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ABSTRACT

Many different methods have been proposed for generation of
synthetic CT (sCT) from MR images. Most of these methods
depend on paired-wise aligned MR and CT training images
of the same patient, which are difficult to obtain. In this pa-
per, we propose a novel disentangled representation learning
method for MR to CT synthesis using unpaired data. Specif-
ically, we first embed images onto two spaces: a modality-
invariant geometry space capturing the shared anatomical in-
formation across different imaging domains, and a modality-
specific appearance space. From the embedding, a sSCT image
can be synthesized from a MR image by taking the encoded
geometry features from the MR image and an appearance vec-
tor sampled from the appearance space of a CT image. To
handle the challenging of distinguishing cortical bone from
air in MR images, where both of them have low intensity val-
ues, we propose a novel Geometry Similarity Module (GSM)
to take the context information into consideration. Experi-
mental results demonstrated that our approach achieved better
or equivalent results than the state-of-the-art.

Index Terms— MR-to-CT synthesis, Disentangled repre-
sentation learning, Geometry similarity, Context information

1. INTRODUCTION

Despite the fact that Computed Tomography (CT) images
have limited soft tissue contrast and result in extra radiation
to the patients, CT imaging is critical for various applications,
e.g., radiotherapy treatment planning and Positron Emission
Tomography (PET) attenuation correction. This is because
CT images offer accurate presentation of patient geometry
and more importantly, CT values in Hounsfield units (HU),
which measure tissue attenuation coefficients, can be directly
converted to electron density for radiation dose calculation.
Recently, interests in replacing CT with magnetic resonance
imaging (MRI) have grown rapidly due to MRI’s free of
ionizing radiation, excellent soft tissue contrast, and ability
of multiparametric imaging through various MRI sequences.
The main challenges in replacing CT with MRI, however,
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are a) the MRI intensity values, unlike CT values, are not
directly related to electron densities; and b) conventional
MRI sequences pose dramatic limitations for distinguishing
cortical bone from air. It is therefore desirable to have a
method to derive CT-equivalent information from MR im-
ages. Such MR-based CT-equivalent data are often referred
to as synthetic CT (sCT) in the literature.

Many different methods have been proposed for genera-
tion of synthetic CT from MR images [1, 2, 3, 4, 5, 6, 7, 8].
Most of these methods depend on pairwise aligned MR and
CT training images of the same patient, which are difficult to
obtain. Any error in aligning MR and CT images could lead
to errors in generating sCT. Inspired by the work of [9], sev-
eral groups have developed methods for automated MR-to-
CT synthesis using cycle-consistent Generative Adversarial
Networks (CycleGAN), which could be trained without the
need for paired training data [5, 8, 10, 11]. One major limita-
tion of CycleGAN is that it only learns one-to-one mappings,
i.e., the model associated each input with a single output im-
age. We believe that the relationships between MR domain
and CT domain are more complex, and better characterized
as many-to-many, given the fact that there are many factors
influencing the image generation process of these two differ-
ent imaging modalities.

In this paper, we propose a novel approach for MR to CT
synthesis using unpaired data. Specifically, we first embed
images onto two spaces: a modality-invariant geometry space
capturing the shared anatomical information across two dif-
ferent imaging domains, and a modality-specific appearance
space. From the embedding, a sCT image can be synthesized
from a MR image by taking the encoded geometry features
from the MR image and an appearance vector sampled from
the appearance space of a CT image. Our contributions can
be summarized as follows:

1. We introduce a disentangled representation learning
method for MR to CT synthesis using unpaired data.

2. To facilitate the disentangled learning when 2D slices
are used, we introduce a slice corresponding strategy.

3. Furthermore, to handle the challenging of distinguish-
ing cortical bone from air in MR images, where both
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Fig. 1: Overview of our framework with geometry similarity guided feature disentanglement for MRI to CT synthesis.

of them have low intensity values, we propose a novel
Geometry Similarity Module (GSM) to take context in-
formation into consideration.

2. METHOD

In this section, we first introduce the disentangled represen-
tation learning method, which can factorize MRI and CT
images as modality-invariant geometry code and modality-
specific appearance code. The overview of our proposed MRI
to CT synthesis framework is presented in Fig.1.

2.1. Disentangle geometry and appearance representa-
tions

We denote the MRI slices and CT slices by z € R7*W>x1 and
y € RHXWXL regpectively. As shown in Fig.1, the frame-
work is mainly composed of geometry encoders {Eg, EY },
appearance encoders { E9, B¢}, generators {G,, Gy}, ge-
ometry similarity module GSM(-), modality discrimina-
tors {D,, D,} and geometry discriminator DY, where the
GSM (-) will be introduced in detail in subsection 2.3. Since
our goal is to achieve modal translation from z to y , here we
take = as an example. For the input 2, we can obtain its disen-
tangled geometry code g, = GSM(EY(x)) and appearance
code a, = E?(x), which is set as 8-bit vector.

