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ABSTRACT
Recent breakthroughs in deep learning (DL) have led to the emer-

gence of many intelligent mobile applications and services, but

in the meanwhile also pose unprecedented computing challenges

on resource-constrained mobile devices. This paper builds a col-

laborative deep inference system between a resource-constrained

mobile device and a powerful edge server, aiming at joining the

power of both on-device processing and computation offloading.

The basic idea of this system is to partition a deep neural network

(DNN) into a front-end part running on the mobile device and a

back-end part running on the edge server, with the key challenge

being how to locate the optimal partition point to minimize the end-

to-end inference delay. Unlike existing efforts on DNN partitioning

that rely heavily on a dedicated offline profiling stage to search

for the optimal partition point, our system has a built-in online

learning module, called Autodidactic Neurosurgeon (ANS), to au-

tomatically learn the optimal partition point on-the-fly. Therefore,

ANS is able to closely follow the changes of the system environ-

ment by generating new knowledge for adaptive decision making.

The core of ANS is a novel contextual bandit learning algorithm,

called µLinUCB, which not only has provable theoretical learning

performance guarantee but also is ultra-lightweight for easy real-

world implementation. We implement our system on a video stream

object detection testbed to validate the design of ANS and evaluate

its performance. The experiments show that ANS significantly out-

performs state-of-the-art benchmarks in terms of tracking system

changes and reducing the end-to-end inference delay.
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1 INTRODUCTION
Deep neural networks (DNNs) have been the state-of-the-art solu-

tion in recent years for many functionalities routinely integrated in

mobile devices, e.g., face recognition and speech assistant. However,

efficiently integrating current and future deep learning (DL) break-

through within resource constrained mobile devices is challenging.

Although steps have been taken recently to enable DL functionali-

ties on mobile devices, e.g., model compression [34], lightweight

machine learning libraries [2] and new-generation hardware [29],

they are unlikely to be a one-size-fits-all solution that can address

the immediate needs of all existing mobile devices due to the sub-

stantial heterogeneity in terms of their computing capacity. A recent

study by Facebook [33] shows that over 50% mobile devices are

using processors at least six years old, limiting what is possible of

Facebook AI service. Also, for wearable mobile devices, e.g., smart

wristbands, their computing resource limitation is not due to the

temporary technical deficiency but design requirements to guaran-

tee portability [24]. Therefore, external booster becomes necessary

to realize the full potential of DNN on mobile devices.

Current wisdom focuses on the Multi-Access Edge Computing

(MEC) [23], a new paradigm and key technology of 5G that moves

cloud-like functionality towards edge servers close to data sources.

The idea is to configure DNNs on edge servers to which the input

data will be sent frommobile devices on the occurrence of inference

requests. While recognizing the advantages of edge computing

for DNN inference, previous empirical studies [20] reveal that its

performance is highly sensitive to the bandwidth between edge

servers and mobile devices. For massive input like video streaming,

the delay of DNN inference by offloading the entire input data to the

edge server can become on par with or even worse than that on the

local mobile device. With the observation that the data size of some

intermediate results (i.e., the output of intermediate layers in DNN)

is significantly smaller than that of the raw input data, collaborative

deep inference between the mobile device and the edge server starts

to attract increasing attention recently as it is able to leverage the

power of both on-device processing and computation offloading.

The idea is to partition the DNN into a front-end part running on the

mobile device and a back-end part running on the edge server. The

mobile device executes the DNN model up to an intermediate layer,

and then sends the smaller intermediate results to the edge server

for computing the rest part of the DNN. Compared to either pure

on-device processing or computation offloading to an edge server,

collaborative deep inference is expected to be more reliable and

flexible in balancing the transmission and computation workload
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Edge processing delay
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Figure 1: End-to-end delay: front-end
inference delay + transmission delay +
back-end inference delay. (Vgg16)
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Figure 2: End-to-end delay at different
partition points under different edge
capabilities. (Vgg16)
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Figure 3: End-to-end delay at different
partition points under different net-
work conditions. (Vgg16)

between the mobile device and the edge server, and hence has the

potential of optimizing the end-to-end inference performance.

1.1 Numerical Insights
To demonstrate the effectiveness of collaborative deep inference,

Fig. 1 shows the end-to-end inference delay, when Vgg16 is parti-

tioned at different layers under an uplink transmission speed 12

Mbps. As can be seen, partitioning Vgg16 at the fc1 layer reduces

the end-to-end inference delay by 29.64% compared to on-device

processing or edge offloading. Apparently, partitioning a DNN does

not always outperform on-device processing and edge offloading,

and the optimal partition point depends on many factors, among

which, the computing capability of the edge server and the net-

work condition are major. To illustrate the impact of computing

capability of the edge server on the optimal DNN partition point,

Fig. 2 shows the end-to-end inference delay if the DNN is parti-

tioned at different layers for a high-capability edge server (i.e., GPU

and low workload) and a low-capability edge server (i.e., CPU and

high workload). As can be seen, the optimal partition point tends

to be later (or even pure on-device processing in this case) as the

benefit of offloading to a lower-capability edge server is smaller.

The other major factor is the network condition, which affects the

transmission delay. Fig. 3 shows the optimal partition points under

three network conditions: High uplink rate (50 Mbps), Medium

uplink rate (16 Mbps), and Low uplink rate (4 Mbps). As can be

seen, a lower uplink rate tends to push the partition point later.

However, because the output data size is not necessarily monotoni-

cally increasing/decreasing as we move to later layers, the optimal

partition point is complexly dependent on the uplink transmission

rate. To summarize, the computing capability of the edge server

and the network condition critically affect the collaborative deep

inference performance.

1.2 Why Online Learning?
The crux of efficient collaborative deep inference is locating the

optimal partition point of the DNN to distribute workload between

the mobile device and the edge server. Existing efforts rely heavily

on the offline profiling of the layer-wise DNN inference delay as a

function of the system parameters, e.g., the uplink data transfer rate

and the mobile device/edge server processing speed [8, 15, 16, 19].

With this offline-acquired knowledge, the partition point can be

determined via solving an easy optimization problem. This method

can be further extended to online adaptation using real-time input

of system parameters. However, there are several major drawbacks

of such an offline profiling approach.

Adaptation to New Environment: The knowledge acquired
during offline profiling can be easily outdated considering the highly

dynamic and uncertain environment. For example, the network up-

link rate can change due to the dynamic spectrum management of

the wireless carrier, the multi-user interference, and the mobility

of mobile devices; the edge server processing capability may also

change over time due to the edge server resource management to

support multi-tenancy or even the change of edge servers them-

selves due to location change. Once the offline knowledge becomes

outdated, its suggestion can lead to arbitrarily bad results. While

performing offline profiling whenever a new environment is en-

countered is possible, it incurs significant overhead to generate

accurate predictions.

Limited Feedback: Existing offline profiling methods, even

with periodic updating, require explicit real-time system parameters

as input, e.g., the uplink data transfer rate and the workload on edge

servers. These parameters, however, not only are ever-changing,

but also can be very difficult for an end-user mobile device to ob-

tain in practice, if not impossible. Often the case, the mobile device

can observe only the overall delay between sending the data and

receiving the inference result from the edge server, but is unable

to accurately decompose this delay into different components (e.g.,

transmission delay and processing delay). This limited feedback

challenge is similar to the congestion control problem in the classic

Transport Control Protocol (TCP), where the end-user adjusts its

congestion window based on only a binary congestion signal from

the network as a summary of all network effects.

