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NEUROCONSTRUCT

NeuroConstruct: 3D Reconstruction and
Visualization of Neurites in Optical Microscopy
Brain Images

Parmida Ghahremani, Saeed Boorboor, Pooya Mirhosseini, Chetan Gudisagar,
Mala Ananth, David Talmage, Lorna W. Role, and Arie E. Kaufman, Fellow, IEEE

Abstract—We introduce NeuroConstruct, a novel end-to-end application for the segmentation, registration, and visualization of brain
volumes imaged using wide-field microscopy. NeuroConstruct offers a Segmentation Toolbox with various annotation helper functions
that aid experts to effectively and precisely annotate micrometer resolution neurites. It also offers an automatic neurites segmentation
using convolutional neuronal networks (CNN) trained by the Toolbox annotations and somas segmentation using thresholding. To
visualize neurites in a given volume, NeuroConstruct offers a hybrid rendering by combining iso-surface rendering of high-confidence
classified neurites, along with real-time rendering of raw volume using a 2D transfer function for voxel classification score vs. voxel
intensity value. For a complete reconstruction of the 3D neurites, we introduce a Registration Toolbox that provides automatic
coarse-to-fine alignment of serially sectioned samples. The quantitative and qualitative analysis show that NeuroConstruct outperforms
the state-of-the-art in all design aspects. NeuroConstruct was developed as a collaboration between computer scientists and
neuroscientists, with an application to the study of cholinergic neurons, which are severely affected in Alzheimer’s disease.

Index Terms—Wide-field Microscopy, Neuron Morphology, Segmentation, Registration, Hybrid Volume Rendering, CNN

1 INTRODUCTION

DVANCES in optical microscopy (OM) have driven the
field of neuroanatomy and the acquisition of high-
resolution 3D images of the brain across multiple spatial
scales. Using new techniques and tools for reconstruction,
visualization, and analysis of these 3D images, neuroscien-
tists can now study in detail the structural and functional
connectivity underlying the brain. This technology is widely
used to diagnose diseases caused by neuron degeneration,
such as cholinergic neurons in Alzheimer’s disease [1].
There are various techniques for imaging brain sections,
such as electron (EM), confocal, two-photon, and light wide-
field microscopy (WEFM). Amongst neuroscientists, WEM is
preferred for experimental studies due to its large field-of-
view and fast image acquisition. Imaging a 40x slice of a
sample using confocal microscopy would take 15 hours,
but only 1.5 hours on WFM. Moreover, WEM automati-
cally moves the sample stage, resulting in sequential im-
age acquisition without manually readjusting the sample
orientation for every field-of-view. These advantages come
with a trade-off. Due to its optics, images acquired using
WEFM suffer from a degraded contrast between foreground
and background, low signal-to-noise ratio (SNR), and poor
axial resolution (Fig. 1). The microscope limited chamber
size and the adverse affect of increased light scattering in
thicker samples compel neuroscientists to physically slice
thin sections of specimens. Consequently, a brain study is
constrained to analyzing individual sections of a specimen.
To study and diagnose brain diseases, neuroscientists
explore the structure and function of the nervous system.
In brain studies using WFM images, due to its optics and
limited chamber size, neuroscientists face three challenges:
o Segmentation of neuronal structures: The primary informa-
tion neuroscientists expect from WEM brain volumes are
neuronal structures. The inherent WEM limitations, such
as out-of-focus blurring and the absence of distinctive set
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Fig. 1. WFM images are volumes obtained by focusing at different
depths of thinly sliced specimen [2]. (a) Volume rendering of unpro-
cessed WFM brain image. (b) Top-left: 2D cross-sectional view of the
volume in z-y plane. Top-right: 2D cross-section in y-z plane at the ver-
tical dashed line. Bottom: 2D cross-section in z-z plane at the horizontal
dashed line. The cross-sections show how out-of-focus light occludes
low-intensity features, making it difficult to analyze 3D structures.

of intensity values differentiating foreground (neurons)
from background (blurring artifacts and brain tissue),
leads to failure of current neuron tracing methods.

e Registration of neuronal structures: Following the segmenta-
tion, the reconstruction of the entire brain specimen as a
full volume enables a complete understanding of neuron
morphologies. However, registration of brain sections is
complicated, as the physical slicing results in non-rigid
deformations on captured images.

o Visualization of neuronal structures: The WFM limitations
make visualization parameters adjustment complex and
time-consuming, and directly applying rendering tech-
niques do not yield effective results. Moreover, segmenta-
tion and tracing techniques are limited to classifying fea-
tures captured within the designed algorithm or trained
model. Thus, a complimentary approach is required.

The primary goal of NeuroConstruct is reconstruction of
neuronal structures in WFM whole brain specimens that en-
ables the exploration of the nervous system. To achieve this
goal, we address all challenges and present NeuroConstruct,
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a novel end-to-end application to reconstruct neuronal
structures by performing tasks of segmenting, registering,
and visualizing neuronal structures in brain volumes.

To overcome the segmentation and visualization prob-
lem, NeuroConstruct offers a novel Segmentation Toolbox.
It provides simultaneous 2D cross-sectional views and 3D
volume rendering of image stacks along with real-time
user-drawn annotations. It also provides novel annotation
functions to help experts annotate neurons in 3D brain im-
ages efficiently. We further implemented automatic neuron
segmentation using a nested CNN that hires skip pathways
for connecting the encoder and decoder to compute fea-
ture maps and segment neurites using the extracted maps
combined with image processing techniques. CNNs have
achieved breakthrough performance in various segmenta-
tion tasks. Their primary issue is requiring a vast amount
of labeled data for training. Due to the high density of neu-
rons in brain images, their manual annotation in 3D image
stacks requires tremendous time and effort. We introduce a
workflow to speed up ground-truth generation.

The robustness of deep-learning models dramatically
depends on the accuracy and availability of sufficient train-
ing data. Biologist’s workflow is subjected to experimental
variations, and their data has immense biological variability.
Thus, the infeasibility of capturing sufficient training data
covering all neuronal variations can result in the model
failing to segment a neurite for which it was not trained.
Therefore, we devise a hybrid approach to visualize the ex-
tracted neurites along with possible unsegmented neurites.
Specifically, our model generates a per-voxel confidence
score of the classification as a neurite. In our hybrid visu-
alization, we first render the iso-surface of high-confidence
neurites using a user-adjusted confidence threshold, calling
it the structural representation mode. Next, we introduce a
2D transfer function (TF) of voxel confidence vs. raw data
voxel intensity, calling it the fusion mode. By interactively
manipulating the TF, experts visualize possible neurites in
the raw volume below the confidence threshold.

To overcome the registration challenge, NeuroConstruct
provides a Registration Toolbox for coarse-to-fine registra-
tion of depth-adjacent brain sections along with visual-
ization of brain sections to be registered and the aligned
sections. Using the brain overall structural anatomy, it first
estimates a global rigid-body transformation that coarsely
registers adjacent sections. Then, we introduce a novel
method that maximizes sparsely labeled neurites morpho-
logical continuity in a user-selected region-of-interest (ROI).
We estimate the trajectories of severed neurites at interfaces
between slices, using an ellipsoid as the approximate loca-
tion where these neurites continue in the adjacent section.

The contributions (to the best of our knowledge) of this
paper are as follows:

« First end-to-end application for reconstructing and visu-
alizing neurites in densely-structured WFM images.

« Novel 3D Segmentation Toolbox for streamlining segmen-
tation of neurites with features including brushing, eras-
ing, optical flow, snap, gamma correction, skeletonizing.

e Novel CNN model for segmenting the neurites in low-
resolution densely structured WFEM images.

¢ Novel algorithm for registering depth-adjacent brain sec-
tions using a coarse-to-fine sequential process.

o First hybrid visualization technique that combines seg-
mentation results with the raw input volume.

