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Abstract

Advances in our understanding of brain function, along with the development of neural interfaces that allow for
the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which har-
ness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal
devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from
the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic
limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically
activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and convey-
ing feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and
somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control sig-
nals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of
the review is on intracortical approaches, we also describe alternative signal sources for control and noninva-
sive strategies for sensory restoration.
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1. INTRODUCTION

Over the last century, our understanding of the neural
basis of behavior has undergone an astounding expan-
sion, from a vague sense that the brain gives rise to the
mind to a sophisticated integration of biological insight
and mathematical modeling. In recent years, advances
in neuroscience, coupled with breakthroughs in engi-
neering, have been leveraged to develop systems that

allow the nervous system to interact directly with extrac-
orporeal machines, bypassing the muscles and the
senses (FIGURE 1). These brain-machine interfaces
(BMIs) have the potential to restore lost sensorimotor
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function, for example in tetraplegia, typically caused by
spinal cord injury (SCI) or neurodegeneration, which
results in a severe loss of independence.
One strategy to restore independence to individuals with

tetraplegia is to harness signals from their brain to control
robotic limbs or exoskeletons or to reanimate muscles.
Indeed, in tetraplegia, the brain regions involved in motor
control are typically intact and thus still carry information
about intended movements even though they no longer
activate muscles. Relatively simple mappings can be devel-
oped to infer motor intent, in real time, from continuously
monitored neural activity. Decoded movements can then
be executed by a robotic limb or exoskeleton or by

electrically activating the muscles, which are also intact
though no longer connected to the central nervous system.
To achieve dexterous control of a bionic hand requires

not only the restoration of volitional movement but also
the restoration of somatosensory feedback. Indeed, our
ability to interact with our environment relies critically on
somatosensory signals—tactile and proprioceptive—that
carry information about the state of our limbs and about
their interactions with objects (1–3). This sensory feed-
back can be restored by converting the output of sensors
on the bionic hand into patterns of electrical stimulation
of somatosensory regions of the brain, thereby giving rise
to vivid somatosensory percepts.

FIGURE 1. Brain-machine interfaces for restoring reaching and grasping. Intended movements are decoded in real time from neuronal signals moni-
tored in motor regions of the brain and translated into electrical activation of muscles or movements of a prosthetic limb. The output of sensors on the
bionic hand, which convey information about object interactions, is converted in real time into electrical pulse trains delivered to the somatosensory
regions of the brain.
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Over the last few years, BMIs have achieved remark-
able scientific and technological feats. One paralyzed
subject was able to write words fluidly by controlling a
computer with brain signals (4). Another was able to
reach and grasp with his own limb (5). Yet another not
only could control an anthropomorphic bionic arm by
thought alone but could actually feel objects with it (6)!
In the present review, we describe the neural mecha-

nisms that mediate movement generation in able-bodied
individuals and discuss how signals from the central nerv-
ous system can be monitored to infer intended move-
ment and used to drive bionic or reanimated limbs. We
then summarize what is known about the neural basis of
somatosensation—touch and proprioception—in the brain
and consider how this knowledge can be leveraged to
restore these critical sensory modalities via electrical acti-
vation of somatosensory neurons. Throughout, we
attempt to identify the challenges that remain for achiev-
ing a dexterous bionic limb and propose ways in which
these challenges might be overcome.

2. ETIOLOGIES OF MOTOR IMPAIRMENT AND
RELEVANT ASSISTIVE TECHNOLOGIES

Tetraplegia—sometimes called quadriplegia (though this
word awkwardly comprises a Latin and a Greek root)—
refers to the partial or complete loss of the use of all four
limbs. Individuals with tetraplegia are often dependent
on caregivers, which results in a severe reduction in
quality of life and great financial cost. Tetraplegia can be
caused by a variety of conditions including spinal cord
injury (SCI), neuromuscular disorders such as amyotro-
phic lateral sclerosis (ALS) and cerebral palsy, stroke,

and traumatic brain injury. In people with SCI, the degree
of impairment depends on the location and extent of the
lesion along the spinal cord. Higher lesions result in
more generalized paralysis and desensitization (FIGURE
2A), and some lesions are only partial whereas others
are complete. After an acute recovery phase, people
with chronic SCI can retain a stable degree of motor
function that lasts decades (7). In contrast, people with
ALS undergo a gradual loss of motor neurons in the
brain and spinal cord, resulting in a progressive deterio-
ration of motor function that ultimately affects limb func-
tion, chewing, swallowing, and breathing (8). In contrast
to SCI and ALS, where the mechanisms underlying
volitional movement in the brain may be largely undis-
turbed, traumatic brain injuries and stroke are heteroge-
neous in nature and span the full range of potential
motor and cognitive impairment, with the nature and
degree of impairment, and potential for recovery, highly
dependent on the specifics of the injury such as the
affected brain regions. In the case of stroke, implanted
BMIs have been developed for people whose injuries
largely affect motor output, such as those with pontine
strokes (9, 10). A separate field of rehabilitative BMIs
seeks to use neuroplasticity and motor learning to
enhance motor recovery and has primarily focused on
leveraging noninvasive interfaces such as electroence-
phalography (EEG) (11, 12).
People with tetraplegia consistently identify arm and

hand function as among their highest priorities for func-
tional restoration (13–16), although priorities depend on
the level of injury (FIGURE 2B; Ref. 14). In surveys of peo-
ple with SCI, those with high tetraplegia (C1–C4 injuries),
who have the most limited arm and hand function and
sensation, are eager to adopt a wide range of BMIs,

FIGURE 2. Organization of the spinal
cord and implications for brain-machine
interfaces. A: diagram depicting spinal
nerves and the motor and sensory func-
tions they mediate (reproduced from spi-
nal-research.org). Arm and hand function
can be severely impacted by injuries to
cervical spinal regions, and the amount
of function retained is largely dependent
on the level of injury. B: assistive priorities
assessed via surveys of people with spi-
nal cord injury. Interest in different control
modalities and levels of performance
varies depending on the level of injury.
wpm, Words per minute. Adapted from
Ref. 14, with permission from Journal of
Neural Engineering.
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even if performance is somewhat limited. In contrast, peo-
ple with low tetraplegia (C5–C7), who retain some arm
and wrist function, expect greater dexterity. Functional
aspirations include restoration of high-performance typ-
ing and computer control and/or restoration of reaching
and grasping with fast robotic arms or, ideally, with their
native limb. Although the invasiveness of neural interfa-
ces influences their appeal, practical factors such as
increased mobility and cosmetic factors such as reduced
device visibility are equally important. For example, nonin-
vasive systems based on EEG, with electrodes either inte-
grated into a headcap or glued to the scalp, are no more
appealing than wireless implanted systems. Wireless
interfaces are of particular interest: respondents with SCI
were twice as likely to be interested in implanted BMIs if
they could be made wireless (14).
Robotic arms, actuated exoskeletons, and functional