Layer Dependency: Existing offline profiling methods adopt

a layer-wise approach, which profiles the inference delay of each

individual DNN layer depending on the system parameters. Clearly,

profiling can be laborious for very deep neural networks as layers

become many. More importantly, the layer-wise approach has an

inherent drawback since it neglects the interdependency between

layers. In fact, the overall inference delay is not even a simple sum

of per-layer delay due to the inter-layer optimization performed

by state-of-the-art DNN software packages, e.g., cuDNN [5], which

has a non-negligible impact on the total inference time.

All these dynamics and uncertainties presented in the collabo-

rative deep inference system and their a priori unknown impacts

on the inference performance call for an online learning approach

that can learn to locate the optimal partition point on-the-fly.

1.3 Our Contribution
In this paper, we design and build a collaborative deep inference

system for video stream object detection, which contains a novel
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online learning module, called Autodidactic Neurosurgeon (ANS),

to automatically learn the optimal partition point based on limited

inference delay feedback. Object detection and tracking in video

streams is a core component for many emerging intelligent applica-

tions and services, e.g., augmented reality, mobile navigation and

autonomous driving. The mobile device in our system continuously

receives video frames captured by an on-device camera, and selects,

for each frame (or a small batch of video frames), a partition point

to perform collaborative deep inference for object detection with

the edge server. ANS has several salient features: (1) ANS avoids
the large overhead incurred in the laborious offline profiling stage.

Instead, it learns the optimal partition on-the-fly and hence easily

adapts to new environments. (2)ANS does not need hard-to-acquire
system parameters as input. Instead, it utilizes only the limited de-

lay feedback of past collaborative inference tasks. (3) ANS exploits
the intrinsic dependency of DNN layers without the need to learn

each possible partition point individually, thereby tremendously

accelerating the learning speed. (4) ANS explicitly handles key

frames captured in the video stream by assigning higher priority

to those frames, thus providing differentiated service to frames

during learning. (5) ANS requires ultra-lightweight computation

and minimal storage and hence, it is easy to deploy in practical

systems. (6) The core of ANS is a novel online learning algorithm
developed under the contextual bandit framework, and it has a

provable performance guarantee. More technical innovations will

be discussed later in Section 3.

We highlight that as on-device processing is a special partition

decision, ANS complements existing efforts such as DNN model

compression on pushing DL intelligence into mobile devices, while

providing added benefits by exploiting multi-access edge comput-

ing. We implement the collaborative deep inference system on a

hardware testbed, where a Nvidia Jetson TX2 device, a fair repre-

sentation of mobile devices, wirelessly connects to a GPU-powered

edge server (Dell Alienware Desktop). Experiment results show

that ANS is able to accurately learn the optimal partition point and

hence accelerates deep inference for various DNN model structures

under various wireless network settings.

2 SYSTEM ARCHITECTURE
In this section, we describe the architecture of the collaborative

deep inference system. A pictorial overview is given in Fig. 4.

2.1 Deep Neural Network Partition
We first formalize DNN partitioning, discuss its impact on the end-

to-end inference delay and introduce preliminaries.

Marking Partition Points. Let P = {0, 1, 2, . . . , P} collect all po-
tential DNN partition points. A partition point p ∈ P partitions a

DNN into two parts: 1) the front-end part, DNNfrontp , contains layers

from the input to the partition point p ∈ P, and 2) the back-end

part, DNNbackp , contains layers from the partition point p to the out-

put layer. For example, if the partition point is placed at p = 2,

then DNNfrontp contains layers {1, 2} and DNNbackp contains layers

{3, 4, . . . , P}. The partition points p = 0 and p = P are the special

cases: the partition p = 0 gives an empty DNNfrontp which means

the mobile device transmits raw input data to the edge server to

run the entire DNN; the partition p = P gives an empty DNNbackp
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Figure 4: An overview of the system architecture.
indicating that all DNN layers are executed on the mobile device.

The output of DNNfrontp is called the intermediate result of partition

p, denoted by ψp . Note that the intermediate output will be sent

to the edge server for further processing, and we assume that the

intermediate outputψp includes necessary overhead for data packet

transmission (e.g., packet header) and follow-up DNNmerging (e.g.,

information about the partition point).

BreakdownofDNN InferenceDelay. The end-to-end collabora-
tive deep inference delay consists of threemain parts: (1) Front-end
inference delay dfp of DNNfrontp on the mobile device; (2) Trans-
mission delay dtxp for transmitting the intermediate output ψp
from the mobile device to the edge server; (3) Back-end inference
delay dbp of DNNbackp on the edge server.

The data size of the final inference result is usually small and

hence the transmission delay for the final result return is neglected

for the ease of problem formulation. The end-to-end inference delay

with partition point p is therefore dp := dfp + d
tx
p + d

b
p + η, where

η is a Gaussian random variable to model the randomness in the

inference and transmission processes. The transmission delay dtxp
is determined by the data size of the intermediate result ψp and

the wireless uplink transmission rate, which varies depending on

the network condition. The inference delays dfp , d
b
p of partitioned

DNNs depend onmanymore factors: the number of DNN layers, the

computational complexity of component layers, the inter-layer op-

timization, and also the processing speed of the mobile device/edge

server. While some of them are fixed once the DNN structure is

given (e.g., the number of layers and layer-wise computational

complexity), others depend on the configuration of the comput-

ing platform (e.g., inter-layer optimization tools) and may also be

time-varying (e.g., multi-user scheduling by the edge server).

We note that the configuration of the computing platform on

the mobile device is relatively stable and fully revealed to the deci-

sion maker, i.e., the mobile device itself, and hence the front-end

inference delay dfp of DNNfrontp can be easily measured statistically

for a given DNN using methods similar to offline profiling. In the

experiment, we use the application-specific profiling method in [8]

to obtain the expected inference delay of DNNfrontp . Compared with

the layer-wise statistical modeling method adopted in [15, 16, 19],

this method provides more accurate estimations because it takes

into account the inter-layer optimization. Now, the key difficulty
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lies in learning dtxp + d
b
p for different partition points as a result of

unknown and time-varying edge computing capability and network

condition. For ease of exposition, we define dep = dtxp + d
b
p as the

edge offloading delay.

2.2 Edge Offloading Delay Prediction
To obtain dep , our idea is to learn a prediction model that maps

contextual features of a partition point to the edge offloading delay.

Since learning works online, this prediction model updates itself

using the limited feedback information about the past observed dep
to closely follow the changes in the (unknown) system parameters.

Using contextual features of partition points has a clear advantage

over learning the delay performance of individual partition points

separately, especially when the number of possible partition points

is large. This is because the underlying relationship between differ-

ent partition points is captured by their contextual features, and

hence, knowledge gained by choosing one particular partition point

can be easily transferred to learning about the performance of all

other unselected partition points.