2 RELATED WORK AND BACKGROUND
2.1 Biological Background

The human brain has 80-100 billion neurons, and the
nervous system groups neurons into different neurite mor-
phology. Studies have shown that in mice brain, an axonal
arbor of a single cholinergic neuron, including its termi-
nal branches, is as long as 30cm [3]. Given the extensive
branching of cholinergic projections, conventional specimen
preparation and imaging techniques make it difficult to
analyze their full expanse and intricate features. Beyond the
genetic labeling novelty, a 3D reconstruction of the circuity
is required for understanding the cholinergic connectome.
2.2 Segmentation

Based on the motivation behind the scientific investi-
gation, visualizing neuronal structures is more significant
than rendering voxel intensity values of raw volumes. Our
previous work [2] presents a preprocessing method for
meaningful rendering of neurons. However, a more robust
solution (e.g., neuron segmentation) is required for extract-
ing neurites for visualization and registration purposes.

Neuron segmentation is a challenging task in neurobi-
ology, due to the low quality of images and high com-
plexity of neuron morphology. To tackle this challenge, a
number of manual or semi-automatic segmentation tools
have been developed, such as Neurolucida [4], V3D [5],
ManSegTool [6], SIGEN [7]. These tools rely on tedious
manual operations, making the segmentation of complex
neurites in large volumes nearly impossible.

Since neurons have a branching tree structure, many
methods have been hired for tracing dendritic branches and
axonal trees, such as optimal seed-points pathfinding [8],
[9], [10], model fitting [11], [12], fast marching [13], [14], and
distance-tree hierarchical pruning [15]. Most of these meth-
ods require an ideal manually- or automatically-generated
set of seeds. Manual marker placement is tedious, while
automatic seed generation is greatly affected by image low
quality, noisy patterns, and broken structures.

Recently, a few learning models have been developed to
automatically trace neurons in OM images. Chen et al. [16]
trained a self-learning method using user-provided neuron
reconstructions. Li et al. [17] hired 3D CNN s for segmenting
neurites, which suffer from relatively long computation.
Zhou et al. [18] developed an open-source toolbox, Deep-
Neuron, with a 2D CNN followed by 3D mapping. Many of
these methods have shown to perform well in segmenting
a single neuron on high-resolution images. However, they
cannot faithfully reconstruct complex neuron morphology
in images with medium to low quality.

There is also a vast amount of research on segmenting
neuronal membranes in EM images. Deep learning mod-
els have shown an outstanding performance in automatic
neurites segmentation [19], [20], [21]. However, due to the
limited availability of ground-truth data, they suffer from
over- and under-segmentation. Haehn et al. [22] developed
desktop applications for proofreading the automatic algo-
rithm segmentations. Unfortunately, these methods are un-
applicable to WFM images due to the differences in neuron
visual representation, details level, and images quality.

2.3 Registration and Alignment

Volume reconstruction for OM images of brain speci-
mens utilizes intensity- or feature-based methods. Intensity-
based approaches select a pair of representative images from
adjacent sub-volumes and compute a correlation measure
to estimate their relative spatial registration [23], [24], [25].
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These methods do not enhance registration accuracy at a
finer morphological scale. Also, imaging artifacts, uneven
contrast, and large datasets are potential bottlenecks for
these methods. Feature-based methods use specific struc-
tures knowledge, which needs preprocessing for producing
geometrical features as registration landmarks. Landmarks
registration methods [26], [27] are fast and scale up easily
with higher-order transformation models. Tsai et al. [28]
presented microscopy slices montage synthesis by utilizing
generic alignment cues from multiple fluorescence channels
without landmarks segmentation. Yigitsoy and Navab [29]
proposed tensor voting based structure propagation for
multi-modal medical images mosaicing.

Lee and Bajcsy [30] registered and reconstructed depth
adjacent sub-volumes acquired by a confocal microscope by
connecting the 3D trajectories of salient cylindrical struc-
tures at the sub-volume boundaries. This method is in-
effective on sparsely labeled samples due to the lack of
continuous structures to be segmented for the proposed
trajectory fusion. Dercksen et al. [31] proposed the align-
ment of filamentous structures by tracing the filaments and
matching the traced endpoints to find an optimal transform.
NeuronSticher [32] aligns neurite tips at stack boundaries
using triangulation. However, these tips are identified from
neuron-tracing reconstructions, relying on tip selection.

2.4 Visualization

Recently introduced tools for the reconstruction, visu-
alization, and analysis of complex neural connection maps
enable neuroscientists to gain insights into the underlying
brain morphology and function. We refer the reader to a
survey [33] of techniques for macro-, meso-, and micro-
scale connectivity visualization for connectomics. Volume
rendering has been developed for 3D reconstruction and
visualization of brain microscopy images. Mosaliganti et
al. [34] developed axial artifacts correction and 3D recon-
struction of cellular structures from OM images. Nakao et
al. [35] discussed interactive visualization and proposed
a TF design for two-photon microscopy volumes based
on feature spaces. Wan et al. [36] described an interactive
rendering tool for confocal microscopy data, combining the
rendering of multi-channel volume and polygon mesh data.

Beyer et al. [37] presented ConnectomeExplorer for inter-
active 3D visualization and query-guided visual analysis of
large volumetric EM datasets. Hadwiger et al. [38] designed
scalable multi-resolution virtual memory architecture for vi-
sualizing petascale volumes imaged as a continuous stream
of high-resolution EM images. Haehn et al. [39] developed
a scalable platform for visualizing registration parameters
and steps for fine-tuning the alignment computation, visual-
izing segmentation of 2D nano-scale images with overlayed
layers, and interactive visualization for proofreading EM
images. Neuroglancer [40] is a WebGL-based visualization
framework for volumetric EM data. These methods are
designed specifically for confocal, two-photon, or EM data.
When applied to WEM, they do not yield qualitatively ac-
curate neuron projections. Our previous work [2] discussed
the challenges related to WFM volume visualization and
introduced a workflow for its meaningful rendering.

3 NEUROCONSTRUCT OVERVIEW

NeuroConstruct is an end-to-end application for neuron
reconstruction and visualization for WEM images. It con-
sists of four main components: segmentation of neuronal
structures, proofreading reconstructed structures, registra-
tion of brain sections, and visualization of the reconstructed

Registration Toolbox

jmented
)

m*
—

Fig. 2. Overview of the application. After acquiring a whole-brain sec-
tion, experts can use NeuroConstruct to perform a thorough analy-
sis of the neuronal structures. They can follow the pipeline shown
in the figure. In the Registration Toolbox, given depth-adjacent whole
brain sections, NeuroConstruct automatically coarse-aligns the sec-
tions. Then, users have to select an ROI to start the fine-alignment pro-
cess. NeuroConstruct provides features for manual refinement of coarse
and fine registration and allows users to save the coarse-aligned brain
sections and finely registered region for further analysis. Next, users
can load the registered ROI in the Segmentation Toolbox to visualize
and segment the neuronal structures manually and automatically using
the manual annotation features and automatic segmentation methods.

neurons and raw data using hybrid volume rendering. We
present a fast and efficient ground-truth data generation
pipeline. NeuroConstruct provides an interactive Segmen-
tation Toolbox for automatically segmenting neurons and
proofreading the segmentations. It also renders the recon-
structed volume by combining the segmentation results
with the raw input volume. NeuroConstruct also presents
a Registration Toolbox for automatic coarse-to-fine registra-
tion of depth-adjacent 3D brain sections.