electrical stimulation (FES) are potential avenues to
restore reaching and grasping using BMIs (5, 9, 17–24).
Robotic arms used in assistive studies can vary widely:
some arms are designed for use by amputees, while
others are designed to mount on wheelchairs or even
for industrial applications. Exoskeletons that drive both
arm and hand movements are in comparatively early
stages. Critical design considerations for assistive robots
include the weight, power consumption, performance/
speed, compliance/safety, reliability, and the degree to
which they are anthropomorphic (look and move the
way native human arms do).
FES involves applying patterned electrical stimulation

to the muscles and/or nerves to reanimate the paralyzed
limb (25). Electrical stimulation can be delivered to the
skin surface, to the muscle directly, or to the nerves that
innervate the muscles. FES has been successfully
deployed as a rehabilitation tool (25), for example to
help “exercise” paralyzed muscles with the goal of main-
taining muscle mass, or to assist or regulate residual
muscle function in individuals with mid- to low-level cer-
vical SCI or upper extremity paralysis due to stroke (26–
31). Skin surface stimulation has provided valuable
proofs of concept for intracortical BMI-FES systems (18).
For long-term clinical translation, intramuscular electro-
des (5) provide more selective stimulation, are highly
durable [<1% of electrodes fail over 3 yr (30)], and are
anchored in place, allowing seamless day-to-day use.
BMIs for reach and grasp (5, 6, 9, 17–24) provide a richer

andmore natural set of control options than traditional assis-
tive devices, which rely primarily on movements of spared
body regions (e.g., by monitoring muscle activity in the neck
or face, tracking eye or head posture, or using the mouth to
operate a manipulandum). Traditional devices involve
unnatural control strategies, ranging from somewhat
straightforward, e.g., mapping head movements onto the
movement of a computer cursor or robotic arm, to more

complex and counterintuitive, e.g., common “sip-and-puff”
devices that translate air pressure from sucking or blowing
on a straw into wheelchair movements. Another disadvant-
age of traditional assistive devices is that they provide con-
trol in a serial fashion so that the user can only do one thing
at a time (32). In contrast, BMIs have the potential for simul-
taneous control of many degrees of freedom, which more
closely approximates natural motor function.
In addition to the restoration of limb function, control

of communication devices and computers is also a prior-
ity for people with tetraplegia. Individuals with ALS or
high-level SCI might communicate primarily through al-
ternative and augmentative communication devices,
which typically monitor retained movement abilities
such as eye or head movements, and may require care-
giver assistance (33). Furthermore, although computers,
tablets, and phones are increasingly integral to daily life,
control is typically manual and thus ill suited for para-
lyzed individuals. BMIs can provide direct interfaces with
computers to restore rapid typing and communication
and more general usage, including web browsing, e-
mail, chatting, and playing music (4, 34–38).

3. EFFERENT SIGNALS FOR PROSTHETIC
CONTROL

Since the dawn of humanity, our interactions with the
environment have relied on muscular output, whether it
be for locomotion, object interactions, or communica-
tion. The revolutionary idea underlying BMIs is that sig-
nals from the brain can be harnessed to control
extracorporeal devices directly, thereby bypassing the
muscles (39). This strategy requires a mapping between
patterns of neural activity and the behavior of the de-
vice. For bionic arms, this mapping can be informed by a
basic understanding of how the brain controls the limbs
in able-bodied individuals.
Most theories of motor control posit that movement

planning involves a series of processing steps to transform
a movement goal (such as a reach to a certain location)
into a pattern of muscle activity that executes the move-
ment and completes the action (40). This process is distrib-
uted across multiple brain regions with distinct anatomical
and functional properties. Intracortical BMIs have largely
focused on leveraging control signals from two brain
regions: the motor cortex and the posterior parietal cortex.
These areas are thought to be situated at distinct levels in
the motor control hierarchy for reaching and grasping:
motor cortex is implicated in low-level aspects of move-
ment planning and execution and more closely tied to
muscle activity (40, 41), and posterior parietal cortex (PPC)
is involved in higher-level cognitive functions related to
sensory-motor integration and intention formation (42).
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The anatomy and physiology of brain areas associ-
ated with motor control have been widely studied in
monkeys, and these areas are thought to have homologs
in humans. However, there remains a surprising lack of
consensus on the basic identity of some these human
homologs (43), as discussed below. Nonetheless, studies
with monkeys have served as a critical guide, both for
understanding the basic anatomy and physiology of the
motor control system and for testing new approaches to
best harness control signals from the brain.

3.1. Motor Cortex

In the late nineteenth century, electrical stimulation of
portions of the mammalian cortical surface was found to
evoke movements on the contralateral side of the body

(44), a finding that implicated for the first time a specific
region of the cerebral cortex in the control of movement.
Since then, motor cortex has been recognized as a criti-
cal hub for movement generation. In monkeys, motor
cortex stretches over an expansive area of the frontal
lobe and is traditionally divided into seven well-defined
cortical fields (FIGURE 3A; reviewed in Refs. 45, 46).
The primary motor cortex (M1, Brodmann’s area 4), which
occupies the precentral gyrus and the rostral bank of
the central sulcus, is the output stage of critical networks
for both reaching and grasping that include premotor
and parietal motor areas. Accordingly, injuries to M1 or
to its downstream targets result in profound deficits in
movement control. For example, in classic studies with
monkeys, lesions of the output from M1 to the spinal
cord resulted in permanent deficits in reaching and

