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Traffic Flow Modeling With Gradual Physics
Regularized Learning

Yun Yuan™, Qinzheng Wang, and Xianfeng Terry Yang

Abstract— Traffic flow modeling for traffic state estimation is
a vital component in many traffic management and operation
systems. To leverage both machine learning (ML) methods and
classical traffic flow models, the previous study has developed
a hybrid framework for encoding traffic flow into multivariant
Gaussian Process. However, the computational efficiency is low
due to multiple inputs, outputs and equations. To improve the
efficiency of the previous method, this paper presents a new mod-
eling framework, named gradual physics regularized learning,
to incrementally encode complex traffic flow models into the ML
process. More specifically, the method starts with the involvement
of traffic flow models from the lower-order version, such as
the fundamental diagram and the kinetic wave models. Then
the learned parameters and hyperparameters can be further
fine-tuned with the high-order models. A field test based on
real-world freeway measurements indicates the proposed model
can leverage the additional physical equations to achieve better
performance in estimation accuracy and robustness. Meanwhile,
the gradual learning method can significantly reduce the compu-
tational efforts and further enables its application to scenarios
with either larger datasets or more complex traffic flow models.

Index Terms—Second-order traffic flow model, traffic state
estimation, gradual physics regularized learning, multivariate
Gaussian process.

I. INTRODUCTION

ODELING traffic states (e.g., flow, density, and speed)

on highway networks is a key function of many traffic
operation tasks, such as travel time prediction, dynamic vehicle
routing, etc., in intelligent transportation systems [1]. Due
to high installation and maintenance costs, devices such as
roadside traffic detectors only deliver real-time traffic measure-
ments at sparse locations. The spatial resolution of available
traffic information is typically insufficient for the direct imple-
mentation of appropriate control actions. As a result, how to
estimate traffic states of road segments between detectors is
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an important issue for traffic management and control and has
received an increasing amount of research interests.

During the past decades, macroscopic traffic flow models
have shown great promise in capturing the features of the traf-
fic patterns. In the literature, they are developed and refined
gradually. Based on the complexity of formulations, existing
traffic flow models can be categorized into two kinds: (a) the
first-order Lighthill-Whitham-Richards (LWR) models [2], [3],
and (b) the second-order Payne-Whitham (PW) models [4], [5]
and Aw-Rascle-Zhang (ARZ) models [6], [7]. These models
are based on the underlying relationship between traffic flow,
density, and speed, which is formalized to the Fundamental
Diagram (FD). In addition to the FD, the LWR model also
involves the mass Conservation Law (CL) to capture the traffic
dynamics, such as congestion and shockwave. By involving
the momentum CL equation, the second-order models were
proposed to replicate more complex phenomena.

Despite wide implementations, these models are often
developed under ideal conditions and are difficult to calibrate
with real-world data. To handle the inherent randomness of
traffic flow and model uncertainties, various methods were
proposed to improve the estimation accuracy and robustness,
including data assimilation and data imputation methods.
Data assimilation methods are model-based, which first esti-
mates the parameters in the models and then predicts the
unobserved based on the parameters. Stochastic extensions
were proposed to extend the model-based methods [8]-[12].
To address the missing data problem, data imputation meth-
ods, such as machine learning (ML) models, can provide
prediction without strong assumptions but rely on the quality
and quantity of data. This category of research includes
Boltzmann-based models [13], [14], Markovian queuing net-
work approaches [15]-[17], cellular automaton based mod-
els [18], [19], and Gaussian Process [20]-[26].

However, due to the data-driven nature, those ML-based
models fundamentally suffers from three scenarios: (i) training
data are scarce and insufficient to reveal the complexity of
the system, (ii) training data are noisy and include much
incorrect/misleading information, and (iii) test data are far
from the training examples, i.e., extrapolation. In these scenar-
ios which are unfortunately very common in the real-world,
their performance can drop dramatically along with large
and/or biased estimations. To address these issues, researchers
have proposed hybrid frameworks to leverage the physical
knowledge in the ML framework, such as Physics-guided
machine learning (PGML) [27] and Physics-informed machine
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learning (PIML) [28]-[30]. PGML is designed to learn the
pattern from both real data and the calibrated model predic-
tions. PIML is defined to use the calibrated model error as a
part of the loss function of the learning process. As shown in
the literature, PGML and PIML were proved to be effective
when dealing with a small dataset. However, both of them
suffer from the following limitations: i) they often assume
the partial differential equations are available to generate the
physical inconsistency term; and ii) they are based on the NN
family models, which always have over-fitting problems, and
their model performance still depends on the quality of the
training dataset.

To bridge the existing research gaps, Wang er al. [31] intro-
duced the general PRGP concept to extend the conventional
GP to incorporate the partial differential equations as the
regularizer in the posterior inference algorithm. The physics
model-based regularization is conducted by encoding the
physics equations into GPs and adding the corresponding
log-likelihood into the inference objective function as a penalty
term. However, the original PRGP model was developed with
a single output variable, and were tested on one single-variable
differentiable physics equations. Following the same line, our
later study [32] extended the PRGP model to handle the mul-
tiple outputs and multiple physics equations simultaneously,
and applied the PRGP to the TSE problem. However, this
extended model can only employed continues macroscopic
traffic model and did not prove the applicability of PRGP on
the discretized models where the partial differential equations
cannot be obtainable. Also, it should be noted that many
traffic flow models in the literature are in discretized forms.
Hence, to ensure the applicability of the PRGP model in a
broader application domain, the following study [33] aims to
further develop a new modeling method to encode discretized
models into Gaussian Process. The discretized method study
also revised the evident lowerbound formulation to validate
the compatibility of the PRGP model and the discretized
traffic flow models. It advances PRGP to leverage both clas-
sical discrete macroscopic traffic flow models and data-driven
methods.

