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ABSTRACT

Although the Industrial Internet of Things has increased
the number of sensors permanently installed in industrial plants,
there will be gaps in coverage due to broken sensors or sparse
density in very large plants, such as in the petrochemical indus-
try. Modern emergency response operations are beginning to
use Small Unmanned Aerial Systems (sUAS) that have the abil-
ity to drop sensor robots to precise locations. sUAS can provide
longer-term persistent monitoring that aerial drones are unable
to provide. Despite the relatively low cost of these assets, the
choice of which robotic sensing systems to deploy to which part
of an industrial process in a complex plant environment during
emergency response remains challenging.

This paper describes a framework for optimizing the de-
ployment of emergency sensors as a preliminary step towards
realizing the responsiveness of robots in disaster circumstances.
Al techniques (Long short-term memory, I-dimensional convo-

*Address all correspondence to this author.

lutional neural network, logistic regression, and random forest)
identify regions where sensors would be most valued without re-
quiring humans to enter the potentially dangerous area. In the
case study described, the cost function for optimization consid-
ers costs of false-positive and false-negative errors. Decisions
on mitigation include implementing repairs or shutting down the
plant. The Expected Value of Information (EVI) is used to iden-
tify the most valuable type and location of physical sensors to
be deployed to increase the decision-analytic value of a sensor
network. This method is applied to a case study using the Ten-
nessee Eastman process data set of a chemical plant, and we dis-
cuss implications of our findings for operation, distribution, and
decision-making of sensors in plant emergency and resilience
scenarios.

1. INTRODUCTION

The Industrial Internet of Things (IIoT), with enabling sen-
sors and communication capabilities, are critical in the effective
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operation and management of modern industrial systems [1,2,3].
Specifically, techniques of data collection and analysis serve as
an extension of human operators and allows for improved risk
management systems.

However, sensors themselves are also subject to faults or
damage, and thus are key sources of plant risks. Installed sen-
sors introduced within industrial systems are designed to be the
central support for any risk detection and response strategies [4].
Thus, when malfunctioning, these sensors fail the risk manage-
ment process and endanger the industrial system entirely.

The decision making process behind planning, supporting,
and deploying sensors to minimize faults and risks involves a
challenging balance between cost and performance [5, 6]. Cur-
rent decision-making approaches have focused on cabled or
wireless systems; the former can be expensive and inflexible,
while the latter can have challenges with accuracy and connec-
tivity [7]. As a result, industrial system planners often over-
deploy sensors to ensure plant coverage through overcompen-
sation. This approach presents its own challenges, specifically
finding the optimal trade-off point between the cost of the de-
ployed sensors and response, as well as the overall effectiveness
of risk management [8]. For large operations, it may not be cost
effective to install sensors over large areas, particularly in remote
geographical regions.

Mobile sensors accompanied by a rigorous decision-making
process could alleviate some of these challenges by expanding
flexibility and range [9]. In particular, a mobile sensor network
can support a variety of industrial systems through fitting the
unique optimal node placements for each process design. Fewer
sensors can be deployed by identifying and covering the key fea-
tures for risk detection. In addition, the placements can be con-
tinuously iterated upon should the particular industrial environ-
ment or operating process change. Thus, mobile sensors could
serve as effective extensions of human operators in managing
and maintaining industrial plants. To realize this use of mobile
sensors, we must take the preliminary step of exploring sensor
systems and decisions [10].

In this paper, we propose a system for decisions on sensor
placement for industrial resilience, using (1) a mobile robotic
sensor platform and (2) dynamic calculation of the expected
value of sample information (EVSI) from placing sensors. Dy-
namic placement is defined as supporting rapid, responsive, and
sequential deployment of new or supplemental sensors. At each
iteration, the system evaluates which sensors would produce the
most valuable information, and directs mobile sensor platforms
to fulfill that need. We illustrate this approach by applying it to
the Tennessee-Eastman Process data set [11] [12], using the re-
sults of applying machine learning methods in the calculation of
EVSI. This exploration is a preliminary step towards realizing
the responsiveness of robots in disaster situations.

This work is guided by two research questions:

R1. How can rapidly deployable mobile sensor robots be
used to make data-driven decisions about which sensors to
deploy in emergency situations?

R2. How can machine learning approaches support the cal-
culation of the expected value of information when faults are
uncertain?

In this paper, we first cover key related work on industrial
sensing for decision support and the use of expected value of
information (EVI) in resource allocation (Section 2). We then
describe our methods (Section 3), summarize results (Section 4)
and discuss these results (Section 5). We conclude with a discus-
sion of future research.

