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Abstract—With the growth of intelligent Internet-of-Things
(IoT) applications and services, deep neural network (DNN)
has become the core method to power and enable increased
functionality in many smart IoT devices. However, DNN training
is difficult to carry out on end devices because it requires a great
deal of computational power. The conventional approach to DNN
training is generally implemented on a powerful computation
server; nevertheless, this approach violates privacy because it
exposes the training data to curious service providers. In this
paper, we consider a collaborative DNN training system between
a resource-constrained end device and a powerful edge server,
aiming at partitioning a DNN into a front-end part running on
the end device and a back-end part running on the edge server
to accelerate the training process while preserving the privacy of
the training data. With the key challenge being how to locate the
optimal partition point to minimize the end-to-end training delay,
we propose an online learning module, called Learn-to-Split
(L2S), to adaptively learn the optimal partition point on-the-fly.
This approach is unlike existing efforts on DNN partitioning that
relies heavily on a dedicated offline profiling stage. In particular,
we design a new contextual bandit learning algorithm called
LinUCB-E as the basis of L2S, which has provable theoretical
learning performance and is ultra-lightweight for easy real-world
implementation. We implement a prototype system consisting
of an end device and an edge server, and experimental results
demonstrate that L.2S can significantly outperform state-of-the-
art benchmarks in terms of reducing the end-to-end training
delay and preserving privacy.

Index Terms—Edge intelligence, deep learning, edge comput-
ing, online learning.

I. INTRODUCTION

Deep neural networks (DNNs) have made tremendous
progress towards the integration with a wide range of mobile
and IoT applications such as face recognition, object detec-
tion and speech assistant. Nowadays, DNNs are increasingly
being trained/updated using local and private data gener-
ated/collected by end devices (e.g., IoT devices and mobile
devices, to suit the users’ personal needs and quickly adapt
to changing environment conditions. Although steps have
already been taken recently to enable efficient DNN training on
resource-constrained end devices [1], e.g., compressed/pruned
models, lightweight deep learning frameworks such as Tensor-
Flow Lite and PyTorch Mobile, and new-generation hardware,
they face significant challenges to address the immediate
deep learning needs of many existing end devices, which
exhibit a substantial heterogeneity in terms of their computing
capabilities. For instance, a Facebook study in 2019 showed
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that over 50% end devices were using processors before 2014,
which limited what Facebook Al service could offer [2].

An alternative approach for DNN training for resource-
constrained end devices is edge computing. Unlike centralized
and datacenter-based cloud computing, edge computing allows
the end device to use a nearby computing server located at the
edge of the network, e.g., a cellular base station or a Wi-Fi
hotspot, with ultra-low network latency. With edge computing,
the end device can send its data to and train the DNN on
an edge server, which is often much more computationally
powerful than the end device itself. However, this approach
also suffers an obvious drawback due to the full reliance on
an external party to process private data — once an end device
reveals its data to the edge server for DNN training, it becomes
very hard to retain the full control of this data. While new
cryptographic tools such as homomorphic computing [3] are
being developed to enable computation on encrypted data, the
complexity of DNN training hinders the immediate adoption
of these methods to enable privacy-preserving DNN training
in edge computing.

To utilize the computing power of the edge server while pro-
tecting user data privacy, collaborative DNN training between
the end device and the edge server has attracted increasing
attention recently [4]-[6]. The idea is to partition the DNN
into a front-end part running on the end device and a back-
end part running on the edge server. The end device feeds
its raw data into the DNN, processes it through a certain
layer, and then sends the intermediate data over the wireless
network to the edge server to complete the feed-forward stage.
Likewise, the back-propagation stage starts with the edge
server updating parameters in the back-end part of the DNN;
the intermediate gradients are then sent back to the end device
to finish the whole training cycle. At the core of collaborative
DNN training is a DNN partitioning problem, namely deciding
at which partitioning point to split the DNN. Solving this
problem needs to conquer several key challenges as follows.

Data Privacy Constraint. By sending the intermediate
data instead of the raw data to the edge server, collaborative
DNN training adds a layer of data privacy protection when
offloading part of computation burden to the edge server.
In fact, collaborative DNN training can be seen as a “soft”
cryptographic method, which uses the front-end feed-forward
DNN to “encode” the raw input data. However, such a “soft”
cryptographic method is not perfect as existing works have
shown that it is possible to reconstruct the raw input data
using the intermediate data if the adversary is given the
DNN structure, and the reconstruction quality improves if
intermediate data earlier in the DNN pipeline is used [7].
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Fig. 1. End-to-End training delay at different partition points under 100 Mbps
wireless network (AlexNet).

Therefore, the desired data privacy level limits the size of the
back-end DNN and hence the amount of training workload
that can be offloaded to the edge server.

Varying Network Environment. Different DNN partition-
ing points lead to different front-end workloads, intermediate
data sizes, and back-end workloads. Assuming given system
parameters such as the device processing speed, the wireless
transmission rate and the edge processing speed, the optimal
DNN partitioning point can be derived by solving a simple
optimization problem to minimize the overall training latency.
For example, Fig. 1 illustrates the overall training latency of
different partitioning points of AlexNet for a given set of
system parameters, where pool3 is the optimal partitioning
point in this case. However, the network environment in
practice can often change, thereby rendering any static solution
suboptimal. For example, the network transmission rate can
change due to the dynamic spectrum management of the
wireless carrier, the multi-user interference, and the mobility
of end devices; the edge server processing capability may also
change over time due to the edge server resource management
to support multi-tenancy or even the change of edge servers
due to location change.

Limited Feedback. To adapt to the changing network en-
vironment, existing works propose to utilize real-time system
parameters as input. These system parameters, however, not
only are ever-changing, but also can be very difficult, if not
impossible, for an end device to obtain in practice. As is
often the case, the end device can observe only the overall
delay between feeding in the raw data and finishing one
batch of training, but is unable to accurately decompose this
delay into different components (e.g., transmission delay and
training delay at the edge). This limited feedback challenge
is similar to the congestion control problem in the classic
Transport Control Protocol (TCP), where the end-user adjusts
its congestion window based on only a binary congestion
signal from the network as a summary of all network effects.
With limited feedback, solutions that rely on explicit real-time
system parameters become infeasible.