However, the current PRGP theory [32], [33] can only
train the GP with a regularized term from the scratch and
usually consumes a lot of time for parameter fine-tuning.
Due to the integration of complex traffic flow models, which
can have multi recursive equations and involve multi-variate
inputs/outputs, the low computational efficiency of those
PGML, PIML, and PRML models becomes a problem when
dealing with a relative larger dataset. Hence, it could create
application barrier when users need to deal with a complex
estimation/prediction system. To tackle such a critical issue,
this study aims to advance the method by providing a new
modeling architecture called the gradual learning framework to
incrementally fine-tune the ML models with additional phys-
ical equations. More specifically, the newly formed modeling
concept, called gradual physics regularized learning (GPRL),
will start with encoding basic and lower-order models, such as
the fundamental diagram and the kinetic wave models. Then
the learned parameters and hyperparameters from the base
model can be further fine-tuned with the high-order models
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The gradual regularization mechanism of the proposed model.

so that the ML training process can be gradually regularized
and the corresponding computation efficiency would be sig-
nificantly improved. The proposed gradual learning method is
expected to significantly reduce the required training efforts
but still achieve the same performance level of PRGP.

In this study, the trained GP model can be further updated
with the traffic models, i.e. FD, LWR, PW, and ARZ, to take
advantage of the trained models. In view of the fact that
PW and ARZ are developed based on LWR and LWR is
developed based on FD, the gradual regularization procedure
can be implemented by training GP, GPRL-FD, GPRL-LWR,
GPRL-PW or GPRL-ARZ incrementally with reduced compu-
tational cost. Fig. 1 shows the concept of the GPRL method,
where the initial parameter 6y is trained by with the base
ML model and the resultant parameter ¢ can be further
fine-tuned by involving FD equations. The results yielded
by the parameter §, are then improved from the results of
parameters ¢ by involving a first-order traffic flow model (e.g.,
LWR) and parameter 63 is obtained later with the integration
of a second-order model (e.g., PW or ARZ). Finally, the
PRGP with second-order traffic flow models (such as PW and
AR?Z) is trained. By gradually adding physics equation-based
regularization terms to the objective function, the parameter
is fine-tuned. The learning with the gradual structure can
effectively narrow down the feasible region in the model’s
solution algorithm and the required time for training would
be consequently reduced.

The rest of this paper is arranged as follows: Section II
introduces the modeling fundamentals such as the key formu-
lations of the encoded traffic flow models and the basic theory
of multi-variant GP; Section III presents the formulation of the
GPRL model along with the solution algorithms; Section IV
justifies the proposed method in estimating traffic flow and
speed; and Section V summarizes several concluding remarks
and future research.

II. FUNDAMENTALS

The physics regularized Gaussian Process (PRGP) is based
on two fundamentals including the macroscopic traffic flow
model and multi-variant Gaussian Process. The macroscopic
traffic flow model is encoded into GPs. The logarithm evidence
lowerbound of the posterior probability of the physics model
encoded GP is added to the objective function of the original
GP as the regularization term. By training PRGP, the hybrid
model compromises the fitness of the data-driven model and
the discrepancy of the physics model to improve the estimation
performance.

A. Macroscopic Traffic Flow Model

In traffic flow modeling, aggregated measures from traf-
fic detectors, such as flow rates and mean speed, are used
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to describe the state of the traffic pattern. In early days,
researchers found the existence of the FD to illustrate the
relationship among flow ¢, speed v and density p. The FDs
are used to predict the capability and the behavior of a road
system, as shown in the speed-density relation Eq. 1 and the
flow-density relation Eq. 2.

v="Vp (1)
q=pV(ip)=0(p) 2

where V(-) denotes the density-speed function, and Q(-)
represents the density-flow function. The FD formulations can
be classified into two categories: (a) single-regime models,
such as Greenshields [34], Greenberg [35], Underwood [36],
Drake et al. [37], Drew [38], Pipes [39] and Munjal [40];
and (b) multi-regime models, such as Edie model [41],
the two-regime model [42], modified Greenberg [43], and
three-regime model [44]. For example, the widely-used tri-
angular FD is formulated in the following equation.

q = min{p * fo, gm, (B1 — p) * f2} (3)

where Sy, B2 are the slope of the linear parts, g, is the maxi-
mum traffic flow, and f; is the maximum density. To capture
aggregated traffic behaviors, macroscopic traffic flow models
were investigated inspired by continuum fluid approximation.
For example, to describe basic traffic operation phenomenons
such as traffic jam and shockwave, the well-known first-
order Lighthill-Whitham-Richards (LWR) model [2], [3] is
formulated in Eq. 2 and Eq. 4, where Eq. 4 refers to the mass
conservation law and Eq. 2 is the FD density-flow function.

Op + 0x(pv) =0 )

However, the LWR model has limitations in the reproducibility
of more complex phenomena, such as the dynamics of speed.
To overcome such limitations, second-order models that use
the additional momentum equation were later developed. As a
branch of the second-order model, the Payne-Whitham (PW)
model [4], [5] is formulated by Eqgs. 1,4,5, in which the
additional Eq. 5 is the momentum conservation equation.