ConstructingContextual Features of Partitions. We construct

contextual features associated with DNNbackp that may affect dbp . In-

tuitively, the back-end inference delay is linearly dependent on the

computation complexity of the back-end partition DNNbackp , which

is captured by the the number of multiply-accumulate (MAC) units

contained in DNNbackp . However, our experiment shows that the re-

quired computation time for one MAC unit is different for different

types of DNN layers. This is because different DNN layers allow

different levels of parallel computation, especially when GPU is in-

volved in the computation process. Since different partition points

result in different combinations of layer types in DNNbackp , simply

using the total number of MAC units to predict dbp is problematic.

To address this issue, instead of using a single scalar value for the

total number of MAC units, we calculate the number of MAC units

for each layer type, and use this vector for learning the inference

delay. Specifically, we consider three main types of layers in DNN:

i) convolutional layer, ii) fully-connected layer, iii) and activation

layer, and count the number of MAC units in layers of different

types, denoted bymc
p ,m

f
p andma

p , respectively, for a given partition

point p. In addition, we also count the number of convolutional

layers ncp , fully-connected layers nfp , and activation layers nap in

DNNbackp . These numbers will affect inter-layer optimization and

hence are also useful for learning the overall inference delay. For the

transmission delay dtxp , although the wireless uplink rate may be

unknown, it is still clear that dtxp linearly depends on the data size

of the intermediate outputψp of the front-end partition DNNfrontp .

In sum, the contextual feature of a partition point p is collected

in xp = [mc
p ,m

f
p ,m

a
p ,n

c
p ,n

f
p ,n

a
p ,ψp ]

⊤
. Here, we slightly abuse no-

tation to useψp to denote the data size of the intermediate results.

In Fig. 5, we provide an example to illustrate the contextual features

of a particular partition point.

Linear Prediction Model. Although the best model for predict-

ing the edge offloading delay is unclear due to the obscured process

of DNN inference, we adopt a linear model due to the reasons

mentioned above. In addition, compared to other more complex

and non-linear prediction models (such as a neural network), the

linear model is much simpler and requires minimal resource on the

mobile device. We show later in the experiments that this linear

model is in fact validated to be a very good approximation. Specif-

ically, our prediction model has the form dep = θ
⊤xp , where θ is

the linear coefficients to be learned, which captures the unknown

effects of the unknown system parameters (i.e., wireless uplink

condition, computation capability of the edge server) on the delay

performance. In runtime, the coefficients will be updated online as

new observations of dep as a result of the partition decision p are

obtained. How to update these coefficients will be explained later in

Section 3. Note that there is a practical reason why we learn dep as

a whole rather than dtxp and dbp individually. As an end-user mobile

device, it can observe dep , by calculating the difference between the

time when the data is sent and the time when the result is received

for a selected partition point p. However, often it is very difficult

for the mobile device to decompose this feedback into dtxp and dbp
unless additional information is provided by the edge server. In this

paper, we focus on this more challenging limited feedback scenario,

although the individual feedback can also be easily incorporated

into our framework.

2.3 Object Detection in Video Stream
Now, we explain how collaborative deep inference works in the

context of video stream object detection. In video stream object

detection, the mobile device uses its camera to capture a video

and aims to in real-time detect objects in the successive frames of

the video by feeding them one-by-one to a pre-trained DNN. The

flow of frames is indexed by T = {1, 2, . . . ,T } and for each frame

t ∈ T , the mobile device has to pick a partition point pt to perform
collaborative deep inference with the edge server. Note that pure

on-device processing and pure edge offloading are special cases by

choosing pt = P and pt = 0, respectively. Once the inference is

done, detection results (i.e., object bounding boxes and class labels)

are displayed on the video. To assist online learning, the mobile

device also records the actual edge offloading delay dep unless it

chooses pure on-device processing (i.e. pt = P ).
Suppose the linear coefficients θ are already learned, then the

mobile device should pick a partition point to minimize the DNN

inference delay by solving the following problem:

pt := argminp∈P dfp + θ
⊤xp (1)

where the first term is the front-end inference delay and the second

term is the edge offloading delay. However, since the coefficients θ
are a priori unknown, the mobile device has to try different partition

points and use the observed edge offloading delay feedback to

form a good estimate of θ . Clearly, there is subtle exploitation v.s.
exploration tradeoff, i.e., whether the mobile device should pick the

partition point that solves the above minimization problem based

on the current estimate of θ or pick other possible partition points

to form a more accurate estimate of θ for future use.

This exploitation v.s. exploration tradeoff is further complicated

by key frames in the video stream. Key frames are the most repre-

sentative frames in video streams, which contain main elements or

important events (e.g., entrance of new objects or scene change). It

is often the case that these key frames have higher requirements on

the inference performance, e.g., lower inference delay requirement.
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Figure 7: Forced sampling: forced sam-
pling is activated only when the parti-
tion decision were to be on-device pro-
cessing.

To provide differentiated quality of services to key and non-key

frames, frames must be treated differently during online learning:

while non-key frames may tolerate a larger inference delay as a

result of exploring different partition points, key frames should be

handled with more care using the best-known partition point as

much as possible. Since key frame detection itself is not the focus

or the main contribution of this paper, we apply one of the most

widely-used key frame detection methods, namely structural sim-

ilarity (SSIM) [32], to determine key frames. Fig. 6 illustrates the

idea of SSIM.

3 AUTODIDACTIC NEUROSURGEON
In this section, we describe the design of the online learning module,

called Autodidactic NeuroSurgeon (ANS), in our collaborative deep

inference system. The core of ANS is an online learning algorithm

that can predict the inference delay of different partition points and

base on the prediction to select partition points. Since we adopt a

linear prediction model as explained in Section 2.2, LinUCB [6], a

classic online learning algorithm for linear models that gracefully

handles the exploitation v.s. exploration tradeoff, seems a good

candidate for solving our problem. However, there are two unique

challenges for LinUCB to work effectively in our system (which

will be explained later). Therefore, a new online learning algorithm,

called µLinUCB, is developed to support ANS. In what follows, we

first explain how LinUCB works and its limitation in ANS. Next,

we propose µLinUCB, prove its theoretical performance guarantee

and analyze its complexity.

3.1 LinUCB and its Limitation
The basic idea of LinUCB is an online linear regression algorithm,

which incrementally updates the linear coefficients using newly

acquired feedback. However, when making decisions, LinUCB takes

into account the confidence of the prediction for different actions’

expected payoff (i.e., the delay of different partition points in our

case). Put in the context of DNN partition, LinUCB maintains two

auxiliary variablesA ∈ Rd×d and b ∈ Rd×1 for estimating the coef-

ficients θ . For each video frame t , θ is estimated by
ˆθ t = A−1t−1bt−1,

and the partition point for frame t is selected to be

pt = argmin

p ∈P
dfp +

ˆθ
⊤
xp − α

√
x⊤pA

−1
t−1xp (2)

In the function to be minimized, the first term dfp is the front-

end inference delay of partition point p, which is assumed to be

known; the second term
ˆθ
⊤
xp is the predicted edge offloading

delay of partition point p using the current estimate
ˆθ ; the last

term α
√
x⊤pA

−1
t−1xp represents the confidence interval of the edge

offloading delay prediction. A larger confidence interval indicates

that the prediction is not accurate enough and hence, even if the

predicted delay of a partition point p is low, the chance to select

this partition point should be decreased. After the inference request

is completed and the realized edge offloading delay dept is observed,

the auxilary variables are incrementally updated as At ← At−1 +

xpt x
⊤
pt and bt ← bt−1 + xptd

e
pt .

