Autodidactic Neurosurgeon: Collaborative Deep Inference for
Mobile Edge Intelligence via Online Learning

Letian Zhang
1xz437 @miami.edu

University of Miami
Coral Gables, Florida, USA

ABSTRACT

Recent breakthroughs in deep learning (DL) have led to the emer-
gence of many intelligent mobile applications and services, but
in the meanwhile also pose unprecedented computing challenges
on resource-constrained mobile devices. This paper builds a col-
laborative deep inference system between a resource-constrained
mobile device and a powerful edge server, aiming at joining the
power of both on-device processing and computation offloading.
The basic idea of this system is to partition a deep neural network
(DNN) into a front-end part running on the mobile device and a
back-end part running on the edge server, with the key challenge
being how to locate the optimal partition point to minimize the end-
to-end inference delay. Unlike existing efforts on DNN partitioning
that rely heavily on a dedicated offline profiling stage to search
for the optimal partition point, our system has a built-in online
learning module, called Autodidactic Neurosurgeon (ANS), to au-
tomatically learn the optimal partition point on-the-fly. Therefore,
ANS is able to closely follow the changes of the system environ-
ment by generating new knowledge for adaptive decision making.
The core of ANS is a novel contextual bandit learning algorithm,
called pLinUCB, which not only has provable theoretical learning
performance guarantee but also is ultra-lightweight for easy real-
world implementation. We implement our system on a video stream
object detection testbed to validate the design of ANS and evaluate
its performance. The experiments show that ANS significantly out-
performs state-of-the-art benchmarks in terms of tracking system
changes and reducing the end-to-end inference delay.

CCS CONCEPTS

+ Computing methodologies — Distributed computing method-
ologies; « Human-centered computing — Ubiquitous and mobile
computing.

KEYWORDS

Deep learning inference, edge computing, online learning, mobile
object detection system

ACM Reference Format:

Letian Zhang, Lixing Chen, and Jie Xu. 2021. Autodidactic Neurosurgeon:
Collaborative Deep Inference for Mobile Edge Intelligence via Online Learn-
ing. In Proceedings of the Web Conference 2021 (WWW °21), April 19-23, 2021,

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3450051

3111

Lixing Chen
Ix.chen@miami.edu

University of Miami
Coral Gables, Florida, USA

Jie Xu
jlexu@miami.edu
University of Miami
Coral Gables, Florida, USA

Ljubljana, Slovenia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3442381.3450051

1 INTRODUCTION

Deep neural networks (DNNs) have been the state-of-the-art solu-
tion in recent years for many functionalities routinely integrated in
mobile devices, e.g., face recognition and speech assistant. However,
efficiently integrating current and future deep learning (DL) break-
through within resource constrained mobile devices is challenging.
Although steps have been taken recently to enable DL functionali-
ties on mobile devices, e.g., model compression [34], lightweight
machine learning libraries [2] and new-generation hardware [29],
they are unlikely to be a one-size-fits-all solution that can address
the immediate needs of all existing mobile devices due to the sub-
stantial heterogeneity in terms of their computing capacity. A recent
study by Facebook [33] shows that over 50% mobile devices are
using processors at least six years old, limiting what is possible of
Facebook Al service. Also, for wearable mobile devices, e.g., smart
wristbands, their computing resource limitation is not due to the
temporary technical deficiency but design requirements to guaran-
tee portability [24]. Therefore, external booster becomes necessary
to realize the full potential of DNN on mobile devices.

Current wisdom focuses on the Multi-Access Edge Computing
(MEC) [23], a new paradigm and key technology of 5G that moves
cloud-like functionality towards edge servers close to data sources.
The idea is to configure DNNs on edge servers to which the input
data will be sent from mobile devices on the occurrence of inference
requests. While recognizing the advantages of edge computing
for DNN inference, previous empirical studies [20] reveal that its
performance is highly sensitive to the bandwidth between edge
servers and mobile devices. For massive input like video streaming,
the delay of DNN inference by offloading the entire input data to the
edge server can become on par with or even worse than that on the
local mobile device. With the observation that the data size of some
intermediate results (i.e., the output of intermediate layers in DNN)
is significantly smaller than that of the raw input data, collaborative
deep inference between the mobile device and the edge server starts
to attract increasing attention recently as it is able to leverage the
power of both on-device processing and computation offloading.
The idea is to partition the DNN into a front-end part running on the
mobile device and a back-end part running on the edge server. The
mobile device executes the DNN model up to an intermediate layer,
and then sends the smaller intermediate results to the edge server
for computing the rest part of the DNN. Compared to either pure
on-device processing or computation offloading to an edge server,
collaborative deep inference is expected to be more reliable and
flexible in balancing the transmission and computation workload

https://doi.org/10.1145/3442381.3450051
https://doi.org/10.1145/3442381.3450051
https://doi.org/10.1145/3442381.3450051

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

[l Front-end inference delay
Data transmission delay

Fas1 edge (FE)
w edge (SE)

Letian Zhang, Lixing Chen, and Jie Xu

SE best
FE best

Low uplink (LU)
Pl |

Medium uplink (MU) IlHigh uplink (HU)

T

Ml Back-end inference delay

Delay (s)

Delay (s)

%

o

input
convi
conv2
pool1
conv3
conv4
pool2
convs
conve
conv7

>
@
E
©
7}

Figure 1: End-to-end delay: front-end
inference delay + transmission delay +
back-end inference delay. (Vgg16)

between the mobile device and the edge server, and hence has the
potential of optimizing the end-to-end inference performance.

1.1 Numerical Insights

To demonstrate the effectiveness of collaborative deep inference,
Fig. 1 shows the end-to-end inference delay, when Vgg16 is parti-
tioned at different layers under an uplink transmission speed 12
Mbps. As can be seen, partitioning Vgg16 at the fc1 layer reduces
the end-to-end inference delay by 29.64% compared to on-device
processing or edge offloading. Apparently, partitioning a DNN does
not always outperform on-device processing and edge offloading,
and the optimal partition point depends on many factors, among
which, the computing capability of the edge server and the net-
work condition are major. To illustrate the impact of computing
capability of the edge server on the optimal DNN partition point,
Fig. 2 shows the end-to-end inference delay if the DNN is parti-
tioned at different layers for a high-capability edge server (i.e., GPU
and low workload) and a low-capability edge server (i.e., CPU and
high workload). As can be seen, the optimal partition point tends
to be later (or even pure on-device processing in this case) as the
benefit of offloading to a lower-capability edge server is smaller.
The other major factor is the network condition, which affects the
transmission delay. Fig. 3 shows the optimal partition points under
three network conditions: High uplink rate (50 Mbps), Medium
uplink rate (16 Mbps), and Low uplink rate (4 Mbps). As can be
seen, a lower uplink rate tends to push the partition point later.
However, because the output data size is not necessarily monotoni-
cally increasing/decreasing as we move to later layers, the optimal
partition point is complexly dependent on the uplink transmission
rate. To summarize, the computing capability of the edge server
and the network condition critically affect the collaborative deep
inference performance.

1.2 Why Online Learning?

The crux of efficient collaborative deep inference is locating the
optimal partition point of the DNN to distribute workload between
the mobile device and the edge server. Existing efforts rely heavily
on the offline profiling of the layer-wise DNN inference delay as a
function of the system parameters, e.g., the uplink data transfer rate
and the mobile device/edge server processing speed [8, 15, 16, 19].
With this offline-acquired knowledge, the partition point can be
determined via solving an easy optimization problem. This method
can be further extended to online adaptation using real-time input
of system parameters. However, there are several major drawbacks
of such an offline profiling approach.

pool3
conv8
conv9
conv10

3112

Figure 2: End-to-end delay at different
partition points under different edge
capabilities. (Vgg16)

fC2

pool4
convit
POOI5 fs |
flatten j—
fc1
softmax -

convi2
convi3

Figure 3: End-to-end delay at different
partition points under different net-
work conditions. (Vgg16)

Adaptation to New Environment: The knowledge acquired
during offline profiling can be easily outdated considering the highly
dynamic and uncertain environment. For example, the network up-
link rate can change due to the dynamic spectrum management of
the wireless carrier, the multi-user interference, and the mobility
of mobile devices; the edge server processing capability may also
change over time due to the edge server resource management to
support multi-tenancy or even the change of edge servers them-
selves due to location change. Once the offline knowledge becomes
outdated, its suggestion can lead to arbitrarily bad results. While
performing offline profiling whenever a new environment is en-
countered is possible, it incurs significant overhead to generate
accurate predictions.