V-V g

)
Oi0 + V00 = — —0Oxp 5)
p

70
where 7o denotes the relaxation time and c(z) denotes a parame-
ter related to driver anticipation. Despite the success of the PW
model and its variations [45], the PW-like models may produce
non-realistic outputs, such as negative speed [46]-[49].

To overcome this limitation, another branch of the second-
order model, the Aw-Rascle-Zhang (ARZ) model [6], [7]
is formulated in Egs. 1,4,6, where another formulation
of the momentum conservation law is shown in Eq. 6.
The original ARZ model was extended extensively in the
literature [50]-[53].

o=V +006 -V =T

However, it should be noted that despite of the elegance of
differential equation formalization, a traffic flow model is
difficult to estimate traffic state uncertainties since the solving
the nonlinear differential equations is not a trivial task.

Considering the system and observation noise, data assim-
ilation or inverse modeling techniques were then developed
for model estimation and calibration. In the literature, there
exist three ways to add randomness in the traffic models:
(a) stochastic initial and boundary conditions, (b) stochastic
source terms (e.g. inflows), and (c) stochastic speed-density
relationship or fundamental diagram [54]. To capture the
measurement error in data, a stochastic modeling method is
performed by adding Gaussian noise to the traffic state esti-
mates [8]-[12], [21], [54]. For example, given the nonlinearity
of the second-order traffic flow model, some studies [10],
[11] assumed the error terms on the formula and developed
extended Kalman filter (EKF) to estimate a PW-like discrete
model [45]. To address these issues, this study proposes to use
GP along with gradual physics regularizer to capture the data
noise and randomness, and leverages the physical knowledge
from existing models, such as FD, LWR, PW, and ARZ,
to regularize the training process.

B. Multi-Variant Gaussian Process (GP)

GP is a data-driven method for capturing the similarity
between the system states, of which the core idea is to learn
the kernel function (i.e. covariance) between variables and to
predict the target by the linear combination of the training
data [55].

In general, the main task in GP is to learn a map-
ping f RY — RY from a d-dimensional space to a
d’-dimensional space from a training set D = (X,Y), where
X = [x1,...,X,]T is the input vector, Y = [yi,...,¥,]T
is the output vector, x is the d dimensional input vector,
y is the d’ dimensional output vector, f = [ f(x1), ..., f(x,)]T
is the learning function, and n refers to the sample size. Note
that X, Y may have physical meanings only in their feasible
domains. Given the new input x*, the function value f can be
estimated based on Eq. 7.

pEGH)IX*, X, Y) = N (u(x*), o (x%)) (M

where the mean u(x*), standard deviation o (x*), the kernel
matrix K and the kernel vector K, are calculated in Egs. 8-11,
respectively. I refers to the identity matrix.

p(x*) =KIK+7:'D7'Y (8)
o (x*) = K(x*,x*) — KJ(K + ') 'K, 9)
Kl = K(x;,x;),Vi,j=1,...,n (10)
[K.l; = K&x*,x;),Vi=1,...,n (11)

The kernel K is defined as the non-parametric smooth positive-
definite covariance function with parameters 71, 72, 73, . . ..
The formulation of the kernel function can be a tunable
hyperparameter.

The GP method has been applied to the traffic state estima-
tion problems and has shown great performance and potentials
in the previous studies. In traffic modeling, GP-based methods
have been applied in traffic speed imputation [56], [57],
public transport flows [20], traffic volume estimation and
prediction [21], travel time prediction [22], driver velocity pro-
files [23] and traffic congestion [24]. To capture the temporal
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Fig. 2. The framework for Gaussian process learning with three physics

regularizers.

correlation, [25] utilized the flows from adjacent road links
at the previous four time intervals for traffic flow prediction.
To address the missing data, [26] developed local GPs for
efficient traffic speed prediction in real-time for clustering of
speed in both space and time. However, due to the data-driven
nature, those machine learning (ML) models fundamentally
suffer from data quality problems. To address these issues, [32]
proposed the Physics Regularized Gaussian Process (PRGP)
to leverage the physical knowledge in the GP framework.
However, the mechanism of efficiently involving complex
traffic flow models that includes multi-equations and multi-
variables in one framework is under-investigated. This paper
aims to fill the gap by proposing a gradual learning method
by extending physics regularized Gaussian process.

III. GRADUAL PHYSICS REGULARIZED LEARNING
A. Gaussian Process With Physics Regularizer

Similar to other ML models, the performance of GP also
relies heavily on data quality and its results are usually hard
to be interpreted with physical meanings. To address this
issue, some physical knowledge is employed to regularize the
training process for more robust and explainable performance.
In the real world, raw data may be biased, noisy, and missing
due to system and communication failure, etc. Also note that
the flow, density, and speed do not have physical meanings
and are only separated isotropic dimensions in the pure
GP framework. To repair the data-bared flaw, the GP with
a physics regularizer leverages a priori dynamics between
traffic state measures for improving the estimation accuracy
and robustness. In the PRGP framework, physical knowledge
from traffic flow models is encoded as additional shadow
GPs, which captures both the stochasticity due to flawed and
noisy data as well as the unobserved factors, such as missing
on-ramp or off-ramp data. To leverage the advantages of both
ML models and macroscopic traffic flow models, the design
concept of using GP with physics regularizer is illustrated in
Fig. 2, where the circled nodes denote the random vectors, the
shaded nodes represent known vectors, and the arrows indicate
the conditional probabilities [32].

