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Abstract

Optical colonoscopy (OC), the most prevalent colon cancer screening tool, has a high miss rate
due to a number of factors, including the geometry of the colon (haustral fold and sharp bends
occlusions), endoscopist inexperience or fatigue, endoscope field of view. We present a framework
to visualize the missed regions per-frame during OC, and provides a workable clinical solution.
Specifically, we make use of 3D reconstructed virtual colonoscopy (VC) data and the insight

that VC and OC share the same underlying geometry but differ in color, texture and specular
reflections, embedded in the OC. A lossy unpaired image-to-image translation model is introduced
with enforced shared latent space for OC and VC. This shared space captures the geometric
information while deferring the color, texture, and specular information creation to additional
Gaussian noise input. The latter can be utilized to generate one-to-many mappings from VC to

OC and OC to OC. The code, data and trained models will be released via our Computational
Endoscopy Platform at https://github.com/nadeemlab/CEP.
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1. INTRODUCTION

More than 15 million colonoscopies are performed in the US every year [1, 2]. During
these procedures, 22-28% of polyps and 20-24% adenomas are missed [3]. There are no
commercial or automated tools available to assist endoscopists in gauging the amount of
colon surface missed during OC procedures. The main culprit in substandard coverage
during OC are the sharp bends and haustral folds, as depicted in Fig. 1a. Even though
the endoscope tip can be flexed to look behind folds and sharp bends, beginner or tired
endoscopists do not use this option wisely and may have a high miss rate. This miss rate
can be reduced if endoscopists have a visualization tool to identify and investigate areas
occluded by haustral folds.

*Equal Contribution
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Recently, Ma et al. [5] and Freedman et al. [6] have presented approaches to quantify

colon surface coverage. Ma et al. [5] reconstruct 3D mesh from contiguous chunk of
colonoscopy video frames using training data generated from shape-from-motion. The
missed surface is visualized as holes in the reconstructed mesh. The method, however,
assumes cylindrical topology (endoluminal) views, smooth camera movements and masked-
out specular reflection, making the method less practical in general colonoscopy scenarios.
In contrast, Freedman et al. [6] have used a deep learning approach to estimate percentage
coverage value directly for given colonoscopy video segments but do not provide any means
for visualizing the missed colon surface.

In this paper, we present a deep learning model for realtime visualization of missed colon
surfaces directly on the colonoscopy video frames without doing any prior offline 3D
reconstruction using contiguous sets of frames. Specifically, we make use of prior 3D
reconstructed virtual colonoscopy (VC) [7, 8] data, created from a computed tomography
(CT) scan, to produce training data for missing surface visualization (Fig. 1b—d). This is
used in conjunction with OC data for the same patient to drive an unpaired image-to-image
translation with a modified lossy CycleGAN [4] and a new enforced shared OC and VC
latent space representation. The lossy CycleGAN [4] by itself overfits due to the sparse
training data for the missing surface task (most OC frames have no or few missing surface
green pixels as opposed to the dense depth maps for which the lossy CycleGAN was
originally proposed) and can easily hallucinate structures which do not exist, as shown in
Fig. 1. Adding a shared latent space forces the network to preserve structures (and avoid
hallucination) when translating between domains. With added Gaussian noise, we also show
that the same framework with shared latent space representations can be used to generate
realistic one-to-many mappings from VC to OC and OC to OC for augmenting OC datasets
in computer-aided detection and classification pipelines.

In summary, the contributions of this paper are as follows:

. We are the first to present a model to visualize missing surface regions for
individual colonoscopy frames in realtime.

. We introduce shared OC and VC latent space representations to get more
consistent geometry for missing surface inference task.

. Using additional Gaussian noise input, the model can also generate realistic OC
images (one-to-many mapping) with different specular reflections, lighting and
texture for a given OC or VC frame.