Limited Feedback: Existing offline profiling methods, even
with periodic updating, require explicit real-time system parameters
as input, e.g., the uplink data transfer rate and the workload on edge
servers. These parameters, however, not only are ever-changing,
but also can be very difficult for an end-user mobile device to ob-
tain in practice, if not impossible. Often the case, the mobile device
can observe only the overall delay between sending the data and
receiving the inference result from the edge server, but is unable
to accurately decompose this delay into different components (e.g.,
transmission delay and processing delay). This limited feedback
challenge is similar to the congestion control problem in the classic
Transport Control Protocol (TCP), where the end-user adjusts its
congestion window based on only a binary congestion signal from
the network as a summary of all network effects.

Layer Dependency: Existing offline profiling methods adopt
a layer-wise approach, which profiles the inference delay of each
individual DNN layer depending on the system parameters. Clearly,
profiling can be laborious for very deep neural networks as layers
become many. More importantly, the layer-wise approach has an
inherent drawback since it neglects the interdependency between
layers. In fact, the overall inference delay is not even a simple sum
of per-layer delay due to the inter-layer optimization performed
by state-of-the-art DNN software packages, e.g., cuDNN [5], which
has a non-negligible impact on the total inference time.

All these dynamics and uncertainties presented in the collabo-
rative deep inference system and their a priori unknown impacts
on the inference performance call for an online learning approach
that can learn to locate the optimal partition point on-the-fly.

1.3 Our Contribution

In this paper, we design and build a collaborative deep inference
system for video stream object detection, which contains a novel

Autodidactic Neurosurgeon: Collaborative Deep Inference for Mobile Edge Intelligence via Online Learning

online learning module, called Autodidactic Neurosurgeon (ANS),
to automatically learn the optimal partition point based on limited
inference delay feedback. Object detection and tracking in video
streams is a core component for many emerging intelligent applica-
tions and services, e.g., augmented reality, mobile navigation and
autonomous driving. The mobile device in our system continuously
receives video frames captured by an on-device camera, and selects,
for each frame (or a small batch of video frames), a partition point
to perform collaborative deep inference for object detection with
the edge server. ANS has several salient features: (1) ANS avoids
the large overhead incurred in the laborious offline profiling stage.
Instead, it learns the optimal partition on-the-fly and hence easily
adapts to new environments. (2) ANS does not need hard-to-acquire
system parameters as input. Instead, it utilizes only the limited de-
lay feedback of past collaborative inference tasks. (3) ANS exploits
the intrinsic dependency of DNN layers without the need to learn
each possible partition point individually, thereby tremendously
accelerating the learning speed. (4) ANS explicitly handles key
frames captured in the video stream by assigning higher priority
to those frames, thus providing differentiated service to frames
during learning. (5) ANS requires ultra-lightweight computation
and minimal storage and hence, it is easy to deploy in practical
systems. (6) The core of ANS is a novel online learning algorithm
developed under the contextual bandit framework, and it has a
provable performance guarantee. More technical innovations will
be discussed later in Section 3.

We highlight that as on-device processing is a special partition
decision, ANS complements existing efforts such as DNN model
compression on pushing DL intelligence into mobile devices, while
providing added benefits by exploiting multi-access edge comput-
ing. We implement the collaborative deep inference system on a
hardware testbed, where a Nvidia Jetson TX2 device, a fair repre-
sentation of mobile devices, wirelessly connects to a GPU-powered
edge server (Dell Alienware Desktop). Experiment results show
that ANS is able to accurately learn the optimal partition point and
hence accelerates deep inference for various DNN model structures
under various wireless network settings.

2 SYSTEM ARCHITECTURE

In this section, we describe the architecture of the collaborative
deep inference system. A pictorial overview is given in Fig. 4.

2.1 Deep Neural Network Partition

We first formalize DNN partitioning, discuss its impact on the end-
to-end inference delay and introduce preliminaries.

Marking Partition Points. Let # = {0,1,2,..., P} collect all po-
tential DNN partition points. A partition point p € P partitions a
DNN into two parts: 1) the front-end part, DNN;ront, contains layers
from the input to the partition point p € P, and 2) the back-end
part, DNNgaCk, contains layers from the partition point p to the out-
put layer. For example, if the partition point is placed at p = 2,
then DNNTont contains layers {1,2} and DNN22K contains layers
{3,4,...,P}. The partition points p = 0 and p = P are the special
cases: the partition p = 0 gives an empty DNN;ront which means
the mobile device transmits raw input data to the edge server to

run the entire DNN; the partition p = P gives an empty DNN‘E’,aCk

3113

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Transmit intermediate result via

& camera wlrelesb connection
ﬁ
Front-end DNN Back-end DNN

l on mobile device on edge server
DNN partition point

Mobile device

Video streams

ANS Learning Module

|Determine DNN Partition Point :
L Minimize end-to-end delay
X Predicted delays

End-to-end delay

Predictor:
* Predict transmission delay and edge
server processing delay

4 Learned knowledge
Online Learner: |
* Observe end-to-end delay
* Update knowledge based on observation |J

Frame importance

Key frame
detection J

Figure 4: An overview of the system architecture.
indicating that all DNN layers are executed on the mobile device.
The output of DNNI‘;ront is called the intermediate result of partition
p, denoted by ;. Note that the intermediate output will be sent
to the edge server for further processing, and we assume that the
intermediate output ¥, includes necessary overhead for data packet
transmission (e.g., packet header) and follow-up DNN merging (e.g.,
information about the partition point).

Breakdown of DNN Inference Delay. The end-to-end collabora-
tive deep inference delay consists of three main parts: (1) Front-end
inference delay d; of DNN;m”t on the mobile device; (2) Trans-

mission delay dlt,x for transmitting the intermediate output ¥,
from the mobile device to the edge server; (3) Back-end inference
delay dg of DNN;’,"”‘:k on the edge server.

The data size of the final inference result is usually small and
hence the transmission delay for the final result return is neglected
for the ease of problem formulation. The end-to-end inference delay
with partition point p is therefore d, := d}: + d;t,x + d;b, + 11, where
1 is a Gaussian random variable to model the randomness in the
inference and transmission processes. The transmission delay dlt,x
is determined by the data size of the intermediate result ¢/, and
the wireless uplink transmission rate, which varies depending on
the network condition. The inference delays df, d® of partitioned
DNNs depend on many more factors: the number of DNN layers, the
computational complexity of component layers, the inter-layer op-
timization, and also the processing speed of the mobile device/edge
server. While some of them are fixed once the DNN structure is
given (e.g., the number of layers and layer-wise computational
complexity), others depend on the configuration of the comput-
ing platform (e.g., inter-layer optimization tools) and may also be
time-varying (e.g., multi-user scheduling by the edge server).

We note that the configuration of the computing platform on
the mobile device is relatively stable and fully revealed to the deci-
sion maker, i.e., the mobile device itself, and hence the front-end
inference delay d; of DNN}‘;ront can be easily measured statistically
for a given DNN using methods similar to offline profiling. In the
experiment, we use the application-specific profiling method in [8]
to obtain the expected inference delay of DNN;rO"t. Compared with
the layer-wise statistical modeling method adopted in [15, 16, 19],
this method provides more accurate estimations because it takes
into account the inter-layer optimization. Now, the key difficulty

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

lies in learning d;x + dz for different partition points as a result of
unknown and time-varying edge computing capability and network
condition. For ease of exposition, we define dj = dl{t,>< + dg as the
edge offloading delay.

2.2 Edge Offloading Delay Prediction

To obtain dS, our idea is to learn a prediction model that maps
contextual features of a partition point to the edge offloading delay.
Since learning works online, this prediction model updates itself
using the limited feedback information about the past observed d;;
to closely follow the changes in the (unknown) system parameters.
Using contextual features of partition points has a clear advantage
over learning the delay performance of individual partition points
separately, especially when the number of possible partition points
is large. This is because the underlying relationship between differ-
ent partition points is captured by their contextual features, and
hence, knowledge gained by choosing one particular partition point
can be easily transferred to learning about the performance of all
other unselected partition points.