To enable Bayesian framework that incorporates the phys-
ical knowledge, a generative component p(w|X,Y) is used
that acts as a regularizer on the GP model p(Y|X). To sample
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the pseudo observation w, this method samples the posterior
function values at each z;, j = 1,...,m from the Gaussian
distribution as shown in Eq. 12.

p(fz)z;, X, Y) = N(u(z)),0(z;), Yj=1,....,m (12)

The predicted physical function values are obtained at Z, g =
lg(z1),...,g(zy)]T. Given the physical equation remainder
value vector g, the pseudo observations w are sampled from
another GP.

p(wlg, Z) = N(g, K) (13)

where K is the covariance matrix of the shadow GP.

Z is the set of random pseudo-inputs, and is used to compute
g and test the discrepancy of estimated traffic state and the
physics model. If no additional information is given, Z can be
uniformly selected. g1, g2, . .. is calculated by substituting the
estimated output f to left-hand side of the physics equations
Yf = g, and yielding the right-hand side as g. Note that ¥ is
a functional operator, and Y[ f] means to apply the operator
on the function f. The auto-differential packages, such as
Tensorflow or PyTorch, are used to implement the calculation.

The detailed deduction of the base model of PRGP can be
found in the previous studies [31], [32]. This paper proposes
to learn the PRGP with multiple physics models where the
physics models are gradually loaded as regularizers, and the
gradual learning is more efficient than the baseline PRGP.

To infer the PRGP, the posterior regularization is based
on optimizing the parameters to maximize the likelihood or
the evidence lowerbound (ELBO) of the likelihood [32]. The
objective includes the model likelihood on data and a penalty
term that encodes the constraints over the posterior of the
variables. Via the penalty term, ELBO can incorporate our
domain knowledge or constrains outright to the posteriors,
rather than through the priors and a complex, intermediate
computing procedure.

Regarding multiple outputs and multiple dimensions, the
log-likelihood and the ELBO of the traffic flow model can be
formulated in Eq. 14.

log[p(Y,0[X)] > L
d/
= > logIN([Ylilo, Ki + 77 'D]

i=1

w
+ D 1B E, ¢, 1z.x v 102N (Pl |0, Ko (14)

w=1

Note that the prefixed positive parameter y is used to control
the strength of regularization effect. The larger the value of
y, the greater regularization effect would be applied on the
learning process. The parameter vector 6 is defined in Eq. 15.

0 =10r,01T = [, np1,Mp2, M35 -»

Tols Nglls g2, Hg13s -~ -1 (15)

If the likelihood is maximized for both the original GP and
the generative component, the parameters of the original GP
are regularized by the equations of the physical model. The
ELBO of the log-likelihood is obtained by minimizing the
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Fig. 3. The flowchart of the solution algorithm.

loss (maximizing the negative loss) via stochastic optimization
shown in Fig. 3. Fig. 3 depicts the procedure of the posterior
regularization algorithm for the model. In this algorithm, after
the initialization step, the parameters and hyper-parameters
are iteratively optimized till the prefixed number of loops
are reached. In Fig.3, for each loop, sample a set of input
locations Z, estimate the posterior target function values
f(Z) = KI(K + 'Y in Eq. 8, [Lr, £g]T with samples
X,Y), (Z,f'), then derive the gradients VoL of Eq. 30 and
update the parameters 0¢*+D = 0 4 $VyL via the uncon-
strained nonlinear optimization technique. Finally, the learned
parameters 6 are outputted. In this study, this algorithm is used
as a submodule in the proposed gradual learning procedure.
The temporal complexity of this algorithm is O (13 + m?).

B. Learning With Gradual Physics Regularizer

The previous PRGP has great performance, however, it con-
sumes a considerable computational time in the learning
process. For example, the time complexity of the inference
of the original GP is O(rn®) and the time complexity of the
inference of the shadow GP is O(mS). Thus, the total time
complexity for the inference of two GPs is O(n’ + m?).
Empirically, the computational time is also impacted by the
output dimension d’, the number of equations |g|, and the
number of iterations 7. The empirical running time of training
the two GPs O[d’ T % (n> + |g| * m>)]. For a traffic state
estimation problem, the output dimension is fixed to three,

GPRL_ARZ

Fig. 4. The structure of gradual regularization process.

the number of iterations 7 depends on the trade-off between
non-underfitting and non-overfitting. Specifically, considering
the gradual development of the physical models of traffic
state estimation problems, the hyperparameters of GP with the
trained basic model (e.g. FD) can be fine-tuned with the high
order models (e.g. LWR), then the result of high order models
can be further used in higher-order models (e.g. PW and ARZ).
Thus, the physical equations can be involved gradually instead
of encoding all physical equations concurrently.

To reduce the computational cost, this paper proposes
an approximation to learn high-order regularization models
with the learned parameters of the lower-order models. The
empirical running time of the approximation is reduced to
Old' « T/lgl* 3 (0> +i % m™)].

Fig 4 shows the proposed GPRL which equips GP with
gradual regularizers from different traffic flow models. The
initialized parameters, 6}, are trained with pure GP, and then
fine-tuned with FD models (6»), the first-order LWR model
(03), and the second-order PW and ARZ models (64 and 6Os).
Considering the excessive computational time of the numerical
differentiation operation in the model equations, the training
processes with less equations have less computational cost.
Thus, the pre-training processes by lower order regularization
models would yield similar performance with the reduced
training duration.