Model Synchronization. Splitting a DNN into a front-
end part and a back-end part running on the end device and
the edge server, respectively, has been mainly studied in the
context of performing DNN inference tasks [8]—-[11], including
our prior work [12]. However, training DNN models based on
the DNN partitioning idea needs to address new challenges
as the DNN model is constantly being updated while the
DNN model in inference tasks remains constant. Since the
DNN partitioning point may change over time to adapt to
new environments, extra data transmissions are needed to

synchronize the DNN models between the end device and
the edge server, thereby creating a new trade-off between the
adaptation rate and the model synchronization cost.

In this paper, we design and build a collaborative DNN
training system based on DNN partitioning, which aims to
minimize the training delay under a data privacy constraint.
A key component of our system is a novel online learn-
ing algorithm, called Learn-to-Split (L2S), that automatically
learns the optimal DNN partitioning point based on the limited
training delay feedback. Specifically, our main contributions
are as follows:

(1) Framework and algorithm: We formulate the collabo-
rative DNN training problem and propose the L2S algorithm to
learn the optimal DNN partition. L2S addresses the aforemen-
tioned challenges by performing online learning using limited
training delay feedback. It requires ultra-lightweight compu-
tation and minimal storage and hence, it is easy to deploy
in practical systems. The core of L2S is a modified linear
bandit learning algorithm, which addresses unique problems in
collaborative training systems and has a provable performance
guarantee.

(2) Prototype and experiment: We build a prototype
collaborative DNN training system, where a Nvidia Jetson
TX2 device, a fair representation of end devices, collabora-
tively trains a DNN with a GPU-powered edge server via a
wireless link. We conduct extensive experiments to evaluate
the performance of the proposed L2S algorithm. The results
show that L2S is able to accurately learn the optimal partition
point, and hence accelerates DNN training for various DNN
model structures and under various wireless networks while
ensuring the desired level of privacy protection.

II. RELATED WORK
A. Deep learning on end devices

Fully on-device learning. Deep learning for end devices
has become a hot topic [13], covering hardware architecture,
computing platforms, and algorithmic optimization. Many
CPU/GPU vendors are developing new processors to support
tablets and smartphones to run DL empowered applications,
a notable example being Apple Bionic chips [14]. To support
on-device neural network training, one approach is to quantize
the weights and/or activations of a DNN model into lower-
bit representation [15], [16]. Another common approach is
to directly hand-craft more efficient mobile architecture [17]-
[19]. However, these techniques are unlikely to address the
immediate needs of all existing end devices, especially low-
end and legacy devices that can not fully benefit from new
computing architectures.

Fully offloading-based learning. Multi-access edge com-
puting [20] enables cloud computing capabilities and an IT
service environment at the edge of the cellular network. By
offloading data, running applications and performing related
processing tasks closer to the end-users, network congestion
is reduced and applications perform better. Some efforts have
been made to migrate the DNN training to edge servers [20]-
[22]. However, this means that a large amount of raw data
should be uploaded to the edge servers, not only causing
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TABLE I
COMPARISON OF DNN PARTITIONING METHODS

ln% ﬁ?l?jgor Edge Info | Privacy | Delay
Neurosurgeon [8]
g(jigglt[?l] 0] Inference Offline No Yes
DADS [11]
JointDNN [23] Inference | 5 fine No | Yes
& Training
Hiertrain [24] Training Offline No Yes
Arden [4]
DP-A [5] Training Offline Yes No
Siamese [6]
ANS [12] Inference Online No Yes
L2S Training Online Yes Yes

prohibitive communication overhead, but also representing a
huge privacy risk to owners of the end devices. By contrast,
this paper does not simply migrate the DNN training service
to the edge servers but more importantly investigates an online
learning-based DNN partitioning method to accelerate DNN
training performance as well as preserve the privacy of training
data.

Partitioning-based collaborative learning. As summarized
in Table I, several existing works have investigated the power-
ful delay improvements or privacy-preserving on collaborative
deep learning intelligence [4]-[6], [8]-[12], [23], [24]. In [4]-
[6], authors investigate the privacy-preserving of collaborative
DNN training on mobile edge computing system. However,
these works ignore the effect of DNN partition on training
delay and some inappropriate partition points can greatly
increase training delay. In [8]-[11], the authors study the
collaborative DNN inference system via DNN partitioning.
However, our work focuses on collaborative DNN training,
which is very different from inference as backward propaga-
tion also needs to be executed in every training round. There
are two prior works that study training delay improvements
of collaborative DNN training on mobile edge systems [23],
[24]. In [23], the authors assume that the whole backward
propagation is executed on the edge server, and in each time
slot the end device downloads the front partition part from
the edge server based on the optimal partition point. In [24],
a hybrid parallelism method is proposed to adaptively assign
the DNN model layers across the three-level workers, where
the backward propagation phase requires two weak workers
to send their gradients to the main work for averaging the
gradients. All these works require an offline profiling phase
to measure the network condition, the processing ability of
the end device, and the computing capacity of the edge
server. Given this information, the optimal partition point is
determined by solving an optimization problem. However,
the knowledge acquired during offline profiling can be easily
outdated considering the highly dynamic environment in MEC
systems and frequently updating the knowledge will incur
large overhead. By contrast, our method uses online learning to
learn the optimal partition on-the-fly. Our prior work ANS [12]
also aims to find optimal partition points by online learning.
However, ANS is designed for DNN inference problem while
the current paper studies a DNN training problem. Compared
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TABLE II
KEY NOTATIONS

[ Notations | Definitions |
P Partition point
t Training round
;,f Intermediate forward result
1/);’, Intermediate backward gradient
dIront, f Front-end forward delay
dfrent. P Front-end backward delay
dpacs T Back-end forward delay
dpackeb Back-end backward delay
df,'tx Forward transmission delay
df,' tx Backward transmission delay
dy’ End device training delay
d3 Edge training delay
P Desired level of data privacy

with DNN inference where the data flow is unidirectional from
the end device to the edge server, DNN training consists of
a forward propagation to compute the training loss as well
as a backward propagation to update the model parameters.
Therefore, the partitioning point models are different. More
importantly, compared with DNN inference where the DNN
model is given and fixed, in DNN training, the DNN model is
constantly being updated. Because the DNN partitioning point
may change over time to adapt to new environments, L2S has
to specifically consider the effect of model synchronization and
the trade-off between the adaptation speed and the synchro-
nization cost. Moreover, the current paper takes data privacy
into account when designing the partitioning strategy while
ANS does not.