FIGURE 3. Motor cortical areas contain command signals for intracortical neural prostheses. A: diagram showing a lateral view of the monkey cere-
bral cortex. Motor cortex is a region of the frontal lobe that spans Brodmann areas 4 and 6. Area 4 contains primary motor cortex (M1), whereas area 6
is subdivided into 6 regions: dorsal and ventral premotor cortices, which each have rostral and caudal divisions (PMdr, PMdc, PMvr, PMvc), supplemen-
tary motor area (SMA), and pre-supplementary motor area (pre-SMA); the latter regions extend into cortical areas along the medial wall. In the parietal
lobe, important regions for reach and grasp are located within or adjacent to the intraparietal (IP) sulcus. B: sagittal schematic of the monkey precentral
gyrus (PcG) and anterior bank of the central sulcus (CS), showing area 6, area 4 (M1), and area 3a (primary somatosensory cortex). Cortico-motor neuro-
nal (CM) projections primarily originate from sulcal M1 and show coarse somatotopic organization (adapted from Ref. 57, with permission from
Proceedings of the National Academy of Sciences of the United States of America). C: subdivisions of human cortex as illustrated by Vogt and Vogt,
which designated the majority of the precentral gyrus as Brodmann’s area 6. F.R., fissure of Rolando (central sulcus). Image inspired from Ref. 75. D:
preoperative functional MRI activation maps during attempted movements by a paralyzed clinical trial participant. Approximate locations of 2 Utah
arrays implanted in the hand area of the precentral gyrus are shown as black squares in the inset. Adapted from Ref. 20, with permission from Lancet.
E: the motor homunculus depicts the broad somatotopic arrangement of motor cortex as estimated by movements evoked by electrical stimulation of
the cortical surface. Although useful to illustrate the general organization of leg, arm, and face regions and the gradients within, the homunculus is not
meant to be a precise parcellation of cortex into distinct regions. Adapted from Ref. 78, with permission from Journal of Neuroscience.
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grasping and in the abolition of independent digit move-
ments (47, 48). Anterior to M1 is Brodmann’s area 6,
which consists of several subdivisions considered to be
situated higher in the motor control hierarchy than M1:
the dorsal and ventral premotor cortices, which each
have rostral and caudal divisions (PMdr, PMdc, PMvr,
PMvc), the supplementary motor area (SMA), and the
pre-supplementary motor area (pre-SMA); these areas
are often referred to by field numbers (F1–F7, respec-
tively) (46, 49).

As mentioned above, motor cortex is organized hier-
archically: M1 is generally associated with movement exe-
cution and contains the most direct connections to arm
and handmuscles, whereas PMd and PMv are associated
with higher-level movement planning. SMA and pre-SMA
are associated with many higher-order aspects of motor
control, including bimanual coordination, movement tim-
ing, and action sequencing (50–54). Although premotor
cortical regions are commonly considered to lie within
Brodmann’s area 6, anatomical evidence suggests that
multiple portions of the cingulate cortex, situated within
the medial wall and buried under surface cortical struc-
tures, might also be considered premotor areas, in that
they make direct projections to M1 (55, 56). To date, the
neural activity within these areas has been poorly charac-
terized because they are more difficult to access.
All movements of the arm and hand are ultimately

driven by motor neurons in the spinal cord, whose axons
innervate the muscles themselves. The cortical control
of movement is thus mediated by pathways that directly
or indirectly drive the spinal cord. The corticospinal tract
(CST) directly innervates neurons in the spinal cord and
comprises projections from multiple cortical regions,
including primary motor and premotor cortices, as well
as the somatosensory, parietal, and cingulate cortices.
In most mammals, axons in the CST synapse onto spinal
interneurons, which play a role in both reflexive move-
ments and pattern generation. In several primates—
including monkeys, apes, and humans—an additional
pathway provides more direct cortical control of the
arm and hand (57). In these species, a fraction of the
CST consists of cortico-motoneuronal (CM) projections,
which synapse onto spinal motoneurons that directly in-
nervate muscles. CM neurons thus provide a more direct
line from cortex to muscles than do other cortical
neurons. CM projections are particularly prominent for
muscles that drive manual behaviors, and most CM-pro-
jecting neurons in cortex are located in the anterior
bank of the central sulcus (FIGURE 3B; Ref. 57).
Accordingly, M1 in monkeys is frequently subdivided
into caudal (“new”) and rostral (“old”) regions (57–60),
distinguishable based on the presence or absence of
CM-projecting neurons (57). Evidence for a similar divi-
sion exists in humans as well (61).

Human intracortical BMIs typically target the hand rep-
resentation in the precentral gyrus (FIGURE 3, C and D),
which can be localized based on a distinct knob-shaped
anatomical landmark (22, 62). Conflicting terminology is
used when referring to the targeted region on the pre-
central gyrus. Sometimes the generic term “motor cor-
tex” (5, 20, 38) is used, while in other cases it is referred
to as “primary motor cortex” or “M1” (9, 18, 22, 63, 64). A
recent review of the anatomical evidence (43) concludes
that, in fact, most of the human precentral gyrus is
actually occupied by the caudal portion of Brodmann’s
area 6 (61, 65–69), a homolog of PMd in macaques (70–
72). Some of the confusion may arise from discrepancies
in classic illustrations: although Brodmann’s original illus-
trations depicted his area 4 as occupying much of the
gyral surface (73), Vogt and Vogt depict the precentral
gyrus as being dominated by Brodmann’s area 6
(FIGURE 3C; Refs. 74, 75). Arm and hand areas of
Brodmann’s area 4 are largely confined to the anterior
bank of the central sulcus (61, 66–69). These areas
would be difficult or impossible to access with intracorti-
cal electrode arrays that are currently approved for
human use, which penetrate 1–1.5 mm into cortex.
Recent evidence suggests that the only portions of area
4 that emerge from the central sulcus are medial regions
associated with leg movements (65, 67–69).
Somatotopic organization in motor cortex has been

recognized for more than a century (76). The most well-
known illustration of motor cortical somatotopy is
Penfield’s homunculus (FIGURE 3E; Refs. 77, 78), a clas-
sic diagram depicting movements elicited by stimulating
different locations of the motor cortical surface during
intraoperative studies with epilepsy patients. At the
medial extent of the precentral gyrus surface stimulation
evoked movements of the leg, and as stimulation pro-
ceeded more laterally evoked movements transitioned
to proximal and then distal arm and hand movements,
and then neck, face, jaw, and tongue movements.
Importantly, Penfield and Rasmussen considered this
homunculus a useful memory aid and not a precise par-
cellation of cortex into areas responsible for movements
of specific joints (77). A review of decades of literature
that included studies with more precise stimulation
methods [intracortical microstimulation (ICMS)] con-
cluded that stimulation results are indeed consistent
with a coarse organization of motor cortex into leg, arm,
and face regions but not with discrete, well-ordered sub-
divisions of different within-limb movements (76).