To apply the proposed method, the traffic flow models need
to be reformulated in the proposed framework. The pseudo
observation pair Z, w has the same structure with the data
observation pair X, Y, and is designed to encode the physical
equations into GP.

Given the vector of remainder values, g, of the physical
equations, this method samples the pseudo observations w
from another GP. The predicted output f(z) is substituted
to the physical model to yield the right-hand side values g.
The physical equations are supposed to be in form of Eq. 16,
where f (Z) is the predicted outputs upon the input Z and
Y[-] is a physical model function of the output. The physical
equations are converted into the desired function forms by
moving terms to one side of equation and let the other side be
zero. Then, when the data perfectly meets with the physical
model function, the remaining error g is supposed to be close
to zero. Considering the unobserved latent value and the data
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error, g is assumed to be a GP and the following equation is
satisfied:

vi(Z) =g (16)

Then the differential equations W[-] shown in Fig. 4 can be
obtained from the four traffic flow models. For example, the
fundamental diagrams,¥' f1, are reformulated in Eqs. 17-18.

A7)
(18)

v—V(p) = gn
qg—pV(p) =g

The stochastic mass conservation law is formulated in Eq. 19.

Yf(g,p,0) =0p+0g =g (19)

The stochastic PW momentum conservation law is formulated
in Eq. 20.

V-V
¥ f3(q, p,v) =00 + 000 + V-V

2
0
+ —0vp = g3 (20)
70 p

And the stochastic ARZ momentum conservation law is for-
mulated in Eq. 21.

Tﬂ@dﬁMZ@@—V@HWQ@—V@D+2:%&2:@

21

where g1, . .., g4 are right-hand side remainders. Note that one
or more of these reformulated physical models can be used in
the framework. More complex models can be learned based
on the pre-learned base model.

The proposed procedure of gradual learning method for
PRGP is described as follows.

Step 1. Learn the parameter 6y of the pure GP model. The
ELBOs are defined as follows.

d/

Ly = inf Y log[N (IY]i|o, K; + 7' D] (22)
i
Lg = inflNV (P, |0, Ky)] (23)
where inf means infimum.
Oo =[tr,npisnp2, N3, 07 (24)

where the parameters 7y, %71, 2, /3 are initialized ran-
domly or reused from a pre-trained model.

91 < 90
0y < 01+ dVLe

(25)
(26)

The initial parameters are denoted as 6. By 6y, the objective
function log evidence lowerbound is calculated. The minimiza-
tion is iteratively conducted by the general-purpose optimizers,
such as ADAM [58].

Step 2. Gradual learning by fine-tuning the parameters

In the gradual learning procedure, the optimal value of
6o, 01,02, 03,05 is the partial initial value of 01, 0, 03, 64, 0s.
The additional parameters for each step are initialized ran-
domly if no further information is given.
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Step 2.1 Reuse the same parameters with the learning
parameters, and initialize the additional parameter randomly
if no a priori information is given.

0> = [01, Tg11, Ngl115 Ng112, - - -5 Tg125 Ngl21s Ngl122, - - -5 1T
(27
where 0 is the learned parameter, and

Tg11, g111> Ng112> Tg12, g121, Hg122 are additional parameters.
Step 2.2 Fine-tune the parameters with the inference algo-

rithm presented in Section III-A. After the initialization, the

following equations are used to update the parameters.

Or < 0r + PVI[ELy + K Lgyy + KLy, ] (28)

where Lg,,, Lg,, are the ELBOs of the corresponding GPs
€11, 12 on right-hand sides of Eqgs. 17-18.

Step 3. If a higher level regularizer exists, initialize the
additional parameters and fine-tune the parameters with the
new regularizer. Else stop and output the final parameter.

The following equations are used in the iterations.

03 = (02, 142, Ng21, Mg22, - - -] (29)

where 0 is the learned parameter, and g, 7721, 7g22 are
additional parameters.

where Lg, corresponds to the GP gz on the right-hand sides
of Eq. 19.

Oy = 03, 743, Ng31, Ng32, - - -] (3D

where 03 is the learned parameter, and g3, 7731, 7g32 are
additional parameters.

Oy <= 04+ ¢VI[ELY + ELgyy + ELgy, +KLg, +1Lgy] (32)

where Lg, is related to the GP g3 on the right-hand sides of
Eq. 20.

Os = 03, Tga, Nga1, Nga2, - . .] (33)

where 03 is the learned parameter, and g4, 77g41, g42 are
additional parameters.

where Lg, is related to the GP g4 on the right-hand sides of
Eq. 21.

Assuming the posterior distribution M (6,14) =
p(E(x*)|x*, Eyq) is inferred from the equation E,y. The
model can be updated every time step based on the previous
model M,y and the supplemental equation &,¢,, as shown in
Eq. 35.

Onew < Oota + aVL(Epew) (35)

The gradual learning procedure is summarized as follows.
In the initial learning stage, the minimal set of behaviors can
be involved in inferring the posterior M (6,;4). After the initial
model is trained, the additional behavior Wf,.,, (X) = gew (X)
is supplemented to enhance the existing model. The new model
M (0nep) can be yield by maximizing the updated evidence
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lowerbound of the log-likelihood 6., = argmax L,., =~
argmax AL,.,, which is shown in Eq. 36.