However, LinUCB has two major limitations for it to work effec-

tively in ANS:

Limitation #1: LinUCB treats each frame equally for the learn-

ing purpose. In other words, being a key frame or not does not affect

the way LinUCB selects a partition point and hence, key frames

can also experience high inference delay because of unlucky bad

choices of partition points due to exploration.

Limitation #2: This limitation is in fact detrimental. Among

all possible partition points, the partition point p = P , or pure on-
device processing, is actually a very special partition point that does

not follow the linear prediction model. This is because the edge

offloading delay is always 0 once p = P is selected and any linear

coefficient is a “correct” coefficient since the contextual feature asso-

ciated with p = P is a zero vector. If, for some video frames, p = P is

selected by LinUCB for deep inference, then the auxiliary variables

At and bt do not get updated since there is no feedback/new infor-

mation about the edge offloading delay. As a result, LinUCB will

select p = P according to the selection rule (2) for the next video

frame and thereafter, essentially being forced to stop learning and

trapped in pure on-device processing for all future video frames.

Therefore, LinUCB fails to work in ANS.

3.2 µLinUCB
In light of the limitations of LinUCB, we propose a new online

learning algorithm, called µLinUCB, by providing mitigation mech-

anisms to LinUCB in order to support ANS. As we will see, these

mitigation mechanisms are quite intuitive. However, rather than be-

ing heuristic, they grant µLinUCB provable performance guarantee

with a careful choice of algorithm parameters.

Mitigation #1: To provide differentiated inference service to

key and non-key frames, ANS assigns weights to frames and incor-

porates these weights when selecting partition points. Specifically,

each frame t is assigned with a weight Lt depending on whether it

is a key frame or not (or the likelihood of being a key frame), and
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the partition point selection rule is modified to be

pt = argmin

p ∈P
dfp +

ˆθ
⊤
xp − α

√
(1 − Lt )x⊤pA

−1
t−1xp (3)

As key frames will receive a larger weight, the confidence interval

(i.e., the third term) plays a smaller role when ANS selects a parti-

tion point. Therefore, ANS tends to play safe with key frames by

exploiting partition points that are so far learned to be good.

Mitigation #2: To escape from being trapped in pure on-device

processing, a natural idea is to add randomness in partition point

selection. Because partition points other than the pure on-device

processing have a chance to be selected, new knowledge about the

edge offloading delay and hence θ can be acquired. Our implementa-

tion of this randomness idea is through a forced sampling technique.
Specifically, for a total number ofT video frames, we define a forced

sampling sequence F = {t |t = nT µ , t ≤ T ,n = 1, 2, . . . }, where µ
is a design parameter. If the index t of a video frame belongs to F ,

then µLinUCB forces ANS to sample a partition point other than

p = P . In other words, p = P is not an option for these frames.

According to the design of the sequence, forced sampling occurs

everyT µ
frames. Note that, forced sampling has no effect on frames

when p = P is not the selected partition point if the classic LinUCB

were applied. Fig. 7 illustrates the idea of forced sampling.

The pseudocode of µLinUCB is given in Algorithm 1. It follows

the same idea of estimating θ using an online linear regresser

as LinUCB. The key difference is that it incorporates the frame

importance weights and forced sampling when making partition

point selection decisions.

Algorithm 1 ASN with µLinUCB algorithm

1: Construct context xp for candidate partition points ∀p ∈ P
2: Obtain front-end inference delay estimate dfp ,∀p ∈ P
3: Determine forced sampling sequence F .

4: Initialize A0 = βId , b0 = 0.
5: for each frame t = 1, 2, · · · ,T do
6: Detect key frame and assign weight Lt
7: Compute current estimate

ˆθ t = A−1t−1bt−1.
8: for each candidate partition point p ∈ P do

9: Compute
ˆdep =

ˆθ
⊤

t xp − α
√
(1 − Lt )x⊤pA

−1
t−1xp .

10: if t ∈ F then ▷ Forced sampling

11: Choose pt = argminp∈P{,P } d
f
p +

ˆdep .

12: else
13: Choose pt = argminp∈P d

f
p +

ˆdep .

14: if pt , P then ▷ Not pure on-device processing

15: Observe dept once inference is done.

16: At ← At−1 + xpt x
⊤
pt , bt ← bt−1 + xptd

e
pt .

17: else
18: At = At−1, bt = bt−1.

Theoretical Performance Guarantee. The parameter µ is a crit-
ical parameter of µLinUCB (hence the name), which controls the

frequency of forced sampling. There is indeed a crucial tradeoff

that determines the performance of ANS. Since forced sampling

always selects a suboptimal partition point when p = P (i.e., pure

on-device processing) is indeed the best option, a smaller µ (i.e.,
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Figure 8: Forced sampling frequency decreases as phase
length increases.

more frequent forced sampling) results in increased averaged infer-

ence delay. With a larger µ (i.e., less frequent forced sampling), ANS

can be trapped in pure on-device processing for a long time if p = P
is indeed a suboptimal option, again leading to increased average

inference delay. In the theorem below, we characterize what is a

good choice of µ and the resulting performance of µLinUCB.

Theorem 1. Under mild technical assumptions, the regret (i.e., the

delay performance difference compared to an oracle algorithm that

selects the optimal partition point for all T frames) of µLinUCB,
denoted by R(T ), satisfies: ∀δ ∈ (0, 1), with probability at least 1−δ ,
R(T ) can be upper bounded by

max{O(T 0.5+µ
log(T /δ )),O(T 1−µ )} (4)

Proof. The proof is given in Appendix A. □

According to Theorem 1, by choosing µ ∈ (0, 0.5), the regret

bound is sublinear in T , implying that the average end-to-end in-

ference delay asymptotically achieves the best possible end-to-end

inference delay whenT →∞. For a finiteT , this bound also gives a
characterization of the convergence speed of µLinUCB. In addition,

by choosing µ = 0.25, the order of the regret bound is minimized

at O(T 0.75
log(T )).

Handling Unknown T . µLinUCB requires knowing the number

T of video frames for object detection to determine the frequency of

forced sampling. This is clearly an ideal scenario and largely does

not hold in practice. To handle the scenario when T is unknown,

µLinUCB can be modified as follows: µLinUCB starts with a large

frequency of forced sampling and gradually reduces the frequency

as more video frames have been analyzed. Gradually reducing the

forced sampling frequency is reasonable because as more video

frames have passed, ANS has obtained a more accurate estimate of

θ . Therefore, if pure on-device processing, i.e., p = P , is selected
by ANS after many video frames, it is very likely that pure on-

device processing is indeed the best inference option and hence,

less forced sampling should be performed to reduce the unnecessary

overhead. To give a concrete example of this strategy, we can divide

the sequence of video frames into phases, indexed by i = 1, 2, ....

Each phase i contains Ti = ⌊2
i ·T0⌋i={1,2, · · · } video frames where

T0 ∈ N
+
is an integer constant. Within each phase, ANS runs

µLinUCB with a known number of video framesTi . AsTi is doubled
every phase, the forced sampling interval, namelyT

µ
i , also increases.