2. BACKGROUND AND RELATED WORK

2.1 Machine Learning and Robotics Platforms for In-
dustrial Sensing

Rapidly deployable mobile sensor platforms offer a promis-
ing avenue to address challenges with incomplete sensor cov-
erage or sensor failures with permanently installed sensors [9,
13, 14]. Emerging mobile sensor platforms include aerial sen-
sors in drones, sensor robots that can be deployed from aerial
vehicles, or ground-based mobile sensor robots. [10, 15,16, 17].
These robots can greatly enhance the performance of their sen-
sors with the utilization of search state algorithms, for instance,
dynamic programming search [18, 16]. Within mobile sensor
platforms, droppable soft robot platforms are particularly ad-
vantageous over humans in industrial environments due to their
safety and adaptability to a wide range of application areas. Pre-
vious work covering soft robotics has explored their applications
in space exploration, education, and defense [19].

With sufficient data from industrial sensors, machine learn-
ing can be used to improve data analytics over time for enhanced
robot monitoring, diagnostics, and early warning of potential
failures. Machine learning can also compensate for limitations
in the sensor measurements, response to environmental condi-
tions, and changes in system parameters [20]. This work ex-
tends on previous studies in mobile robotic sensing platforms
by proposing a workflow to integrate mobile sensing platforms
with machine learning and EVI calculations in the context of the
benchmark Tennessee Eastman process.

2.2 Fault Detection in Industrial Systems

Fault detection is a crucial goal of industrial sensing sys-
tems. Reliable fault detection techniques are required to ensure
and maintain system stability and thus increasing operational up-
time [21]. Many approaches to fault detection have been pro-
posed, including quantitative model-based, qualitative model-
based and process history-based strategies [22,23]. Among these
approaches, machine learning (ML) methods have emerged as an
area of great interest for their efficiency and accuracy in combin-
ing sensor data with expert knowledge to predict and detect sys-
tem faults. Specifically, the feature-selection aspect of ML meth-
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ods can be configured to greatly reduce the need for manual con-
figuration and minimize redundancy in its predictions [24,25].

For industrial applications, the Tennessee Eastman (TE) pro-
cess data set has been a useful resource for testing the ability to
detect and predict faults [26]. In particular, the TE process can be
simulated under normal operating condition as well as 21 faulty
conditions. Thus, the data produced are widely used as a bench-
mark in industrial process control and fault detection [12] [27].
Several efforts have been made to propose novel ML-based fault
detection approaches using the TE process data set [28]. These
have shown differing accuracy rates in fault detection for differ-
ent models and techniques. Consequently, ML fault detection
is continuously improved upon through alternative methods or
techniques such as prior knowledge incorporation [1,25]. Central
to fault detection approaches leveraging ML methods is the ap-
propriate identification and selection of features for dimensional
reduction of data, widely practiced in the work examining in-
dustrial plant processes [29,30,31] and in ML approaches more
broadly [32,33].

This work extends on previous studies of ML and fault de-
tection by coupling ML methods with Expected Value of Infor-
mation calculations (see next section). We use ML to determine
which sensors are most useful in the TE process data set to detect
faults, using a subtractive approach among sensors during model
training. This effectively adapts feature identification and dimen-
sional reduction to a plant-specific scenario. Based on model per-
formance, we are able to inform the calculation of expected value
of information for sequentially positioning sensors in fault detec-
tion. Though basing the ML analysis on the TE process data, this
procedure illustrates how industrial systems can lean on ML and
mobile sensors for fault detection. With further incorporation of
location-specific sensor and fault data, the effective ML methods
explored can be applied to real industrial systems.

2.3 Expected Value of Information

Fault detection and resolution in industrial sensing systems
often rely on sparse data. In such situations, the presence of
new information may aid in improved situational awareness and
the resolution of potential faults. Expected value of informa-
tion (EVI) is a decision-analytic approach used to ascertain when
investment in discovering new information is likely useful and
cost-effective, especially in data-sparse situations [34]. EVI de-
pends on the prior distribution of currently-available information,
and hence, is formulated as a Bayesian approach [35]. While
the expected value of perfect information (EVPI) is usually not
achievable from a practical standpoint, the expected value of
sample information (EVSI) is used to determine whether new
observations lead to an increase in utility [36].

In recent years, the use of EVI to perform efficiency analy-
sis has been widely used in health economics and related fields.
It is frequently used to determine optimal sample sizes for ran-
domized clinical trials based on the EVI of the results of clinical

trials [37]. Another common application is in medical research,
where EVSI is used to determine whether additional research
should be conducted on a topic [38].