NeuroConstruct enables neuroscientists to study brain
sections of interest thoroughly. After the whole brain section
is acquired, the user can follow a 4-step pipeline (Fig. 2):
(1) automatically and manually coarse-aligning whole brain
sections using the Registration Toolbox, (2) automatically
and manually fine-aligning an ROI from the coarse-aligned
stacks using the Registration Toolbox, (3) visualizing the 3D
and 2D views of the fine-aligned stacks using the Segmen-
tation Toolbox (4) automatically and manually segmenting
the neuronal structures using the provided functions in
the Segmentation Toolbox. These result in a complete and
precise reconstruction and visualization of neuronal data.

Users can also choose to use each component, including
coarse-alignment, and fine-alignment in the Registration
Toolbox, and visualization, segmentation, and manual anno-
tation in the Segmentation Toolbox independently without
the need to go through the whole pipeline. The components
individual usability helps experts to perform the desired
analysis, including visualization, segmentation, and regis-
tration on any WEM of interest independently or go through
certain steps in the pipeline in the desired manner.

Both segmentation and registration can be done on the
whole brain sections. However, because of the high density
of neurons and the large size of the brain sections, it takes
a tremendous amount of time to segment the neurons in
a brain section, and neuroscientists might not infer useful
information by analyzing a large segmented brain section.
4 DATA PREPARATION
4.1 Biological Prep

To train and test our application, we used two types
of samples generated by our neuroscientists (Institutional
Animal Care and Use Committee approval# 1618). For seg-

mentation components, we used densely labeled samples
obtained from a transgenic mouse line where a fusion pro-
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tein of tau and a green fluorescent protein was under the
control of the ChAT promotor (ChAT-tauGFP mouse). This
allowed for labeling all cholinergic fibers and cell bodies
throughout all the slices within the sample. For registration
components, we used sparsely labeled samples obtained
from a knock-in mouse where cre-recombinase expressed
exclusively in cholinergic neurons (ChAT-IRES-Cre mice).
Mice were transcardially perfused with 4% PFA, and brain
tissue was harvested and sucrose equilibrated for cryosec-
tioning. Samples were serially sectioned at 20um thickness
and serially imaged on a WFM scanner (Olympus VS-120).
Imaging was conducted with a 40x objective with with z-
step of 1um. WEM images are volumes obtained by focusing
at different depths of a thinly sliced specimen, which means
that each section is an image stack of 2D slices.

4.2 Ground Truth Generation

To generate ground-truth of reconstructed neurites in
3D WFM images, we annotated neurites in several brain
section regions using automatic segmentation and manual
refinement. Due to a large number of neurites in brain sam-
ples, generating a ground-truth dataset is nearly impossible.
To solve this, we have developed a novel approach for
efficient neuron segmentation in image stacks. We used a
small set of 2D strips to train a 2D CNN model for gen-
erating preliminary neurite segmentations to be proofread
using the Segmentation Toolbox. This technique speeds up
the ground-truth generation process significantly. Our data
generation pipeline consists of 3 main steps:

Step 1 (2D-Strip Annotation). In WEM images, neurites in
2-y plane have a tree-shaped structure. In y-z/z-z planes,
neurites are bright blobs with light projections going out-
wards (Fig. 1). Due to neuron high density and image low
SNR, distinguishing the weak neurons from the background
in 2-y plane is hard and neuron annotation in this plane
is time-consuming. Therefore, we used z-z and y-z views
for neuron annotation. Two neuroscientists spent about 40
hours each to annotate one hundred of 2D strips of y-z/z-2
planes with approximately 30 neurons in each strip resulting
in a set of 3000 individual neuron representations.

Step 2 (Preliminary Segmentation). We used the anno-
tated strips to train a U-Net [41] based network consisting
of contracting and extracting paths. The contraction path
consists of five downsampling components with two 3x3
convolutions, each followed by a parameter rectified linear
unit (PReLU) and a 2x2 max pooling with stride 2. We used
dropout layers with a rate of 0.5 after the last two com-
ponents to reduce overfitting. The expansive path consists
of feature map upsampling followed by a 2x2 convolution,
merged with the correspondingly cropped feature map from
the contracting path, and two 3x3 convolutions, each fol-
lowed by a PReLU. Last, a pixel-wise softmax applied on
the resultant image followed by a Poisson loss function to
classify pixels into neurite or background.

Each 2D strip size is 25x512, which is the number of
adjacent stacks in z-direction (depth) by volume width or
length. We train the network with input images (512x512)
tiled with side by side strips with spacing. It makes the
segmentation process approximately 15 times faster than
feeding the network, a single strip per image. Our dataset
with 3000 neuron representations introduces to the network
a large variety of shape, size, and intensity of neurons. To
infuse more spatial neuronal information, we augmented
the strips by applying flip and zoom transformations. We
trained our network with 300 images, each containing 15
individual augmented 25x512 strips. Under-segmentation
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is a major concern, which is the artifact of lack of neurons
projection traveling in z-direction in -z and y-z planes.
Step 3 (Refinement). We generated a 3D neuronal segmenta-
tion dataset using the trained model in Step 2 and proofread
the segmented results to create an accurate ground-truth set
using the Segmentation Toolbox (explained in Sec. 6).

5 SEGMENTATION

The neuron segmentation process consists of two steps:
Neurite segmentation and soma segmentation. We segment
neurites using our designed model. For segmenting so-
mas, we use a thresholding technique combined with the
segmented neurites as a guide. This section describes the
neuron segmentation process, including the dataset and the
proposed model, and soma segmentation technique.
5.1 Data

We created a ground-truth dataset of WFM image stacks
for training and testing purposes. We cropped six regions
of size 25x512x512 randomly from the brain medial sep-
tum region with the size of 25x48000x33000 and anno-
tated using the pipeline explained in Sec. 4.2, to be used
as ground-truth. This dataset covers many variations in
neuron morphology due to the large size of the cropped
regions and the high density of neurons. The segmentation
model was trained, tested, and validated on 3, 2, and 1
image stacks, respectively. We also conducted a qualitative
analysis to evaluate the accuracy of reconstructed neurites,
performed by domain experts. Using our trained model,
we segmented neurons for eight image stacks (never before
seen by the model) with sizes varying between 25x512x512
and 21x1024x1024 randomly cropped from the medial sep-
tum and cortical sections of five different brains.

5.2 Proposed Network for Neurite Segmentation

We propose a nested encoder-decoder network with re-
designed skip pathways for connecting the encoder and
decoder sub-networks (similar to U-Net++ [42]) for a precise
semantic segmentation, and stacking U-structure (similar to
U2-Net [43]) for salient object detection. Fig. 3 shows an
overview of the network architecture. Our network is a two-
level nested U-structure consisting of 21 stages. Each stage
is configured with a ReSidual U-block (RSU) introduced by
[43]. In our network, the feature maps follow a path through
a dense stage block to fuse the output from the previous
stage layer of the same dense block with the correspond-
ing up-sampled output of the lower dense block. The re-
designed skip pathways enable more similar semantic level
feature maps between the encoder and decoder, making
the optimization problem easier, and the use of RSU blocks
enables a more efficient extraction and aggregation of intra-
stage multi-scale contextual features.