Constructing Contextual Features of Partitions. We construct
contextual features associated with DNNP2K that may affect dg. In-
tuitively, the back-end inference delay is linearly dependent on the
computation complexity of the back-end partition DNNBaCk, which
is captured by the the number of multiply-accumulate (MAC) units
contained in DNN22K, However, our experiment shows that the re-
quired computation time for one MAC unit is different for different
types of DNN layers. This is because different DNN layers allow
different levels of parallel computation, especially when GPU is in-
volved in the computation process. Since different partition points
result in different combinations of layer types in DNNBaCk, simply

using the total number of MAC units to predict dg is problematic.
To address this issue, instead of using a single scalar value for the
total number of MAC units, we calculate the number of MAC units
for each layer type, and use this vector for learning the inference
delay. Specifically, we consider three main types of layers in DNN:
i) convolutional layer, ii) fully-connected layer, iii) and activation
layer, and count the number of MAC units in layers of different
types, denoted by m¢, m; and mg, respectively, for a given partition
point p. In addition, we also count the number of convolutional
;, and activation layers nja) in
DNNPack These numbers will affect inter-layer optimization and
hence are also useful for learning the overall inference delay. For the
transmission delay d%*, although the wireless uplink rate may be

layers n$, fully-connected layers n

unknown, it is still clear that d;‘,x linearly depends on the data size

of the intermediate output i, of the front-end partition DN

In sum, the contextual feature of a partition point p is collected
inxp = [m; m; m;, nl‘;, n;, nf,, 1//p]T. Here, we slightly abuse no-
tation to use ¢/, to denote the data size of the intermediate results.
In Fig. 5, we provide an example to illustrate the contextual features
of a particular partition point.

Linear Prediction Model. Although the best model for predict-
ing the edge offloading delay is unclear due to the obscured process
of DNN inference, we adopt a linear model due to the reasons
mentioned above. In addition, compared to other more complex
and non-linear prediction models (such as a neural network), the

front
Np .

3114

Letian Zhang, Lixing Chen, and Jie Xu

linear model is much simpler and requires minimal resource on the
mobile device. We show later in the experiments that this linear
model is in fact validated to be a very good approximation. Specif-
ically, our prediction model has the form d§ = 67 x,, where 6 is
the linear coeflicients to be learned, which captures the unknown
effects of the unknown system parameters (i.e., wireless uplink
condition, computation capability of the edge server) on the delay
performance. In runtime, the coefficients will be updated online as
new observations of d§ as a result of the partition decision p are
obtained. How to update these coefficients will be explained later in
Section 3. Note that there is a practical reason why we learn d;; as

a whole rather than dlt,x and dg individually. As an end-user mobile
device, it can observe d5, by calculating the difference between the
time when the data is sent and the time when the result is received
for a selected partition point p. However, often it is very difficult
for the mobile device to decompose this feedback into dt* and dz
unless additional information is provided by the edge server. In this
paper, we focus on this more challenging limited feedback scenario,
although the individual feedback can also be easily incorporated
into our framework.

2.3 Object Detection in Video Stream

Now, we explain how collaborative deep inference works in the
context of video stream object detection. In video stream object
detection, the mobile device uses its camera to capture a video
and aims to in real-time detect objects in the successive frames of
the video by feeding them one-by-one to a pre-trained DNN. The
flow of frames is indexed by 7 = {1,2,...,T} and for each frame
t € 7, the mobile device has to pick a partition point p; to perform
collaborative deep inference with the edge server. Note that pure
on-device processing and pure edge offloading are special cases by
choosing p; = P and p; = 0, respectively. Once the inference is
done, detection results (i.e., object bounding boxes and class labels)
are displayed on the video. To assist online learning, the mobile
device also records the actual edge offloading delay dg unless it
chooses pure on-device processing (i.e. p; = P).

Suppose the linear coefficients @ are already learned, then the
mobile device should pick a partition point to minimize the DNN
inference delay by solving the following problem:

pe :=argming,cp d;, + OTxp (1)

where the first term is the front-end inference delay and the second
term is the edge offloading delay. However, since the coefficients 0
are a priori unknown, the mobile device has to try different partition
points and use the observed edge offloading delay feedback to
form a good estimate of 0. Clearly, there is subtle exploitation v.s.
exploration tradeoff, i.e., whether the mobile device should pick the
partition point that solves the above minimization problem based
on the current estimate of 0 or pick other possible partition points
to form a more accurate estimate of for future use.

This exploitation v.s. exploration tradeoff is further complicated
by key frames in the video stream. Key frames are the most repre-
sentative frames in video streams, which contain main elements or
important events (e.g., entrance of new objects or scene change). It
is often the case that these key frames have higher requirements on
the inference performance, e.g., lower inference delay requirement.

Autodidactic Neurosurgeon: Collaborative Deep Inference for Mobile Edge Intelligence via Online Learning

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Context: x, = [MAC(conv_2), MAC(fc_{1,2}), MAC(act_{2,3,4,5)), 1,2, 4 Waces]" Frame 1 Frame 2 Frame 3
ontext: % =1 () MAC(fe.{1,2)). MAC(act { - 1.2:4 Ve - . Forced sampling: choose partition point other than on-device processing p € P\ {P
B pling
Front-end DNY\ = § Back-end DNN N
I S 3 g Ny P '} n " n n n]
| Wireless | Ri lp il
connection M 2 b BP0 k0008 KEOBOXTBX XXX X XXX XXX X]
: < ; ; ; v
i = 8 r @; v H o 000000000000
" o @ @ @ ; o i
P 4 s r ee v A
_=a pae— flee $ O [x ANSwlo forced sampling
SSIM(Frame 1, Frame2) ~ SSIM(Frame 2, Frame3) & @ ! ! O ANS w/ forced sampling
Front‘end ~ Transmission delay Back-end inference delay =0.98 > Threshold 0.8 =0.75 < Threshold 0.8 0 20 20 50 80 100 120

inference delay

Edge offloading delay

Non key frame: L, = Ly, Key frame: Ly = Lyggn

Index of frames

Figure 5: Contextual feature vector for a Figure 6: Key frame detection using Figure 7: Forced sampling: forced sam-

DNN partition point at act_1.

SSIM. A key frame is detected if it is pling is activated only when the parti-

sufficiently different from the previous tion decision were to be on-device pro-

frame.

To provide differentiated quality of services to key and non-key
frames, frames must be treated differently during online learning:
while non-key frames may tolerate a larger inference delay as a
result of exploring different partition points, key frames should be
handled with more care using the best-known partition point as
much as possible. Since key frame detection itself is not the focus
or the main contribution of this paper, we apply one of the most
widely-used key frame detection methods, namely structural sim-
ilarity (SSIM) [32], to determine key frames. Fig. 6 illustrates the
idea of SSIM.

3 AUTODIDACTIC NEUROSURGEON

In this section, we describe the design of the online learning module,
called Autodidactic NeuroSurgeon (ANS), in our collaborative deep
inference system. The core of ANS is an online learning algorithm
that can predict the inference delay of different partition points and
base on the prediction to select partition points. Since we adopt a
linear prediction model as explained in Section 2.2, LinUCB [6], a
classic online learning algorithm for linear models that gracefully
handles the exploitation v.s. exploration tradeoff, seems a good
candidate for solving our problem. However, there are two unique
challenges for LinUCB to work effectively in our system (which
will be explained later). Therefore, a new online learning algorithm,
called yLinUCB, is developed to support ANS. In what follows, we
first explain how LinUCB works and its limitation in ANS. Next,
we propose yLinUCB, prove its theoretical performance guarantee
and analyze its complexity.

3.1 LinUCB and its Limitation

The basic idea of LinUCB is an online linear regression algorithm,
which incrementally updates the linear coefficients using newly
acquired feedback. However, when making decisions, LinUCB takes
into account the confidence of the prediction for different actions’
expected payoff (i.e., the delay of different partition points in our
case). Put in the context of DNN partition, LinUCB maintains two
auxiliary variables A € R¥*? and b € R4*! for estimating the coef-
ficients 0. For each video frame ¢, 0 is estimated by ét = A;_llbt,l,
and the partition point for frame ¢ is selected to be

pt = argmin d +0" Xp — a,[xPA;_llxp 2

peP

In the function to be minimized, the first term df is the front-
end inference delay of partltlon point p, which is assumed to be

known; the second term o' xp is the predicted edge offloadmg
delay of partition point p using the current estimate 6; the last

3115

cessing.

term o /x;A;jlxp represents the confidence interval of the edge
offloading delay prediction. A larger confidence interval indicates

that the prediction is not accurate enough and hence, even if the
predicted delay of a partition point p is low, the chance to select
this partition point should be decreased. After the inference request
is completed and the realized edge offloading delay dzt is observed,
the auxilary variables are incrementally updated as A; «— A;—1 +
xplx;t and by « bs_1 + xptd;t

However, LinUCB has two major limitations for it to work effec-
tively in ANS:

Limitation #1: LinUCB treats each frame equally for the learn-
ing purpose. In other words, being a key frame or not does not affect
the way LinUCB selects a partition point and hence, key frames
can also experience high inference delay because of unlucky bad
choices of partition points due to exploration.