EVSI has also been applied to sensing. Maximizing the
global EVSI of all data can be used to produce an optimal spatial
placement of sensors [39, 13]. Such approaches iteratively add
new observations via sequential sampling, at each step choosing
the observation corresponding to the largest increase in global
EVSI [39,40].

This work builds on the theoretical probabilistic models of
EVSI. The successes of similar methods in medical economics
and medical research lay the groundwork for a practical applica-
tion of EVSI to the novel field of robotic mobile sensing [41,42].
We define a posterior probability distribution and use EVSI to de-
scribe the expected benefit of sensor data collected by a rapidly
deployable mobile robot in addition to existing data from a tradi-
tional industrial sensing system. Machine learning methods are
then utilized to determine the gain in fault detection accuracy.
This approach shares similarities with reduction in feature selec-
tion,

Beyond this work, by moving past the simulation data set
and incorporating site-specific data of industrial systems, we can
achieve real world uses of EVSI and machine learning for fault
detection.

3. METHODS

This section summarizes the opportunities afforded by
new rapidly deployable mobile sensor robots and the proposed
EVSI framework for sensor deployment prioritization. The
data set used to illustrate the framework is described along with
the associated decision tree and EVSI model for prioritizing
the sensor deployment. Please refer to our Github repository
(https://github.com/BerkeleyExpertSystemTechnologiesLab/
EVSIvsLSTM) for the sampled dataset in CSV form, code and
models.

3.1 Rapidly Deployable Mobile Sensor Robots

A spin-off of research on space exploration with NASA,
the University of California at Berkeley (UC Berkeley) and
Squishy Robotics have developed rapidly deployable mobile
sensing robots for disaster response and remote monitoring [19].
They enable life-saving maneuvers and secure the safety of first
responders by providing situational awareness and sensor data in
uncharted terrain. These light-weight, low cost, robust mobile
platforms can survive large impacts while carrying a payload of
delicate sensors [10]. These robots can measure and send data
from dangerous environments that expose health risks to humans.
They are equipped with visual, audio, chemical, biological, radi-
ological, acoustic, GPS, and thermal sensors [10]. Edge com-
puting provides rapid information to first responders when and
where it is needed. The value of information collected from these
robots is enhanced by use of sensor fusion and machine learning
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FIGURE 1: Information flow in proposed system.

algorithms over time. The platform is customizable and can be
used for diagnostic, monitoring and prognostics in industrial sit-
uations. Although they can’t replace all human functions, when
combined with drones, these sensor robots can be deployed with
a customized sensor payload designed for a wide range of sen-
sor and mobility capabilities to provide improved ground-aerial
situation awareness and afford appropriate placement based on
EVSI [39]. The envisioned role of mobile sensing robots in a
decision-making framework related to plant operations is shown
in Fig. 1.

3.2 TE Process Data Set and Machine Learning Ap-
proaches

To detect faults, we train machine learning models on the
Tennessee Eastman (TE) data set [12]. The TE data set corre-
sponds to a chemical plant and the data includes a total of 52
measured and manipulated variables along with labelled faults.
Measured variables (X;) are detectable by sensors whereas ma-
nipulated variables (M;) are controlled by an operator. In our
dataset, we have 41 measured variables which are observed by
sensors and 11 manipulated ones, which can be adjusted by an
operator. Note, the TE data set does not contain information re-
garding the locations of its constituent sensors. To best model
the data and predict disturbances, we considered both measured
and manipulated variables as input features of interest.

We randomly sampled from the provided training, valida-
tion, and test sets in the original TE dataset [12]. Please refer
to Appendix B for the details on the TE dataset and our sam-
pling methods. By framing this as a supervised machine learning
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problem, we approached the data set with four potential machine
learning algorithms: Long short-term memory (LSTM) [43], 1-
dimensional convolutional neural network (CNN) [44], logistic
regression [45], and random forest [46]. We chose these four as
they represent of a range of varying complex machine learning
algorithms which enable us to observe the optimal complexity
via comparisons in performance. Details of our machine learn-
ing approach are provided in Appendix A. Using all 52 manip-
ulated and measured variables, the LSTM produces the highest
accuracy and precision on the validation set and was therefore
selected as the model to use in subsequent calculations of the
EVSI. This comparison is further quantified in a later section.

Next, we used our model to uncover which variables most
impacted the validation accuracy and would therefore be the
most integral sensors to be deployed in a potential emergency
situation. The validation accuracy is the accuracy of the model
on the validation set which was 20% of the TE data set.