B. Contextual bandit learning

Multi-armed bandit (MAB) problem has been widely stud-
ied to address the critical tradeoff between exploration and
exploitation in sequential decision making under uncertainty
[25]. Contextual bandit learning extends the basic MAB by
considering the context-dependent reward functions to esti-
mate the relation of the observed context and the uncertain
environment, where LinUCB is a classic algorithm [26].
However, the special on-device processing decision causes a
difficult challenge for LinUCB, forcing them to stop learning
the first time when on-device processing is selected. Our
algorithm LinUCB-E innovatively incorporates a forced sam-
pling technique to conquer this challenge, while still achieving
provably asymptotically optimal performance.

III. SYSTEM ARCHITECTURE

A pictorial overview of our system architecture is given in
Fig. 2. Next, we describe the architecture of the collaborative
DNN training system. To make it clear, the key notations used
in this paper are summarized in Table II.

A. Marking Partition Points

Let P ={0,1,2,..., P} collect all potential DNN partition
points. A partition point p € P partitions a DNN into two
parts: 1) the front-end part, DNNIffO“t, contains layers from
the input to the partition point p € P, and 2) the back-end
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Fig. 2. An overview of the system architecture.

part, DNNEaCk, contains layers from the partition point p to the
output layer. For example, if the partition point is placed at p =
2, then DNNS*°"* contains layers {1,2} and DNN)*“* contains
layers {3,4, ..., P}. The partition points p = 0 and p = P are
the special cases: the partition p = 0 gives an empty DNNIEront
which means the end device transmits raw input data to the
edge server to train the entire DNN; the partition p = P gives
an empty DNNP*°* indicating that all DNN layers are trained
on the end device. Each DNN training round comprises of a
forward propagation phase that stores all variables computed
at each layer, and a backward propagation phase that calculates
the gradient of weight parameters, which are used to update
the DNN weights by stochastic gradient descent. The forward
output of DNNIEront is called the intermediate forward result of
partition p, denoted by 1J. Note that )/ contains the output
of partition point p and ground truth labels, which will be
sent to the edge server for the remaining forward processing.
The backward gradient of DNNp*“* is called the intermediate
backward gradient of partition p, denoted by wg. We assume
that 1/)5 and wz include necessary overhead for data packet
transmission (e.g., packet header) and follow-up DNN merging
(e.g., information about the partition point).

B. Breakdown of DNN Training Delay

The end-to-end collaborative DNN training delay consists
of six main parts: (1) Front-end forward delay d,*""'* of
DNN;‘;EOnt on the end device; (2) Forward transmission delay
df,' % for transmitting the intermediate forward result wg from
the end device to the edge server; (3) Back-end forward
delay d)>*/* of DNND°* on the edge server; (4) Back-end
backward delay dp*“*'" of DNNP*“* on the edge server;
(5) Backward transmission delay dg'tx for transmitting the
intermediate backward gradient wg from the edge server to
the end device; (6) Front-end backward delay d,*°""> of
DNNIf,ront on the end device. The end-to-end training delay
with partition point p is therefore

dp — d}f)ront,f+d;,tx+d?)ack,f_i_dgack,b+d§,tx+d;ront,b+n

where 7 is a Gaussian random variable to model the random-
ness in the training and transmission processes.
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Fig. 4. KL divergence and example on AlexNet.

The forward and backward transmission delays d}f,' e d];' tx
are determined by the data size of the intermediate results 1/)5
and ¢Z and the wireless uplink and downlink transmission rate,
which vary depending on the network condition. The training
delays dffo“t' £ dgaCk' £ dgaCk'b, dzf,“’“t'b of partitioned
DNNs depend on many more factors: the number of DNN
layers, the computational complexity of component layers,
and also the processing speed of the end device/edge server.
While some of them are fixed once the DNN structure is
given (e.g. the number of layers and layer-wise computational
complexity), others depend on the configuration of the comput-
ing platform which may also be time-varying (e.g. multi-user
scheduling by the edge server).

We note that the configuration of the computing platform on
the end device is relatively stable and fully revealed to the de-
cision maker, i.e. the end device itself, and hence the front-end
training delay d;"°"**, d7r°"*> of DNNJ"°"* can be easily
measured statistically for a given DNN using methods such
as offline profiling. In the experiment, we use the application-
specific profiling methods in [23] to obtain the expected train-
ing delay of DNNf,m“t. Now, the key difficulty lies in learning
dby dpackr f 4 dpack > 4 do* for different partition points
as a result of the unknown and time-varying edge computing
capability and network condition. For ease of exposition, we
define d; = dj*°"%" £ 4d;*°""" as the end device training
delay and df = d’ = +dp*** © +dp2* P 4 dpr** as the edge
training delay.

C. Collaborative DNN Training

In collaborative DNN training, the end device owns the
training data set (including samples and labels) while the edge
server does not. Both the end device and the edge server have
the same pre-selected DNN architecture but its weights must
be obtained via training. We consider a batch training setting,
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where a batch of data samples are trained in each training
round (which contains a forward propagation phase and a back
propagation phase), and use {1,...,7'} to index the training
round. The end device has to pick a partition point p; to
perform collaborative DNN training in every round.