Architecture of the Network. Our network consists of 21
stages. Each stage is formed from an RSU block with a
specific height. We represent each stage as RSU}’, where
1 is the index of the down-sampling layer along the encoder
of the big U-structure, j is the index of the up-sampling
layer along the decoder of the big U-structure, and L is
the number of encoder layers in the U-Net-like structure
of the RSU block, except in the stage with L = 2. Since
the resolution of feature maps in the last encoding stage
is relatively low, further down-sampling results in the loss
of useful information. Therefore, in the last encoder stage
(L = 2), we only use dilated convolutions, having the same
resolution as its input feature maps. As shown in Fig. 3,
our network consists of a sub-network of encoder stages
which is the backbone of the network, a sub-network of
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Fig. 3. Architecture of the 3D CNN segmentation model. It consists of contracting and expansion paths. The network input is a batch of grayscale
images and its output is a probability map of the same size. Each output pixel represents the probability of the input pixel being part of a neurite.

decoder stages, skip pathways, and a saliency map fusion
module. The fusion module is responsible for generating
the probability map. The network generates five side out}laut

saliency probablhty maps SSZde, ng o 53 SSZde, SSZde
from stages RSUS? RSU3 , RSUy RSU5 RSU6 by

a 3x3 convolution layer up- samphng layer and a s1gm01d
function, and five top output saliency probablhty maps S

Stop, Stop, Stop, Smp from stages RSU RSU RSU7 ,

RSUL*, RSUY® by a 1x1 convolution layer and a sigmoid
functlon Then the final saliency map Syyse is generated
by concatenating all side and top output saliency maps,
followed by a 1x1 convolution layer and sigmoid function.
RSU Block. Each block consists of 3 main components:
(1) Input convolution layer, transforming the input feature
map z to an intermediate map F(z) for local feature extrac-
tion. (2) U-Net based encoder-decoder structure with input
of the intermediate feature map F(x) that extracts the multi-
scale contextual information U (F(z)), where U represents
the U-Net-like structure. The structure with larger height
results in richer local and global features. (3) Residual
connection fusing the output from the local features F(z)
and multi-scale features U(F(z)) using the formula: F(z)
+ U(F(z)). RSU blocks enables capturing of the fine details
that might be lost by direct up-sampling with large scales.
We define RSU blocks as G, = RSU-L(Cipn, M, Couz),
where Cj;,, Coyt, M are respectively the sizes of input chan-
nel, output channel, and RSU internal layers channel. L
is the number of layers in the encoder of the RSU block,
except for L = 2. As mentioned earlier, due to the low
resolution of feature maps in the last encoding stage, we
use dilated convolutions instead of down-sampling. So, in
this stage, the defined L do not denote the number of layers
in the encoding stage. We formulate the skip pathways as
follows: o
GL(RSUL,Y) j=0,
Gu(RSUL ™ P (RSUL ) >0,

where function UP(.) denotes an up-sampling layer, and
[ ] denotes the concatenation layer. Stages at level j = 0
receive one input from the previous layer. Stages at level
j > O receive j 4 1 inputs, where j input(s) are the output(s)
of the previous j stage(s) in the same pathway and the last
input is the up-sampled output from the lower pathway.
Training. The training regiment is as follows:
o Input Data. We trained the network with 512x512 images.
To add more variation in neuron morphology, we applied

RSU} =

elastic deformations (e.g., random rotation and scaling),
resulting in 540 images of size 512x512.
To generate a universal model for segmenting neuron
morphology that encompasses images captured from dif-
ferent sections of the brain using any imaging techniques,
we adjust the pixel intensities through Eq. 2:

Adjusted, = (—E =)y )

maxy, — miny,

where £ is the image index in the image stack, I, is the
intensity array of the kth image in the stack, min;, and
maxy, are respectively the minimum and maximum in-
tensities in the corresponding image, and 7 is the intensity
adjustment parameter. Using Eq. 2, we map the intensity
range to [0, 1], leading to a universal WFM model.

o Parameters. We trained the network using Adam optimizer
with a batch size of 4 for 2D training for 100 epochs. The
initial learning rate was set to 0.001. We define the loss
function as:

L= Z Wil + W lige + Weuseluse  (3)

where N = 5 0. and 07
output sahency map S%de “and the top output saliency
map Stopr Wiiqe and wy,, , denote their weights, and £, s,
is the final fusion output saliency map Syyse with its
corresponding weight w ... We use binary cross-entropy
loss to calculate loss of each output (¢), defined as:

= Zyzlog v+ (L—y)log(l —y)) (@

where M is the number of samples, y; is the label for g,
and g/ is the predicted label for sample i. It takes 186 min.
to train the network with defined parameters using the
training set of 540 images with a size of 512x512.

e Output Data. The model generates images of the same
size as the input (512x512). Each output pixel represents
the probability of the input pixel being part of a neurite,
showing the network confidentiality in classifying the
pixel as foreground (with close to zero for background
pixels). Weak neurites have lower probability than strong
ones. This probability map enables experts to study neu-
ron morphology in detail, as they can study weak and
strong neurites in one whole structure or independently.

5.3 Soma Detection

Soma is the spherical neuron part containing the nucleus.

Fig. 4a shows the neuron structure. As shown in Fig. 4b,

soma has higher contrast than neurites. This feature allows

denote the loss of the side
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Fig. 4. (a) Neuron structure. (b) Region cropped from the brain medial
septum. A soma is a bright green blob.
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Fig. 5. Segmentation Toolbox screenshot. The main menu has four
options: File, Analyze, Process, Help. File option provides loading im-
age stacks and/or annotations, and saving annotations (shown in red).
Analyze option includes the Skeletonize feature. Process options are
2D and 3D segmentation and registration of the image stacks. Help
menu has instructions on Toolbox use. (a) 2D cross-sectional view of
the volume in z-y plane. (b) 2D cross-sectional view in z-z plane. (c) 2D
cross-sectional view of the volume in y-z plane. (d) 3D volume of a WFM
image stack. (e) Area selection frame to specify an ROI to focus on
by adjusting corresponding sliders. (f) Brush options frame including
size, color, and eraser. (g) Display options frame containing gamma
value selection sliders for 2D and 3D views and annotation display
options. (h) Annotation functions frame, containing the helper functions
for neurite annotation, including snap and optical flow features.

us to segment somas using thresholding techniques without
the need to create a ground-truth dataset, training networks,
and spending time and resources. Using this feature, we
extract the somas from the image stacks by thresholding the
voxel intensities using multi-level otsu’s method [44]. We
consider two threshold levels (1, t2) to classify the image
into three classes; the background voxels are in the range 0
to t; — 1, the neurite voxels most probably are in the range t;
to to —1, and the soma voxel (which are the brightest voxels)
are in the range ¢ to 256. Some strong neurites might have
high contrast similar to somas resulting in misannotation.
We use the generated segmentation mask by the model
consisting of dendrites and axons to remove the segmented
neurites that are mistakenly segmented as somas.

6 SEGMENTATION TOOLBOX

NeuroConstruct provides a Segmentation Toolbox for
segmenting and visualizing neurons in small crops of WEM
image stacks, as our neuroscientists required a toolbox that
visualizes neurons in fine detail with the highest possible
resolution enabling them to study complex brain morphol-
ogy. As shown in Fig. 5 and the accompanying video,
the Toolbox offers three options and various features for
efficient and accurate neurite segmentation: (1) annotating
neurites from scratch, (2) loading an annotation file and
refining the annotations, (3) selecting NeuroConstruct Seg-
mentation method and proofreading the results.

6.1 Visualization of Image Stacks

The Toolbox provides four simultaneous views of the
image stacks to assist neuroscientists in effectively and
confidently mark neurites in the raw WEM volume: The first
three are 2D cross-sectional views in the z-y, z-z, and y-z
planes. The fourth view is rendering of the 3D volume and
iso-surface of annotated neurites. These four views provide
a comprehensive exploration of the image stacks and no
limitation in visualizing and annotating any structure.