Limitation #2: This limitation is in fact detrimental. Among
all possible partition points, the partition point p = P, or pure on-
device processing, is actually a very special partition point that does
not follow the linear prediction model. This is because the edge
offloading delay is always 0 once p = P is selected and any linear
coefficient is a “correct” coefficient since the contextual feature asso-
ciated with p = P is a zero vector. If, for some video frames, p = P is
selected by LinUCB for deep inference, then the auxiliary variables
Ay and b; do not get updated since there is no feedback/new infor-
mation about the edge offloading delay. As a result, LinUCB will
select p = P according to the selection rule (2) for the next video
frame and thereafter, essentially being forced to stop learning and
trapped in pure on-device processing for all future video frames.
Therefore, LinUCB fails to work in ANS.

3.2 uLinUCB

In light of the limitations of LinUCB, we propose a new online
learning algorithm, called pLinUCB, by providing mitigation mech-
anisms to LinUCB in order to support ANS. As we will see, these
mitigation mechanisms are quite intuitive. However, rather than be-
ing heuristic, they grant yLinUCB provable performance guarantee
with a careful choice of algorithm parameters.

Mitigation #1: To provide differentiated inference service to
key and non-key frames, ANS assigns weights to frames and incor-
porates these weights when selecting partition points. Specifically,
each frame ¢ is assigned with a weight L; depending on whether it
is a key frame or not (or the likelihood of being a key frame), and

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

the partition point selection rule is modified to be

pr = argmin d; + éTxp —a,/(1- Lt)x;At’_llxp 3)

pPeP

As key frames will receive a larger weight, the confidence interval
(i-e., the third term) plays a smaller role when ANS selects a parti-
tion point. Therefore, ANS tends to play safe with key frames by
exploiting partition points that are so far learned to be good.

Mitigation #2: To escape from being trapped in pure on-device
processing, a natural idea is to add randomness in partition point
selection. Because partition points other than the pure on-device
processing have a chance to be selected, new knowledge about the
edge offloading delay and hence 0 can be acquired. Our implementa-
tion of this randomness idea is through a forced sampling technique.
Specifically, for a total number of T video frames, we define a forced
sampling sequence ¥ = {t|t = nTH,t < T,n=1,2,...}, where
is a design parameter. If the index ¢ of a video frame belongs to ¥,
then pLinUCB forces ANS to sample a partition point other than
p = P.In other words, p = P is not an option for these frames.
According to the design of the sequence, forced sampling occurs
every T# frames. Note that, forced sampling has no effect on frames
when p = P is not the selected partition point if the classic LinUCB
were applied. Fig. 7 illustrates the idea of forced sampling.

The pseudocode of pLinUCB is given in Algorithm 1. It follows
the same idea of estimating € using an online linear regresser
as LinUCB. The key difference is that it incorporates the frame
importance weights and forced sampling when making partition
point selection decisions.

Algorithm 1 ASN with pLinUCB algorithm

1: Construct context x,, for candidate partition points Vp € ¥
2. Obtain front-end inference delay estimate d, Vp € P

3: Determine forced sampling sequence ¥ .

4: Initialize Ay = BIy, by = 0.

5. for each framet =1,2,---,T do

6: Detect key frame and assign weight L;

7: Compute current estimate ét = A;_llbt_l.

8 for each candidate partition point p € do

9: Compute a?; = é:xp —a,/(1- Lt)x;A;_llxp.

10: if t € ¥ then > Forced sampling

11: Choose p; = argminpep,, d’f + d;
12: else
13: Choose p; = arg min,cp d; +dp.

14: if p; # P then > Not pure on-device processing

15: Observe d;t once inference is done.
T
16: Ar — Ay +xp,x,, b; «— b;_1 + xpzd§,~
17: else
18: At = At—l, bt = bt—1~

Theoretical Performance Guarantee. The parameter y is a crit-
ical parameter of yLinUCB (hence the name), which controls the
frequency of forced sampling. There is indeed a crucial tradeoff
that determines the performance of ANS. Since forced sampling
always selects a suboptimal partition point when p = P (i.e., pure
on-device processing) is indeed the best option, a smaller y (i.e.,

3116

Letian Zhang, Lixing Chen, and Jie Xu

Run pLinUCB Run pLinUCB Run pLinUCB
T=T, T =2T, T = 4T,
Il L A
r] 1\ 1
[r=11 mn=2r, | T, = 4T, [

Figure 8: Forced sampling frequency decreases as phase
length increases.

more frequent forced sampling) results in increased averaged infer-
ence delay. With a larger p (i.e., less frequent forced sampling), ANS
can be trapped in pure on-device processing for a long time if p = P
is indeed a suboptimal option, again leading to increased average
inference delay. In the theorem below, we characterize what is a
good choice of y and the resulting performance of pLinUCB.

Theorem 1. Under mild technical assumptions, the regret (i.e., the
delay performance difference compared to an oracle algorithm that
selects the optimal partition point for all T frames) of yLinUCB,
denoted by R(T), satisfies: V& € (0, 1), with probability at least 1 -6,
R(T) can be upper bounded by

max{O(T"**log(T/8)), O(T')})
Proor. The proof is given in Appendix A. O

According to Theorem 1, by choosing p € (0,0.5), the regret
bound is sublinear in T, implying that the average end-to-end in-
ference delay asymptotically achieves the best possible end-to-end
inference delay when T — oo. For a finite T, this bound also gives a
characterization of the convergence speed of pLinUCB. In addition,
by choosing p = 0.25, the order of the regret bound is minimized
at O(T% 7 log(T)).

Handling Unknown T. pLinUCB requires knowing the number
T of video frames for object detection to determine the frequency of
forced sampling. This is clearly an ideal scenario and largely does
not hold in practice. To handle the scenario when T is unknown,
p#LinUCB can be modified as follows: pLinUCB starts with a large
frequency of forced sampling and gradually reduces the frequency
as more video frames have been analyzed. Gradually reducing the
forced sampling frequency is reasonable because as more video
frames have passed, ANS has obtained a more accurate estimate of
0. Therefore, if pure on-device processing, i.e., p = P, is selected
by ANS after many video frames, it is very likely that pure on-
device processing is indeed the best inference option and hence,
less forced sampling should be performed to reduce the unnecessary
overhead. To give a concrete example of this strategy, we can divide
the sequence of video frames into phases, indexed by i = 1,2,
Each phase i contains T; = | 2! - Ty i={1,2, .- } Video frames where
To € N* is an integer constant. Within each phase, ANS runs
p#LinUCB with a known number of video frames T;. As T; is doubled
every phase, the forced sampling interval, namely Tlfu ,also increases.
This means that the forced sampling frequency decreases. For this
particular strategy, it can still be proved that yLinUCB achieves a
sublinear regret bound when p € (0,0.5) even if T is unknown. Fig.
8 illustrates this increasingly sparse forced sampling sequence.

Complexity Analysis. For a DNN with P possible partition points
and a contextual feature vector of size d, we analyze the time and
space complexity of puLinUCB for each frame ¢ as follows. Time
Complexity. Inversing the matrix A; incurs a time complexity O(d>)

Autodidactic Neurosurgeon: Collaborative Deep Inference for Mobile Edge Intelligence via Online Learning

[4]. Obtaining 6, incurs a time complexity O(d?). Computing d;
for every possible partition point p has a complexity O(d? + 2d)
and hence, the total complexity is O(P(d? + 2d)). Comparing d;; to
obtain the optimal partition point has a complexity O(P). Finally,
updating A; and b; has a complexity O(d? + d). Therefore, the
total time complexity is max{O(d®), O((P + 2)d?}. Since d is usually
small (in our implementation d = 7), the overall time complexity
for each frame is linear in the number of partition points. Space
Complexity. pLinUCB needs to keep variables A;—1, b;—1, xp, d;
and a constant indicating the forced sampling frequency in memory.
To compute d¢, additional temporary memory is needed, which has

space complexity O(d? + 2d + P). Overall, the space complexity is
0(2d? + (P +3)d + 2d). Again, because d is small, the space complex-
ity is linear in P. In sum, yLinUCB incurs negligible computation
complexity compared to regular deep inference tasks as it involves
only a small number of simple operations and requires keeping a
small number of variables.

4 EXPERIMENT RESULTS

4.1 Implementation and Setup

Testbed. We build a hardware testbed to validate the design of
ANS and evaluate its performance in a collaborative deep inference
system for video stream object detection. We use NVIDIA Jetson
TX2 developer module as the mobile device. It is equipped with
a NVIDIA Pascal GPU, a shared 8 GB 128 bit LPDDR4 memory
between GPU and CPU and an on-board camera. A Dell Alienware
workstation is employed as the edge server, which is equipped with
Intel Core i7-8700K CPU@3.70GHZX 12, two Nvidia GeForce GTX
1080 Ti GPUs, and 11 GB memory. The mobile device and edge
server are wirelessly connected by point-to-point Wi-Fi, and we
use WonderShaper [25] to set the wireless transmission speed to
emulate different network conditions.