The OC and VC datasets were acquired for 10 patients at Stony Brook University Hospital.
2000 images from 5 patients were used for training, while 800 images from 2 patients were
used for validation and 1200 images from 3 patients were used for testing. Even though VC
and OC are captured for the same patient, there is no ground truth since the shape of the
colon differs considerably between the two procedures. The borders in the OC images were
cropped to exclude the fisheye lens artifacts. 3D meshes were reconstructed from CT scans
in VC, using a pipeline similar to Nadeem and Kaufman [9].
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In order to create training data for per-frame missing surface visualization, the opacity of the
3D colon mesh is lowered such that the more opaque regions indicate the missed surfaces,
which are colored green in Fig. 1c. The per-frame missing surface data is generated through
Blender and example videos are providedl. Fig. 1 shows a typical colon anatomy along with
the haustral folds and the pictorial representation of a missed surface for a certain endoscope
camera position. To aid the model with the image-to-image domain translation task, we
added the missing surface information in green channel on top of the VC rendering of the
colon (Fig. 1d).

3. METHOD

The presented approach focuses on training two generator networks, G, and G, and two
discriminator networks. To train these networks, an objective function & composed of three
parts is used. The first part, #;,,,s focuses on learning a proper image-to-image translation.

& adv produces realistic images, and & ;5. helps the network utilize noise input for OC

image generation:

Z = gtrans"'gadv‘i'gnoise (1)

In order to learn the image-to-image translation, a cycle consistency loss, Z ., and an
extended cycle consistency 10ss, Z¢xcyc [4] are used. Z,x). allows for a one-to-many

translation by making comparisons in a common domain. The common domain between OC
and VC is VC, since OC has additional textures, lighting and specular reflections. The cycle
consistency and extended cycle consistency losses are as follows:

gcyc(Gaa Gy, A) = [Ey ~ p(A)”y - Ga(Gb(y))Hl 2)

gexcyc(Ga’ Gp, A) = [Ey ~ p(A)”Gb(Y) - Gb(Ga(Gb(J’)))lll 3)

where y~ p(A) is the data distribution of domain A and II-ll; represents the L1 norm.

To make the translation more robust, we add a shared latent space loss. Each generator, G4,
is composed of an encoder, Eny, and decoder, Dey.

The encoder brings the input image into latent space, while the decoder takes the latent
space into the image domain. We propose that OC and VC share the same latent space, as
the latent space stores geometric information which should be consistent between the two
domains. This is depicted in Fig. 2 and the following equation:

Zsrs(Enp,Gp, Eng, A) = Ey . ya)| Enp(y) = Ena(Gp))|l1, )

1Supplementary Video: https://youtu.be/x1-wwCiYeCO
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Lastly, we add an identity loss, as described by Zhu et al. [10], in order to ensure consistent
shading, when translating between the two domains. This is not done in the OC domain as it
restricts the network from using the noise input properly.

Lirans = ﬂc[gexcyc(Gocv Gyes Toc) + gcyc(Guca Goc, Iuc)]

+ /ISLS[gSLS(Enoc’ Goer Enye, 1) 5
+ Zs1.5(Enpe, Gpe, Enge, Loe)] ©)
+ ’{idengiden(lucl

In our experiments, we set A as 10, Agrgas 1, and A 4., as 1.

Adversarial losses have shown success in producing realistic images. Specifically, we add a
directional discriminator Dy, to differentiate between the different directions of translation
and an OC discriminator to restrain G, Gy{1,.)), as described by [4].

Z4iGq, Gy, D, A, B) = E, . ya)[log(D(y, Gy(y))] ©
+Ex ~ p(B)[lOg(1 - D(Ga(x)’ x)]

ZGan(G. D, A, B) = E, . pa)[log(D(y)] + Ex ~ p(pyllog(1 — D(G(x))] @
These two losses compose the adversarial losses:

3adu = gdir(Gow va Ddir7 Iocv IUC) + gGAN(Goca Dow Ioc’ Goc(GUc(Ioc))) (8)

We note that OC and VC share the same underlying geometric information, while OC

has additional color, texture, and specular reflections. In order to reflect this additional
information, we add a noise input to De,, to drive the one-to-many mapping between VC
and OC. &5 1s used to ensure a minimum distance between images with different noises,

otherwise the noise vector is ignored:
Znoise(De, N, L) = [Ezl,zz ~ p(N),1 ~ p(L)max(Ov ”De(l’ z1) — De(l, ZZ)” - a), )

L is a latent space domain, Nis a noise domain, and a is a variable to determine how much
the images should differ. We set a to 0.1 in our experiments and draw our noise input from a
normal distribution.

With L, We can take a latent space variable along with various samples from the noise
domain to produce OC images with different specular reflections, lighting, and texture. The
latent space can be produced from both OC and VC images. With the addition of the noise
input, we create a one-to-many mapping between VC-to-OC and OC-to-OC (Fig. 4).