3.2. Posterior Parietal Cortex

In contrast to the frontal lobe, whose role in controlling
movements has been studied since the nineteenth cen-
tury, posterior areas of the parietal lobe have been
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implicated in movement control only relatively recently.
Posterior parietal cortex (PPC) typically refers to the
region of the parietal lobe that lies posterior to the post-
central gyrus (i.e., posterior to somatosensory cortex).
Areas of PPC receive diverse inputs from various
regions of sensory cortex. Classically, PPC was consid-
ered an “association area” and hypothesized to carry
higher-order sensory representations that integrated in-
formation across sensory modalities and were well
suited to guide action selection (42, 79, 80). Closer ex-
amination revealed that the responses of neurons in
PPC were not solely tied to sensory stimuli but were also
dependent on motor intent (81). Two regions of PPC
seem to be specifically implicated in movements of the
upper limbs, namely the anterior intraparietal area (AIP)
and the parietal reach region (PRR) (42, 82). AIP is
strongly and reciprocally connected with PMdr (F5) in
motor cortex, which, together with M1, forms a network
critical for grasping and manipulating objects (42, 46,
79, 83). Neurons in AIP often selectively encode specific
grasping movements (84). Neurons in PRR often encode
reaching targets (42). Recently, putative homologs of
AIP and Brodmann’s area 5—which in monkeys is adja-
cent to PRR and appears to also encode reach plans
(85)—have been identified in humans (17, 86, 87).

4. NEURAL CORRELATES OF MOVEMENT
INTENTION

The most common approach to BMI control via an intra-
cortical interface is to obtain neural signals about low-
level aspects of end effector movements—typically from
motor cortex—and execute the intended movements
with a bionic hand or through electrical activation of the
muscles. Yet, despite decades of research, the precise
relationship between motor cortical activity and move-
ments is still unclear. Understanding the factors that
shape motor cortical activity and its relationship to
behavior is a critical step in harnessing it to achieve dex-
terous BMIs.

4.1. Representations of Movement Variables

A fundamental concept underlying the interpretation
of motor cortical neuronal activity is that neuronal
responses encode specific externally measurable move-
ment parameters, e.g., joint angle or hand velocity. This
representational view parallels a pervasive view in sen-
sory neuroscience, inspired by the oft-repeated obser-
vation that the responses of sensory neurons are
systematically modulated by changing specific stimulus
features, e.g., the orientation of an edge or the fre-
quency of an acoustic tone. Sensory neurons are then

described as representing or encoding these stimulus
features. Similarly, the responses of neurons in motor
cortex typically covary with external movement parame-
ters, and motor cortical neurons are frequently des-
cribed as representing or encoding specific aspects of
movement. In a landmark study (88), Georgopoulos and
colleagues recorded activity from neurons in monkey M1
and quantified the relation between their firing rates and
end point reach angles in a planar reaching task
(FIGURE 4A). They found that the responses of individ-
ual neurons were strongly modulated by the direction in
which the monkey reached. Neurons tended to respond
maximally when the animal reached in a particular direc-
tion—its so-called preferred direction—and less so when
it reached in other directions. In fact, the firing rate of
each neuron could be approximated by the (scaled) co-
sine of the angular difference between the reach direc-
tion and the neuron’s preferred direction. Within this
framework, each neuron can be described simply by its
preferred direction. In the decades since, motor cortical
neurons have been found to covary with many other
movement parameters, and the list now includes many
kinematic variables (e.g., position, velocity, speed, and
acceleration of the hand, joint angles and velocities,
etc.) and kinetic variables (end point forces or torques
exerted on the joints) (40). For BMI applications, the rep-
resentational model lends itself to simple strategies for
decoding movement intention, as the dependence
between neural firing rates and external movement pa-
rameters can be inverted to decode these parameters
from firing rates (detailed in sect. 5.2).

4.2. Preparatory Activity

Another hallmark of many neurons in both primary motor
and premotor cortices is that they are active well before
the onset of movements (89, 90). In monkeys, such ac-
tivity is frequently studied with instructed delay para-
digms, in which information about the upcoming
movement is provided to the subject before the move-
ment is executed. During this delay period, single neu-
rons often exhibit distinct modulation that depends on
the specifics of the upcoming movement. Such prepara-
tory activity is predictive of both reaction times and
movement variability (91–96), and disrupting preparatory
activity delays the onset of movement (94). Traditionally,
representational models of neuronal tuning viewed pre-
paratory activity as a “subthreshold” version of the activ-
ity observed during movement execution (89). For
example, if a given neuron encodes rightward move-
ments, then it may be beneficial for movement prepara-
tion to activate that neuron before moving to the right,
but at a level that does not trigger overt movement.
However, the activity of individual neurons during
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preparation is only weakly predictive of their activity dur-
ing execution (97). In contrast, at the level of populations
of neurons, preparatory activity shows clear structure
that has a consistent relationship with activity during
movement execution (41, 97, 98). The revelation of a
close link between preparation and execution at the
population level is one of the key successes of the dy-
namical systems view outlined below (see sect. 4.3).
Posterior parietal cortex also exhibits prominent prepar-
atory activity (82, 83, 100, 101).

4.3. Manifolds and Dynamics

The representational model has been successful in
demonstrating correlations between neural activity in
motor cortex and many movement parameters. How-
ever, as the list of movement parameters has grown lon-
ger, it has become apparent that correlations with move-
ment parameters can often be spurious (102) and that
representational models fail to explain many aspects of
neuronal responses (103, 104).

In parallel, the widespread adoption of techniques to
simultaneously record from many neurons (105) has
enabled a shift in focus from studying the relation
between individual neurons’ activity and externally
measurable parameters to investigating the structure of
the neuronal activity itself. One striking finding across
many brain areas is that much of the observed activity of
large neural populations can be described as a combina-
tion of a modest number of “latent factors” (106–108)—
abstract, time-varying patterns that reflect the coordina-
tion of responses across neurons (FIGURE 4B). This
makes intuitive sense: as the recorded neurons partici-
pate in a common underlying network, their responses
cannot be completely independent. A focus on latent var-
iables shifts emphasis from understanding the responses
of individual neurons to understanding patterns that are
distributed across the network.
The emerging dynamical systems view focuses on

understanding how computations are performed by the
collective activity of populations of motor cortical neu-
rons. This perspective treats motor cortex as a computa-
tional engine that translates high-level movement

intention into the complex, time-varying patterns of mus-
cle activity required to execute a movement (41, 108–
112). A key principle underlying dynamical systems is
that the system’s future state is largely predictable
based on its current state and inputs (detailed in
FIGURE 5). In the case of a neural system, the system’s
state is the current pattern of neuronal activity across
the population, and inputs represent the activity of
unmeasured neurons (e.g., from other brain areas),
including those that relay sensory information from the
body and environment.
In recent years, a careful examination of motor cortical

activity has borne out many predictions of the dynamical
systems view (41, 108). One key prediction is that during
a movement the initial conditions of the system (as might
be observed during movement preparation) should
largely predict subsequent activity. For example, in an
instructed delay paradigm, the progression in motor
cortical state during movement execution is largely pre-
dictable based on the state of motor cortex during the
delay period (FIGURE 4C; Refs. 97, 98, 113). Across a va-
riety of movements, the same dynamical rules govern
how neural activity evolves over time.
Another prediction of the dynamical systems view is

that not all of the activity in motor cortex should relate to
movement variables. Rather, a substantial fraction of the
neural activity may relate to internal processes needed
to accomplish computational demands. For example,
movement preparation and execution entail substan-
tially different neuronal dynamics (114, 115). The transition
between these dynamics manifests as a large translation
in state space, hypothesized to trigger movement gen-
eration dynamics (116). This translation is highly promi-
nent (often explaining more than half the variance in the
neural population activity) and independent of the spe-
cific movement. Another place where internal processes
play a critical role is in the process of pattern generation.
A robust dynamical system should avoid “tangling,” i.e.,
situations in which similar states lead to divergent future
states (FIGURE 4D; Ref. 117). If dynamics were organized
such that two nearby points led to divergent trajectories
in state space, then a small amount of noise in the sys-
tem might lead to dramatic differences in the evolution