Privacy constraints: DNN layers act as filters to extract
task-relevant information and abandon the rest [27]. As shown
in Fig. 3, when we proceed through the deep network layers,
the feature becomes more specific to the main task and
irrelevant information (including sensitive information) will
be gradually lost. Therefore, reconstructing the original image
becomes much harder [28], which means that the end device’s
data privacy is better protected. Therefore, the end device’s
privacy requirements will limit the feasible set of DNN par-
titioning points. To enable a direct comparison with existing
privacy-preserving schemes, we quantify the privacy loss using
the Kullback-Leibler (KL) divergence [29]. Specifically, we
extract intermediate results (IRs) at different partition points
in the forward propagation and feed them into a pre-trained
DNN to obtain the inference output. Then, we calculate the KL
divergence between the inference outputs of original input and
IRs. The rationale of this experiment is that, if the IR retains
similar contents as the original input, then their corresponding
inference outputs should have similar distributions, hence a
smaller KL divergence. Thus, a larger KL divergence means
a stronger privacy protection level. Fig. 4(a) illustrates the
process of KL divergence calculation. Fig. 4(b) reports the
computed KL divergence values on AlexNet and confirms our
intuition that it becomes larger as the partitioning point is later
in the DNN.

Objectives: The goal of collaborative DNN training is
to minimize the training delay while satisfying the privacy
constraint of the end device. Specifically, the end device aims
to choose the optimal partition point in every collaborative
DNN training round to minimize the end-to-end training delay
under the data privacy constraint. Thus, the problem can be
formulated as follows:

: m e
H};n d, +d, 0
st. P°<p<P

where the constraint in (1) indicates that the partition point p
should be no earlier than a given layer P¢ for a desired level
of data privacy protection.

Challenges: The above problem can be solved easily if
the dependency of dj and d;, on the partition point p is
known. However, as aforementioned, d;, can easily change due
to the time-varying edge computing capability and network
condition. Therefore, the optimal partition point has to be
learned on the fly.

Another practical consideration is that the weights of DNN
models on the end device and the edge server need to be
synchronized when the partition point changes. For example,
as shown in Fig. 5, suppose at training round ¢— 1, the partition
point is p = 2 in a 5-layer DNN. This means that layers {1, 2}
are the front-end DNN on the end device while layers {3, 4,5}
constitute the back-end DNN on the edge server. Suppose
at training round ¢, the partition point changes to p = 3 to
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Fig. 5. An illustration of weight synchronization.

adapt to the changing environment, thereby moving layer 3 to
the front-end. Because the model parameters are updated after
every batch training, the current weights of layer 3 must also
be sent to the end device.

IV. ADAPTIVE DNN PARTITIONING

In this section, we describe the design of the online learning
module, called Learn-to-Split (L2S), in the collaborative DNN
training system.

A. Edge Training Delay Prediction

To obtain the edge training delay dj as a function of the
partition point p, our idea is to learn a prediction model
that maps contextual features of a partition point to the edge
training delay. Since learning works online, this prediction
model updates itself using the limited feedback information
about the past observed dj to closely follow the changes in
the unknown system parameters. Using contextual features of
the partition points has a clear advantage over learning the
edge training delay of individual partition points separately,
especially when possible partition points are many. This is
because the underlying relationship between different partition
points is captured by their contextual features, and hence,
knowledge gained by choosing one particular partition point
can be easily transferred to learning about the performance of
all other unselected partition points.

1) Contextual Features of Partitions: We first construct
contextual features associated with DNN};)aCk that may impact
the back-end forward delay dp*“* ‘. Intuitively, the back-
end forward delay is linearly dependent on the computation
complexity of the back-end partition DNN>*°*, which usually
is captured by the number of multiply-accumulate (MAC) units
contained in DNN?]aCk. It was shown in [30] that MAC units
take up more than 90% of the execution time. Our experiment
shows that the required computation time for one MAC unit
is in fact different for different types of DNN layers. This is
because different DNN layers allow different levels of parallel
computation, especially when GPU is involved in the computa-
tion process. Since different partition points result in different
combinations of layer types in DNNp“*, simply using the total
number of MAC units to predict d*°*/* is problematic. To
address this issue, instead of using a single scalar value for
the total number of MAC units, we calculate the number of
MAC units for each layer type, and use this vector for learning
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the back-end forward delay. Specifically, we consider three
main types of layers in DNN: i) convolutional layer, ii) fully-
connected layer, and iii) activation layer, denoted by m;, mzf)
and mg, respectively.

For the transmission delay d;’** and d;’**, although the
wireless uplink and downlink rate may be unknown, it is still
clear that d;'“* and d5’** depend linearly on the data size of
the intermediate results ] and 1%, respectively.

The backward propagation involves the chain-rule gradient
computation and the weight parameter updating. According to
[31], the complexity of the gradient computation also depends
on the MAC units of the DNN so we reuse mg, mé and m; as
contextual features to predict the backward propagation delay.
In addition, the weight parameter updating complexity is linear
in the number of neurons in the different types of DNN layers.
Therefore, we also use the number of weights of convolutional
layers n;, fully-connected layers nt, and activation layers ny,
in DNNp2°* as additional contextual features.

To sum up, the contextual feature of a partition point p
is collected in @, = [m5, m5, m3, ), b ns nl n2]T. Here,
we slightly abuse notation to use ¢/ and 1% to denote the data
sizes of the IRs.

2) Linear Prediction Model: Although the best model for
predicting the edge training delay is unclear due to the
obscured DNN training process, we adopt a linear model due
to the reasons mentioned above. In addition, compared to the
other more complex and non-linear prediction models (such
as a neural network), the linear model is much simpler and
requires minimal resources on the end device. We show later
in the experiments that this linear model is in fact validated
to be a very good approximation.

Specifically, our prediction model has the form dj; = OTa:p,
where 6 is the linear coefficients to be learned, which captures
the unknown effects of the unknown system parameters (i.e.,
wireless conditions, computation capability of the edge server)
on the edge training delay performance. In runtime, the
coefficients will be updated online as new observations of dj,
as a result of the partition decision p are obtained.