This means that the forced sampling frequency decreases. For this

particular strategy, it can still be proved that µLinUCB achieves a

sublinear regret bound when µ ∈ (0, 0.5) even if T is unknown. Fig.

8 illustrates this increasingly sparse forced sampling sequence.

Complexity Analysis. For a DNNwith P possible partition points

and a contextual feature vector of size d , we analyze the time and

space complexity of µLinUCB for each frame t as follows. Time
Complexity. Inversing the matrixAt incurs a time complexityO(d3)
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[4]. Obtaining
ˆθ t incurs a time complexity O(d2). Computing

ˆdep
for every possible partition point p has a complexity O(d2 + 2d)

and hence, the total complexity is O(P(d2 + 2d)). Comparing
ˆdep to

obtain the optimal partition point has a complexity O(P). Finally,
updating At and bt has a complexity O(d2 + d). Therefore, the
total time complexity ismax{O(d3),O((P + 2)d2}. Since d is usually

small (in our implementation d = 7), the overall time complexity

for each frame is linear in the number of partition points. Space
Complexity. µLinUCB needs to keep variables At−1, bt−1, xp , dfp
and a constant indicating the forced sampling frequency in memory.

To compute
ˆdep , additional temporary memory is needed, which has

space complexity O(d2 + 2d + P). Overall, the space complexity is

O(2d2+ (P +3)d +2d). Again, because d is small, the space complex-

ity is linear in P . In sum, µLinUCB incurs negligible computation

complexity compared to regular deep inference tasks as it involves

only a small number of simple operations and requires keeping a

small number of variables.

4 EXPERIMENT RESULTS
4.1 Implementation and Setup
Testbed. We build a hardware testbed to validate the design of

ANS and evaluate its performance in a collaborative deep inference

system for video stream object detection. We use NVIDIA Jetson

TX2 developer module as the mobile device. It is equipped with

a NVIDIA Pascal GPU, a shared 8 GB 128 bit LPDDR4 memory

between GPU and CPU and an on-board camera. A Dell Alienware

workstation is employed as the edge server, which is equipped with

Intel Core i7-8700K CPU@3.70GHZ×12, two Nvidia GeForce GTX

1080 Ti GPUs, and 11 GB memory. The mobile device and edge

server are wirelessly connected by point-to-point Wi-Fi, and we

use WonderShaper [25] to set the wireless transmission speed to

emulate different network conditions.

DLModels andPlatforms.Three state-of-the-art DNNs, namely

Vgg16 [30], YoLo [27] and ResNet50 [14] are considered in the ex-

periment. We implement ANS on both TensorFlow and PyTorch,

two popular machine learning platforms, and run deep inference on

these DNNmodels and performDNN partitioning.We use Netscope

Analyzer [1], a web-based tool, for visualizing and analyzing DNN

network architectures. For chain topology DNNs, we mark a parti-

tion point after each layer. However, it should be noted that some

DNN models are not chain topology, in which case the residual

block method [9] can be used to determine the partition points (e.g.,

ResNet50 has 16 concatenated residual blocks).

Video Input and Detection Output. The input video is cap-

tured by on-board camera of the mobile device using OpenCV. The

video frames are captured with 1280 × 720 pixels and then resized

to 640 × 480 pixels for screen display. For DNN inferences, these

video frames are converted to image inputs of default size Width ×
Height × Channels: Vgg16 – 224 × 224 × 3; YoLo – 416 × 416 × 3;

ResNet – 224 × 224 × 3. After the DNN processes the video frame,

detection output is generated, which includes the bounding box

locations of candidate objects, their predicted class labels and cor-

responding confidence. The bounding boxes and class labels are

then displayed on a screen connected to the mobile device.

Benchmarks. The following benchmarks are used in the evalu-

ation of the online learning module ANS. (1) Oracle: Oracle selects

Table 1: Prediction error of ANS and layer-wise method
when the uplink rate is high/medium/low and the edge
server uses GPU/CPU.

ANS Layer-wise

Vgg16 YoLo ResNet Vgg16 YoLo ResNet

Low/GPU 0.43% 0.52% 3.52% 9.87% 9.90% 12.68%

Medium/GPU 3.01% 3.11% 5.10% 19.33% 14.23% 21.12%

High/GPU 3.06% 3.94% 9.97% 21.42% 22.70% 51.58%

Low/CPU 0.39% 0.67% 2.97% 8.97% 10.02% 13.94%

Medium/CPU 2.98% 3.15% 4.78% 21.69% 16.32% 28.53%

High/CPU 3.12% 3.36% 7.96% 25.76% 24.35% 49.61%
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Figure 10: End-to-end in-
ference delay reduces as
more frames are analyzed.

the optimal partition point for each frame. We obtain the Oracle

decision by measuring the performance of all partition points for

100 times and then picking the partition point with the minimum

average delay. (2) Pure Edge Offloading (EO): The mobile device

offloads all frames to the edge server. The frames are processed

on edge server and the results are then returned to the mobile

device. (3) Pure On-device Processing (MO): All the frames are

processed on the mobile device with no offloading. (4) Neurosur-
geon [16]: It is an offline profiling approach for collaborative deep

inference.

4.2 Results and Discussions
Delay Prediction Error and Learning Convergence. Table 1

shows the edge offloading delay prediction error of ANS after 300

video frames, which is also compared to the layer-wise method

used in [15, 16, 19] that neglects the inter-layer optimization. In

all the tested environments (i.e., different combinations of network

condition and edge computing capability), ANS achieves an ex-

cellent prediction performance, far outperforming the layer-wise

method. The improvement is the most significant in high uplink

rate scenarios because the back-end inference delay is dominant

in the edge offloading delay and neglecting the impact of inter-

layer optimization on the inference delay introduces significant

errors. Fig. 9 further shows how the prediction error evolves as

more video frames have been analyzed for ANS. As can been seen,

ANS learns very fast and can accurately predict delay in about

20 video frames. Fig. 10 shows the runtime average end-to-end

inference delay achieved by ANS, Oracle and Neurosurgeon. The

average delay of ANS quickly converges to that of Oracle in about

80 frames, starting from zero knowledge about the system environ-

ment. Compared to Neurosurgeon, both ANS and Oracle is better

because they consider the inter-layer optimization during DNN

inference while Neurosurgeon performs layer-wise profiling. In

fact, this comparison is not fair to ANS as Neurosurgeon requires
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Figure 11: End-to-end inference delay achieved by MO, EO and ANS, and delay reduction of ANS.

the real-time information about the system (i.e., the transmission

rate and edge server workload) while ANS does not.

End-to-End Inference Delay Improvement. Fig. 11 shows the
end-to-end inference delay achieved by MO, EO and ANS under

different uplink transmission rates when the edge server uses GPU.

When the transmission rate is low, the inference delay of ANS is

close to MO. This is because ANS tends to run the entire DNN on

the mobile device to avoid large transmission delay for sending data

to the edge server. When the transmission rate is high, the inference

delay of ANS is close to EO. This is because running the entire DNN

on the edge server significantly reduces the inference delay at a

small extra cost due to the small transmission delay. When the

transmission rate is moderate, ANS is able to make an effective

trade-off between on-device processing and edge offloading. Fig.