FIGURE 4. Frameworks for interpreting motor cortical activity. A: the firing rates of an individual neuron in primary motor cortex (M1) are highly de-
pendent on the reach direction. This neuron’s preferred direction is �180�. Adapted from Ref. 88, with permission from Journal of Neuroscience. B: in
a simple 3-neuron (n) example, the population’s activity at each time step (t) can be represented as a point in a 3-dimensional (3-D) state space, where
the firing rate of each individual neuron represents an axis. Such analyses often reveal that the activity of many neurons can be captured by a modest
number of abstract, time-varying latent factors. In this example, 3-D population activity is captured by a lower-dimensional manifold (a 2-D plane),
whose axes are defined by the latent factor dimensions x1 and x2. Adapted from Ref. 106, with permission from Nature Neuroscience. C: in a state
space view, neural population activity at the transition from preparation to execution exhibits consistent dynamics. The neural state achieved during
the delay period (green-red dots) predicts the subsequent trajectory of movement activity (green-red lines). Each dot/line is a single reach condition
(inset). Adapted from Ref. 98, with permission from Nature. D: robust dynamical systems must avoid regions of high tangling, in which slight perturba-
tions to the system’s state can result in different trajectories. E: in this conceptual example, the target pattern of activity (output dimensions 1 and 2)
exhibits high tangling. A dynamical system can use additional internal dimensions that detangle the system’s state, which are not observable at the out-
put level. Adapted from Ref. 117, with permission from Neuron.
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of the neural state and, consequently, in the evoked
movement. Thus, for a dynamical system to reliably gen-
erate patterns of output, e.g., patterns of muscle activity
for distinct movements, the systemmust have additional,
internal dimensions that are not directly linked to the
output but instead serve to “pull apart” the system’s
state to avoid tangling (FIGURE 4E; Ref. 117).
Additionally, the dynamical systems view predicts that

different computations are performed in different dimen-
sions (i.e., different combinations of latent factors) so
that they can be performed independently. To illustrate
this point, we return to the distinction between move-
ment preparation and execution. Many neurons are
active during both movement preparation and move-
ment generation, and representational frameworks
struggle to articulate how a system should organize ac-
tivity to perform preparation-related computations without
inadvertently triggering movement. From the dynamical
systems perspective, neural population activity during
preparation can be shown to avoid dimensions that trig-
ger movement (114, 115). A similar organizational structure
is observed when performing cortically dependent versus
non-cortically dependent movements (118), when integrat-
ing sensory feedback during movement (119), or when
moving the contralateral versus ipsilateral arm (120).
Some aspects of the dynamical systems view may

seem trivially true. For example, the principle that future
neural activity is somewhat predictable based on the
current state may seem obvious for two reasons. First,
the brain is a recurrently connected network, so current

activity should influence future activity through these
recurrent connections. Second, especially in the case of
prepared movements, activity during preparation should
be informative about activity during execution, so there
should exist some (potentially complex) relationship
between preparatory state and activity during execution.
What is perhaps more instructive about the dynamical
systems view is that mathematically tractable descrip-
tions of dynamics can be used to relate preparation and
movement execution (98). Furthermore, these descrip-
tions generalize across a wide variety of conditions, to
the point where dynamics described for a few move-
ment conditions can be used to predict the system’s
behavior across many others (113, 121, 440). Finally, the
dynamical systems approach reveals structure in the
population dynamics that can predict single-trial behav-
ior on millisecond timescales, which has the potential to
improve BMI performance (113, 122, 440–442).
The dynamical systems view has revealed remarkable

structure in the population activity of motor cortical neu-
rons associated with reaching movements, yet ques-
tions remain as to its generality to hand control. For
example, similar dynamical structure is seen during indi-
vidual finger movements (123), but no such structure is
observed in the activity associated with grasping move-
ments (124). Furthermore, the dynamical systems view is
not necessarily inconsistent with the representational
view. Indeed, one view describes the structure of popu-
lation activity and the other describes its relation to
movement. Better understanding how these two

FIGURE 5. Conceptual dynamical system: a friction-
less 1-dimensional (1-D) pendulum. A and B: a pendu-
lum released from different starting positions will
trace out different positions (p) and velocities (v) over
time. C: when viewed in a 2-dimensional state space,
the state of the pendulum x follows simple dynamical
rules (i.e., the pendulum’s equations of motion) that
are invariant to the point of release.D–F: if the pendu-
lum’s motion is perturbed by an external factor, the
evolution of the system’s state no longer follows au-
tonomous dynamic rules. Adapted from Ref. 108, with
permission from Journal of Neuroscience.
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perspectives intersect constitutes a fruitful line of current
inquiry (125).

5. DECODING: TRANSLATING INTENTION
INTO ACTION

As summarized above, the brain of an able-bodied indi-
vidual comprises extensive circuits whose principal role
is to give rise to movement. In individuals with tetraple-
gia, these circuits are largely intact but are no longer
connected to the spinal circuitry that implements
intended movements. To the extent that a relationship
between motor intent and patterns of neuronal activity is
identified, neural activity patterns can be translated into
control signals for external devices or for FES systems.
The neural activity patterns that constitute the input to
the decoder can take a variety of forms, ranging from
the well-isolated responses of individual neurons to the
power of extracellular voltage signals in specific fre-
quency bands, reflecting the aggregate activity of large
populations of neurons. Control strategies typically fall
into one of two broad classes: continuous control, in
which the decoder’s output is a continuous variable
(e.g., velocity or position) computed on a moment-by-
moment basis, and discrete control, in which neural ac-
tivity is classified to choose between a discrete set of
actions (e.g., reaching toward one of several targets,
implementing a specific grasp). Some BMIs leverage
hybrid strategies in which certain functions are con-
trolled in a continuous fashion (moving to the location)
and others are controlled discretely (target selection or
grasp). We discuss each aspect of this process and the
different control strategies in turn.