The disentangled representation learning of the brain CT
and MR images is based on the fact that different modalities
of the same patient share the same anatomical geometry struc-
ture while showing different appearance. Therefore, a shared
domain-invariant space that retains the geometric information
and a domain-specific appearance code for each modality can
be explored to recover the underlying mapping between CT
and MR images [12]. Inspired by [13], we employ weight-
sharing and geometry discriminator for the implementation
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of disentangled representation learning. The weight-sharing
we adopted includes two parts. The first part is sharing the
weight between the last layer of £ and EY and the first
layer of G, and G. The second part is the shared GSM.
However, weight sharing is not enough to ensure that the fea-
ture distributions of the two modalities tend to be consistent,
so as to achieve the disentanglement of geometric structures.
Therefore, generative adversarial learning [14] is introduced
to further achieve the above goals. Specifically, a geome-
try discriminator DY is proposed to distinguish the modal-
ity membership of the geometry representations g, and g,.
Adversely, the geometry encoders EY, Efand shared GSM
GSM(-) learn to generate geometry features that modality
membership can not be distinguished by the geometry dis-
criminator DY9. Based on the disentangled feature where the
geometry space is shared among modalities and the appear-
ance space encodes intra-modality variations, we can perform
MRI to CT synthesis by combining a geometry representation
from MRI with an appearance representation from an arbi-
trary image from CT modality. As illustrated in Fig.1, it can
be expressed as n = Gy (g, ay).

2.2. Slice corresponding strategy

Disentangled representation learning is based on the premise
that MRI and CT slices share a common geometric structure.
However, since the slices of MRI and CT are not paired, in
the actual training process, it could happen that the input MRI
and CT slices are located in extremely different locations of
the brain volume. Obviously, the premise of disentangled rep-
resentation learning is not valid in this case, so we propose a
Slice Corresponding (SC) strategy to facilitate reasonable dis-
entanglement. The SC strategy can be presented as follows:
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Fig. 2: The details of geometry similarity module (GSM)

(i) = {[k*N(:z:)] +p, if3<[k*N(z)]<N(z)-3
[k * N(x)], otherwise
ey
o (kxN@)]+q, if3<[k*N@)]<N@) -3
y(i) = { [k * (y)],q othes“/wise
@)

where k represents a random value uniformly sampled from
the range of [0, 1], N(-) is a function to calculate the number
of slices of a given volume data, [-] denote the rounding func-
tion, and p and q represent random integers sampled from the
range of [—3, 3].

2.3. Geometry similarity module

Rich and global contextual information is an important part
of discriminant representation for pixel-level visual tasks. It
was observed that it is a challenging task to distinguish corti-
cal bones from air in MR images as both have low intensity
values. To solve the challenge, we propose a Geometry Sim-
ilarity Module (GSM) to explore abundant contextual infor-
mation by capturing long-range dependencies.

The GSM structure is shown in Fig.2. Specifically, for
a given feature map F € RTXWXC each pair of position
(fi, f;) in F will be computed a correlation strength matrix
r(fi, fj) € RV*N where N = H x W. Suggested by the
non-local operation[15, 16], the r is defined as the following
formula:

cap(a(f)7B(f))
S exp(alfi)TB(f))

where the a(-) and /3(-) are composed of 1 x 1 convolution
and reshape operation. The 7(f;, f;) indicates the ' feature
point’s impact on j** feature point. Intuitively, the more simi-
lar the two feature points, the stronger the strength of their as-
sociation. In addition, we feed F' to another 1 x 1 convolution
layer to get a new feature map and reshape it to R®*V, which
could be expressed by v(+). Unlike the attention mechanism,
we did not directly add enhanced features to the original fea-
tures. Instead, we compute a weighted sum of the enhanced
features and the original features:

r(fi, ;) = 3
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N
0ut=62 r(fi, fi)v(fj) + (L —e)F “)

where hyper-parameter ¢ controls the relative importance of
these two types of features and is empirically set to 0.2.

It can be inferred that the output feature at each point is a
weighted sum of the relationship feature across all positions
and the original feature. Therefore, our model takes contex-
tual information into consideration and thus can be used to
distinguish cortical bones from air during the CT synthesis
process, even when they both have low intensity values in MR
images.

2.4. Loss functions

In this section, all the loss functions used to facilitate net-
work training are introduced in details. To achieve feature dis-
entanglement, geometry adversarial loss is proposed to con-
strain the common modality-invariant geometry space of the
two imaging modalities. We express this geometry adversar-
ial loss as:

geometry
Ladv

Ew[ilong(GsM(Eg(m))) +

(ES, ES,GSM, DY)

~

og(1 — DY(GSM(E2(x))))]+

N = o =
—

B, 210D (GSM(E] () + Slog(1 — D*(GSM(E4(s))

(&)

Similarly, in order to constrain the generated MR and CT im-
ages as real as possible, we introduce the modality adversarial
loss function L% \where the discriminators D, and D,
try to distinguish real images from synthetic images in each
modality, while the generators G* and GV try to generate re-
alistic images to fool the discriminators.