6.2 Annotation Features

The user can annotate the neurites and somas with
two different colors, red and black. When the user draws
over any 2D cross-sectional slice, all views are updated
simultaneously to follow the user’s drawing. The Toolbox
allows the user to zoom in and out in all views. The user
can specify an ROI to focus on. In the 2D views, the Toolbox
bounds the selected ROI with a blue rectangle, and in the 3D
view, it only renders the specified ROL If a user prefers to
manually annotate an image stack from scratch or manually
refine an automatically segmented stack, the Toolbox offers
novel features to ease the manual annotation process. We
describe below some of these functions:

Optical Flow. This feature helps the user to annotate neu-
rites more efficiently. As shown in Fig. 1, a neurite in 2-z
and y-z planes is a circular bright region. When the user
clicks on a neurite, the Toolbox finds the smallest 2D region
surrounding the selected neurite and applies the Pyramidal
Lucas-Kanade optical flow algorithm [45]. Then, it finds
the most similar regions (based on pixels intensities) to the
corresponding neurite in the following image slices. Roberts
et al. [46] hired a similar approach for estimating optimal
volumetric pathway through the image stack connecting
the computed 2D segmentations using dense optical flow.
Their approach requires 2D segmentation on the first and
last image slices to compute the minimum distance from
pixels in these slices, while we compute the neuron path
using the user-specified segmentation on the first slice and
find the most similar regions in the following slices.

Snap. A neurite might be visible in several image slices
with different levels of contrast and brightness. However, a
pixel is considered a neurite if it is unblurry and has higher
contrast than pixels in adjacent slices. In some cases, due
to the low contrast between neurites and the background
and image blurriness, it is challenging to select the correct
slices containing the neurite. The Toolbox helps the user
to find those slices. The user specifies the ROI containing
the corresponding neurite in x-y plane and clicks on the
neurite in one of the slices. The Toolbox searches for the
sharpest point with the highest contrast in the specified
slices and selects the 2D region with the highest intensity
in a virtual cylinder perpendicular to the view plane from
the corresponding point with a brush size diameter.

3D Skeleton. The Toolbox employs user’s annotation to
generate a 3D skeleton (cf. [47]). The algorithm defines an
octree over the annotations and examines 3x3x3 neighbor-
hood of voxels. It iteratively proceeds until only strips of
voxels are left. This method outperformed various methods
we tested for 3D skeleton generation, as they failed to create
the skeleton of weak neurons with thin regions.

Gamma Correction. The user can change the contrast of 2D
views using the corresponding slider. It transforms linear
color mapping to a non-linear space and adjusts the contrast
using the user-specified gamma values.
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Fig. 6. Neuronal data hybrid visualization. Top row shows the cortical re-
gion and bottom row shows the medial septum region. Green represents
iso-surface rendering of the automatic segmentation result, and blue
represents direct volume rendering of raw data using 2D TF mapping.
For both datasets: (a) Structural mode: iso-surface rendering of the
high-confidence voxels. (b)-(c) Hybrid Fusion mode: the iso-surfaces in
(a) combined with direct volume rendering of the raw data using two
different ranges selected on the 2D TF mappings shown on the left.

TE. The user can change the contrast and color of the ren-
dered volume using a slider. To adjust the rendered volume
contrast, the Toolbox uses the following novel TF:
¢ v = 0: Defining # bins with equal length for the TF, where
n is the number of bins.
¢ 0 < v < 1: Breaking the TF into bins with length defined
as a; = 27xa;_1, where a; is the ith bin, and > " ,a; = 1.
We empirically found that n = 20 works well on our data.
We provided our experts with our TF and gamma correction
methods applied to the same image stacks. After a thorough
comparison between these techniques, they remarked that
our TF outperforms gamma correction in terms of neurite
visual representation in blurry images with low contrast.

6.3 Visualization of Automatic Segmentation

The primary information neuroscientists expect to vi-
sualize in brain WFM volumes are neuronal structures —
namely, tubular-shaped neurites and blob-like somas. The
inherent challenges of blurred WEM data and the absence
of distinctive set of voxel intensity values that can differen-
tiate foreground (neuronal data) from background (blurring
artifacts and brain tissue) makes the task of adjusting visu-
alization parameters or directly applying surface rendering
techniques to the raw volume tedious and disfavored by
neuroscientists. Finding optimal visualization parameters
for rendering both high- and low-intensity neurites while
suppressing similar intensity-valued blurring artifacts be-
comes more complicated in densely populated samples.
Thus, we use the output of our segmentation pipeline as
an integral component for visualizing neurons.

The robustness of deep learning models greatly depends
on the accuracy and availability of sufficient ground-truth
training data. For training, we attempted to accurately an-
notate neurites of varying intensity, trajectory, morphology,
and biological labeling. However, using real data, there is
large biological diversity and within biologists” workflow
there are many experimental variations from data prepa-
ration methods to imaging modality input parameters and
conditions. Thus, in a practical scenario, preparing a training
set covering all variations is an ambitious goal to achieve.

In NeuroConstruct, we combine the ability to use visual-
ization methods to render essential features within a dataset
and the binary mask from our segmentation model as two
complimentary inputs to what we term as, hybrid visualiza-
tion. Using hybrid visualization, users can recover missing

7

neurites by exploring the correlation between the raw vol-
ume scalar values and the segmentation confidence score for
each voxel, determined by our model, which we represent
as a 2D TF. Given a 3D image stack, NeuroConstruct first
segments each image stack, and then combines them to
create the final 3D segmentation mask corresponding to
the output. The computed segmentation mask is a volume,
where each voxel represents a confidence score between 0
and 1, where 0 is background and 1 represents a neurite
with full confidence. Using this score, we provide two
visualization modes, structural and fusion (see Fig. 6 and
Fig. S1 in Supplementary Material). The structural mode
renders the segmentation mask as an iso-surface. Using
a slider, users interactively choose a minimum confidence
score as the minimum threshold value for reconstructing an
iso-surface using marching cubes.

To visualize possible neurite structures in the raw vol-
ume with scores below the threshold confidence, we offer
the hybrid fusion mode that simultaneously renders iso-
surfaces extracted in the structural mode along with selected
voxels from raw volume, using a 2D TF that represents the
raw volume scalar intensity vs. segmentation confidence
score. Users can draw a rectangular region on the 2D TF
for direct volume rendering (DVR) of the selected voxels,
as in Fig. 6, and select points on the 2D TF to render iso-
surface of the selected voxels. By observing domain experts,
we determined to use structural rendering along with DVR
with the 2D TF as a default preset, as it is more effective
to select an entire voxel range. One limitation of such a
correlation is that we assume that the model outputs a level
of reasonable confidence for neuron voxels, compared to
background and noise voxels. A future work to overcome
this limitation can be model re-training using a refined set
of annotations generated by this hybrid visualization mode.

7 REGISTRATION

In an ideal scenario, undisturbed imaging of biological
samples would allow for the best reconstruction of cholin-
ergic axonal projections. However, current experimental
methods for imaging using a WFM require the physical
sectioning of brain specimens. To this end, NeuroConstruct
presents a coarse-to-fine pipeline for the registration and
alignment of neuronal fibers across the sliced sections.

7.1 Coarse Registration

In neuroscientists” workflow, physically sectioned brain
slices specimen are placed on a glass-slide at arbitrary po-
sitions and orientations and imaged separately using WFM.
Therefore, an intuitive initial step is to coarsely register the
individual brain section volumes. For coarsely registering
the image stacks, we tried several methods (e.g., intensity-
based [23], [24], [25]) that perform well in registering slices
at a coarse level, but they do not align neurites within slices
at a finer, morphological scale. We also attempted to adapt
the montage/mosaic stitching alignment (primarily used
to align microscopy tiles in x-y direction) [28], [29]. Our
method draws insights from the tensor voting method [29].