Using LSTM to retrieve the 10 most impactful variables re-
quired us to iterate through each feature and measure how much
better or worse the model performs with the variable removed.
We choose the best variable for an iteration based on how much
the accuracy dropped on the validation set as a result of removing
a variable. We call this process the masking procedure since we
are masking out a variable; how much worse the model performs
without a feature shows us the importance of that feature to our
predictions. This procedure is outlined in Figure 2. Through this
procedure, the top 10 most impactful variables become candi-
dates for mobile sensors, leaving 42 unselected variables.

Copyright © 2021 by ASME



—¢— Pr(FIS)

Fix LF _ pr(Fs)

$ | NoFix —¢— Pr(FlS)
—E— pr(Fs)

—F— Pr(FIS)

s [ o E e
| No Fix —¢— Pr(FIS)
—E— Pr(Fs)

With First Mobile
Sensor

42 Base Sensors
F— Pr(FIs)

[P CE— prr)
| No Fix —F— Pr(FIS)
—— Pr(Fis)
—F— Pr(FIS)

5 [ Fx LE_ Pr(FIS)

F: Fault | No Fix. —F— Pr(FIS)
S: Signal E— pr(FS)

S
Without First

Mobile Sensor

FIGURE 3: Decision Tree for 42 Base Sensors.

We also performed a forward-stepwise selection process,
starting with the 42 base variables that were not selected from
the previous LSTM-masking procedure [47]. This means that we
first re-trained our model on the 42 base features and recorded the
resulting accuracy. Then, we re-trained our existing model with
the 42 base features and one additional feature taken from the
top 10 features. This was done for each of the top 10 features,
with us calculating and recording the resulting accuracy for each.
The feature that resulted in the highest accuracy was then added
to the 42 base variables (now giving us a total of 43 variables).
For forward-selection based on accuracy, we can continue this
process to pick the next best feature by cycling through the fea-
tures once again to identify which of the nine remaining features
produced the highest accuracy.

Two important notes contextualize this approach. First, the
approach is trained on simulated operating data with a focus on
the uncertainty of the faults. Real-world application would re-
quire training on data from a specific plant under operating con-
ditions. Second, selecting sensors based on accuracy does not
take into account the costs of decisions made as a result of pre-
dictions, nor the uncertainty in the predictions. For that, we turn
to selecting sensors based on EVSI.

3.3 Expected Value of Information

Expected Value of Information (EVI) is a concept from de-
cision analysis, defined to be the amount a decision maker should
be willing to pay for information to reduce or eliminate paramet-
ric uncertainty before making critical decisions (see Section 2.3),
and is a useful tool for effective management of uncertainty [48]
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FIGURE 4: Decision Tree for 42 Base Sensors and 1 Mobile
Sensor.

[49]. Such considerations are crucial for our study, as that se-
lecting sensors based only on accuracy does not account for the
costs and benefits of the improved decision making associated
with uncertainty reduction with the added sensors. We assume a
simple model to illustrate the framework, where a warning signal
is alarmed when triggered by the sensor network as a probable
fault in the system. The conditional probabilities for triggering a
warning signal given a fault (or no fault) is taken from the per-
formance of the ML model: Pr(signal|fault), Pr(signal|fault),
Pr(signal|fault), and Pr(signal|fault). The prior probabilities
for faults Pr( fault) and Pr(fault) are the empirical probabilities
observed in the training split from the TE dataset. The probabil-
ity of triggering a warning signal is:

Pr(signal) = Pr(signal|fault) * Pr(fault)+
Pr(signal|fault) = Pr( fault) (1)

To calculate the conditional probabilities for a fault, Bayes’
rule is used.

Pr(signal|fault) = Pr( fault)
Pr(signal)

Pr(fault|signal) = (2)

Pr(signal|fault) x Pr( fault)
Pr(signal)

Pr(fault|signal) = 3)

Copyright © 2021 by ASME



EVSI is the difference between the expected costs when dif-
ferent sensors are used to send signals [39].

For illustrative purposes in our application on the sensing
TE data set, we simplify the problem by limiting the costs of
decisions associated with only true-positive, false-negative and
false-positive events. To simplify the presentation, the only costs
considered are the cost of remediation (R) and the cost of plant
damage if the fault occurs and is not remediated (P). In reality,
the cost of placing a certain sensor is dependent on many factors:
physical location, type of sensor, method of deployment and time
required, etc. However, since this paper aims to demonstrate a
framework, we simplify the sensor placing process by assuming
that all sensor deployments have equal costs and are accounted
for in the cost for R and P.