ALpew = ynepr(z)Ep(fnm‘Z,E) [10g[~/\/(\yf.new |, Knew)] (36)

To reinforce new physical knowledge in multiple stages, the
parameters are updated based on the gradient of the weighted
sum of the likelihood from new equation and additional
regularization term.

Onew < Oota + ¢V[€z£01d (gnew) +KALjew (Eold U gnew)]
(37)

where ¢ is the iterative step length, x,¢ are weights for
balancing the old physical equations with the new equation
and using the new physical knowledge with both new and old
equations.

IV. EXPERIMENT TEST

To evaluate the performance of the proposed method, this
study selects a stretch of the interstate freeway I-15 across
Utah, U.S. (see Fig. 5), as the study site, for traffic flow
and speed estimations. Along the I-15 corridor, the Utah
Department of Transportation (UDOT) has installed sensors
every a few miles along the freeway. Each sensor counts
the number of vehicles passed, measures the speed of each
vehicle, and sends the data back to a central database, called
Performance Measurement System (PeMS). The collected
real-time data and road conditions are available online and
can be accessed by users with granted access. The data
used for evaluating the proposed models were collected from
August 5, 2019 to August 19, 2019. Since both flow and
speed data are aggregated with an interval of 5 min, there
are 288 observations, per detector per day, for both flow and
speed. The input variables include the location mileage of each
sensor and the time of each read. In the literature, the data
index representation (X, Y) has three major variations: (road
segment, time interval), (road segment, day, time interval),
and (road segment, week, day-of-week, time interval). In the
experiments, the compatible representation (road segment,
time interval), namely (i, k) is used for consistent purpose.
The traffic measures, flow g and speed v, are employed in the
training and testing because the density is directly related to
these two measures and is not recorded in the original data
source.

The model parameters are initialized randomly if no addi-
tional information is given. The physics-model parameters can
be initialized by calibrated values, and are updated during the
training of the model. The GP-related parameters can be ini-
tialized by the previous training procedure. In the experiments,
the gradual learning is robust regarding the specific iteration
for shifting from a lower-level regularier to a higher-level
regularier. In this paper, an empirical scheduler for regularizer
shifting is used in the experiments. This scheduler shifts the
learning regularier from lower-level to higher-level by the rule-
of-thumb. The rule is to shift the regularizer when the relative
improvement in a few iteration is smaller than a threshold.

The training and testing data are presented in Fig. 5. Data
from three sensors, S412, S414, and S420, are selected for
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Fig. 5. The stretch of the I-15 and collected data.

training, and data from the other sensor, S419, are used for
testing.

A. Evaluation of the Gradual Physics Regularizer

To evaluate the effectiveness of the proposed gradual
physics regularizer, this subsection will test the performance
of two models:

o GPRL_PW, where the GPRL framework is integrated
PW and the base model, GP, is sequentially regularized
by FD, LWR, and PW; and

o GPRL_ARZ, where the GPRL framework is integrated
ARZ and the base model, GP, is sequentially regularized
by FD, LWR, and ARZ.

The training process of both models, indicated by the num-
ber of solution iterations (see Fig. 3) and the objective value
of Log ELBO (see Eq. 14), are shown in Fig. 6. Herein, it took
about 140 iterations to complete the training of the base model,
GP, and the corresponding objective value has been reduced to
—1.80 x 103. Then, by applying the gradual physics regulariz-
ers, from FD, LWR, PW, and ARZ, the training objective value
was further minimized and both GPRL_PW and GPRL_ARZ
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TABLE I

MODEL PERFORMANCE IMPROVEMENT BY THE GRADUAL
PHYSICS REGULARIZERS

Method Flow Flow Speed Speed
RMSE MAPE RMSE MAPE
(veh/5min) (mph)

GP 43.39 15.78% 3.76 3.64%

GPRL_FD 41.16 14.67% 3.32 2.70%

GPRL_LWR | 39.36 13.60% 3.00 2.56%

GPRL_PW 38.91 13.49% 3.08 2.64%

GPRL_ARZ | 38.37 13.30% 291 2.58%

converged after 530 iterations. Moreover, Fig. 6 also indicated
that the integration of higher-order traffic flow models is
based on the completion of encoding lower-order models. Such
GRML process can greatly reduce the required solution itera-
tions for both GPRL_PW and GPRL_ARZ and corresponding
computational times are consequently decreased, considering
that one iteration of GPRL_PW or GPRL_ARZ could consume
much longer time than that of GPRL with lower-order models.

Besides the analysis of the training process, it is also
important to study how the physics regularizers can gradually
improve the model performance on the testing dataset. In this
study, Root Mean Squire Error (RMSE) and Mean Absolute
Percentage Error (MAPE) are selected as the performance
evaluation indicators:

N
1 A \2 )
RMSE; = N;([yj]i—[fj]i) , Vjel,...,d (38)
i=
100% < [ [y, i — [£;1:
MAPE; = I 2 viel,...,d (39)
TN > | [y;1i /

i=1

Table I shows the obtained RMSE and MAPE of both
flow and speed estimations by each model. Based on the
results, it can be observed that the model performance has been
gradually improved after encoding a higher-order traffic flow
model at each stage. Compared with GPRL_PW, GPRL_ARZ
can yield more accurate estimations on both flows and speeds
as the ARZ model can outperform the PW model, as shown
in the literature, while both of them are classified as the
second-order traffic flow models. Moreover, the shown results
also highlight one main research contribution of the proposed

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE II

MODEL PERFORMANCE UNDER STATIONARY AND
NON-STATIONARY CONDITIONS

Scenario Flow Flow Speed Speed
RMSE MAPE RMSE MAPE
(veh/Smin) (mph)

stationary 36.91 14.70% 1.47 1.48 %

without

noise

non- 60.12 14.47% 7.86 9.76 %

stationary

without

noise

stationary 42.69 12.68% 1.78 1.58%

with noise

non- 67.42 17.34% 8.78 11.54 %

stationary

with noise

ML framework, making the results more explainable and the
model itself is no longer a “black box”. However, one may note
that the improvement from GP to GPRL_PW or GPRL_ARZ
is not significant. The main reason is that the collected dataset
is sufficiently large and the pure ML model, GP, can already
achieve high estimation accuracy. Hence, to further prove the
benefit of encoding physical knowledge into ML, a robustness
study will be conducted in subsubsection C.