B. Online Learning Algorithm

Since we adopt a linear prediction model above, LinUCB
[32], a classic online learning algorithm for linear models that
gracefully handles the exploitation v.s. exploration trade-off,
seems a good candidate for solving our problem. However,
LinUCB has a significant limitation for it to work effectively
in our system. In what follows, we first explain how LinUCB
works and its limitation in L2S. Next, we propose a new
learning algorithm that overcomes this limitation.

1) LinUCB and its Limitation: The basic idea of LinUCB
is an online linear regression algorithm, which incrementally
updates the linear coefficients using newly acquired feedback.
However, when making decisions, LinUCB takes into account
the confidence of the prediction for different actions’ expected
payoff (i.e., the delay of different partition points in our case).
Put in the context of DNN partition, LinUCB maintains two
auxiliary variables A € R%¥4 and b € R?*! for estimating
the coefficients 6. For each learning round ¢ (where a learning

round corresponds to one batch training), 6 is estimated by
0, = At:ll b;_1, and the partition point for batch ¢ is selected

to be
AT
pe =argmin d5+6 x, —a\/z] AL @, (2)

pEP

In the function to be minimized, the first term dg is the end
device training delay of partition point p, which is assumed to
T

be known; the second term 8 x,, is the predicted edge training
delay of partition point p using the current estimate 6; the last

term oM] l/ x, A;ll x,, represents the confidence interval of the
edge offloading training delay prediction. A larger confidence
interval indicates that the prediction is less accurate and hence,
even if the predicted delay of a partition point p is low, the
chance to select this partition point should be lowered. After
the training round is completed and the realized edge training
delay dj, is observed, the auxiliary variables are updated as
At — At,1 + a:pt:v;t and by <+ b;_1 + :Bptd;t.

However, LinUCB has a major limitation for it to work
effectively in our online learning module. Among all possible
partition points, the partition point p = P, namely pure on-
device processing, is actually a very special partition point that
does not follow the linear prediction model. This is because
the edge training delay is always O once p = P is selected
and any linear coefficient is a “correct” coefficient since the
contextual feature associated with p = P is a zero vector.
If, for some training rounds, p = P is selected by LinUCB
for training, then the auxiliary variables A; and b; do not
get updated since there is no feedback/new information about
the edge offloading delay. As a result, LinUCB will select
p = P according to the selection rule (2) for the next training
round and thereafter, essentially being forced to stop learning
and trapped in pure on-device training for all future training
rounds. Therefore, LinUCB fails to work in our online learning
module.

2) LinUCB with Escaping: In light of the limitation of
LinUCB, we propose a modified online learning algorithm,
called LinUCB-E, to support L2S. To escape from being
trapped in pure on-device processing, a natural idea is to add
randomness in the partition point selection. Because partition
points other than the pure on-device processing have a chance
to be selected, new knowledge about the edge offloading
delay and hence 6 can be acquired. Our implementation of
this randomness idea is through a forced sampling technique.
Specifically, for a total number of 7" training rounds, we define
a forced sampling sequence F = {t|t = nT*,t < T,n =
1,2,...}, where p is a design parameter. If the training round
index ¢ belongs to F, then LinUCB-E forces L2S to sample a
partition point other than p = P. In other words, p = P is not
an option for these training rounds. According to the design
of the sequence, forced sampling occurs every 7T training
rounds. Note that, forced sampling has no effect on training
rounds when p = P is not the selected partition point if the
classic LinUCB were applied. Fig. 6 illustrates the idea of
forced sampling. The pseudocode of LinUCB-E is given in
Algorithm 1.

The parameter p is a critical parameter of LinUCB-E, which
controls the frequency of forced sampling. In the theorem
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Fig. 6. Forced sampling: forced sampling is activated only when the partition
decision are to be on-device processing.

Algorithm 1 LinUCB-E algorithm

1: Set possible partition domain P" = {P¢, ..., P}
2: Construct ,, for candidate partition points Vp € P’
3: Obtain front-end training delay estimate dzf,mnt, vpe P
4: Determine forced sampling sequence F .

5: Initialize Ag = ﬁ[d, bp = 0.

6: for each batcht=1,2,--- ,T do

7. Compute current estimate 6, = A; ' b,_1.

8:  for each candidate partition point p € P’ do

9: Compute d; = é:wp - a,/w;At__llwp.

10:  end for

11:  if t € F then

12: Choose p; = arg minpePQ#P} d;ront + d;

13:  else

14: Choose p; = argmin,,c o d;,""" + dg.

15:  end if

16:  if p; # P then

17: Observe d,, once one batch training is done.
18: At — A+ a:pt:c;, b; < b1 + :cptd;t.
19:  else
20: A = Atfl, b; =b;_1.
21:  end if
22: end for

below, we characterize what is a good choice of 1 and the
resulting performance of LinUCB-E.

Theorem 1. Under mild technical assumptions, the regret (i.e.,
the training delay difference compared to an orcale algorithm
that selects the optimal partition point for all 7 training
rounds) of LinUCB-E, denoted by R(T'), satisfies: Vd € (0,1),
with probability at least 1 — 0, R(t) can be upper bounded by

max{O(T%5 " 1og(T/6)), O(T* ")}
Proof. The proof is given in Appendix ??. O

According to Theorem 1, by choosing p € (0,0.5), the
regret bound is sublinear in 7', implying that the average end-
to-end training delay asymptotically achieves the best possible
end-to-end training delay when T' — oo. For a finite 7', this
bound also gives a characterization of the convergence speed
of LinUCB-E. In addition, by choosing ;1 = 0.25, the order
of the regret bound is minimized at O(T%7 log(T)).

C. DNN Model Synchronization

Since LinUCB-E may choose different partition points
across training rounds to learn the parameter 6, it may

cause weight inconsistency of the DNN layers that change
processing locations (i.e., from edge to device, or from device
to edge). A straightforward solution is to synchronize the
weights of these layers between the end device and the
edge server whenever the partition point changes. However,
frequent weight synchronization will cause a large wireless
transmission overhead, which increases the overall training
delay. Note that model synchronization is not needed for
partition-based DNN inference tasks because the adopted DNN
model was pre-trained and does not change during inference.