TABLE 1: Costs for EVSI

Fault Signal  Ground Truth  Action Cost

signal fault nofix 0

signal fault no fix  plant damage (P)
signal fault no fix  plant damage (P)
signal fault / fault fix cost of remediation (R)

signal fault nofix O

We assume if remediation is applied to the fault then the
only cost is the remediation cost. These situations will be dis-
tinguished based on whether or not a fault is actually present
or not when a fault warning signal is alarmed. A true-negative,
with zero cost associated with it, is the status quo, when there
is no warning signal and no fault present. The false-negative
case occurs when there is no warning signal alarmed, but there
is actually a serious fault that causes loss of the plant’s outcome
and damage due to no remediation action. This cost is noted
as variable P. If the warning signal is sent and the fault has oc-
curred (true-positive) two actions are possible: (1) remediation
with cost R but no damage or (2) No-action, or no fix, because it
is believed to be a false positive, resulting in cost P (Figure 3).

As there are prior and conditional probabilities associated
with these combinations of events (calculated using Equation 1
and 2), Bayes rule is applied to the outcomes to determine the
expected value of the costs for decision-making. These cases are
outlined in Table 1.

We can calculate the maximum value an expected value de-

cision maker will pay for an additional sensor to be:

E(COSIsensor) =
Pr(signal) * min (R « Pr(fault|signal), P x Pr(fault|signal))

+Pr(signal) x min (R « Pr(fault|signal), P x Pr(fault|signal))
“

The EVSI of adding the sensor will be the difference be-
tween the cost with the sensor and the cost without as shown
below:

EVSI=E (COStwith only the base Sensors) —E (COStwith new sensor) (5)

The sensor with the highest EVSI is selected to be deployed.
We continued this process to pick the next best sensors by cycling
through the nine remaining features to identify the sensor that
produced the highest EVSI. Therefore, we were able to identify
which sensors would best improve EVSI and in what order these
sensors should be deployed (Figure 4). This process continues
until adding additional sensors does not improve EVSI or there
are no more undeployed sensors.

3.4 Assumptions

Several assumptions are latent in this work. First, the pro-
posed framework assumes trained ML models are available from
which to calculate conditional probabilities. These ML models
can be trained on data from historical data of a plant, or data col-
lected from a similar plant or a digital twin of a plant. The cost of
a sensor deployment was assumed to be the same for all sensors.
In practice, some sensors may be more costly to deploy, but the
methodology easily allows differential costs into the model.

4. RESULTS

4.1 Sensors Selected Based on Accuracy

In Figure 5, we show the features and corresponding im-
provement in validation accuracy when the feature is included as
input to the machine learning model ; the higher the improvement
in validation accuracy, the more important that feature. We first
used the LSTM model to choose the 10 most impactful variables
as shown by Figure 5. We also performed forward-stepwise se-
lection using these top 10 features, which produced the validation
accuracies in Figure 6. For details about the physical interpreta-
tion of each feature, refer to the original TE process paper [11].

Our base 42 variables had produced an original accuracy of
51.89% and adding the M10 feature data improved our valida-
tion accuracy to 64.05%, an improvement of almost 5% over the
base variables. The features, as shown by Figure 6, monoton-
ically increase the validation accuracy. With every additional
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feature added, the model performs more accurately, suggesting
maximizing the number of features could create the best model
for our EVSI predictions.

TABLE 2: This table uses the test set to compare each model’s
precision, recall, and Fl-score (eqns. 6-8) by analyzing their
weighted averages after training the model on the provided train-
ing set of data.

Model Precision Recall F1-Score
LSTM 0.912 0.898 0.902
CNN 0.803 0.736  0.723

Random Forest | 0.909 0.877 0.886
Logistic 0.570 0.568  0.537

4.2 Performance Comparison of ML Models

We then tested the performance of four industry-standard
machine learning algorithms on the TE data set: Long Short-
Term Memory, Logistic Regression, Random Forest, and 1D
Convolutional Neural Network. By using all 52 features and an-
alyzing the predictions on a 20% validation set, we found that
the LSTM model performed the best at predicting the 21 faults
considering the metrics of precision, recall, F1 and accuracy (see
Appendix A and B).

The validation accuracies produced using multi-label classi-
fication are as follows: 89.81% accuracy for the LSTM model in
comparison to 89.0% for Random Forest, 85.25% for CNN, and
63.33% for Logistic Regression. The specifics of the precision
and recall are shown in Table 2. Precision (Eqn. 6) is a metric
that allows us to determine what percentage of positive results
were correct and recall (Eqn. 7) tells us the proportion of actual
positives being identified correctly. The Fl-score (Eqn. 8) is a
single-value indicator to measure accuracy using the harmonic
mean of precision and recall. Validation accuracy (Eqn. 9) was
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used to determine which variables had the highest impact and its
equation is shown below. In the equations below, T P is the num-
ber of true positives, TN is true negatives, F P is false positives,
and FN is false negatives.

