—0.5
10<f<t1 n<N (10)
di(z,y,to, t1) Z > Gayalt) =05

to<t<t1 n<N

Representing dp = 0 or d; = 0 would then be represented
as each neuron spiking half the time. While this isn’t directly
an issue, it does create readout issues on SNN hardware
where it is more efficient to read out less information as
the lack of spikes are implied and not directly read out.

E. Network Architecture

The balance between batch size and number of simulation
timesteps drives the total network size that is trainable on

5896

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 27,2022 at 21:57:11 UTC from |IEEE Xplore. Restrictions apply.

a single GPU. This is a direct implication of BPTT as each
timestep is linked and required for updates of all parameters.
The network is trained using a lms temporal resolution
with batches that span 100ms. A four layer, feed forward,
convolutional network was chosen (as seen in Figure 1).
The first and second layers construct spatial features. The
third layer contains delay blocks which creates copies of
the signals through time for the network to process; the
convolution after these delay blocks enables spatial and
temporal analysis directly embedded in the structure of the
network. The final layer decodes the final feature into the
chosen output representation. In our case, the optical flow at
time ¢ is a 2D vector that can be described as utilizing (9)
or (10) taking t,,indow timesteps into account:

F(:ay,t) = {do(%y,f - twindow)a d1(1‘7y7t - twindow)}

(11)
Summation over time creates a delay in the result. There-

fore, it is important to balance the amount of time to reach
a result with a larger output population.

F. Losses

We use the photometric loss, Lpnow, on the images pro-
duced by MVSEC even though input to the network is events,
as originally shown in [10]. For the smoothness loss, we
use the robust Charbonnier loss [44] as in [2]. N(&) is
the 4-connected neighborhood around & and Agpoothness 1S @
hyperparameter weight. These losses are shown in full below:

Lpholo(uav;lt7]t+l) =

> p((x,y) — T (z + ulz, y), y + v(z,y))

12)
13)

ACsmoothness = Z Z \/(A(ff) - A(?J))Q + €2

Z JeN(Z)

»Ctotal :»Cphoto + Asmoolhnessﬁsmoothness

V. EXPERIMENTS

Since these networks are trained through backpropagation,
a large and reliable dataset is needed. EVFlowNet [10]
successfully utilized MVSEC [1] to train a deep network
to perform the task of optical low. MVSEC comes with a
per frame optical flow in addition to the event and images
streams that are native to the DVS sensors. We train our
networks on outdoor_day2; a longer sequence that has nu-
merous independently moving objects. Our testing is done
on outdoor_dayl which takes a unique path compared to the
training sequence and has few moving objects which makes
the ground truth flow more reliable for testing.

In all experimental results our network is labeled as
Ours. The hyper parameters, output population and number
of delay blocks, labeled with OP# and DB# respectively.
The addition of the delay blocks changes the number of
parameters drastically compared to those with fewer. For

Parameters AEE (pixels) Outliers (%)

outdoor_day1l

CNN-68k 68,800 0.87 4.54
Ours OP2DB1 54,402 0.89 3.88
Ours OPADB1 56,008 1.01 6.31
Ours OP8DB1 59,216 1.03 5.71

CNN-120k 120,000 0.89 4.11
Ours OP2DB4 117,604 0.83 2.13
Ours OPADB4 119,208 0.89 3.58
Zhu et al. [2] 13,039,232 0.32 0.0

TABLE I: Quantitative analysis is done in a single shot
manner to ensure that the SNN has no extra information
available to it. Only the events within the time period in
question are used. Networks are grouped by size with a
reference CNN in each case. Zhu et al. [2] is the current state
of the art model whose performance is given for comparison.

fair comparison two CNNs of similar size were trained,
which was constructed with a 20 channel event volume as
the input and a similar number of parameters. The network
sizes can be seen in Table I, similar sized networks have
been grouped together for easier comparison. CNN-68k and
CNN-120k were constructed with 32 and 64 channels in
intermediate layers respectively while all SNNs only project
to 32 channels. The delay blocks account for the remainder
of the network size for the larger SNNs. In all networks, the
spatial resolution is reduced in the first three layers (through
a stride of 2) and maintained in the 4th (through a stride of
1).

The comparison CNN is labeled as CNN, which was
constructed with an event volume as the input representation
and the same number of channels, from Ours, in each of the
following layers for the closest comparison.