5.1. Intracortical Neural Signals for Prosthetic
Control

Extracellular electrodes can monitor spiking responses
from several surrounding neurons, so early BMIs focused
on separating action potentials into groups based on the
neuron that generated them (“spike sorting”) and using
sorted spikes as features for decoding. The emphasis on
using sorted spikes as inputs to BMI decoders was ini-
tially motivated by the characterization of the response
properties of single neurons, which entailed the identifi-
cation of a systematic relationship between spiking and
movement parameters. Unfortunately, spike sorting is
surprisingly difficult. Even with stable action potential
waveforms, sorting spikes requires optimizing many pa-
rameters to define each waveform template and classify
spikes from different neurons. To automate this process
is challenging and has been the focus of considerable
research (126, 127). Spike sorting becomes much more

challenging when waveforms are changing over time, as
they tend to do; using a fixed waveform template thus of-
ten leads to misattribution of spikes. One approach to
address this problem consists in dynamically adjusting
the template to account for changes in the waveforms, a
hard problem even in an offline setting, but several prom-
ising solutions have been proposed (126, 127). Although
real-time, adaptive spike sorting may be feasible, this
approach inevitably fails to maintain stability as neurons
completely disappear from the electrode’s recording
range and others enter the range (128–130).

However, achieving a high-performance BMI may not
require spike sorting. Indeed, alternative signals provide
comparable information to isolated single units without
the overhead, complexity, and instability inherent to
spike sorting. In fact, most of the highest-performing
BMIs over the last decade have relied on multiunit activ-
ity (MUA), the aggregate activity of neurons that happen
to be close enough to the electrode that their spikes are
detectable though not necessarily distinguishable. Typ-
ically, a voltage threshold is set and all voltage deflec-
tions that exceed this threshold constitute the input to
the BMI decoder (FIGURE 6A). MUA shares many of the
same features of spiking activity: it is informative about
reaching and grasping in monkeys (131–134) and humans
(135, 136) and can even be used to extract neural popula-
tion dynamics (113, 122, 123, 137). However, MUA has addi-
tional advantages over sorted spikes; it can often be
obtained from electrodes that do not show evident spikes
(38, 131, 133) and it is more resilient to the challenges asso-
ciated with changes in spike waveform over time.
Furthermore, hardware optimized to extract MUA can ac-
quire and filter signals with substantial power savings over
spike sorting (138–140), a clear advantage for fully implant-
able, battery-powered BMIs. Accordingly, MUA has rapidly
become a standard signal source for online BMI control.
Another potential neural signal that can be leveraged

in a BMI is the local field potential (LFP), which reflects the
aggregate synaptic activity of local populations of neu-
rons, including the spiking activity of neurons that may be
too distant to yield discernible waveforms. LFPs are
extracted by filtering the time-varying voltage trace cap-
tured by each electrode with a low-pass filter. Typically,
LFPs are then divided into distinct frequency bands,
which differ from study to study. The high gamma bands
(e.g., 70–300 Hz) are a particularly rich source of move-
ment-related information, perhaps because this band
preferentially reflects spiking activity (141), even in the ab-
sence of distinguishable action potential waveforms (38,
131). An alternative feature of the LFP that can be lever-
aged for control is the local motor potential (LMP; also
referred to as the movement-evoked potential), a slow,
complex waveform that exhibits substantial directional
tuning around movement onset (131, 142–144). In parietal
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cortex, LFP power at the low frequencies (<20 Hz) exhib-
its marked changes around the time of movement onset
(145, 146), a feature that can be used to trigger a move-
ment (145). Other prominent features have received less
experimental attention for closed-loop control. For exam-
ple, the beta band—which typically spans the range from
15 to 40 Hz, though it differs widely from study to study
and may differ between monkeys and humans (113, 143,

147–149)—is typically suppressed around movement
onset in motor cortex (147, 149) and may thus be useful
for detecting state transitions between stopping and
moving. Although the relation between beta oscillations
in intracortical activity and those detectable at the level of
less invasive interfaces (electrocorticography, electroen-
cephalography) is largely unexplored, recent work sug-
gests that the time course and magnitude of these

FIGURE 6. Common signal processing and decoding architectures. A: electrical activity from multichannel neural recordings is filtered, and action
potentials are extracted by a simple voltage thresholding operation. Multiunit action potentials are then binned into discrete counts. B: the Wiener filter
consists of a set of decoder weights for each neuron across multiple time points. These weights are multiplied by a window of activity and summed to
produce the decoder’s output for a given movement variable. C: the population vector algorithm (PVA), single-timestep optimal linear estimation (OLE),
and the standard Kalman filter can all be formulated as separable transformations for dimensionality reduction and temporal smoothing. All multiplica-
tions shown are element-wise.
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oscillations can be extracted on single trials with high fi-
delity from intracortical recordings (113).

5.2. Decoding Architectures for Continuous
Control

Continuous control allows for the most versatility in that,
in principle, the user is endowed with a vast array of pos-
sible actions, defined by the number of degrees of free-
dom (DOFs), which denotes the number of independently
controlled parameters, for example joints or muscle stim-
ulation channels. However, the greater the versatility of
the effector—the more DOFs it comprises—the more reli-
able and complex the neural signals used for control
need to be. Over the last few decades, a variety of
approaches have been developed to achieve continuous
control. Early success was achieved by leveraging the
direction tuning of motor cortical neurons, described
above. The idea is that, given that individual neurons fire
in proportion to the match between intended movement
direction and their preferred movement direction, one
can infer from the activity across a population of such
neurons the intended direction of movement (88). In brief,
each neuron “pushes” the decoder’s output in favor of its
own preferred direction, with the push proportional to its
normalized firing rate. In other words, the decoder inter-
prets strong activation in a given neuron as strong evi-
dence that the intended movement is in that neuron’s
preferred direction. A straightforward method to infer
intended direction is by tallying the weighted pushes
across the population, a strategy called the population
vector algorithm (PVA; Refs. 150–153). To calibrate the
PVA, a vector containing each neuron’s preferred direc-
tion is first estimated from neural responses recorded
during actual or intended movements (see sect. 5.4). To
decode the intended movement at each timestep (where
a timestep might span tens to hundreds of milliseconds),
then, the vector of preferred directions is scaled by the
neurons’ normalized firing rate and summed to produce a
population vector that represents the decoder’s output.
The standard PVA has two clear drawbacks: First, if the
neurons’ preferred directions do not uniformly sample
the dimensions being controlled by the BMI, the PVA’s
output is biased (154, 155). Second, decoding relies on
neural data from just a single moment in time, which can
result in unreliable decoding of intended movement.