To reduce the overhead due to model synchronization,
we perform model synchronization only periodically. For the
layers that change location due to adaptive partitioning, our
system simply uses the old model weights for training until the
next model synchronization. Apparently, the synchronization
frequency has a trade-off between the synchronization over-
head and the training performance: a higher frequency causes
a larger overhead but less disturbance to the regular training
process. Since theoretical results on the optimal synchroniza-
tion frequency seem extremely hard, we design an experiment
to derive an empirical understanding of what a good model
synchronization frequency should be. Specifically, we consider
the average change in the model weights in different layers
after different numbers of training rounds compared to the
initial model. As shown in Fig. 7, the weight change after
100 training rounds only accounts for a very small fraction
(~0.05%) of the weight change after the accuracy reaches
97%. Thus, the model weight change for a small number of
training rounds is almost negligible. In Fig. 8, we further
show that the accuracy and the delay of training ResNet34
with different synchronization rates after 50000 total training
rounds. We observe that a large synchronization period can
significantly reduce the total training time but causes a lower
training accuracy. Based on these experimental results, we
decide to use 100 rounds as the synchronization period because
it achieves a similar training accuracy as that when weights
are synchronized in every training round, while reducing over
70% weight synchronization overhead.

D. L2§

Now, we combine the components described so far to
present the overall architecture of L2S.

In the runtime, L2S operates in either one of the following
two modes: 1) Adaptation mode; 2) Regular training mode. A
delay monitor is also deployed to trigger the switch between
these two modes. We describe their functions as follows.

1) Adaptation mode: In the adaptation mode, L2S actively
learns the new optimal partition point in a new network
environment by running LinUCB-E. When entering this mode,
L2S first synchronizes weights between the front-end part
and the back-end part and then synchronizes weights only
periodically. After a fixed number of 7' training rounds, L2S
will check the history of partition decisions. If the partition
decisions from T — ny, to T are the same, L2S exits the
adaptation mode.

2) Regular training mode: For most of the time, L2S runs
in the regular training model where the optimal partition point
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DNN models and dataset. Three state-of-the-art DNNs,
namely AlexNet [34], Vggl6 [35] and ResNet34 [36] are con-

100%
) gl giz o—o—e—o sidered in the experiment. We implement L2S using PyTorch,
5 50% z a popular machine learning platform, and run deep learning on
< 8% these models and perform DNN partitioning. In order to get
0% S & & & 0 S ® & the intermediate gradient for backward propagation, we add
Pt ° oo ° hooks (via register_hook function provided by PyTorch)
@ ) to backward propagation so that the intermediate gradient

Fig. 8. The training accuracy and delay comparison of the periodic weight
synchronization and full weight synchronization. We run training with differ-
ent weight synchronization periods on ResNet34.
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Fig. 9. Mode switching policy.

found by LinUCB-E in the previous adaptation mode is used
to perform collaborative DNN training. When to enter a new
adaptation mode is triggered by either one of the following
events.

o Concept drift: a delay monitor constantly keeps track of
the end-to-end training delay. If the end-to-end training
delay in the past r training rounds experienced a signifi-
cant change (determined by a user-defined threshold r;p),
then L2S enters the adaptation mode to adapt to the new
environment.

o Random: even without a concept drift, L2S enters the
adaptation model with a probability 7g4.

The mode switching of L2S is illustrated in Fig. 9.

V. EVALUATION

In this section, we conduct experiments to show L2S’s
behavior and effectiveness.

A. Experiment Setup

Testbed setup. We use Nvidia Jetson TX2 as the end device,
which contains a mobile SoC (Tegra TX2) with a shared 8§ GB
128 bit LPDDR4 memory between GPU and CPU. The edge
server is a PC equipped with an Intel Core 17-8700K CPU
and a Nvidia GeForce GTX 1080 Ti GPU. The end device
and edge server are connected via a point-to-point Wi-Fi, and
we use NetLimiter4 [33] to set the wireless transmission speed
to emulate different network conditions.

Authorized licensed use limited to: UNIV OF MIAMI LIB.

will be called after each gradient tensor is ready; we also
set the parameter requires_grad in PyTorch DNN model
to lock and unlock the weight updating of each layer. We
use Netscope Analyzer [37], a web-based tool, for visualizing
and analyzing DNN network architectures. For chain topology
DNNs, we mark a partition point after each layer. However,
it should be noted that some DNN models are not chain
topology, in which case the residual block method [38] can be
used to determine the partition points (e.g., ResNet34 has 16
concatenated residual blocks). We sample 10 classes’ images
from ImageNet [39] and use them as the training data. We set
the training batch size to be 16 and the privacy requirement
P¢ to be 4.

Benchmarks. For the purpose of performance comparison,
the following benchmarks are used in the evaluation of L2S.

e Oracle: Oracle selects the optimal partition point in
each training round. We obtain the Oracle decision by
measuring the performance of all possible partition points
for 100 times and then picking the partition point with
the minimum average delay.

o Fixed Partition Training (FPT): The partition point is
fixed at layer P°. The end device and the edge server
execute the collaborative training at this fixed partition
point.

e Pure On-Device Training (PDT): The end device trains
the DNN model by itself without offloading.

e L2S with full weight synchronization (L2S-FWS): The
weights are synchronized between the end device and the
edge server whenever the partition point changes.

B. Experimental Results

1) Delay Prediction Error and Learning Convergence: Fig.
10 shows how the delay prediction error evolves as the number
of training rounds increases. In this set of experiments, three
DNN models are trained in different network conditions (high
speed network: 100 Mbps, low speed network: 60 Mbps). As
can be seen, L2S achieves an excellent prediction performance
and can accurately predict edge training delay in about 40
training rounds. Fig. 11 shows the average end-to-end training
delay of three DNN models achieved by Oracle and L2S
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Fig. 10. Online prediction error re-
duces as more batches are analyzed.

Fig. 11. End-to-end training delay
reduces as more batches are ana-
lyzed.

at the low-speed network. The average end-to-end training
delay of L2S quickly converges to that of Oracle in about
50 training rounds, starting from zero knowledge about the
network condition and edge server capability.