DL Models and Platforms. Three state-of-the-art DNNs, namely
Vgg16 [30], YoLo [27] and ResNet50 [14] are considered in the ex-
periment. We implement ANS on both TensorFlow and PyTorch,
two popular machine learning platforms, and run deep inference on
these DNN models and perform DNN partitioning. We use Netscope
Analyzer [1], a web-based tool, for visualizing and analyzing DNN
network architectures. For chain topology DNNs, we mark a parti-
tion point after each layer. However, it should be noted that some
DNN models are not chain topology, in which case the residual
block method [9] can be used to determine the partition points (e.g.,
ResNet50 has 16 concatenated residual blocks).

Video Input and Detection Output. The input video is cap-
tured by on-board camera of the mobile device using OpenCV. The
video frames are captured with 1280 X 720 pixels and then resized
to 640 X 480 pixels for screen display. For DNN inferences, these
video frames are converted to image inputs of default size Width x
Height X Channels: Vggl6 — 224 X 224 X 3; YoLo — 416 X 416 X 3;
ResNet — 224 x 224 X 3. After the DNN processes the video frame,
detection output is generated, which includes the bounding box
locations of candidate objects, their predicted class labels and cor-
responding confidence. The bounding boxes and class labels are
then displayed on a screen connected to the mobile device.

Benchmarks. The following benchmarks are used in the evalu-
ation of the online learning module ANS. (1) Oracle: Oracle selects

3117

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Table 1: Prediction error of ANS and layer-wise method
when the uplink rate is high/medium/low and the edge
server uses GPU/CPU.

ANS Layer-wise
Vggl6 YoLo ResNet| Vggl6 YoLo ResNet
Low/GPU 0.43% 0.52% 3.52% | 9.87% 9.90% 12.68%

Medium/GPU | 3.01% 3.11% 5.10% | 19.33% 14.23% 21.12%

High/GPU 3.06% 3.94% 9.97% | 21.42% 22.70% 51.58%
Low/CPU 0.39% 0.67% 2.97% | 897% 10.02% 13.94%
Medium/CPU | 2.98% 3.15% 4.78% | 21.69% 16.32% 28.53%
High/CPU 3.12% 3.36% 7.96% | 25.76% 24.35% 49.61%
§1 5 r‘ _k: b’}ﬁﬁi‘?m ‘E 08 @ Neurosurgeon
5151 e Sosf] | O
S0 1 =4\ = Medium/Yolo © ANS
g et 8 0.4
8 5 \ =0 = Medium/Resnet §
= High/Resnet

0 20 40 0 100 200

Index of frames Index of frames
Figure 9: Online predic-
tion error reduces as more
frames are analyzed.

Figure 10: End-to-end in-
ference delay reduces as
more frames are analyzed.

the optimal partition point for each frame. We obtain the Oracle
decision by measuring the performance of all partition points for
100 times and then picking the partition point with the minimum
average delay. (2) Pure Edge Offloading (EO): The mobile device
offloads all frames to the edge server. The frames are processed
on edge server and the results are then returned to the mobile
device. (3) Pure On-device Processing (MO): All the frames are
processed on the mobile device with no offloading. (4) Neurosur-
geon [16]: It is an offline profiling approach for collaborative deep
inference.

4.2 Results and Discussions

Delay Prediction Error and Learning Convergence. Table 1
shows the edge offloading delay prediction error of ANS after 300
video frames, which is also compared to the layer-wise method
used in [15, 16, 19] that neglects the inter-layer optimization. In
all the tested environments (i.e., different combinations of network
condition and edge computing capability), ANS achieves an ex-
cellent prediction performance, far outperforming the layer-wise
method. The improvement is the most significant in high uplink
rate scenarios because the back-end inference delay is dominant
in the edge offloading delay and neglecting the impact of inter-
layer optimization on the inference delay introduces significant
errors. Fig. 9 further shows how the prediction error evolves as
more video frames have been analyzed for ANS. As can been seen,
ANS learns very fast and can accurately predict delay in about
20 video frames. Fig. 10 shows the runtime average end-to-end
inference delay achieved by ANS, Oracle and Neurosurgeon. The
average delay of ANS quickly converges to that of Oracle in about
80 frames, starting from zero knowledge about the system environ-
ment. Compared to Neurosurgeon, both ANS and Oracle is better
because they consider the inter-layer optimization during DNN
inference while Neurosurgeon performs layer-wise profiling. In
fact, this comparison is not fair to ANS as Neurosurgeon requires

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

-
n

|-e—MO —=EO CIANS]

[

o
=2}

(~—MO —=—EO [C_JANS|
"W

Il

—_

o
3

Inference delay(s)
o o
[CEEENN

Inference delay (s)

Letian Zhang, Lixing Chen, and Jie Xu

—

|-e—MO —=—EO [JANS] CPU

I

N
N
S~
[0}
T
[

Inference delay (s)
o
[&)]
Delay improvement
n
Q
R

0
1 5 913172125294050
Uplink speed (Mbps)

1 5 913172125294050
Uplink speed (Mbps)

(a) Vggl6 (b) YoLo

o

N
B

1 5 913172125294050
Uplink speed (Mbps)

(c) ResNet

Vgg16 YolLo ResNet
Model

(d) Best Reduction

Figure 11: End-to-end inference delay achieved by MO, EO and ANS, and delay reduction of ANS.

the real-time information about the system (i.e., the transmission
rate and edge server workload) while ANS does not.

End-to-End Inference Delay Improvement. Fig. 11 shows the
end-to-end inference delay achieved by MO, EO and ANS under
different uplink transmission rates when the edge server uses GPU.
When the transmission rate is low, the inference delay of ANS is
close to MO. This is because ANS tends to run the entire DNN on
the mobile device to avoid large transmission delay for sending data
to the edge server. When the transmission rate is high, the inference
delay of ANS is close to EO. This is because running the entire DNN
on the edge server significantly reduces the inference delay at a
small extra cost due to the small transmission delay. When the
transmission rate is moderate, ANS is able to make an effective
trade-off between on-device processing and edge offloading. Fig.
11(d) summarizes the end-to-end delay improvement in the best
cases when the edge server uses CPU or GPU for all three DNNs.
As it suggests, collaborative inference using ANS achieves a larger
improvement when the edge server is more powerful.

Adaption to Changing Environment. Fig. 12(a) shows how ANS
can track the change of the environment and adapt its partition
point when the network condition changes. The upper subplot
shows the evolution of the uplink transmission rate over time. The
middle subplot shows the partition points selected by ANS with
p#LinUCB. As a comparison, we also show in the bottom subplot the
partition results of the classic LinUCB. At the beginning, the uplink
transmission rate is high and hence, ANS partitions at the input
layer, sending the raw input image to the edge server. At the 150th
frame, the transmission rate changes to be small, which makes pure
on-device processing the optimal choice. Although ANS does not
directly observe this network condition change, it quickly adapts
its partition decision to be pure on-device processing in about 20
frames (at about the 170th frame). Later at the 390th frame, the
network condition improves, and ANS is able to adapt to the new
optimal partition point (i.e., fc1) in about 80 frames (at about the
470th frame). Finally at the 630th frame, the network condition
becomes the best again, and after about 50 frames (at about the
680th frame), ANS changes to pure edge offloading again. Note
that during the second phase when the network condition is bad,
forced sampling is activated, which periodically tries a partition
point other than pure on-device processing. As a result, when the
network condition improves, ANS is able to detect this change and
adapt to the new optimal partition. By contrast, LinUCB gets stuck
in the pure on-device processing since the 170th frame, thereby
losing its learning ability thereafter. Similar to Fig. 12(a), Fig. 12(b)

3118

wF=—== T T — = —=—
10k | — — Uplink speed (Mbps) | |
0 I R - I | | ,
softmay 5 T T T T 3
2 = Sp gl So e oot o6 oo l—— 3
foms « e . . Dl Ll
- o % o e . o0 .
. . o e ® v g
e ® _ |Forcadsammlfhg .
. &
A . ° ° . ® Partition points of ANS
input . I L e ee, i ° om—
sofimgy : K .
Trapped in on-device processing
Partition points of
ANS w/o forced sampling
input v 1 L

100 200 300 400 500 600 700
Index of frames

(a) Changing uplink rate

T T T T T T T T
high - ————————
I [—= — Edge server processing rate |
low . T === . .
ftmax £ -
softmg —
+ e PRI R
. v .
. . .
L) . Forc&d sampling
.
:'0 . ® o e O N e
input mme I ®wee oo . ‘ * Partition points of ANS
soﬂn]a(F T T T / 5
Trapped in on-device processing
’m
input | ANS w/o forced sampling

.) . .
100 200 300 400 500 600 700 800
Index of frames

(b) Changing edge processing rate

Figure 12: ANS under changing environment.

demonstrates the ability of ANS to adapt to the changing environ-
ment by varying the overall workload on the edge server over time.
Similar observations can be made in this experiment.