An alternate decoding approach is optimal linear esti-
mation (OLE), which, unlike the PVA, does not solely rely
on assessing direction tuning at the level of individual
neurons. Rather, the approach uncovers the best linear
relationship between movement variables and neural
responses across the entire population (154–157). A
standard implementation of OLE consists of decoding
activity over single time points after smoothing the firing

rates (single-timestep OLE; Refs. 20, 122, 154, 158–160).
One variant of single-timestep OLE first estimates the
neurons’ tuning properties (20, 154, 158, 159) similarly to
the PVA but with the advantage of correcting for poten-
tial asymmetries in the distributions of preferred direc-
tions. A potentially more powerful application of OLE
uses multiple timesteps of neuronal activation to gener-
ate an output, with each neuron ascribed a different
weight at each time point (FIGURE 6B) (22, 122, 157,
161–165). This multitimestep approach, referred to as
Wiener filtering, has been shown to yield robust closed-
loop cursor control in monkeys (122). Wiener filtering
can also be augmented to include a nonlinear output
stage (the Wiener cascade), which improves decoding
of muscle activity for FES-based BMIs (166, 167). The
highest-performing BMIs for robotic arm control by peo-
ple with paralysis have relied on single-timestep OLE
(20, 160).
Another popular linear decoding approach is the

Kalman filter (162, 168, 169), a standard engineering
approach frequently used in guidance and control appli-
cations. In BMIs, Kalman filtering aims to improve decod-
ing of motor intent from neural activity by leveraging an
additional source of information: the dynamics of the
movements themselves. In the real world, kinematics
and other movement variables do not arbitrarily change
from timestep to timestep but rather are smooth and
change gradually. The Kalman filter leverages this
smoothness through a recursive approach, in which
prior knowledge of the system’s state (previously
decoded values of the movement variables) is inte-
grated with noisy measurements of the neural activity at
the current timestep to produce an updated estimate of
the system’s state. In practice, most BMIs based on kine-
matic Kalman filters model both the movement dynam-
ics themselves (the state transition model) and the
mapping from movement variables to neural activity (the
observation model) as linear transformations (162, 169).
In its simplest incarnation, the Kalman filter can be
reduced to two distinct linear transformations: exponen-
tial smoothing in time and a dimensionality reduction
stage that maps neural activity onto the decoded
movement variables (FIGURE 6C) (170). In this sense,
the standard Kalman filter is not drastically different
from the single-timestep OLE, except that the degree
of smoothing in the Kalman filter is optimized to match
the dynamics of the movement variables being decoded,
rather than chosen by hand or separately optimized.
The highest-performing clinical BMIs for communica-
tion and cursor control applications to date have used
the standard Kalman filter (35, 37, 38). Several variants
such as switching (171), unscented (172), Gaussian pro-
cess, and discriminative (173) Kalman filters aim to
relax the linear and Gaussian assumptions of the state
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transition and observation models. Additional appro-
aches have included particle filters (172, 174, 175) and
point process filters (64, 176–179), which are similar in
spirit to the Kalman filter but use more flexible model-
ing assumptions that may better match neural and be-
havioral data.
Given the exciting progress in machine learning and

artificial intelligence over the past decade, neural net-
works are emerging as a particularly promising avenue
for improving BMI performance. Although early tests of
BMIs using neural network decoders did not show
marked advantages over their linear counterparts (161,
164), more recent tests show promise (113, 130, 180–
182, 440–443). Indeed, neural network-based BMIs
yield comparable closed-loop performance as do
state-of-the-art linear approaches (130, 183) but offer
the potential for dramatically improved robustness to
changes in recording conditions over time (130). In
closed-loop simulations, neural network decoders
have also achieved substantial improvements by incor-
porating information about the task being performed
to dynamically augment movement trajectories (184).
Additionally, although the performance of linear
decoders has steadily improved through specific opti-
mizations for closed-loop control (discussed in sect.
6.1), such efforts have not yet been applied to neural
network-based BMIs and may result in substantial per-
formance improvements.
Although BMI decoders based on strictly representa-

tional models have yielded remarkable BMI control,
efforts are underway to examine whether incorporating
neuronal dynamics can further improve performance
(reviewed in Ref. 108). As detailed above, a main tenet
of the dynamical systems view is that neuronal
responses in motor cortex evolve over time in orderly
and predicable ways and these dynamics do not nec-
essarily relate in straightforward ways to the movement
variables. However, taking this underlying structure
into account may allow decoders to better map neuro-
nal activity onto movement parameters. One strategy
consists in extending the Kalman filtering approach,
which traditionally models the dynamics of the
observed movement variables, to model the unob-
served dynamics of the neural population [the neural
dynamical filter (NDF); Refs. 108, 122, 185, 186]. In mon-
key experiments, using the NDF to model neural popu-
lation dynamics led to improved online performance
over standard Kalman filtering, single-timestep OLE, or
Wiener filtering (122). The NDF is based on the stand-
ard Kalman filter and thus relies on simple linear mod-
els of neural population dynamics. Further decoding
improvements may be achieved through nonlinear
modeling, as demonstrated in offline settings using
neural networks (108, 113, 121, 182, 440–442).

5.3. Decoding Architectures for Discrete Variables

A fundamentally different approach consists in decoding
one among a discrete set of actions—reaching to a spe-
cific end point, move versus stop, click versus no click,
pinch grasp versus power grasp versus no grasp—from
neural activity. This strategy consists in first building a
library of patterns of neural activity associated with each
action. Detection of a stored pattern then triggers the
associated action. One challenge of discrete decoding
is the inherently dynamic nature of neural activity.
Because neural activity related to a specific action
evolves over time, the corresponding activity pattern for
that action will depend on when activity is sampled. A
straightforward and effective strategy to sidestep this
challenge is to pace the approach by instructing the
user to initiate an action at particular times and decoding
at those specific times (100, 187). In one study employing
this strategy, monkeys planned movements to one of a
fixed set of targets at prespecified time points controlled
by the experimenter (187). The decoder consisted of a
statistical model associating patterns of neuronal activity
to each potential target. On any given trial, an action
was selected if the observed activity more closely
resembled activity patterns associated with that action
than patterns associated with other actions. Although
this strategy resulted in high performance, a key draw-
back of the fixed-pace approach is that it assumes
knowledge of when the user wants to use a device and
is therefore only applicable to tasks that can be paced.
This approach can be extended to user-defined self-
pacing by implementing a separate state estimator,
operating on a sliding window of neural activity, that
determines transitions between baseline, planning, and
execution states (188).