We take as input a series of depth-adjacent sections
and use the tissue structure to estimate a global rigid-
body transformation between adjacent sections. The series
of 3D sections have to be transformed into a single reference
coordinate system. So, as an initialization step, users need to
specify a reference brain section. Using the referenced sec-
tion, we determine the slice representing the tissue largest
spatial extents and consider that slice image space as the
reference coordinate system for subsequent transformations.
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Fig. 7. Steps of our neurite alignment (fine registration) in two depth-adjacent ROI sections. (a) We determine a subset of neurites whose trajectory
suggests continuity beyond the interface of its section. We then estimate a direction of its propagated trajectory into the depth-adjacent section and
define an ellipsoidal region around its end-point, representing a 3D space of possible continuing locations, shown in the top of (b). Then, we use
ICP on the ellipsoids point cloud representation to estimate a rigid-body transformation, as shown in the bottom of (b). Finally, we present the user
with an interface to verify the results and correct for any misaligned neurites (c).

For estimating rigid transformations between sections,
the interfacing z-slices from each depth-adjacent section pair
are used as representatives for the coarse registration. Some
approaches suggest using slices with the highest contrast
within the 3D sections [30], [48], as the end slices usually
have low signal values. However, since NeuroConstruct
registers several sections, we expect changes in the brain
outer boundary across the sequence. Thus, to avoid cascad-
ing errors, we choose interfacing slices with the smallest
variation in the outer boundary between adjacent sections.

Finally, a rigid-body transformation is estimated using
Mattes mutual information (MI) [49] with a regular-step gra-
dient descent optimizer. MI for intensity-based registration
uses joint probability distribution of pixel samples between
images and define a mapping for a set of pixels based
on value similarity by reducing the entropy between the
distributions, signaling the images are likely better aligned.
This method is well-suited for our coarse alignment as
the brain tissue outer-boundary or internal regions vary in
perimeter across the anterior to posterior, and geometry-
based registration will not yield effective results. In apply-
ing MI, we adopted a multi-resolution approach to avoid
reaching a local minimum due to noise and tiling artifacts
in a sparsely labeled sample. We doubled the step size for
each subsequent higher resolution to avoid the optimizer
from focusing on progressively smaller regions.

7.2 Fine Alignment

Following coarse registration, we utilize the coherency
between neurites geometric structures across depth-adjacent
sections. Our fine alignment method has 3 major steps: (1)
ROI selection, (2) automatic neurite trajectory propagation,
and (3) automatic trajectory alignment. The main idea is to
adopt a feature-based registration to maximize the neurites
morphological continuity in neighboring brain sections.
ROI Selection. A critical limitation of micrometer resolution
microscopy images of brain samples is its large spatial
extent. For a computationally faster and memory-efficient
implementation of the fine alignment method, we ask the
user to mark an ROL
Neurite Trajectory Propagation. Common methods for reg-
istering microscopic images introduce fiduciary landmarks
during image acquisition, which are then registered to re-
construct the complete volume. However, this adds com-
plexity to neuroscientists” workflow. In our fine alignment
approach, we have developed a novel method that uses
linearly extrapolated neurites trajectories to infer their cor-
responding continuity, beyond the section slicing interface.
This correspondence between neurites is used to estimate

the necessary transformation parameters that spatially align
depth-adjacent sections. To formally define our approach:
o Let Q; and Q3 be two adjacent sections, where the z-slices
order from {25 to () are in anterior to posterior direction.
o Let QP°°" and Q4" be the z-slices corresponding to the
posterior sub-section of €2; and the anterior sub-section
of ()9, respectively. In our implementation, the extracted
thickness of 27°°" and Q4" are set to be 5um.
o Let Q, be the region defined by Q%" U Q4"*. This is
essentially the interfacing region Q; and Q.
Broadly, we determine a subset of neurites from 2; and
Q3 whose trajectory within the section suggests continuity
beyond the section interface and establish a correspondence
between the candidates with a similar trajectory in the
depth-adjacent sections. Using this information, we solve
the alignment problem in €),, by maximizing overlaps be-
tween linearly extrapolated trajectories of the neurites. Fig. 7
provides an illustration of our fine alignment algorithm.
First, for each two serial sections, we locate neurites
with trajectories propagating into the other section and
estimate a propagated trajectory direction. We first use the
segmentation mask volume (see Sec. 5) to find a 3D line seg-
ment that passes through the connected-component voxels
of each extracted propagating neurite from Q" or Qg"*.
Next, using the line segments, we determine propagation
direction as a vector v; ;, for each propagating neurite. Since
the goal is to extrapolate the propagating trajectory, we did
not consider the entire neurite in the section (£2; or {25) but
rather limited to the z-thickness defined for 22°*" and Qg"t.
Finally, each neurite trajectory propagation in the over-
lapping 3D space {2, is defined by an ellipsoidal region
around its end-point close to the section interfacing slice,
using the estimated vector v; ; as the major axis (see Fig.
7). The choice of an ellipsoid to represent the trajectory
propagation is to accommodate possible neurite signal-
loss and non-rigid deformation from physically slicing the
brain. Because of hydration and dehydration of sample
preparation, in addition to the uniform brain growing and
shrinking, tissue distortion may occur. Therefore, we center
the ellipsoid at the end-point of a propagating neurite to
maximize the search space for estimating a transformation
that aligns depth-adjacent sections. The ellipsoid major axis
is aligned parallel to the estimated trajectory propagation
vector v; j, and the other two axes perpendicular to it. In our
implementation, the ellipsoid major axis length is twice the
thickness defined for Q7 and Q4" and the other two axes
length equals to the neurite thickness. This length ensures
that the ellipsoid propagates to the depth-adjacent section.
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Trajectory Alignment. After ellipsoid generation, the final
step is to maximize propagating neurites alignment. We
translate this problem into a simpler point-cloud registra-
tion, where each point on the ellipsoid surface represents
a potential location for the continued neurite trajectory. By
discretizing the ellipsoidal regions as 3D point clouds and
estimating a rigid-body transformation using ICP, we apply
the transformation to the entire section and concatenate with
its depth-adjacent section to create an aligned sub-volume.
Each potential correspondence measure w in the ICP es-
timation is assigned using Vo, ., = W1 Dy p +w2|01 1 — 2.1,
where m and n are the j** indices of the two sets trajectory
vector, D is the Euclidean distance between the two vectors
start points, and w; o are weights. w; ; is determined as the
vector projection angle v; ; on the x-y plane (top in Fig. 7b).
To establish a potential one-to-one correspondence be-
tween the trajectories, we apply a weighted bipartite match-
ing approach using the Hungarian algorithm [50] that mini-
mizes the cost across all of the potential assignments. Using
these, a transformation is measured based on Arun et al.’s
method [26] that maps the propagated trajectories from one
section to the other using pSfi)M g = Rp'” + T, where

moving )
1 € 1,...,N points, pgfi)md is the i*" fixed point, pfﬁomng is
the it" moving point, R is a 3x3 rotation matrix, and T is a
3x1 translation vector. In our implementation, we consider
2, to be the fixed section if its position is anterior to the
reference slice (determined in the coarse registration step,
Sec. 7.1) and the moving section otherwise.

8 REGISTRATION TOOLBOX

NeuroConstruct offers a Registration Toolbox which pro-
vides coarse and fine alignment registration and visualiza-
tion of brain sections. We conducted a study to find the
proper way of visualizing large image stacks with GBs of
data. We provided our neuroscientists with two visualiza-
tion options: (1) visualization of the image stacks maximum
intensity projection (MIP), and (2) visualization of the raw
image stack combined with a slider for moving between the
slices. Our experts preferred MIP visualization as they could
verify the registration result faster and easier.

The Registration Toolbox offers sections coarse align-
ment and user-selected ROI fine alignment and visualizes
the base, moving, and transformed moving image in the
corresponding viewer (see Fig. 8). The user can then man-
ually refine the registration parameters using the provided
translation and rotation options. Rendering image stack MIP
speeds up the manual alignment process as the transforma-
tion is only applied on the MIP images and enables an inter-
active user experience. For accelerating the computation, the
final registration parameters are applied on the whole image
stack, in two stages: (1) before starting fine alignment, and
(2) while saving the user-requested registered images.