We further show how the frequency of environment change
impacts ANS in Fig. 13. In the simulations, the wireless network is
either in a fast (i.e., 50 Mbps) or a slow (i.e., 5 Mbps) state. For each
frame, the network switches to the other state with probability Py
and stays in the current state with probability 1 — P¢. As can been
seen, ANS achieves excellent performance when the environment
is relatively stable, namely when the switching probability is low.
When the switching probability is high, ANS can become worse
than MO due to the overhead incurred during learning.

Forced Sampling Frequency. As shown in the last set of experi-
ments, forced sampling is the key to continuing learning when pure
on-device processing is selected for inference. In this experiment,
we further investigate the impact of the forced sampling frequency
on the learning performance. We design the experiment as follows:
At frame ¢y, the system starts with a bad network condition so that
pure on-device processing is selected for inference. The system

Autodidactic Neurosurgeon: Collaborative Deep Inference for Mobile Edge Intelligence via Online Learning

0.6
o ANS - - -MO
O T
To4
©
S
g02
o
>
<<
0

Figure 13: Average infer-
ence delay at different en-
vironment change frequen-
cies.

Adaptation Time
I \ncumbent Performance

0.2 0.4

7

N
o
[S)
N

Average inference delay (s)

o

Average number of frames
n
o
o

o

Figure 14: Tradeoff of the
forced sampling frequency.
(larger ; means lower fre-
quency.

keeps in this bad network condition for a number frames, and then
switches to a good network condition at frame #; where fc1 be-
comes the optimal DNN partition layer. At frame ¢, ANS stably
selects the actual optimal layer fc1 as its partition decisions (i.e., for
20 consecutive frames). We vary the frequency of forced sampling
to investigate its behavior with respect to the following two metrics:
(1) Adaptation Time: Number of frames needed for ANS to detect
the change and adapt its partition decision i.e. 2 — t1. (2) Incum-
bent Performance: The end-to-end inference delay achieved by
ANS during the period between ty and #1.

Clearly, there is an intuitive tradeoff between these two metrics.
A higher forced sampling frequency allows ANS to quickly detect
and adapt to the changes, thereby reducing the adaptation time.
However, incumbent performance are harmed because of excessive
unnecessary trials of suboptimal partition points. On the other hand,
a lower forced sampling frequency minimizes the intervention
to the incumbent optimal partition decision, namely on-device
processing, but results in a longer time for ANS to detect changes
due to less incoming new knowledge. The results in Fig. 14 confirm
this intuition.

0.4 1

® 0. —

- -Tota\ frame average delay| 7 =z [Total frame
= Key frame average delay ’ > [Key frame
6 I Non-key average delay ’ o 80 I Non key frame
° -0~ Key frame ratio 2 T

@ © 8

o = 2

2 o 2

©0.3 05 £ £

2o = o

c > 9

S 0.

5 g f

@ <

o)

>

<0.2 0

Threshold
(a)

Figure 15: Inference delay of key frames: (a) Varying
SSIM threshold for key frame detection. (b) Varying frame
weights.

Key Frame Weights. In this experiment, we change the threshold
adopted by the key frame detection algorithm SSIM to adjust the
ratio of key frames, and investigate its impact on the end-to-end
inference delay performance achieved by ANS. As shown in Fig.
15(a), for all detection thresholds, ANS is able to provide differen-
tiated service to key and non-key frames, with the average delay
of key frames considerably lower than that of the non-key frames.
Note that when threshold is set to be 1, all frames are detected

3119

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

to be key-frames and hence, there are only two equal bars in the
corresponding category.

Furthermore, we change the relative weight Lyey/Lnon-key a5
signed to key and non-key frames in ANS. As can be seen in Fig.
15(b), when the relative weight becomes larger, the difference in the
achieved end-to-end inference delay for key and non-key frames
becomes more obvious. Therefore, by tuning the weights assigned
to frames in ANS, we can provide desired differentiated services to
different frames.

0.25
[Vgg/High-end === Yolo/Low-end
= 02 +Eo = 80% = vgg/Low-end ResNet/High-end
% . [CTIANS S YoLo/High-end E=== ResNet/Low-end
© £ 3
Bo.15 S 60%
3 g : §
§ 0.1 £ 40% - § i §
9] > SN o
2 |
£0.05 3 20% | |
. e | NS | PR
NN
o (ob) QQ JEORIRS 0% n -
N B Low Medium High

Uplink speed (Mbps) Uplink speed

Figure 16: ANS on com-
pressed DNN YoLo-tiny.

Figure 17: ANS on different
mobile devices.

Working Together with Model Compression. As highlighted
in the Introduction, ANS does not aim to replace or compete with ex-
isting efforts such as DNN model compression. Rather, it is a natural
complement to and enhancement of existing DNN model compres-
sion methods, which can work together without modification. To
show this salient advantage of ANS, we design an experiment to
let ANS work with a popular compressed DNN model for mobile
devices, namely YoLo-tiny. The running time of YoLo-tiny is 7.76 X
less than the original uncompressed YoLo. Together with ANS, its
inference delay is further reduced as shown in Fig. 16 for various
uplink transmission rates, with the most significant gain obtained
in the fast network regime (which is expected in the forthcoming
mobile networks). This improvement is expected to be even larger
on low-end mobile devices as will be shown in the next experiment.
Low-end Mobile Devices. As also mentioned in the Introduc-
tion, the current mobile device market is highly heterogeneous
in terms of the devices’ computing capability, with the vast ma-
jority being low-end and many years old. This is a real situation
and obstacle that prevents DL-based mobile intelligence from be-
ing universally employed. In this experiment, we show that these
low-end mobile devices can benefit even more from ANS, thereby
enabling DL-based intelligence for a larger population. To this end,
we configure the mobile device, namely Nvidia Jetson TX2, in two
working modes using the nvpmodel command. In the Max-N mode,
the mobile device’s GPU frequency is set as 1.30 GHz (referred to
as the High-end mobile device); in the Max-Q mode, the mobile
device’s GPU frequency is set as 0.85 GHz (referred to as the Low-
end mobile device), which is nearly halved compared to the first
mode. We run ANS on these types of mobile devices for various
DNN models in various network conditions, and report the delay
reduction compared to MO (i.e. pure on-device processing) in Fig.
17. As can been seen, the performance gain on low-end mobile
devices is considerably higher than that of high-end mobile devices,
especially with a fast network speed. Note that, when the network
uplink speed is low, the delay reduction is 0 for Vgg16 and YoLo

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

because ANS learns that the best decision is indeed to run all infer-
ence on the mobile device itself. In other cases, ANS learns a better
partition point (possibly pure edge offloading) and thus improves
the end-to-end inference delay performance.

5 RELATED WORK

On-device Deep Learning Intelligence. Deep learning for mo-
bile and embedded devices has become a hot topic [7], covering
hardware architecture, computing platforms, and algorithmic opti-
mization. Many CPU/GPU vendors are developing new processors
to support tablets and smartphones to run DL empowered applica-
tions, a notable example being Apple Bionic chips [29]. New deep
learning chips have already been developed on FPGAs [12]. To sup-
port on-device inference, light versions of deep learning platforms
have also emerged, e.g. TensorFlow Lite [2] and Caffe2 [10]. In
addition, various algorithmic optimization techniques have been
proposed. For example, DNN compression methods [34, 35] prune
large-scale DNN models into computationally less demanding small
DNN s that can be efficiently implemented on mobile devices; hard-
ware acceleration methods [11, 26] are studied on the hardware
level to optimize the utilization of hardware resources for acceler-
ating DNN inference. However, these techniques are unlikely to
address the immediate needs of all existing mobile devices, espe-
cially low-end and legacy devices that can not fully benefit from
new computing architectures.

Multi-Access Edge Computing. Multi-access edge computing
[28, 31], formally mobile edge computing, is an ETSI-defined net-
work architecture concept that enables cloud computing capabilities
and an IT service environment at the edge of the cellular network,
and more in general at the edge of any network. By offloading
data, running applications and performing related processing tasks
closer to the end-users, network congestion is reduced and appli-
cations perform better. Some efforts have been made to migrate
the DL related tasks to edge servers, e.g., [36] builds a DL-based
crowd sensing with edge computing. [21] studies a DL-based food
recognition system using edge computing, and [22] sets up an edge
assisted real-time object detection for mobile augmented reality.
By contrast, this paper does not simply migrate the DL service
to the edge server but more importantly investigates an online
learning-based DNN partitioning method to accelerate inference.