A. Average End-point Error

Evaluation of the accuracy is reported as Average End-
point Error (AEE), the distance between the end points of
the predicted and ground truth optical flow vectors:

ABE = ; Bg ly/;;)ﬂ - Bfgz;ij

In addition, outlier percentage, as laid out by Zhu et al.
[10]. The networks trained, including the comparison CNN,
produce optical flow at a substantially smaller resolution than
those in which the input sensor or ground truth is available
in. The decoded output from our network is 32 x 32 x 2 and
is upsampled to the original resolution, 256 x 256 x 2, using
bilinear interpolation. AEE is computed using the upsampled
output to provide a per pixel estimate on the error. Table I
contains the full listing of results for the CNN as well as the
proposed SNN models. Figure 2 shows qualitative results
from all networks in various times across the test sequence.
Challenging scenes provide insight into the generalizability
of the models; Figure 4 shows one such case.

(14)

2

5897

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 27,2022 at 21:57:11 UTC from |IEEE Xplore. Restrictions apply.

. . . Compute Avg output Avg.

outdoor_dayl a?t\i/\%i tSpl(lf;) # (()Eelrgg;ms OpTeratelon Energy Benefit spike activity Bandwidth

Y P (x) (%) (MBps)

CNN-68k - 3.94 MAC 1 - 0.8
Ours OP2DBI 2.7 0.44 AC 45.7 51.0 1.44
Ours OP4ADBI 4.6 0.74 AC 27.5 0.6 0.04
Ours OP8DBI 2.7 0.45 AC 443 0.3 0.04
CNN-120k - 5.25 MAC 1 - 0.8
Ours OP2DB4 6.7 1.16 AC 23.1 50.4 1.42
Ours OPADBA4 7.1 1.23 AC 21.9 1.2 0.07

TABLE II: The efficiency of the proposed network architecture shows large improvements in continuous operation costs. A
CNN requires multiple discrete runs for every update, whereas a SNN provides sparse updates to each layer. These numbers
are based off of providing 100Hz updates (10x 1ms updates).

B. Continuous Execution

Continuous execution of optical flow networks is used in
robotics contexts to better understand movement in the envi-
ronment. An example setup would be to have an appropriate
onboard accelerator that is designed for the type of network
used (whether it is a CNN or SNN). Regardless, there are
immutable components to this: first, the base computation
of the accelerator must occur; second, communication of
results back to the host system which is making the high level
decisions. For this case, we analyze the networks producing
100Hz updates.

1) Computational Efficiency: SNNs benefit from both
sparser and simpler calculations compared to ANNs. The
number of synaptic operations is commonly used as a
benchmark for the efficiency of neuromorphic hardware [45],
[15], [46]. The number of operations for an ANN is straight
forward to compute,), M; x C;, where [is the layer index,
M; is the number of neurons at a given layer, and Cj is the
number of connections at each layer. For SNNs, you must
include the sparsity F; at each layer and the number of time
steps IV in this calculation, giving you N %), M; x C; x Fj.
To provide a 100Hz update, 10x 1ms time steps are needed.

Additionally, ANNs and SNNs have separate operators for
the synaptic connections. For ANNs, multiply accumulate
(MAC) computations are needed due to passing of real
value numbers between the layers (a convolution multiplies
floating point weights and values from previous layers). For
SNNs, all that is needed is accumulate computations (AC)
because the information that is passed between layers is
binarized so the weights can be accumulated directly. AC
computations are generally considered to be more efficient
than MAC computations. In the case of 32-bit floating point
numbers (45nm CMOS process), AC operations are 5.1x
more efficient than MAC operations [47].

Based on these two components, the efficiency of the
proposed network is evaluated and reported in Table II.

2) Communications: Bandwidth in neural networks has
become a bottleneck in large scale applications, during both
training and inference. The current CNN implementations
for optical flow require transfer of dense images back to the
host for processing. Due to the sparse output representation,
SNNs are able to transmit information with a low bandwidth

and high temporal update rate. This maintains even when a
real valued output is desired as an efficient output encoding
scheme is able to compensate binary responses available at
each time step.

In the tested CNN, the output frame results in a 32x32x2
image being transferred back to the host. To achieve an
update rate of 100Hz, this would require a transfer of 8KB
every 10 milliseconds (0.8MBps). In contrast, our SNN
implementation constructs updates to the flow over time and
only requires these updates to be reported. The standard
AER packet size can be calculated through supplying an
address in each dimension (X, y, channel), which results
in > [loga(shapeld])]. Where d is an index into each
dimension and shape contains the shape of the output
population. The sparsity, rate, and size of the update spikes
are used to calculate the average bandwidth required by each
method. Results of the bandwidth utilized by each model can
be seen in Table II.