9 IMPLEMENTATION

The NeuroConstruct consists of several components,
Segmentation and Registration Toolbox, segmentation train-
ing models, coarse and fine alignment registration, and
structural and hybrid visualization modes. The Segmen-
tation and Registration Toolbox, fine alignment algorithm,
and the structural and hybrid visualization modes were
implemented using python, VIK [51] and Qt libraries. The
coarse alignment module was implemented in C++ using
ITK [52] and VTK [51]. The CNN model was implemented
using python and Keras and trained and tested on a desktop
with an NVIDIA Quadro RTX 6000 GPU, which was also
used for all NeuroConstruct implementations.

Fine Alignment

Moving Image Viewer

Faeiien

Fig. 8. Screenshot of the Registration Toolbox. (a) Base image viewer.
(b) Moving image viewer. (c) Coarse alignment frame, showing the
result. Users can adjust image contrast using provided sliders and refine
the rotation or translation parameters to reach the desired registration.
Using the provided buttons at the bottom, users can hide/show the base,
moving, and transformed moving image to verify the registration result
more precisely. (d) Fine alignment frame, showing the result on the user-
selected ROI. It provides the same features as the coarse-alignment
frame, including manual alignment parameters and display options.

10 EVALUATIONS AND RESULTS
10.1 NeuroConstruct Evaluation

We were in close contact with our neuroscientists to
design our system, add features and refine functionalities
based on their needs. These domain experts (co-authors)
thoroughly evaluated the system using various scenarios.
As the first use case, they followed the 4-step pipeline,
starting by coarse-aligning, fine-aligning the brain sections
through the Registration Toolbox, visualizing, and auto-
matically and manually segmenting the neurons through
the Segmentation Toolbox to reconstruct the whole WEM
brain sections acquired from different regions of the brain.
In other use cases, they used each component individu-
ally. After a careful review of NeuroConstruct, our neu-
roscientists found it “exclusive” and “specialized”. They
said “the framework provides an end-to-end solution for
segmentation, registration, and visualization of serially col-
lected WFM images. Upon image acquisition, data can be
registered using the Registration Toolbox, and then each
individual image can be segmented for a clean represen-
tation of the signal to the background. At each of these
steps, the critical component is an automated solution that
can be entirely modified by user input. These user-updated
segmentations on the registered volumes essentially enable
tracing individual projections across a volume, facilitating
the study of cholinergic neurons affected by Alzheimer’s
disease.” They also evaluated each component and features
of the toolboxes separately (see Sec. 10.2 and 10.3).

10.2 Segmentation Toolbox Evaluation

Our neuroscientists used the Segmentation Toolbox to
annotate and trace projections within WFM sections. They
evaluated the Toolbox, including the hybrid volume render-
ing and annotation features, and compared the Toolbox with
available tools. They believe that segmentation and volume
rendering offer incomparable tools for neurite segmentation
and subsequent visualization. Several features are unique to
our Toolbox that our experts have not found in other pro-
grams they have used (e.g., Image] [53], FluoRender [36]).
Hybrid Volume Rendering Evaluation. Using the hybrid
volume rendering, users visualize and have ultimate con-
trol over the auto-segmentation result. The Toolbox then
provides a user-friendly interface for identifying signals
from the background and improving the segmentation. Our
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experts believe that “both of these features allow users to
visualize a full resolution image, which is critical during
segmentation.” Overall, they found this visualization ideal,
as it overlaid the segmentation on the raw data, allowing
users to adjust and visualize the segmentation based on
what they desire to visualize in the raw. They also remarked
“this allowed for segmenting different neuron types, ini-
tially strongest, and the option to include weaker ones.”
Annotation Features Evaluation. The Toolbox offers an
option to control the contrast of all views. Our experts
found this feature helpful, saying that “the gamma slider
allowed us to incorporate all fibers weak and strong, or just
to annotate and understand morphological or trajectory in
the strongest fibers.” The sliders allow the user to choose
an ROI to focus on and visualize it across X, Y, and Z
individually. To improve upon or erode the annotation,
the Toolbox provides a simple, user-friendly solution, a
paintbrush-like feature. Our experts said “this intuitive
tool makes it exceptionally easy for users to improve the
segmentation on their own in fluid strokes, following a
projection along its path. The ability to draw, trace, and
erase on a slice by slice and pixel by pixel basis provided
us complete control over how refined or simple we wanted
the annotations to be, and the brush size option allows us to
carefully follow and mimic the projection morphology and
path.” Our experts expressed their interest in snap by saying
that “the toolbox offers a smart-adjustment to the simple
paintbrush concept by updating the view as you draw to
the point where the signal is sharpest for every click. This is
especially helpful as projection paths in real data are hardly
ever straight or within the same optical section but instead
come in and out of view, making tracing them challenging!”
Using the updated segmentation, a skeletonized image can
be generated and overlaid onto the 3D rendering for simpli-
fied, clean visualization. Our experts remarked that “while
the annotation feature allowed for visualization of neuron
morphology, the skeleton view allowed for a simplified way
to visualize neurite trajectory. These two features worked in
complement to enhance 3D visualization.”
10.3 Registration Toolbox Evaluation

Our experts registered and visualized brain sections
using the Registration Toolbox and believe that it provides
a unique solution for serial rendering of WFM images. The
base and moving images are loaded in two separate frames
for initial coarse alignment. Our experts said: “the loaded
images offer a good deal of flexibility and can be loaded
as a maximum intensity projection of a 3D image (image
contains X, Y, and Z information) or a sub-stack of the XYZ
image.” The Toolbox then computes coarse alignment and
offers to move and rotate the image and visualize the base
and moving image individually. Our experts believe that
“this allows users control over the ultimate coarse alignment
solution.” Upon completion of coarse alignment, users can
save it and, ultimately, the new volume (two registered
images). This is in our experts’ interest as it provides an es-
sential intermediate point at which further registration can
be done with the series next image, or the new volume can
be separately inspected. At this point, images fine alignment
can be conducted upon selection of a small relevant ROL
Similar to coarse alignment, the fine-alignment is visualized
within the Toolbox and can be moved/rotated for ultimate
control over the fine-alignment solution. The final aligned
volume (coarse + fine) can be saved for further analysis.

Overall, our experts found a few features of this Toolbox
as a unique solution for neuroscientists. “First, the toolbox
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TABLE 1
A comparative analysis of our model against state-of-the-art models

[ Method | Dice | 10U [ Accuracy [ Precision | Recall [ Fl-score |
U?-Net 8648 £2.21 | 76.24 £3.32 | 98.92 +£0.57 | 82.02+3.05 | 91.54 +2.65 | 86.48 +2.21
U-Net3+ | 86.36 £2.61 | 76.08 £3.91 | 98.93 £ 0.56 | 82.68 & 2.80 | 90.43 £3.13 [ 86.36 £ 2.61
U-Net3+ [ 86.81 £2.29 | 76.76 =3.46 [ 98.94 £ 0.56 | 81.55 +2.92 | 92.83 £ 1.85 | 86.81 £ 2.29
Ours 87.26 £2.09 | 77.46 £3.19 | 98.97 £ 0.55 | 82.03 £2.71 | 93.25 £ 1.62 | 87.26 £ 2.09

@ R 3ol

Fig. 9. The neuron segmentation of a densely structured WFM image
of a brain medial septum section. Green, yellow, and blue colors rep-
resent reconstructed neurites, reconstructed somas, and ground-truth
segmentation, respectively. (a) Raw image. (b) Reconstructed neurons
overlaid on the raw image. (c) Reconstructed neurites and the ground-
truth segmentation overlaid on the raw image.