In addition to the adversarial loss, we also introduce two
L loss functions. The first one is cross-cycle consistency
loss L{¢, which is a variant of cycle consistency loss proposed
in [9] in order to adapt to the feature disentanglement. As
illustrated in Fig.1, we formulate the cross-cycle consistency
loss as:

L5°(Gy, Gy, BY, EY, E2, B, GSM) =
Esyl [|Go(GSM(E](n)), GSM (Eg(m))) — =,

+||Gy(GSM(ES(m)), GSM (Eg(n))) — y|,]

(6)

where m = G(gy,as) and n = Gy(gs, ay), respectively.
The another L loss function is about self-reconstruction.
Take = as an example, from the view of perfect disen-
tanglement, the obtained geometry representation g, and
appearance code a, should enable to be re-rendered into
original image through the generator G,. To enhance the
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Fig. 3: Visualization of MRI to CT synthesis results by different methods

self-reconstruction ability, the following loss function is in-
troduced as:

Li(Gy, Gy, EY, EJ, ES, EY,GSM) =
E,[|Go(GSM (ES(x)), B2(x)) — z||,]+
E,[[|Gy(GSM(ES(y)), B2 (y) — o]

Overall, the loss functions in our framework could be ex-
pressed as following:

E; ™)
Ey

__ ygeometry y geometry modality  modality
LngDszy - )‘adv Ladv + )\adv Ladv
Lgs pac,csm = —Lps p,,p, + A\[L1° + AN{°L{°

®)

where the hyper-parameters As refers to the weight of each
item.

3. EXPERIMENTS

3.1. Dataset

We evaluated our method on paired brain MRI and CT vol-
umes from 48 patients as used in [11]. The database was split
into a training set containing MR and CT volumes of 38 pa-
tients and a test set of 10 patients, in such a way that subjects
do not appear in both datasets. Similar to [5, 17], the experi-
ments were performed on 2D sagittal image slices. Before we
get slices from the volume data, we first resample the voxel
spacing of volume data to 1 x 1 x 1mm3. Each CT and MRI
volume data includes approximately 160 sagittal slices with a
size of about 200 x 160. The intensity ranges of CT and MRI
are [—1000,3500] HU and [0, 3500] respectively. To avoid
overfitting, we apply a series of data augmentation methods
including flipping horizontally, flipping vertically and random
cropped to [180, 140] to generate more training samples.

3.2. Experimental Results

We reproduced the conventional CycleGAN as a base-
line. Additionally, we compared our method with the sc-
CycleGAN[17] where they introduced a structure loss func-
tion to constrain the geometric structure of the synthetic CT
to be consistent with the input MR images. In addition, we
conduct ablation experiments to verify the effectiveness of the
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SC strategy and the GSM. We adopt commonly used mean
absolute error (MAE), peak signal-to-noise ratio (PSNR), and
structural similarity (SSIM) as quantitative evaluation met-
rics. It is worth to mention that the maximum value in PSNR
and the dynamic range in SSIM are set to 4500 due to the
intensity range of the CT data.

Table 1: MRI to CT synthesis accuracies for dif-
ferent synthesis methods

Method MAE | PSNR | SSIM
CycleGAN 215.26 | 20.45 | 0.661
sc-CycleGAN 129.00 | 24.15 | 0.779
Ours, without (SC & GSM) | 112.96 | 24.54 | 0.796
Ours, without GSM 107.72 | 24.85 | 0.804
Ours 103.82 | 25.34 | 0.827

Tab.1 shows that our proposed method yields signifi-
cantly better results when compared to the baseline and the
sc-CycleGAN in all evaluation metrics. At the same time,
the results of the ablation study (the last three rows in Tab.1)
proved that our proposed slice corresponding strategy and
geometry similarity module could effectively improve the
performance of our approach. The visual examples of syn-
thetic CT obtained from the same test MRI when different
methods were used are shown in Fig. 3. Without using GSM,
it is difficult to distinguish cortical bones from air, leading to
unrealistic synthesis results, as observed in Fig. 3 (red box).
After incorporating GSM, our method generated more real-
istic synthesis results, proving the efficacy of the proposed
module.

4. CONCLUSION

In summary, we presented a disentangled representation
learning method from MR to CT synthesis using unpaired
data. Unlike previous methods based on CycleGAN [5, 8, 10,
11], our method treated the MR to CT synthesis as a many-to-
many image translation problem. Our results demonstrated
that the present method achieved better or equivalent results
than the state-of-the-art methods.
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