VI. FUTURE WORK

Moving forward, deployment on a dedicated SNN proces-
sor such as the Loihi will provide real world results for power
consumption, scalability, and provide results given the other
constraints that a physical implementation of a neuromorphic
processor will have. This will also enable the integration
with potential downstream neuromorphic algorithms such as
SLAM [18].

VII. ACKNOWLEDGEMENTS

This work was supported in part by the Semiconductor
Research Corporation (SRC) and DARPA, as well as the
NSF-1703319 grant.

REFERENCES

[11 A. Z. Zhu, D. Thakur, T. Ozaslan, B. Pfrommer, V. Kumar, and
K. Daniilidis, “The multivehicle stereo event camera dataset: An event
camera dataset for 3d perception,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 2032-2039, 2018.

[2] A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Unsupervised
event-based learning of optical flow, depth, and egomotion,” pp. 989—
997, 2019.

[3] S.B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems, 2018,
pp. 1412-1421.

5898

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 27,2022 at 21:57:11 UTC from |IEEE Xplore. Restrictions apply.

[4]

[6

=

[7]

[8

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks,” arXiv preprint arXiv:1901.09948, 2019.
H. Chao, Y. Gu, and M. Napolitano, “A survey of optical flow
techniques for robotics navigation applications,” Journal of Intelligent
& Robotic Systems, vol. 73, no. 1, pp. 361-372, 2014.

J. C. Tuthill, A. Nern, S. L. Holtz, G. M. Rubin, and M. B. Reiser,
“Contributions of the 12 neuron classes in the fly lamina to motion
vision,” Neuron, vol. 79, no. 1, pp. 128-140, 2013.

S. A. Kane and M. Zamani, “Falcons pursue prey using visual
motion cues: new perspectives from animal-borne cameras,” Journal
of Experimental Biology, vol. 217, no. 2, pp. 225-234, 2014.

F. P. Redlick, M. Jenkin, and L. R. Harris, “Humans can use optic
flow to estimate distance of travel,” Vision research, vol. 41, no. 2,
pp. 213-219, 2001.

L. Patrick, C. Posch, and T. Delbruck, “A 128x 128 120 db 15u s
latency asynchronous temporal contrast vision sensor,” IEEE journal
of solid-state circuits, vol. 43, pp. 566-576, 2008.

A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Ev-flownet: Self-
supervised optical flow estimation for event-based cameras,” arXiv
preprint arXiv:1802.06898, 2018.

T. Stoffregen, G. Gallego, T. Drummond, L. Kleeman, and D. Scara-
muzza, “Event-based motion segmentation by motion compensation,”
arXiv preprint arXiv:1904.01293, 2019.

K. Chaney, A. Zihao Zhu, and K. Daniilidis, “Learning event-based
height from plane and parallax,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, 2019,
pp. 0-0.

H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed
and high dynamic range video with an event camera,” arXiv preprint
arXiv:1906.07165, 2019.

——, “Events-to-video: Bringing modern computer vision to event
cameras,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 3857-3866.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al., “A
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, no. 6197, pp. 668-673,
2014.

M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and
S. B. Furber, “Spinnaker: mapping neural networks onto a massively-
parallel chip multiprocessor,” in 2008 IEEE International Joint Con-
ference on Neural Networks (IEEE World Congress on Computational
Intelligence). Ieee, 2008, pp. 2849-2856.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82-99, 2018.

R. Kreiser, A. Renner, Y. Sandamirskaya, and P. Pienroj, ‘“Pose
estimation and map formation with spiking neural networks: towards
neuromorphic slam,” in 20/8 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 1EEE, 2018, pp. 2159-2166.
R. Kreiser, Y. Sandamirskaya, et al., “Error-driven learning for self-
calibration in a neuromorphic path integration system,” in Robust
Artificial Intelligence for Neurorobotics (RAI-NR Workshop 2019),
2019.

T. Delbruck, “Frame-free dynamic digital vision,” pp. 21-26, 2008.
C. Farabet, R. Paz, J. Pérez-Carrasco, C. Zamarrefio, A. Linares-
Barranco, Y. LeCun, E. Culurciello, T. Serrano-Gotarredona, and
B. Linares-Barranco, “Comparison between frame-constrained fix-
pixel-value and frame-free spiking-dynamic-pixel convnets for visual
processing,” Frontiers in neuroscience, vol. 6, p. 32, 2012.

E. M. Izhikevich, “Which model to use for cortical spiking neurons?”’
IEEE transactions on neural networks, vol. 15, no. 5, pp. 1063-1070,
2004.