. TP
Precision = ———— (6)
TP+FP
TP
Recall = ——— 7
T TP+FN ™
TP
F = i ®)
TP+ 5(FP+FN)
TP+TN
Accuracy = + )
TP+TN+FP+FN

For each model, we tuned the hyperparameters to best model
and predict the data. While the logistic regression and CNN al-
gorithms produced significantly lower validation accuracies, we
can observe that the LSTM is the best algorithm among the four
for chemical plant data as per the TE data set. Confusion ma-
trices for CNN, Random Forest, and Logistic Regression ap-
proaches are shown in Appendix B for comparison.

4.3 Ranking of Sensor Selection Based on EVSI and
Accuracy Improvement

Table 3 shows the EVSI calculated to select the next highest-
priority sensor for monitoring. The first two columns show the
sensors that provides the greatest value if monitored out of the
10 most impactful sensors. Similarly, the second column shows
which sensor is the next most useful sensor to monitor, if we
are already monitoring the most impactful sensor out of the 10
sensors (M10, in this case).

Note that we rerun the EVSI process again after we added
M10 because we assume that there could be correlations between
features. We observe that sensor EVSI rankings did not remain
constant as sensors were added: in Table 3, for example, while
X9 is the second-highest ranked sensor during the first selection,
after M 10 is chosen (second column), it is not the highest-ranked
sensor, but the third-highest ranked. Table 4 shows the accuracy
improvement when we add sensor data to the LSTM model that
was originally trained with 42 base sensors and retrain it.

4.4 Sensitivity to Cost Ratio (P/R)

Table 5 shows the different EVSI values calculated on the
same set of sensors over different ratios of costs of damage to the
plant (P) to the cost of remediation (R). The cost ratios are cal-
culated as % and are all powers of 2. We observe that changing
this ratio does not change the relative ordering of the top three
sensors. The remaining sensors in the top ten shift ranks rela-
tively, but never move into the top three. We note that among
the trailing seven sensors, the changes in relative ranks are not
substantial across different ratios.

TABLE 3: EVSI for selecting the first three sensors. Sensors
ranked based on EVSI calculated in descending order.

Sensor EVSI, 1st Sensor Sensor EVSI, 2nd Sensor Sensor EVSI, 3rd Sensor
M10 0.59 X21 0.29 M5 0.15
X9 0.51 M5 0.20 X18 0.07
X21 0.47 X9 0.18 M4 0.0
M5 0.26 Mi11 0.10 X19 0.04
M9 0.15 M4 0.06 X17 -0.06
X18 0.10 X18 0.06 M9 -0.08
X17 0.05 M9 0.05 Mll -0.09
Ml1 0.0 X17 0.04 X9 -0.10
X19 0.0 X19 0.02 N/A N/A
M4 0.0 N/A N/A N/A N/A

TABLE 4: Accuracy improvement of the LSTM model by adding
one sensor data to the training set. Sensor ranked in descending
order.

Sensor  Acc Improve, 1st Sensor | Sensor  Acc Improve, 2nd Sensor
M10 12% X21 8%
X21 11% X9 6%

X9 10% M4 3%
M4 4% X18 2%
X18 3% Ml1 2%
M9 3% X19 2%
M5 3% M5 1%
Mil1 3% M9 1%
X19 3% X17 —0.7%
X17 0.7% N/A N/A

Besides the EVSI score, Table 5 also shows the best action
(based on EVSI) taken when a new sensor is added. For exam-
ple, in the first row of the top left section (P/R=2), "Fix” under
Action (Signal) means that if a robot is deployed with sensor
MI10, then the optimal action would be “Fix” when a fault sig-
nal is observed. Similarly, we would take the action of "No Fix”
when no fault signal is observed. Because our machine learning
model that represents a sensor in this case that has very high ac-
curacy, the EVSI decision process follows the signal indication;
the remediation is only taken if the signal is present. This trend
continues until the EVSI goes to zero with high ratios of P/R,
where the EVSI also goes to zero.