completes segmentation of the images as a step before regis-
tration, which provides a complementary set of information
to use in visualization and analysis. Second, the down-
sampling conducted by the toolbox is a temporary solution
for ease of working with large images. Upon saving, the
solutions for both coarse- and fine-alignment are applied
to each Z step within the stack, thereby providing the end
volume with full image resolution. Finally, the registration
toolbox offers a great deal of flexibility to incorporate the
user’s preference into the registration with the use of arrow
toggles to nudge the image as well as toggles to rotate the
image. These components of the registration toolbox make
it a powerful tool for registration of serial WFM images.”
10.4 Segmentation Method Evaluation

Quantitative Analysis. Evaluation Metrics. We evaluated the
trained model using several metrics. We define TP as pixels
correctly segmented as neurite, TN as pixels correctly seg-
mented as background, FP as background pixel segmented
as neurite, and FN as neurite pixels segmented as back-
ground. We then compute precision: %, recall: =L

~ . recallXprecision . (TP+TN)
f1 score: 2x recall+precision’ accuracy- (TP+TN+FP+FN)’

(TP) e (2TP)
TP rPrrNy and Dice: rprp ey

Testing Set. Our testing set contains 50 images of size
512x512, cropped from the medial septum, and manually
segmented using the pipeline in Sec. 4. The manual segmen-
tations are binary masks, where 0 represents background
and 1 represents neurite. The network output is a probabil-
ity map within the [0,1] range, where neurite pixels have a
higher probability than background pixels.

Speed. The trained model segments a 512x512 image in 0.28
seconds. Running time scales up linearly by the volume
depth and every 512 increment in width and length, as each
input 3D image stack is broken into 2D image stacks of size
512x512 with step size of 1, 512, and 512 over z-,y-, and
z-axis, respectively.

Comparison. We applied several automatic neuron tracing
techniques on our testing set, including App2 [15], Smart
Tracing [16], Rivulet [54], TReMAP [55], and NueroGPS-Tree
[10], but they failed at reconstructing neuronal structures in
the absence of a soma in densely-structured low-resolution
images. We compared the performance of our model against
three state-of-the-art models including U2-Net [43], U-
Net++ [42], U-Net3+ [56], summarized in Table 1. You can
find precision-recall curve for these models in Fig. S2 in
Supplementary Material. As seen, our model achieves the
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best overall performance in segmenting neurites. As shown
in Fig. 9, our model detects strong and weak neurites and
only misses extremely weak ones.
We also evaluated our model against these three models
on various tasks, including nuclei segmentation and liver-
tumor segmentation with larger datasets (consisting of thou-
sands of images). According to all metrics, our network
had better performance and more robustness on various
segmentation tasks, compared to other networks.
Expert Analysis. Our model reconstructs the complete
neuronal structure including weak neurites blended into
the background due to the image low contrast in densely
structured image stacks. Our experts were provided with
crops from different brain regions to evaluate how our
segmentation improved neuron visualization as compared
to raw data. Despite the brain region, our experts reported
that there was significant recovery of fibers in the images
as compared to raw data. Their typical workflow would
involve creating MIP of images and visualizing them in
Image] [53]. Using Image], despite increasing gamma value
in the raw data, they were unable to visualize some of the
fibers that were appropriately segmented by our model.
However, for evaluating the segmentation results generated
by our model, they created MIPs of both the raw and
segmented data and overlaid the images in Image]. Our
experts were excited to see the dramatic improvement in
recovery between raw and segmented images that could
now be visualized using their typical workflow (Image]).
See Fig. S3 in Supplementary Material for 2 examples.
10.5 Registration Method Evaluation

NeuroConstruct was used to register six individual serial
sections from the mouse brain specimen (see Sec. 4). Each
section was 16bit, 21937x35616 pixels x47 TIFF images,
totaling approximately 55GBs per stack. The coarse regis-
tration took 25 minutes. We cropped a 5000x5000 ROI of
size 6GB. The automatic fine alignment process for six ROI
stacks took 33 minutes. In total, coarse-to-fine registration
of a 300 um sample took 68 minutes. We also tested a use-
case for re-registration after correcting a misaligned stack,
taking an additional 25 minutes. In Fig. 54 in Supplementary
Material, we show two focused neurons, studied by our
experts for evaluation. Following are their discussions:
Utility of NeuroConstruct registration in domain science.
Advances in genetic labeling have allowed us to selectively
label specific neuronal subsets. The next frontier is to follow
these neurons through 3D to allow complete reconstruction
of single neurons and their entire arbors (dendritic branches
(shown in Fig. 4)). Without a proper reconstruction method,
quantitative analysis of WEM data typically does not make
claims about individual neurons and their trajectories, but
instead about neuron populations. Normal workflow in-
cludes subsampling stacks across a region to get a density
of labeled neurons and processes from anterior to posterior.
These processes would not come from a single soma, but
instead gives a population estimate of labeled fibers. Using
NeuroConstruct, we register serial slices, reconstruct and
isolate single neurons and their labeled arbors. Our registra-
tion now allows for a number of applications and analyses
that were previously impossible with WEM data.
Quantitative analysis of arbor length. Prior to registration,
we were only able to visualize somas and extensions from
single stacks and unable to determine the arbors morphol-
ogy through the anterior to posterior axis. This allows us
to visualize the single neuron arbors complexity through
serial sections, and compute extensions length. Registration
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helped to recover 5255um of the processes length from the
selected sub-ROI in Fig. 54 in Supplementary Material.
Quantitative analysis of arbor branch points. Using the
information gathered from the registered dataset, another
analysis of interest is the number and location of branch
points from the soma. The morphological diversity of these
branches could tune different aspects of cell communication.
Prior to registration, analysis on a single stack would have
shown one or two branches. Following NeuroConstruct
reconstruction process, it is evident that there are 24 branch
nodes visible. The analysis determines the distance between
branch points and the soma, and arbor complexity.
Analysis of fiber integrity. A key feature in neuroanatomy
study is the health and dramatic deterioration and fragmen-
tation of cholinergic fibers in specific brain regions during
brain diseases, such as Alzheimer’s. The fibers integrity is
critical to maintain neural connectivity and function. Using
the registered dataset and the ability to visualize weak fibers
from the segmentation, experts now visualize alterations
to fiber morphology including swelling and fragmentation.
For example, we determine how far from the soma the
fragmentation began in affected neuron processes, and how
much of the process remains intact and healthy.

11 CONCLUSION AND FUTURE WORK

We presented NeuroConstruct, a novel end-to-end appli-
cation for the segmentation, registration, and visualization
of brain volumes, imaged using WFM. NeuroConstruct
combines deep learning 3D segmentation methods, a novel
algorithm for coarse-to-fine registration of brain sections,
and a hybrid approach to visualize recovered neurites. To
generate a ground-truth set to train and test the model, we
developed the Segmentation Toolbox, facilitating annotation
of WEM image stacks. We evaluated NeuroConstruct quan-
titatively and qualitatively, along with experts” analysis. Our
results show that NeuroConstruct outperforms the state-of-
the-art in all aspects of the design, including segmentation,
registration, and visualization of neurons in WFM images.

Our application is designed with the goal of helping
neuroscientists to study cholinergic neurons in WEM im-
ages and perform well in reconstruction and visualization
of WEM neurons. We tested our segmentation model on
confocal and two-photon microscopic images. Although our
network was trained using WFM image stacks, it could
recover most of the neurites in these stacks perfectly well. In
the future, we will revise the NeuroConstruct to create a uni-
versal application that reconstructs and visualizes images
acquired by other imaging modalities. We will incorporate
more features into our Segmentation Toolbox to increase
efficiency and simplicity of annotating WFM neurons. Note
that the reconstruction quality can be further improved by
training the model with a larger variety of neurites.
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