11(d) summarizes the end-to-end delay improvement in the best

cases when the edge server uses CPU or GPU for all three DNNs.

As it suggests, collaborative inference using ANS achieves a larger

improvement when the edge server is more powerful.

Adaption toChangingEnvironment. Fig. 12(a) shows howANS

can track the change of the environment and adapt its partition

point when the network condition changes. The upper subplot

shows the evolution of the uplink transmission rate over time. The

middle subplot shows the partition points selected by ANS with

µLinUCB. As a comparison, we also show in the bottom subplot the

partition results of the classic LinUCB. At the beginning, the uplink

transmission rate is high and hence, ANS partitions at the input

layer, sending the raw input image to the edge server. At the 150th

frame, the transmission rate changes to be small, which makes pure

on-device processing the optimal choice. Although ANS does not

directly observe this network condition change, it quickly adapts

its partition decision to be pure on-device processing in about 20

frames (at about the 170th frame). Later at the 390th frame, the

network condition improves, and ANS is able to adapt to the new

optimal partition point (i.e., fc1) in about 80 frames (at about the

470th frame). Finally at the 630th frame, the network condition

becomes the best again, and after about 50 frames (at about the

680th frame), ANS changes to pure edge offloading again. Note

that during the second phase when the network condition is bad,

forced sampling is activated, which periodically tries a partition

point other than pure on-device processing. As a result, when the

network condition improves, ANS is able to detect this change and

adapt to the new optimal partition. By contrast, LinUCB gets stuck

in the pure on-device processing since the 170th frame, thereby

losing its learning ability thereafter. Similar to Fig. 12(a), Fig. 12(b)
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Figure 12: ANS under changing environment.

demonstrates the ability of ANS to adapt to the changing environ-

ment by varying the overall workload on the edge server over time.

Similar observations can be made in this experiment.

We further show how the frequency of environment change

impacts ANS in Fig. 13. In the simulations, the wireless network is

either in a fast (i.e., 50 Mbps) or a slow (i.e., 5 Mbps) state. For each

frame, the network switches to the other state with probability Pf
and stays in the current state with probability 1 − Pf . As can been

seen, ANS achieves excellent performance when the environment

is relatively stable, namely when the switching probability is low.

When the switching probability is high, ANS can become worse

than MO due to the overhead incurred during learning.

Forced Sampling Frequency. As shown in the last set of experi-

ments, forced sampling is the key to continuing learning when pure

on-device processing is selected for inference. In this experiment,

we further investigate the impact of the forced sampling frequency

on the learning performance. We design the experiment as follows:

At frame t0, the system starts with a bad network condition so that

pure on-device processing is selected for inference. The system
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Figure 14: Tradeoff of the
forced sampling frequency.
(larger µ means lower fre-
quency.

keeps in this bad network condition for a number frames, and then

switches to a good network condition at frame t1 where fc1 be-

comes the optimal DNN partition layer. At frame t2, ANS stably

selects the actual optimal layer fc1 as its partition decisions (i.e., for

20 consecutive frames). We vary the frequency of forced sampling

to investigate its behavior with respect to the following two metrics:

(1) Adaptation Time: Number of frames needed for ANS to detect

the change and adapt its partition decision i.e. t2 − t1. (2) Incum-
bent Performance: The end-to-end inference delay achieved by

ANS during the period between t0 and t1.
Clearly, there is an intuitive tradeoff between these two metrics.

A higher forced sampling frequency allows ANS to quickly detect

and adapt to the changes, thereby reducing the adaptation time.

However, incumbent performance are harmed because of excessive

unnecessary trials of suboptimal partition points. On the other hand,

a lower forced sampling frequency minimizes the intervention

to the incumbent optimal partition decision, namely on-device

processing, but results in a longer time for ANS to detect changes

due to less incoming new knowledge. The results in Fig. 14 confirm

this intuition.
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Figure 15: Inference delay of key frames: (a) Varying
SSIM threshold for key frame detection. (b) Varying frame
weights.

Key FrameWeights. In this experiment, we change the threshold

adopted by the key frame detection algorithm SSIM to adjust the

ratio of key frames, and investigate its impact on the end-to-end

inference delay performance achieved by ANS. As shown in Fig.

15(a), for all detection thresholds, ANS is able to provide differen-

tiated service to key and non-key frames, with the average delay

of key frames considerably lower than that of the non-key frames.

Note that when threshold is set to be 1, all frames are detected

to be key-frames and hence, there are only two equal bars in the

corresponding category.

Furthermore, we change the relative weight L
key
/L

non-key
as-

signed to key and non-key frames in ANS. As can be seen in Fig.

15(b), when the relative weight becomes larger, the difference in the

achieved end-to-end inference delay for key and non-key frames

becomes more obvious. Therefore, by tuning the weights assigned

to frames in ANS, we can provide desired differentiated services to

different frames.
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Figure 17: ANS on different
mobile devices.

Working Together with Model Compression. As highlighted
in the Introduction, ANS does not aim to replace or compete with ex-

isting efforts such as DNNmodel compression. Rather, it is a natural

complement to and enhancement of existing DNN model compres-

sion methods, which can work together without modification. To

show this salient advantage of ANS, we design an experiment to

let ANS work with a popular compressed DNN model for mobile

devices, namely YoLo-tiny. The running time of YoLo-tiny is 7.76×

less than the original uncompressed YoLo. Together with ANS, its

inference delay is further reduced as shown in Fig. 16 for various

uplink transmission rates, with the most significant gain obtained

in the fast network regime (which is expected in the forthcoming

mobile networks). This improvement is expected to be even larger

on low-end mobile devices as will be shown in the next experiment.

Low-end Mobile Devices. As also mentioned in the Introduc-

tion, the current mobile device market is highly heterogeneous

in terms of the devices’ computing capability, with the vast ma-

jority being low-end and many years old. This is a real situation

and obstacle that prevents DL-based mobile intelligence from be-

ing universally employed. In this experiment, we show that these

low-end mobile devices can benefit even more from ANS, thereby

enabling DL-based intelligence for a larger population. To this end,

we configure the mobile device, namely Nvidia Jetson TX2, in two

working modes using the nvpmodel command. In the Max-N mode,

the mobile device’s GPU frequency is set as 1.30 GHz (referred to

as the High-end mobile device); in the Max-Q mode, the mobile

device’s GPU frequency is set as 0.85 GHz (referred to as the Low-

end mobile device), which is nearly halved compared to the first

mode. We run ANS on these types of mobile devices for various

DNN models in various network conditions, and report the delay

reduction compared to MO (i.e. pure on-device processing) in Fig.

17. As can been seen, the performance gain on low-end mobile

devices is considerably higher than that of high-end mobile devices,

especially with a fast network speed. Note that, when the network

uplink speed is low, the delay reduction is 0 for Vgg16 and YoLo
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because ANS learns that the best decision is indeed to run all infer-

ence on the mobile device itself. In other cases, ANS learns a better

partition point (possibly pure edge offloading) and thus improves

the end-to-end inference delay performance.