Deep Neural Network Partition. DNN partitioning technique
is first proposed in the context of mobile cloud computing, where
mobile device and cloud server work collaboratively to complete
DNN inference tasks [8, 16]. This technique is further extended
to the edge computing scenario, e.g., [19] studies a joint problem
of DNN partition and early exit for edge computing systems and
[15] proposes a partitioning scheme for DNNs with directed acyclic
graph (DAG) topology. However, all these works require an offline
profiling phase to measure the network condition, the processing
ability of the mobile device, and the computing capacity of edge
server. Given this information, these methods determine the optimal
partition point by solving an optimization problem. However, the
knowledge acquired during offline profiling can be easily outdated
considering the highly dynamic environment in MEC systems and
frequently updating the knowledge will incur large overhead. By
contrast, our method uses online learning to learn the optimal
partition on-the-fly.

3120

Letian Zhang, Lixing Chen, and Jie Xu

Contextual Bandit Learning. Multi-armed bandit (MAB) prob-
lem has been widely studied to address the critical tradeoff between
exploration and exploitation in sequential decision making under
uncertainty [17]. Contextual bandit learning extends the basic MAB
by considering the context-dependent reward functions to estimate
the relation of the observed context and the uncertain environment,
where LinUCB is a classic algorithm [18]. AdaLinUCB [13] builds
on top of LinUCB to consider the heterogeneous importance of
decision problems over time, which inspired our design for key
frames. However, the special on-device processing decision causes
a difficult challenge for LinUCB and AdaLinUCB, forcing them to
stop learning the first time when on-device processing is selected.
Our algorithm pLinUCB incorporates a forced sampling technique
to conquer this challenge, while still achieving provably asymptoti-
cally optimal performance.

6 CONCLUSIONS

In this paper, we designed and prototyped a collaborative deep in-
ference system to enable real-time object detection in video streams
captured on mobile devices. We designed Autodidactic Neurosur-
geon (ANS), an integral component of the system that online learns
the optimal DNN partition points, using only limited delay feedback
without a dedicated offline profiling/training phase. ANS explic-
itly considers varying importance of frames in video streams, and
incorporates a simple yet effective forced sampling mechanism to
ensure continued learning. As a result, ANS is able to closely follow
the system changes and make adaptive decisions at a negligible
computational cost. Experiments on our testbed show that ANS
can significantly reduce the end-to-end inference delay compared
to pure on-device processing or pure edge offloading through the
synergy of both. Together with existing efforts on accelerating
deep learning on resource constrained mobile devices such as DNN
model compression, ANS will play an essential role in pushing the
frontier of deep learning-empowered mobile intelligence, especially
to the vast majority of low-end mobile devices.

ACKNOWLEDGMENTS

This research is supported in part by NSF under grants CNS-2006630
and ECCS-2029858.

REFERENCES

[1] [n.d.]. Netscope Analyzer. https://dgschwend.github.io/netscope/quickstart.htm.

[2] [n.d.]. TensorFlow.org. 2019. TensorFlow Lite. https://www.tensorflow.org/lite.

[3] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. 2011. Improved algo-
rithms for linear stochastic bandits. In Advances in Neural Information Processing
Systems. 2312-2320.

[4] Daniel Boley and Gene H Golub. 1987. A survey of matrix inverse eigenvalue
problems. Inverse problems 3, 4 (1987), 595.

[5] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[6] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual ban-
dits with linear payoff functions. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. 208-214.

[7] Yunbin Deng. 2019. Deep learning on mobile devices: a review. In Mobile Multi-
media/Image Processing, Security, and Applications 2019, Vol. 10993. International
Society for Optics and Photonics, 109930A.

[8] Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram. 2019.

JointDNN: an efficient training and inference engine for intelligent mobile cloud

computing services. IEEE Transactions on Mobile Computing (2019).

Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. 2019. Bot-

tleNet: A Deep Learning Architecture for Intelligent Mobile Cloud Computing

Services. arXiv preprint arXiv:1902.01000 (2019).

Facebook. [n.d.]. Caffe2. https://caffe2.ai/

[

[10

https://dgschwend.github.io/netscope/quickstart.htm.
https://www.tensorflow.org/lite.
https://caffe2.ai/

Autodidactic Neurosurgeon: Collaborative Deep Inference for Mobile Edge Intelligence via Online Learning

[11] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
et al. 2018. A configurable cloud-scale DNN processor for real-time AL In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 1-14.

[12] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Song Yao, Song Han, Yu Wang, and

Huazhong Yang. 2016. From model to FPGA: Software-hardware co-design for

efficient neural network acceleration. In 2016 IEEE Hot Chips 28 Symposium (HCS).

IEEE, 1-27.

Xueying Guo, Xiaoxiao Wang, and Xin Liu. 2019. AdaLinUCB: Opportunistic

Learning for Contextual Bandits. 2019 28th International Joint Conference on

Artificial Intelligence (IJCAI) (2019).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 770-778.

[15] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. 2019. Dynamic Adaptive

DNN Surgery for Inference Acceleration on the Edge. In IEEE INFOCOM 2019-IEEE

Conference on Computer Communications. IEEE, 1423-1431.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason

Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between

the cloud and mobile edge. In ACM SIGARCH Computer Architecture News, Vol. 45.

ACM, 615-629.

Tze Leung Lai and Herbert Robbins. 1985. Asymptotically efficient adaptive

allocation rules. Advances in applied mathematics 6, 1 (1985), 4-22.

John Langford and Tong Zhang. 2007. The epoch-greedy algorithm for contextual

multi-armed bandits. In Proceedings of the 20th International Conference on Neural

Information Processing Systems. Citeseer, 817-824.

En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019. Edge Al: On-Demand Accel-

erating Deep Neural Network Inference via Edge Computing. IEEE Transactions

on Wireless Communications (2019).

[20] EnLi, Zhi Zhou, and Xu Chen. 2018. Edge intelligence: On-demand deep learning
model co-inference with device-edge synergy. In Proceedings of the 2018 Workshop
on Mobile Edge Communications. 31-36.

[21] Chang Liu, Yu Cao, Yan Luo, Guanling Chen, Vinod Vokkarane, Ma Yunsheng,

Songqing Chen, and Peng Hou. 2017. A new deep learning-based food recognition

system for dietary assessment on an edge computing service infrastructure. IEEE

Transactions on Services Computing 11, 2 (2017), 249-261.

Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time

object detection for mobile augmented reality. In The 25th Annual International

Conference on Mobile Computing and Networking. 1-16.

[23] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief.
2017. A survey on mobile edge computing: The communication perspective. IEEE
Communications Surveys & Tutorials 19, 4 (2017), 2322-2358.

[24] Yuyi Mao, Jun Zhang, and Khaled B Letaief. 2016. Dynamic computation offload-
ing for mobile-edge computing with energy harvesting devices. IEEE Journal on
Selected Areas in Communications 34, 12 (2016), 3590-3605.

[25] V. Mulhollon. 2004. Wondershaper. https://github.com/magnific0/wondershaper.

[26] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang,

Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit

Subhaschandra, et al. 2017. Can FPGAs beat GPUs in accelerating next-generation

deep neural networks?. In Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays. 5-14.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You

only look once: Unified, real-time object detection. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 779-788.

Sonia Shahzadi, Muddesar Igbal, Tasos Dagiuklas, and Zia Ul Qayyum. 2017.

Multi-access edge computing: open issues, challenges and future perspectives.

Journal of Cloud Computing 6, 1 (2017), 30.

[29] Dezso Sima. 2018. Apple’s mobile processors. (2018).

[30] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and

Dario Sabella. 2017. On multi-access edge computing: A survey of the emerging

5G network edge cloud architecture and orchestration. IEEE Communications

Surveys & Tutorials 19, 3 (2017), 1657-1681.

[32] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600-612.

[33] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat
Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. 2019. Machine
learning at facebook: Understanding inference at the edge. In 2019 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA). IEEE,
331-344.

[34] Xiufeng Xie and Kyu-Han Kim. 2019. Source Compression with Bounded DNN
Perception Loss for IoT Edge Computer Vision. In The 25th Annual International
Conference on Mobile Computing and Networking. 1-16.

[13

=
it

[16

[17

(18

[19

[22

[27

[28

(31

3121

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

[35] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,
and Yanzhi Wang. 2018. A systematic dnn weight pruning framework using alter-
nating direction method of multipliers. In Proceedings of the European Conference
on Computer Vision (ECCV). 184-199.

Zhenyu Zhou, Haijun Liao, Bo Gu, Kazi Mohammed Saidul Huq, Shahid Mumtaz,
and Jonathan Rodriguez. 2018. Robust mobile crowd sensing: When deep learning
meets edge computing. IEEE Network 32, 4 (2018), 54-60.