5. DISCUSSION

5.1 Top Candidate Sensors

We use the order of adding features based on the values in
Figure 6 and ESVI in the forward stepwise-selection process. In
our example, M10 shows a high validation accuracy increase,
which means access to that feature will increase model perfor-
mance. For the TE dataset, we conclude that an initial pair of
sensors (M10 and X21) added yield an outsize proportion of vali-
dation accuracy improvement (an improvement of 0.2, from 0.52
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TABLE 5: EVSI of 10 Sensors with Different Ratios of Cost of P and R (Ranked in Descending Order)

Sensor  EVSI (PR =2') Action (Signal) Action (No Signal) Sensor  EVSI (P/R =22) Action (Signal) Action (No Signal)
M10 0.24 Fix No Fix M10 0.45 Fix No Fix
X9 0.17 Fix No Fix X9 0.37 Fix No Fix
X21 0.14 Fix No Fix X21 0.34 Fix No Fix
X18 0.06 Fix No Fix M5 0.21 Fix No Fix
M9 0.05 Fix No Fix M9 0.17 Fix No Fix
M5 0.05 Fix No Fix X18 0.16 Fix No Fix
X19 0.04 Fix No Fix X17 0.12 Fix No Fix
X17 0.02 Fix No Fix M4 0.10 Fix No Fix
M4 0.02 Fix No Fix Mil1 0.10 Fix No Fix
Ml1 0.01 Fix No Fix X19 0.08 Fix No Fix
Sensor EVSI (PR =2%) Action (Signal) Action (No Signal) Sensor EVSI(P/R =2%) Action (Signal) Action (No Signal)
M10 0.59 Fix No Fix M10 0.0 Fix Fix
X9 0.51 Fix No Fix X9 0.0 Fix Fix
X21 0.47 Fix No Fix X21 0.0 Fix Fix
M5 0.26 Fix No Fix M5 0.0 Fix Fix
M9 0.15 Fix No Fix M9 0.0 Fix Fix
X18 0.10 Fix No Fix X18 0.0 Fix Fix
X17 0.05 Fix No Fix X17 0.0 Fix Fix
Ml1 0.0 Fix Fix Ml1 0.0 Fix Fix
X19 0.0 Fix Fix X19 0.0 Fix Fix
M4 0.0 Fix Fix M4 0.0 Fix Fix

to 0.72) across the top ten most impactful sensors identified. The
incremental validation accuracy provided by the first pair of sen-
sors is notable, given that with all 52 features engaged, a valida-
tion accuracy of roughly 0.90 is achieved.

While these findings are specific to the TE data, they illus-
trate how EVSI can be used to efficiently deploy sensors in or-
der to reduce the uncertainty in detecting faults in a chemical
plant. Machine learning was used to determine conditional prob-
abilities and estimate the expected value for an additional sensor
deployment to inform plant operators about recommended deci-
sions. With a relatively small set of sensors incrementally added
to a baseline of sensor data, we can produce a relatively high val-
idation accuracy under conditions where several sensors are not
functioning. These findings suggest that during plant emergency
response, machine learning models can help resolve uncertainty
in making decisions about where and toward what purpose to de-
ploy sensing platforms.

5.2 Sensitivity Analysis on the Cost Function

We observe that if the ratio of P/R is low enough, the EVSI
process will always advise "No Fix” when there is no fault sig-
nal: fixing the fault is costlier than the expected cost of incurring
plant damage (Table 5). However, as the ratio of P/R reaches 16,
the EVSI decision process will always advise “Fix”, because the
cost of the plant failing outweighs remediation costs and there
would be no risk that the “no signal” condition is a false neg-

ative. In practice, this would result in a continuous preventive
maintenance program.

Similarly, if we look at the lower-priority sensors (M11,
X19, M4) for lower ratios (e.g., P/R=8), we see the same be-
havior of always to ”Fix” even when there is no fault signal.
From Table 4, we see these lower-priority sensors are mostly sen-
sors that bring limited accuracy increase to the machine learning
model; if a robot is sent to deploy these sensors, the fault signal
received is not very accurate and may have a high false positive
or false negative rate. At the P/R ratio of 8, with these lower-
priority sensors the EVSI decision process is already starting to
devalue the expected value of a new sensor due to higher uncer-
tainty in the results.

These results highlight the interplay between the P/R cost
ratio and accuracy of sensors, emphasizing the potential of
rapidly-deployable sensing platforms to afford decision-making
facilitated by an EVSI-based approach.

5.3 Implications for Research and Practice.

This paper provides a framework for applying EVSI for real
time mobile sensing applications in industrial environments. We
argue that EVSI can be utilized in any situation that calls for
informed decision-making, especially in the presence of faulty or
sparse data. Several assumptions, outlined in Section 3.4, present
rich opportunities for future research in applying ML to manage
uncertainty and risk response in complex plant environments.
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FIGURE 7: A dashboard with data from the PI System that dis-
plays data from selected critical sensors, results of the initial
EVSI analysis and recommends which sensors should be de-
ployed on mobile robots.