5 RELATED WORK
On-device Deep Learning Intelligence. Deep learning for mo-

bile and embedded devices has become a hot topic [7], covering

hardware architecture, computing platforms, and algorithmic opti-

mization. Many CPU/GPU vendors are developing new processors

to support tablets and smartphones to run DL empowered applica-

tions, a notable example being Apple Bionic chips [29]. New deep

learning chips have already been developed on FPGAs [12]. To sup-

port on-device inference, light versions of deep learning platforms

have also emerged, e.g. TensorFlow Lite [2] and Caffe2 [10]. In

addition, various algorithmic optimization techniques have been

proposed. For example, DNN compression methods [34, 35] prune

large-scale DNNmodels into computationally less demanding small

DNNs that can be efficiently implemented on mobile devices; hard-

ware acceleration methods [11, 26] are studied on the hardware

level to optimize the utilization of hardware resources for acceler-

ating DNN inference. However, these techniques are unlikely to

address the immediate needs of all existing mobile devices, espe-

cially low-end and legacy devices that can not fully benefit from

new computing architectures.

Multi-Access Edge Computing.Multi-access edge computing

[28, 31], formally mobile edge computing, is an ETSI-defined net-

work architecture concept that enables cloud computing capabilities

and an IT service environment at the edge of the cellular network,

and more in general at the edge of any network. By offloading

data, running applications and performing related processing tasks

closer to the end-users, network congestion is reduced and appli-

cations perform better. Some efforts have been made to migrate

the DL related tasks to edge servers, e.g., [36] builds a DL-based

crowd sensing with edge computing. [21] studies a DL-based food

recognition system using edge computing, and [22] sets up an edge

assisted real-time object detection for mobile augmented reality.

By contrast, this paper does not simply migrate the DL service

to the edge server but more importantly investigates an online

learning-based DNN partitioning method to accelerate inference.

Deep Neural Network Partition. DNN partitioning technique

is first proposed in the context of mobile cloud computing, where

mobile device and cloud server work collaboratively to complete

DNN inference tasks [8, 16]. This technique is further extended

to the edge computing scenario, e.g., [19] studies a joint problem

of DNN partition and early exit for edge computing systems and

[15] proposes a partitioning scheme for DNNs with directed acyclic

graph (DAG) topology. However, all these works require an offline

profiling phase to measure the network condition, the processing

ability of the mobile device, and the computing capacity of edge

server. Given this information, thesemethods determine the optimal

partition point by solving an optimization problem. However, the

knowledge acquired during offline profiling can be easily outdated

considering the highly dynamic environment in MEC systems and

frequently updating the knowledge will incur large overhead. By

contrast, our method uses online learning to learn the optimal

partition on-the-fly.

Contextual Bandit Learning.Multi-armed bandit (MAB) prob-

lem has been widely studied to address the critical tradeoff between

exploration and exploitation in sequential decision making under

uncertainty [17]. Contextual bandit learning extends the basic MAB

by considering the context-dependent reward functions to estimate

the relation of the observed context and the uncertain environment,

where LinUCB is a classic algorithm [18]. AdaLinUCB [13] builds

on top of LinUCB to consider the heterogeneous importance of

decision problems over time, which inspired our design for key

frames. However, the special on-device processing decision causes

a difficult challenge for LinUCB and AdaLinUCB, forcing them to

stop learning the first time when on-device processing is selected.

Our algorithm µLinUCB incorporates a forced sampling technique

to conquer this challenge, while still achieving provably asymptoti-

cally optimal performance.

6 CONCLUSIONS
In this paper, we designed and prototyped a collaborative deep in-

ference system to enable real-time object detection in video streams

captured on mobile devices. We designed Autodidactic Neurosur-

geon (ANS), an integral component of the system that online learns

the optimal DNN partition points, using only limited delay feedback

without a dedicated offline profiling/training phase. ANS explic-

itly considers varying importance of frames in video streams, and

incorporates a simple yet effective forced sampling mechanism to

ensure continued learning. As a result, ANS is able to closely follow

the system changes and make adaptive decisions at a negligible

computational cost. Experiments on our testbed show that ANS

can significantly reduce the end-to-end inference delay compared

to pure on-device processing or pure edge offloading through the

synergy of both. Together with existing efforts on accelerating

deep learning on resource constrained mobile devices such as DNN

model compression, ANS will play an essential role in pushing the

frontier of deep learning-empowered mobile intelligence, especially

to the vast majority of low-end mobile devices.
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A PROOF OF THEOREM 1
We analyze the performance of ANS by comparing it to an Oracle

solution that knows precisely the ground-truth value of coefficients

θ∗ and always picks the optimal partition point p∗t that minimizes

the end-to-end inference delay for each frame t . The performance

is measured in terms of the regret, which is the gap of accumulated

inference latency of all T frames, R =
∑T
t=1 d

f
pt + θ

∗⊤xpt − d
f
p∗t
−

θ∗⊤xp∗t . Before proving the main result 1, we first make some mild

technical assumptions: (i) Noise η satisfies the Cη -sub-Gaussian
condition. (ii) The unknown parameter θ∗ satisfies ∥θ∗∥2 ≤ Cθ .
(iii) For ∀p ∈ P, ∥xp ∥2 ≤ Cx holds. (iv) The key frame weight Lt
satisfies Lt ∈ {Lnon-key,Lkey}, where 0 < L

non-key
< L

key
< 1. (v)

β ≥ {1,C2

θ }.

We classify the frames into three types: Regular sampling se-
quence R: The frame is a normal frame and ANS selects an action

in P. Non-sampling sequence N : The frame is a normal frame

and ANS selects pure on-device processing P . Forced sampling
sequence F : The frame is a forced sampling frame and ANS se-

lects an action in P{,P } . These frames are interspersed with each

other as a result of ANS run. Let TM = (t1, · · · , tM ) denote the

subsequence of frames where each tm is a sampling frame (so ANS

can observe dept and update the At and bt ). Clearly, it must be

M ≤ T . With abuse of notation, we use Am , bm and θm to denote

the matrix, the vector and parameter estimation at the end of the

m-th sampling frame thereafter.

Lemma 1. (Prediction error bound) For any δ ∈ (0, 1), with proba-

bility at least 1 − δ , we have for all p ∈ P that

| ˆθ
⊤

mxp − θ
∗⊤xp | ≤ α

√
(1 − Lm )x

⊤
p A
−1
m−1xp (5)

where α =
Cθ+Cη

√
d log

1+MC2

x
δ

1−Lkey
.

Proof.

| ˆθ
⊤

mxp − θ
∗⊤xp | = |( ˆθ
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m − θ
∗⊤)xp | = |( ˆθ
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∗⊤)A
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2

m−1A
− 1

2

m−1xp |

= |( ˆθ
⊤

m − θ
∗⊤)A
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m−1xpA
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2

m−1 | ≤ ∥(
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m−1∥2∥xpA
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m−1∥2
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( ˆθm − θ

∗)⊤A
1

2

m−1A
1

2

m−1(
ˆθm − θ

∗) ·

√
x⊤p A

− 1

2

t−1A
− 1

2

t−1xp

= ∥ ˆθm − θ
∗∥Am−1 ·

√
x⊤p A

−1
m−1xp

≤
©­«Cθ +Cη

√
d log

1 +MC2

x
δ

ª®¬ ·
√
x⊤p A

−1
m−1xp

=
©­­«
Cθ +Cη

√
d log

1+MC2

x
δ

1 − Lm

ª®®¬ ·
√
(1 − Lm )x

⊤
p A
−1
m−1xp
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≤
©­­«
Cθ +Cη

√
d log

1+MC2

x
δ

1 − Lkey

ª®®¬ ·
√
(1 − Lm )x

⊤
p A
−1
m−1xp

where the second equality holds by noting thatAt−1 is a symmetric

positive-definite matrix. The first inequality holds by the Cauchy-

Schwarz inequality. The second inequality holds by Lemma 2 below.