2) End-to-end Training Delay Improvement: Fig. 12 shows
the average per-round end-to-end training delay achieved by
PDT, FPT and L2S under different network transmission
speeds when the edge server uses GPU. When the transmission
speed is low, the end-to-end training delay of L2S is close to
PDT. This is because L2S tends to run the entire DNN on the
end device to avoid large transmission delay for sending data
to the edge server. When the transmission speed is moderate,
L2S is able to make an effective trade-off between on-device
processing and edge offloading. Although the end-to-end train-
ing delay of FPT decreases when the transmission speed is
high, the end-to-end training delay of L2S still outperforms
FPT. This is because that L2S can learn the network condition
and find an optimal partition point to minimize the training
delay. Fig. 12(d) summarizes the end-to-end training delay
improvement in the best cases when the edge server uses CPU
or GPU for all three DNNs. As it suggests, collaborative DNN
training using L2S achieves a larger improvement when the
edge server is more powerful.

3) Accuracy Performance: To illustrate the accuracy per-
formance of L2S, we compare the training accuracy of L2S
with L2S-FWS and PDT in Fig. 13(a) after 50000 training
rounds. We also run L2S, L2S-FWS under two different
network conditions (low speed network: 60 Mbps and high
speed network: 100 Mbps), and report the total training time
in Fig. 13(b). We use PDT as the baseline, and normalize the
total training time of L2S, L2S-FWS with this baseline. As can
be seen, L2S can reduce the total training time by more than
1/3, while the training accuracy only decreases about 2.14%
on average.

4) Privacy Constraints: In this experiment, we change the
privacy constraint P. adopted by the users, and investigate
its impact on the training performance achieved by L2S. As
shown in Fig. 14, when the privacy requirement is higher
(i.e. P, is larger), the end-to-end training delay improvement
achieved by L2S becomes smaller. This is because the feasible
partition points become fewer, limiting what can be achieved
by L2S.

Furthermore, we compare L2S with privacy-preserving
training (PPT) in [5], which is proposed for DNN face
recognition based on the Vgg16 model, to further demonstrate
the effectiveness of L2S. In this case, we use the same method

to calculate the KL divergence by using PPT (i.e., feed the
IR produced by PPT into the pre-trained DNN). We set P¢,
namely the privacy constraint in L2S, to a value so that its
corresponding KL divergence is no less than that of PPT. In
this way, we ensure that the privacy performance of L2S is
at least as good as PPT. For a fair comparison, we run L2S
and PPT on Vggl6 model with the same training data and
compare the total training time and the KL divergence when
the accuracy is higher than 97%. As can be seen in Fig. 15,
L2S achieves a larger KL divergence than PPT by setting
P¢ to a desired level of data privacy protection, meanwhile
reduces the total training time by more than 94%. This is
because PPT takes the first convolutional layer of vggl6 as
the partition point, whose intermediate data size is much
larger than the input and IRs of the other layers. Therefore,
when implemented in a wireless network with a poor wireless
link, PPT incurs a significant training delay due to the slow
data transmission. On the other hand, L2S chooses a proper
partitioning point that usually has a smaller intermediate data
size than the input. Therefore, L2S can significantly reduce
the training time compared with PPT.

5) Forced Sampling: In this experiment, we investigate
the impact of the forced sampling on L2S. We design two
experiments as follows: One uses the LinUCB-E to find the
optimal partition point (with forced sampling) and the other
uses the original LinUCB to obtain the optimal partition point
(without forced sampling). We test these two cases for 50
times and observe the average total training time on three
DNN models, which is shown in Fig. 16. We can see that
the average total training time of LinUCB (without forced
sampling) is higher than that of LinUCB-E. This is because
LinUCB sometimes will get trapped in the pure on-device
processing and LinUCB-E can avoid this problem.

6) Dynamic Adaptation: Fig. 17 shows how L2S can track
the change of the environment and adapt its partition point
when the network condition changes on ResNet34. We plot
L2S’s per-round end-to-end training delay as the blue line and
the network speed as the red line. We change the network
speed from high to low at the training round 2000 and reset the
network speed to high at training round 4000. By comparing
the delay in the past 10 training rounds, the delay monitor
determines an environment change and thus triggers L2S into
the adaptation mode. Note also that the two adaptation modes
indicated in the red boxes are due to the random mechanism
in mode switching. Regardless of which mode L2S is in, the
overall training accuracy keeps increasing during the entire
training process.

VI. CONCLUSION

In this paper, we design and prototype a collaborative DNN
training system on edge computing platforms, considering
privacy requirements of the training data. We propose L2S,
an integral component of the system that online learns the
optimal DNN partition points, using only limited delay feed-
back without a dedicated offline profiling/training phase. L2S
incorporates a simple yet effective forced sampling mechanism
to ensure continued learning. To adapt to the dynamic environ-
ment, we introduce a delay monitor to decide the proper L2S
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mode. Our experiments show that L2S can significantly reduce
the end-to-end training delay compared to pure on-device
processing while keeping a comparable training accuracy.
Together with existing efforts on accelerating deep learning on
resource-constrained end devices, L2S will play an essential
role in pushing the frontier of deep learning-empowered IoT
intelligence. Currently, L2S studies the DNN partition between
a single end device and an edge server on the training delay
without specifically addressing the energy consumption. In
our future work, we plan to extend the framework to the
general setting where multiple end devices and multiple edge
servers can be involved in training a DNN model, and consider
the impact of energy consumption on the collaborative DNN
training system.

REFERENCES

[1] K. Ota, M. S. Dao, V. Mezaris, and F. G. D. Natale, “Deep learning
for mobile multimedia: A survey,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 13, no. 3s,
pp. 1-22, 2017.

C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia er al., “Machine learning at
facebook: Understanding inference at the edge,” in 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2019, pp. 331-344.

F. Zhao, C. Li, and C. F. Liu, “A cloud computing security solution based
on fully homomorphic encryption,” in 16th international conference on
advanced communication technology. 1EEE, 2014, pp. 485-488.