When using as FD the physics model, the GPRL_FD is
trained with partial parameters of GPRL_LWR. Thereafter, the
GPRL_LWR with random initialized additional parameters can
converge faster than training PRGP_LWR from scratch (all
randomly initialized parameters). In the PRGP method, the
FD can be used as a soft constrain on the relation between the
flow, speed, and density at a specific input (time and location),
and is not required to capture the equilibrium state of traffic.

Table II presents the performance metrics of FD results
in non-stationary and stationary situations, where the 15%
percentile of the speed is the threshold for the stationary
and non-stationary conditions. The results show the GPRL
FD method performs worse in the non-stationary than in the
stationary conditions, and the data noise has more negative
impacts on the non-stationary estimations than the stationary
conditions.

Fig 7 shows the estimation of whole freeway segment, and
the wave propagation and congestion growths are observed.

B. Model Performance Comparisons

Recall that one main motivation of introducing the gradual
physics regularizer is to reduce the required computational
time when dealing with complex physical models. Hence,
in this subsection, the performance of the two GPRL models
are further compared with two baseline models that directly
encode the PW and ARZ models into GP:

CPU PRML_PW, where the PW model is encoded with-
out the gradual regularizing process; and PRML_ARZ,
where the ARZ model is encoded without the gradual
regularizing process.
Also, besides the RMSE and MAPE, the consumed computa-
tional time is listed as the third evaluation indicator. Note that
all models were carried out on a workstation with a 3.9GHz
8-core CPU 16GB RAM and RTX2080Ti GPU accelerator.
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Fig. 7. One-day estimation plot.

Based on the model results summarized in Table III, it can
be observed that the proposed GPRL_PW model took 5,225
seconds of computational time when the baseline PRML_PW
consumed 25,075 seconds. The reduction is about 78.2%.
Meanwhile, GPRL_PW’s performance on the RMSE and
MAPE of flow and speed estimations are quite closed to
that of PRML_PW. A similar trend can be observed when
comparing GPRL_ARZ (6,817 seconds) with PRML_ARZ
(34,085 seconds) and the reduction in computation time is
about 80%. In summary, it can be concluded that the proposed
GPRL framework can significantly improve the computational
efficiency, when the GP is dealing with complex physical
models, and still guarantee a satisfying model performance.
The piled up structure can reduce the computational cost by
reusing trained parameters in the higher level regularizers. For
example, when encoding FD as the physics regularizer, the
GPRL_FD is trained with partial parameters of GPRL_LWR.
Thereafter, the GPRL_LWR with random initialized additional
parameters can converge faster than training PRGP_LWR from
scratch (i.e. all randomly initialized parameters).

C. Model Robustness Analysis

As shown in the Subsections A and B, the improvement
of the proposed models, compared with the GP, on both flow

TRAFFIC FLOW MODELING WITH GRADUAL PHYSICS REGULARIZED LEARNING 9

TABLE III

COMPARISON OF THE RESULTS OF THE PROPOSED METHOD
AND THE BASELINE METHODS

Duration

©)

5,225
25,075
6,817
34,085

Flow
MAPE

13.90%
12.70%
13.30%
12.72%

Method ‘ Flow ‘

RMSE

3891
38.19
38.37
38.23

Speed
RMSE

3.08
2.96
291
2.89

Speed
MAPE

2.64%
2.61%
2.58%
2.57%

GPRL_PW
PRML_PW
GPRL_ARZ
PRML_ARZ

TABLE IV

MODEL PERFORMANCE IMPROVEMENT BY THE GRADUAL PHYSICS
REGULARIZERS WITH NOISY TRAINING DATA

MAPE
flow

RMSE
speed
(mph)

4.76
3.79
4.45
4.43
4.55

MAPE
speed)

Method RMSE
flow

(veh/5Smin)

GP 64.93
GPRL_FD 47.26
GPRL_LWR | 46.03
GPRL_PW 42.65
GPRL_ARZ | 42.60

3.64%
3.09%
3.27%
3.34%
3.40%

21.64%
13.38%
12.08%
10.80%
10.70%

and speed estimation is not significant. The main reason is
that the quality of the collected data is at the acceptable
level and the data size is sufficiently large for training pure
ML models. However, it should be noted that data noises,
e.g., caused by malfunctioning traffic sensors, are commonly
existed in practice and many noisy data are hard to identify
using conventional data screening algorithms. Therefore, pure
ML models, such as the GP, would have very limited resistance
to such high flawed dataset.