We follow the same generator architecture described in CycleGAN [10] but instead of using
9 ResNet blocks, we use 10, 5 dedicated to encoder and the remaining 5 for decoder.
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4. RESULTS

In Fig. 3, we show our results on OC frames from Ma et al. [5]. Ma et al. can produce

3D meshes from given OC video segments and can visualize the missing surfaces as holes

in the reconstructed mesh. We highlight some holes in their reconstructed mesh that are
detected by our model. Our results are similar for neighboring frames, without the use of any
temporal connections for smoothing.

There is no ground truth for missed surfaces in OC data. To make a quantitative analysis,
we texture a VC colon to create ground truth missed surface data. This is done by taking
texture from OC frames, and mapping them on the VC colon mesh. Our method achieved
an average per-pixel accuracy score of 81% and a Dice coefficient of .667 for the textured
VC frames, despite the fact that surface area occluded by deep folds is difficult to predict in
a single frame without additional information such as colon topology. Per-pixel accuracy is
computed after converting the images into binary images based areas classified as missed:

Acc = M, (10)

where 7Pand TN are the number of true positive and true negative pixels and d'is the
number of pixels in the image. The textured VC results are shown in the last three rows of
Fig. 3. Complete videos are included in the supplementz.

We added a noise loss to our model to generate realistic OC images from given OC or VC
images. The generated images have the same underlying geometry as the input image but
vary in lighting, specular reflections and texture, as shown in Fig. 4. The first two rows show
VC to OC images. The last two rows show results for our OC to OC mapping. Just like the
OC input, the model generates different lighting, specular reflections and texture. Note that
the texture changes are more subtle than the changes in specular reflection and lighting. This
will be addressed in future work.

5. LIMITATIONS AND FUTURE WORK

The missed polyps and anomalies are mostly occluded by the haustral folds. Even though
our model in general works well for deep as well as shallow haustral folds, there are
instances where only a partial missed surface area is highlighted for deep folds. This is
understandable given the fact that we are not taking into account additional information,
such as the overall colon topology. In the future, we will incorporate this information by
inferring the colon centerline to improve the overall performance.

The current OC image generation creates a rather sparse distribution of images, especially
in the texture space. To improve this, we will split texture, specular reflection, and lighting
into three separate noise vectors which will provide finer control over these aspects and can
potentially force the model to generate a more diverse set of OC images.

2Supplementary Video: https://youtu.be/x1-wwCiYeCO
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
(a) Pictorial representation of a colon illustrating missed colon surface (green outline) when

..

the endoscope (black line) traverses from rectum (R) to cecum (C) and back. (b) A VC
rendering for a mesh reconstructed from a CT scan. (c) The missing surfaces (green regions)
can be rendered by casting rays from virtual camera positions and marking mesh faces

not directly intersecting the rays. (d) Missing colon surface visualization with a virtual
colonoscopy rendering is used for training the model. At the bottom are examples of
XDCycleGAN [4], proposed for scale-consistent depth map inference across colonoscopy
video frames, overfitting for missing surface inference task due to sparse training data, as
shown with the red bounding box and the predicted missed structures (bottom) when the
camera is occluded.

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 October 11.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

iduosnuepy Joyiny

Mathew et al.

Page 8

GOC

Fig. 2.
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A VC image, /,,, is brought into latent space with En,,, and brought to the OC domain
through De,.. The OC image, I, returns to latent space through Eny.. The latent vector
produced by En,.and En,, should be the same, since it stores the same geometric

information. This is enforced by Z g1 . To generate different OC images, De, takes noise

input, Z, to create the additional OC information. In order to ensure the network uses the

noise, we apply a loss, &, between OC images with different noise vectors.
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Fig. 3.

The top portion shows results on video sequences from Ma et al. [5]. We indicate the

Ground Truth ~ Qurs

missing regions predicted by our model on the meshes reconstructed by their pipeline using
blue and yellow arrows. The missing regions are visualized as holes on the reconstructed
meshes. The bottom portion shows our results on textured VC input along with the ground
truth.
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Fig. 4.

The first column is input for generating OC images with different lighting, specular
reflections, and textures. The first two rows show VC to OC translation. The last two rows
show our model results for OC to OC.
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