[36

A PROOF OF THEOREM 1

We analyze the performance of ANS by comparing it to an Oracle
solution that knows precisely the ground-truth value of coefficients
0" and always picks the optimal partition point p} that minimizes
the end-to-end inference delay for each frame t. The performance
is measured in terms of the regret, which is the gap of accumulated

; _vT gf T f
inference latency of all T frames, R = 3, _; dy, + 0" xp, — dp}‘ -

H*Txp;. Before proving the main result 1, we first make some mild
technical assumptions: (i) Noise 7 satisfies the Cy-sub-Gaussian
condition. (ii) The unknown parameter 6* satisfies ||6*|z < Cj.
(iii) For Vp € P, [Ixpllz < Cx holds. (iv) The key frame weight L;
satisfies Ly € {Lnon-keys Lkey}> Where 0 < Lyon key < Liey < 1. (V)
B =11, cg}.

We classify the frames into three types: Regular sampling se-
quence R: The frame is a normal frame and ANS selects an action
in . Non-sampling sequence N: The frame is a normal frame
and ANS selects pure on-device processing P. Forced sampling
sequence 7 : The frame is a forced sampling frame and ANS se-
lects an action in P, p). These frames are interspersed with each
other as a result of ANS run. Let 731 = (t1,--- ,tp) denote the
subsequence of frames where each t, is a sampling frame (so ANS
can observe d;t and update the A; and b;). Clearly, it must be
M < T. With abuse of notation, we use A,,, b, and 0,, to denote
the matrix, the vector and parameter estimation at the end of the
m-th sampling frame thereafter.

Lemma 1. (Prediction error bound) For any § € (0, 1), with proba-
bility at least 1 — &, we have for all p € P that

AT T _
16,,xp — 6" xp| < a\/(l - Lm)xl;,'—Aml_lxzJ (5)
2
Co+Cyy/dlog HMEx
where a = %,
key
Proor.

brxp — 0" x| = 10, — 0" Tyl = (B, — 0")AL A2

| mXp — xp| =(0,, -)xp| = (0, -) m—1 m—le|
_1
2

AT 1 AT 1 -1
= 1O — 0" AL _ 1 xpA, L 1 <118y, — 0" DAL _ I2llxpA, 7 2

~ 1 1 ~ 1 1
= \/(Om bl 0*)TA;!71Ar2n71(0m - 0*) . Jx;AtflAtfle
= 110m = 0" llA ., - Xp Api%p

2

1+MC
< [Co + Cyy|dlog Tx . ,lx;A:nl_lxp
Co + Cydlog LM<

= T A-1
= - . \/(1 - Lm)xp AL xp

https://github.com/magnific0/wondershaper.

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia
1 MC
Cop + Cm/dlog s \/
(1-

- Lkey
where the second equality holds by noting that A;_1 is a symmetric
positive-definite matrix. The first inequality holds by the Cauchy-
Schwarz inequality. The second inequality holds by Lemma 2 below.

xA_

Co+Cy\dlog HMCx
Thus, we set a = =2 X Lkg and complete the proof. O
ey
Lemma 2. When || < Cy, [|0%]l2 < Cy, llxpllz < Cx, for all

§ € (0,1), with probability at least 1 — §, we have

.) / 1+ MC?
||0m—0 ||An171 SC9+C,] dlong

where d is the dimension of the context.

Proo¥. The proof follows the fact that 8; is the result of a ridge
regression using data samples collected in the sampling time slots
, assuming the sub-Gaussian condition for noise. For a complete
proof, see Theorem 2 in [3]. |

1+MC

Co+Cpydlog

Lemma 3. (One-step regret) Vm > 0 Let ¢ = =
ey

the one-step regret satisfies

R:; < 2a,/x;A,_n1xP, ifteR 6)
R < 3a1/x;A,_n1xp, ifteN (7)

Proor. To prove the one-step regret, we note that when ANS
chooses pure on-device processing (p = P), the latency of processing
is d;. Thus, we consider four cases in our algorithm and discuss
the one-step regret.

(1) The optimal action is p* € {0, 1,--- ,P—1} and our algorithm
selects action p € {0,1,--- ,P — 1} (namely ¢ € R). In this case, the
one-step regret is

= d{, +0%Tx, — df* - 60" Txyr
—0! mXpr + a\/(l - Lm)x Am 1 Xp*

= df + 07 xp — [df, + 0 — a\/(l — L ALY 3]

a\/(l ~Ln)x] A

—G*Txp 0 xp+a\/(1— m) ;n 1%p

< Za\/(l —Lm)x;A_ Xp < Za,lxp Al xp

where the inequalities in the second and sixth lines hold by Theo-
rem 1. The inequality in the fourth line holds by the design of our
algorithm, especially by line 13.

(2) The optimal action is p* = P and our algorithm selects action
p = P (namely t € N). Thus, we have R; = 0, because in this case
]E(d;* - d;) =0.

(3) The optimal action is p* € {0, 1, - - , P—1} and our algorithm
selects action p = P (namely t € N). We firstly introduce an
auxiliary action p € {0, 1, -, P — 1}. Thus,

_ 4f f *T
=db-df. -6 Txy

<dj+0"Txp—d.

AT
< df + G*Txp - [al]C +0,xp — ;nl—le]

3122

Letian Zhang, Lixing Chen, and Jie Xu

=dp+df +0"Txy —df. 0" + 0%~ 0" 5~ df —Omx;
f‘
SdP—dp Gmxp+3a le11p§3a [xT Amlp

where the inequality in the third line holds by the Lemma 1 and
Case 1. The last inequality holds because allfJ - d; —Omx; < 0in

this case.
(4) The optimal action is p* = P and our algorithm selects action
pe{0,1,---,P—1} (namely t € R). Thus,

Ry =df + 0" x, - df

T
< Za,[prm 1%p

where the inequality holds by Lemma 1.
According to the discussion above, the one-step regret satisfies

Ry < 3a, lx;A,_nlxp. O

« AT AT
= (0"Txp = 0,,xp) + (0,,xp + df — df)

Lemma 4. Assume ||xpl2 < Cx and the minimum eigenvalue of
Ay satisfies A;pin(Ag) = max{1, C2 }. Then, we have

det(A MC?
Z Xp A;Z 1xp < 2log(d(tIM)) < 2d[log X —log f]
ProoF. The proof follows Lemma 11 of [3]. O

With Lemma 3 and Lemma 4, we can get the total regret incurred
in the regular sampling sequence R

M
JM Z R 1{t e R}
m=1

T
Rg = ZRtl{t eR} <

t=1

2 S T 4-1 MCE
<\[4Ma? Y x) Aplxm p < 20y [2Mdllog(f +

m=1

) —log]

< Za\/ZTd[log(ﬁ + %) —log f] = 2G(T)

where the first inequality holds by the Jensen’s inequality; the
second inequality holds by Lemma 3 and relaxing the indicator
function 1{t € R}; the third inequality holds by Lemma 4; the
fourth inequality holds by the fact M < T.

Next, we consider the total regret incurred in the non-sampling
sequence N.

M
Rel{t e N} < TH Z Rm < TH3a,[x] A7'x, = 3TF - G(T)

m=1

T
Ry =

t=1

Next, we consider the total regret incurred in the forced sampling
sequence F.
T

Ry = ZRtl{t € F} < T HAmax
t=1

®)

where A qyx is the maximum latency gap between local processing
and other ANS’s actions. Thus, combining these regret bounds, we
obtain

Riotal =RR + Ry + Ry < (2+ 3TH)G(T) + Tl_”Amax

Autodidactic Neurosurgeon: Collaborative Deep Inference for Mobile Edge Intelligence via Online Learning WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

2
Cp + CyJd log 12E=

1- Lkey

TC2 where G(T) = O(T?-> log(T/§)). Thus, Theorem 1 shows that the re-
-1\|2Td[log(p + Tx) —log f] gret bound of ANS is sublinear in T, or max{O(T%-3*# log(T/§)), O(T'=#)}
by choosing u € (0,0.5).

G(T) =

3123

	Abstract
	1 Introduction
	1.1 Numerical Insights
	1.2 Why Online Learning?
	1.3 Our Contribution

	2 System Architecture
	2.1 Deep Neural Network Partition
	2.2 Edge Offloading Delay Prediction
	2.3 Object Detection in Video Stream

	3 Autodidactic Neurosurgeon
	3.1 LinUCB and its Limitation
	3.2 LinUCB

	4 Experiment Results
	4.1 Implementation and Setup
	4.2 Results and Discussions

	5 Related work
	6 Conclusions
	Acknowledgments
	References
	A Proof of Theorem 1