[3]

Authorized licensed use limited to: UNIV OF MIAMI LIB

permission. See httg :/[www.ieee, org/%ubhcanons standards/
ownloaded on February 28

Fig. 15. Comparison of L2S and  Fig. 16. Total training time of L2S

PPT. with LinUCB-E and LinUCB.
Egsof - - - - - T ¢ o= ]
22 ! |
2=, | A R [

15 S : — . . . .
O 1
>
k) 1
SosF =

0
3
8 50%

3
3 m—
g o% . . . . . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Index of batches

Fig. 17. L2S’s reaction upon environment change.

[4] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not just pri-
vacy: Improving performance of private deep learning in mobile cloud,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 2407-2416.

Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong, “Learning from
differentially private neural activations with edge computing,” in 2018
IEEE/ACM Symposium on Edge Computing (SEC). 1EEE, 2018, pp.
90-102.

S. A. Osia, A. S. Shamsabadi, S. Sajadmanesh, A. Taheri, K. Katevas,
H. R. Rabiee, N. D. Lane, and H. Haddadi, “A hybrid deep learning
architecture for privacy-preserving mobile analytics,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 45054518, 2020.

H.-J. Jeong, I. Jeong, H.-J. Lee, and S.-M. Moon, “Computation offload-
ing for machine learning web apps in the edge server environment,” in
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). 1EEE, 2018, pp. 1492-1499.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615-629, 2017.

H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proceedings of the ACM Symposium on Cloud Computing,
2018, pp. 401-411.

E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” /IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447-457, 2019.

C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. 1EEE, 2019, pp. 1423—
1431.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

2022 at 03:42:33 UTC from IEEE Xplore. Restrictions apply.

/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2021.3127715, IEEE Internet of

[12]

[13]

[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httg://www.ieeeorg/ ublications_standards/publications/rights/index.html for more information.
ownloaded on February

Things Journal

L. Zhang, L. Chen, and J. Xu, “Autodidactic neurosurgeon: Collaborative
deep inference for mobile edge intelligence via online learning,” in
Proceedings of the Web Conference 2021, 2021, pp. 3111-3123.

Y. Deng, “Deep learning on mobile devices: a review,” in Mobile
Multimedia/Image Processing, Security, and Applications 2019, vol.
10993. International Society for Optics and Photonics, 2019, p.
109930A.

D. Sima. (2018) Apple’s mobile processors.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704-2713.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820-2828.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6848-6856.

B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10734-10742.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657-1681, 2017.

T. L. Duc, R. G. Leiva, P. Casari, and P.-O. Ostberg, “Machine learning
methods for reliable resource provisioning in edge-cloud computing: A
survey,” ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1-39,
2019.

S. Shahzadi, M. Igbal, T. Dagiuklas, and Z. U. Qayyum, “Multi-
access edge computing: open issues, challenges and future perspectives,”
Journal of Cloud Computing, vol. 6, no. 1, p. 30, 2017.

A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: an efficient
training and inference engine for intelligent mobile cloud computing
services,” IEEE Transactions on Mobile Computing, 2019.

D. Liu, X. Chen, Z. Zhou, and Q. Ling, “Hiertrain: Fast hierarchical edge
ai learning with hybrid parallelism in mobile-edge-cloud computing,”
IEEE Open Journal of the Communications Society, 2020.

T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4-22, 1985.
J. Langford and T. Zhang, “The epoch-greedy algorithm for contextual
multi-armed bandits,” in Proceedings of the 20th International Confer-
ence on Neural Information Processing Systems. Citeseer, 2007, pp.
817-824.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320-3328.

A. Dosovitskiy and T. Brox, “Inverting visual representations with
convolutional networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 4829-4837.

Z. Gu, H. Huang, J. Zhang, D. Su, A. Lamba, D. Pendarakis, and
I. Molloy, “Securing input data of deep learning inference systems via
partitioned enclave execution,” arXiv preprint arXiv:1807.00969, 2018.
Z. Lu, S. Rallapalli, K. Chan, and T. La Porta, “Modeling the resource
requirements of convolutional neural networks on mobile devices,” in
Proceedings of the 25th ACM international conference on Multimedia,
2017, pp. 1663-1671.

E. Mizutani and S. E. Dreyfus, “On complexity analysis of super-
vised mlp-learning for algorithmic comparisons,” in IJCNN’0I. Inter-
national Joint Conference on Neural Networks. Proceedings (Cat. No.
01CH37222), vol. 1. IEEE, 2001, pp. 347-352.

W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with
linear payoff functions,” in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, 2011, pp. 208-214.
Netlimiter4. [Online]. Available:
https://www.netlimiter.com/products/nl4.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

Authorized licensed use limited to: UNIV OF MIAMI LIB.

(35]

(36]

(371

[38]

(39]

11

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.
Netscope analyzer. [Online].
https://dgschwend.github.io/netscope/quickstart.htm.
A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep learning
architecture for intelligent mobile cloud computing services,” in 2019
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). 1EEE, 2019, pp. 1-6.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. leee, 2009, pp. 248-255.

Available:

Letian Zhang received the B.S. degree in electri-
cal engineering from Shanghai Normal University,
Shanghai, China, in 2012 and the M.S. degree
in electrical engineering from Shanghai University,
Shanghai, China, in 2015. From 2015 to 2018, he
worked in ZTE company as a Software Engineer.
He is currently pursuing the Ph.D. degree with the
College of Engineering, University of Miami. His
primary research interests include mobile/IoT sys-
tem design, edge intelligence, and network security.

Jie Xu (Senior Member, IEEE) received the B.S.
and M.S. degrees in electronic engineering from
Tsinghua University, Beijing, China, in 2008 and
2010, respectively, and the Ph.D. degree in electrical
engineering from UCLA in 2015. He is currently an
Associate Professor with the Department of Electri-
cal and Computer Engineering, University of Miami.
His research interests include mobile edge comput-
ing/intelligence, machine learning for networks, and
network security. He received the NSF CAREER
Award in 2021.

8,2022 at 03:42:33 UTC from IEEE Xplore. Restrictions apply.