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120 dB 15 us
latency asynchronous temporal contrast vision sensor,” IEEE journal
of solid-state circuits, vol. 43, no. 2, pp. 566-576, 2008.

M. Guo, J. Huang, and S. Chen, “Live demonstration: A 768 x 640
pixels 200meps dynamic vision sensor,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS). 1EEE, 2017, pp. 1-1.
G. Gallego, J. E. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and
D. Scaramuzza, “Event-based, 6-dof camera tracking from photometric

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

5899

depth maps,” IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 10, pp. 2402-2412, 2017.

H. Rebecq, T. Horstschaefer, and D. Scaramuzza, ‘“Real-time visual-
inertial odometry for event cameras using keyframe-based nonlinear
optimization.” in BMVC, 2017.

A.Z.Zhu, N. Atanasov, and K. Daniilidis, “Event-based visual inertial
odometry,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 1EEE, 2017, pp. 5816-5824.

R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi,
“Event-based visual flow,” IEEE transactions on neural networks and
learning systems, vol. 25, no. 2, pp. 407-417, 2013.

M. Liu and T. Delbruck, “Block-matching optical flow for dynamic
vision sensors: Algorithm and fpga implementation,” in 2017 IEEE
International Symposium on Circuits and Systems (ISCAS). 1EEE,
2017, pp. 14.

M. M. Almatrafi and K. Hirakawa, “Davis camera optical flow,” IEEE
Transactions on Computational Imaging, pp. 1-1, 2019.

A. Mitrokhin, C. Fermiiller, C. Parameshwara, and Y. Aloimonos,
“Event-based moving object detection and tracking,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1EEE, 2018, pp. 1-9.

F. Paredes-Vallés, K. Y. W. Scheper, and G. C. H. E. De Croon,
“Unsupervised learning of a hierarchical spiking neural network for
optical flow estimation: From events to global motion perception,”
IEEE transactions on pattern analysis and machine intelligence, 2019.
M. Gehrig, S. B. Shrestha, D. Mouritzen, and D. Scaramuzza, “Event-
based angular velocity regression with spiking networks,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 4195-4202.

C. Lee, A. K. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, and
K. Roy, “Spike-flownet: event-based optical flow estimation with
energy-efficient hybrid neural networks,” in European Conference on
Computer Vision. Springer, 2020, pp. 366-382.

H. Hazan, D. J. Saunders, H. Khan, D. T. Sanghavi, H. T. Siegelmann,
and R. Kozma, “Bindsnet: A machine learning-oriented spiking neural
networks library in python,” Frontiers in neuroinformatics, vol. 12,
p. 89, 2018.

H. Markram and B. Sakmann, “Action potentials propagating back into
dendrites trigger changes in efficacy of single-axon synapses between
layer v pyramidal neurons,” in Soc. Neurosci. Abstr, vol. 21, no. 3,
1995, p. 2007.

T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. Voelker, and C. Eliasmith, “Nengo: a
python tool for building large-scale functional brain models,” Frontiers
in neuroinformatics, vol. 7, p. 48, 2014.

C. Eliasmith, How to build a brain: A neural architecture for biolog-
ical cognition. Oxford University Press, 2013.

T. Stewart, F.-X. Choo, and C. Eliasmith, “Spaun: A perception-
cognition-action model using spiking neurons,” in Proceedings of the
Annual Meeting of the Cognitive Science Society, vol. 34, no. 34, 2012.
A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in PyTorch,” in NIPS Autodiff Workshop, 2017.

T. Brosch, S. Tschechne, and H. Neumann, “On event-based optical
flow detection,” Frontiers in Neuroscience, vol. 9, p. 137, 2015.
[Online]. Available: https://www.frontiersin.org/article/10.3389/fnins.
2015.00137

C. Eliasmith and C. H. Anderson, Neural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT press,
2004.

P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Two
deterministic half-quadratic regularization algorithms for computed
imaging,” in Image Processing, 1994. Proceedings. ICIP-94., IEEE
International Conference, vol. 2. 1EEE, 1994, pp. 168-172.

C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, “Enabling
spike-based backpropagation for training deep neural network archi-
tectures,” Frontiers in neuroscience, vol. 14, 2020.

B. Rueckauer, 1.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in neuroscience, vol. 11,
p. 682, 2017.

M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). 1EEE, 2014, pp. 10-14.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on February 27,2022 at 21:57:11 UTC from |IEEE Xplore. Restrictions apply.