By encoding valuable physical knowledge from traffic flow
models into the ML process, it is expected that the proposed
models would be much more robust to noises in the training
dataset as those flawed data would violate the physical laws
defined in the traffic flow models. Hence, this subsection aims
to further evaluate the model robustness performance. To such
needs, the noisy data scenarios are created by artificially
adding high measure errors, with the mean of 100 veh/5min,
to 25% of traffic flows the training data to mimic the common
device malfunction situations. The testing set is not polluted
original data. Then all models were developed based on the
created noisy training dataset and tested on the original testing
dataset.

Table IV summarizes the resulting RMSE and MAPE of
both flow and speed estimates by different models. Similar
to the results shown in Table I, it can be observed that the
applied physics regularizers, obtained from different orders
of traffic flow models, can gradually improve the GPRL’s
estimation accuracy. Moreover, it should be noted that both
GPRL_PW and GPRL_ARZ can greatly outperform GP by
about 22 veh/5min of RMSE and over 11% of MAPE in
flow estimations. This is due to GPRL’s capability of adopting
physical knowledge to regularized the ML training process.
The difference in speed estimation is not quite obvious since
no noise is added to the speed data. For better illustration,
Fig. 8(a) and (b) present the time-dependent distribution of
the estimation absolute percentage error (APE) during day
time (6 AM-6 PM) and nighttime (6 PM-6 AM), respectively,
in one of the studied days. As shown in Fig. 8(a), in the
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TABLE V

MODEL PERFORMANCE COMPARISON WITH NOISY TRAINING DATASET

Method RMSE MAPE RMSE MAPE Duration
flow flow speed speed (s)
(mph)
GPRL_PW 42.65 10.70% | 4.43 3.34% 5,930
PRML_PW 42.61 10.69% | 4.42 3.33% 30,200
GPRL_ARZ | 42.60 10.80% | 4.55 3.40% 7,805
PRML_ARZ | 42.35 10.77% | 4.46 3.40% 39,025

day time period, most APEs yield by the GP are between
4% and 10% while the APEs produced by both GPRL_PW
and GPRL_ARZ below 4%. During the midnight period
(11 AM-5 AM), a major group of APEs generated by the GP
can go up to 80%-100%. This is due to the relatively low flow
level during that time period. In Fig. 8(b), similar trends can
be observed but the APEs by the GP is much smaller. Hence,
it can be concluded that the proposed modeling framework are
much more robust than the pure ML models when the input
data is subject to unobserved random noise.

To quantify the benefit of the proposed GPRL process
on reducing computational time when the training dataset
is noisy, Table V further compares the two GPRL models’
performance with the two PRML models. The results show
that the proposed GPRL_PW model can reduce about 81.4%
of computational time and achieve a similar accuracy level on
flow and speed estimations, compared with the baseline model,
PRML_PW. Meanwhile, GPRL_ARZ can contribute an 80%
computational time reduction compared with the PRML_ARZ.
Hence, it can be proved that the proposed GPRL framework
can also improve the computational efficiency greatly when
the training data contains noises and achieve similar model
performance as the PRML that directly encode the complex
traffic flow models.

To test the impact of the noise level on the performance,
the experiment of the flaw levels 0.3,0.5,0.7 are tested in
Table VI. The higher level noise has more negative impacts
on the performance. The results show the proposed method is
resistant to various noise levels.
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TABLE VI

COMPARISON OF THE RESULTS OF THE PROPOSED GPRL_ARZ AND THE
BASELINE METHODS UNDER VARIOUS NOISE LEVELS

Noise Noise Flow Flow Speed Speed
level intensity | RMSE MAPE RMSE MAPE

(veh/5min) (mph)
0.3 100 41.32 10.45% 4.13 3.24 %
0.5 100 42.60 10.70% 4.55 3.40 %
0.7 100 44.01 13.14% 5.30 4.69 %
0.5 50 40.01 10.01% 4.32 3.55 %
0.5 150 43.60 11.38% 4.83 3.61 %

V. CONCLUSION AND FUTURE RESEARCH

In the literature, few studies have discussed how to lever-
age multiple traffic models to improve the performance of
data-driven approaches for traffic state estimation. By encod-
ing the traffic flow knowledge into the ML framework, the
proposed physics regularized machine learning framework is
expected to outperform pure ML methods but may require
more computational efforts at the same time. To address
this issue, this paper aims to find low computational cost
method to improve estimation accuracy of highway traffic.
This paper presents an gradual learning method by leveraging
Gaussian Process (GP) to capture the randomness and correla-
tion of outputs. A posterior regularization framework is used
to estimate GP parameters by appropriately fusing multiple
macroscopic traffic flow models. The macroscopic traffic flow
model equations are encoded as GPs and are capable to handle
the unobserved variables and randomness. Considering the
limit of memory and the constantly arriving data stream, the
gradual learning method is proposed to leverage additional
equations and datasets.

A case study is conducted in the real-world detector data
in I-15 in Utah. The macroscopic traffic models, including
the triangular FD, the LWR model, the PW model, and the
ARZ model are tested in the proposed framework. The results
show the gradual model outputs similar performance metrics
and much shorter computational time in comparison to the
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non-gradual models, and the more physical equations are used,
the better performance is yielded in the proposed method.
Thus, the macroscopic traffic models can be regularized grad-
ually to create an efficient hybrid model. The effectiveness of
the proposed gradual method is justified.

Future research directions along the line of the proposed
models include: 1) extend the GPRL framework to encode dif-
ferent types of physical models so as to conduct the ensemble
learning; and 2) modify the proposed model to address the
streaming dataset for incremental learning.
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