To envision how such a system could create impact in prac-
tice, Fig. 7 shows a sample user interface and scenario from an
operator’s standpoint using the PI™ System [50], a leading in-
dustrial operations data management platform. In this scenario a
fault is predicted at 12:17:30 AM, and, leveraging our proposed
framework, EVSI results recommended deploying sensor M10
on mobile robot Robot01 to the site. The system calculates the
EVSI for all remaining un-deployed sensors and recommends the
operator deploy M30, the sensor with the maximum EVSI next.
Considering incoming data from the newly-deployed robot, an
operator could make more informed decisions and evaluate risks.
Finally, while the findings in this work are validated using the TE
dataset, we anticipate that this overall workflow can be general-
ized to emergency sensing and actuation decision-making in a
variety of plant contexts.

6. CONCLUSIONS AND FUTURE RESEARCH

This paper presents an approach to sensor deployment in re-
sponse to fault prediction using Expected Value of Sample In-
formation (EVSI). Conditional probabilities were learned over
a data set derived from the Tennessee Eastman plant simulation
dataset. We are able to illustrate that (1) the LSTM model was
the most accurate to describe the TE dataset, (2) the model in-
dicated which ten sensors had most influence on accuracy, and
(3) the deployment framework is appropriately sensitive to plant
damage and remediation costs.

Further work aims to consider the risks, costs and time
associated with sensor deployment approaches (e.g., human-
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installation, drops from drones, ground robots, throw-bots, ro-
tory robots) to achieve optimal sensor placements. This research
will also consider additional signals or virtual sensors to trig-
ger an EVSI evaluation. Furthermore, the TE Process data lack
information on cost, location, time, and accessibility of various
sensors in the simulated plant environment — all information that
is critical to decision-making in sensor deployment. Extending
our approach to real data would allow consideration of these fac-
tors and result in a more impactful analysis.
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Appendix A: Machine Learning Model Details

Using 5-fold cross-validation [51], we tuned the hyperpa-
rameters of the logistic regression and random forest models.
The logistic regression model requires one hyperparameter C,
the inverse of regularization strength, which we chose to have
a value of 1000 through cross validation on the TE data train-
ing set. The random forest model used cross-validation to tune
the hyperparameters of 500 trees (estimators) in the random for-
est, no maximum depth, and the minimum number of samples
required to split an internal node set to five. The 1D CNN and
LSTM models were implemented in Tensorflow Keras [52]. We
added Dropout and trained the models using the Adam optimizer
due to stochastic gradient descent handling sparse gradients. We
used softmax for activation as there are multiple classes and we
calculated loss via categorical cross-entropy.

Appendix B: Machine Learning Confusion Matrices

To supplement Section 4.2, we compare the best model
LSTM’s confusion matrix (Fig. 8) against the CNN (Fig. 9),
Random Forest (Fig. 10), and Logistic Regression (Fig. 11).

LSTM Confusion Matrix
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FIGURE 8: LSTM confusion matrix
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FIGURE 11: Logistic Regression confusion matrix

Appendix C: More on the TE Dataset

Sampling the TE Dataset

As the TE dataset itself is too large to train efficiently, we
performed sampling on the original dataset to obtain a more man-
ageable subset. A description of this dataset is described below.

The TE dataset is deliberately split into two parts that are
similar in terms of size to create a more balanced dataset: fault
data and non-fault data. It is furthermore split into test and train-
ing sets. So we have 4 files: fault_training, fault_testing, non-
fault_training and non-fault_testing.

Using the training set as the example: there are 21 types for
each data point. Type O is non-fault and the rest are different
types of faults. Faults are introduced after a few hours of nor-
mal operation. There are 500 samples of each type of fault. So
there will be 500*21 = 10500 data points for each simulation.
There are 500 simulations, so the total number of data points is
500%10500 = 5250000. Every simulation is very similar to each
other by the nature of TE process.

Our sampling method is borrowed from [53]. From fault-
training and non-fault_training, we take the fault O (No Fault)
data points from the first 40 simulations and take the rest of of
fault types data points in the first 25 simulations while ignoring
the fault O to form our training set. Similarly, we take another
20 simulations for fault 0 and 10 simulations for the rest of fault
types to form the validation set. Then, from fault-testing and
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non-fault_testing, we take the fault O data points from the first
2 simulations and take the rest of fault types from the first 10
simulations to form our testing set.

Note that in our experiment, the machine learning models
perform relatively the same on the sampled subset and the origi-
nal and much larger dataset.

Access to the Dataset

Please refer to our Github repository (https://github.com/
BerkeleyExpertSystemTechnologiesLab/EVSIvsLSTM) for the
sampled dataset in CSV form, code and models.
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