Thus, we set α =
Cθ+Cη

√
d log

1+MC2

x
δ

1−Lkey
and complete the proof. □

Lemma 2. When |η | ≤ Cη , ∥θ
∗∥2 ≤ Cθ , ∥xp ∥2 ≤ Cx , for all

δ ∈ (0, 1), with probability at least 1 − δ , we have

∥ ˆθm − θ
∗∥Am−1 ≤ Cθ +Cη

√
d log

1 +MC2

x
δ

where d is the dimension of the context.

Proof. The proof follows the fact that
ˆθ t is the result of a ridge

regression using data samples collected in the sampling time slots

, assuming the sub-Gaussian condition for noise. For a complete

proof, see Theorem 2 in [3]. □

Lemma 3. (One-step regret) ∀m ≥ 0 Let α =
Cθ+Cη

√
d log

1+MC2

x
δ

1−Lkey
,

the one-step regret satisfies

Rt ≤ 2α
√
x⊤p A

−1
m xp , i f t ∈ R (6)

Rt ≤ 3α
√
x⊤p A

−1
m xp , i f t ∈ N (7)

Proof. To prove the one-step regret, we note that when ANS

chooses pure on-device processing (p = P ), the latency of processing

is dfP . Thus, we consider four cases in our algorithm and discuss

the one-step regret.

(1) The optimal action is p∗ ∈ {0, 1, · · · , P −1} and our algorithm
selects action p ∈ {0, 1, · · · , P − 1} (namely t ∈ R). In this case, the

one-step regret is

Rt = d
f
p + θ

∗⊤xp − d
f
p∗ − θ

∗⊤xp∗

≤ dfp + θ
∗⊤xp − d

f
p∗ −

ˆθ
⊤

mxp∗ + α
√
(1 − Lm )x

⊤
p∗A
−1
m−1xp∗

= dfp + θ
∗⊤xp − [d

f
p∗ +

ˆθ
⊤

mxp∗ − α
√
(1 − Lm )x

⊤
p∗A
−1
m−1xp∗ ]

≤ dfp + θ
∗⊤xp − [d

f
p +

ˆθ
⊤

mxp − α
√
(1 − Lm )x

⊤
p A
−1
m−1xp ]

= θ∗⊤xp − ˆθ
⊤

mxp + α
√
(1 − Lm )x

⊤
p A
−1
m−1xp

≤ 2α
√
(1 − Lm )x

⊤
p A
−1
m−1xp ≤ 2α

√
x⊤p A

−1
m−1xp

where the inequalities in the second and sixth lines hold by Theo-

rem 1. The inequality in the fourth line holds by the design of our

algorithm, especially by line 13.

(2) The optimal action is p∗ = P and our algorithm selects action

p = P (namely t ∈ N ). Thus, we have Rt = 0, because in this case

E(dfp∗ − d
f
p ) = 0.

(3) The optimal action is p∗ ∈ {0, 1, · · · , P −1} and our algorithm
selects action p = P (namely t ∈ N ). We firstly introduce an

auxiliary action p̂ ∈ {0, 1, · · · , P − 1}. Thus,

Rt = d
f
P − d

f
p∗ − θ

∗⊤xp∗

= dfP + d
f
p̂ + θ

∗⊤xp̂ − d
f
p∗ − θ

∗⊤xp∗ + ˆθ
⊤

mxp̂ − θ
∗⊤xp̂ − d

f
p̂ −

ˆθmxp̂

≤ dfP − d
f
p̂ −

ˆθmxp̂ + 3α
√
x⊤p̂ A

−1
m−1xp̂ ≤ 3α

√
x⊤p̂ A

−1
m−1xp̂

where the inequality in the third line holds by the Lemma 1 and

Case 1. The last inequality holds because dfP − d
f
p̂ −

ˆθmxp̂ ≤ 0 in

this case.

(4) The optimal action is p∗ = P and our algorithm selects action

p ∈ {0, 1, · · · , P − 1} (namely t ∈ R). Thus,

Rt = d
f
p + θ

∗⊤xp − d
f
P = (θ

∗⊤xp − ˆθ
⊤

mxp ) + ( ˆθ
⊤

mxp + d
f
p − d

f
P )

≤ 2α
√
x⊤p A

−1
m−1xp

where the inequality holds by Lemma 1.

According to the discussion above, the one-step regret satisfies

Rt ≤ 3α
√
x⊤p A

−1
m xp . □

Lemma 4. Assume ∥xp ∥2 ≤ Cx and the minimum eigenvalue of

A0 satisfies λmin (A0) ≥ max{1,C2

x }. Then, we have

T∑
t=1

x⊤p A
−1
t−1xp ≤ 2 log(

det(AM )

det Id
) ≤ 2d[log(β +

MC2

x
d
) − log β]

Proof. The proof follows Lemma 11 of [3]. □

With Lemma 3 and Lemma 4, we can get the total regret incurred

in the regular sampling sequence R

RR =
T∑
t=1

Rt1{t ∈ R} ≤

√√√
M

M∑
m=1

R2tm1{t ∈ R}

≤

√√√
4Mα2

M∑
m=1

x⊤m,pA
−1
m xm,p ≤ 2α

√
2Md[log(β +

MC2

x
d
) − log β]

≤ 2α

√
2Td[log(β +

TC2

x
d
) − log β] = 2G(T )

where the first inequality holds by the Jensen’s inequality; the

second inequality holds by Lemma 3 and relaxing the indicator

function 1{t ∈ R}; the third inequality holds by Lemma 4; the

fourth inequality holds by the factM ≤ T .
Next, we consider the total regret incurred in the non-sampling

sequence N .

RN =
T∑
t=1

Rt1{t ∈ N} ≤ T µ
M∑

m=1
Rm ≤ T

µ
3α

√
x⊤p A

−1
t xp = 3T µ ·G(T )

Next, we consider the total regret incurred in the forced sampling

sequence F .

RF =
T∑
t=1

Rt1{t ∈ F } ≤ T 1−µ△max (8)

where △max is the maximum latency gap between local processing

and other ANS’s actions. Thus, combining these regret bounds, we

obtain

Rtotal = RR + RN + RF ≤ (2 + 3T
µ )G(T ) +T 1−µ△max
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G(T ) =
Cθ +Cη

√
d log

1+TC2

x
δ

1 − Lkey
·

√
2Td[log(β +

TC2

x
d
) − log β]

whereG(T ) = O(T 0.5
log(T /δ )). Thus, Theorem 1 shows that the re-

gret bound of ANS is sublinear inT , ormax{O(T 0.5+µ
log(T /δ )),O(T 1−µ )}

by choosing µ ∈ (0, 0.5).
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