A common approach to discrete decoding is to use
linear discriminant analysis (LDA), a dimensionality
reduction technique like principal components analysis
(PCA). Unlike PCA, however, LDA does not attempt to
find reduced dimensions that capture as much of the
variability in the neural activity as possible. Instead, LDA
maximizes the distance between patterns of neural ac-
tivity associated with different actions within a low-
dimensional space and then finds boundaries within that
space to best separate activity patterns from different
classes. LDA has been used to select targets during typ-
ing (34, 36, 149), to detect movement and stopping
states (189, 190), and to classify movement goals (17).
An alternative architecture for discrete classification is

the K-nearest neighbors (KNN) algorithm (86). Like LDA,
KNN relies on the notion that patterns of neural activity
that belong to the same class are close to each other in
some multidimensional space. However, KNN classifies
a new pattern by finding the K most similar patterns
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(nearest neighbors) in a training data set, where K is a
parameter chosen by the user. The new pattern is
assigned to the class that has the most neighbors. KNN
is a nonparametric method that makes fewer assump-
tions about the statistical properties of the data than
LDA. KNN has been used to decode hand shape from
posterior parietal cortex as a person with paralysis
played rock-paper-scissors (and its extension, rock-pa-
per-scissors-lizard-Spock) (86). Additionally, combining
recurrent neural networks with KNN classifiers to
decode imagined handwriting achieved state-of-the-art
communication performance (4).
A common architecture to continuously decode dis-

crete actions is the hidden Markov model (HMM; Refs.
38, 191, 192). HMMs are probabilistic models that esti-
mate the probability of being in one of a set of states at
any given time point. HMMs for neural state classifica-
tion have two components: an “emission” model, which
determines the probability of neural observations given
each discrete state, and a “transition”model, which des-
cribes the probability of transitioning between states. To
produce an estimate of the current state, HMMs can
weight two sources of information: the likelihood of tran-
sitioning into each state based solely on the identity of
the previous state and the likelihood of being in each
state based on how consistent the observed neural ac-
tivity is with the emission model for that state. The state
transition model helps the HMM avoid transitions caused
by spurious fluctuations in the neural activity. With these
two components, HMMs are broadly analogous to
Kalman filters, except that the unobserved variable
being modeled is a discrete state rather than a con-
tinuous movement parameter.

5.4. Calibration of Biomimetic Decoders

Two broad strategies have been traditionally used to
build BMI decoders: Biomimetic approaches attempt
to mimic the brain’s interaction with the native limb,
whereas adaptation-based approaches implement a
quasi-arbitrary mapping between neural activity and
movement and capitalize on the brain’s ability to adjust
its activity patterns based on feedback during online
BMI control. Biomimetic strategies have achieved the
highest-performing BMIs to date, whereas nonbiomi-
metic strategies have revealed insights into how and
how much the brain can learn (reviewed in sect. 6.2).
Biomimetic and adaptation-based strategies are not
mutually exclusive and are likely to ultimately comple-
ment each other (193).

To calibrate a biomimetic decoder in an able-bod-
ied subject, e.g., a monkey, neuronal activity is moni-
tored as the animal observes preprogrammed
movements of a cursor or robotic arm (and keeps its

arm still) or moves its arm to control the cursor or per-
form a manual task (194). Recorded neural activity is
then mapped onto the observed or performed move-
ments with one of the decoding models described
above (PVA, OLE, Kalman filter, etc.). The two calibra-
tion approaches have different advantages and disad-
vantages with regard to clinical relevance (194, 195):
Requiring the monkey to keep its arm still prevents it
from receiving somatosensory feedback (which would
not be present in paralyzed subjects). However, it also
forces the monkey to avoid generating patterns of
neural activity that would normally drive movements
(paralyzed subjects have no such constraint). Allowing
the animal to move its arm features more natural con-
trol signals but also sensory feedback. In studies with
paralyzed participants, decoders are generally built
from neuronal responses collected as the participant
observes movements of the end effector (cursor, vir-
tual robotic arm, or physical robotic arm) and attempts
to mimic the observed movements.
Although observation-based and movement-based cal-

ibration with intact animals each have their advantages
and disadvantages, the two strategies may ultimately be
equally successful. Indeed, the two calibrations were
implemented with a partially paralyzed human participant
who retained movements of her fingers, and the two cali-
bration procedures yielded similar performance (35, 38),
echoing results with monkeys (196, 197). In fact, monkeys
often choose to stop moving during closed-loop brain-
computer interface (BCI) control, even when the underly-
ing decoders were trained with physical movements (161,
163, 168), suggesting that neuronal activity during physical
movements and attempted or imagined movements
show similarities that can be leveraged by BMI decoders
(197).

6. FROM OFFLINE DECODING TO ONLINE
PERFORMANCE

Over the last decade or so, the quality of the prosthetic
control achieved via brain signals has steadily improved.
For example, in cursor control and communication, clini-
cal BMIs have achieved two- to threefold improvements
in performance (35, 38). Surprisingly, decoding architec-
tures have remained largely unchanged over this period.
What factors, then, have driven the performance
increase? The answer lies in a shift in focus from offline
algorithmic innovations to online BMI control, in which
intended movements are decoded in real time and the
user can observe the decoded movements. Naively,
one might expect the decoding problem to generalize
from offline to online: decoders that are best able to
reconstruct movements based on neural activity offline
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would be expected to achieve the highest performance
online as well. In practice, however, offline reconstruc-
tion accuracy has limited correspondence with online
decoding performance. For example, decoding from a
population of neurons with an asymmetric distribution of
preferred directions leads to biased decoding with the
PVA relative to single-timestep OLE, as noted above.
Although these biases are prominent in offline recon-
struction, however, they often have little impact on
online performance because users are able to adapt
to systematic errors in the decoded movements (154,
198). Similarly, whereas offline reconstruction can be
improved by binning spikes with large windows (e.g.,
150 ms) to reduce noise, smaller bins (e.g., 20 ms) yield
higher online performance by allowing the user to make
rapid corrections (199), which has led to an emphasis on
real-time BMI architectures that minimize the latency
between neural signals and movement of the end effec-
tor (35, 196).
Accordingly, selecting algorithms for online decoding

based on offline reconstruction accuracy is ill advised.
As a case in point, in an early comparison of Wiener and
Kalman filters for cursor control—both optimized off-
line—the Kalman filter yielded higher online perform-
ance and faster movements (162), which likely
cemented this decoder’s place as the performance
benchmark (35, 149, 196, 200). Subsequent analysis
revealed that the advantage of Kalman over Wiener fil-
ters may have been an artifact of offline optimization:
Wiener filters that can leverage long windows of neu-
ral data may introduce long delays between changes
in neural signals and changes in movement output,
which would limit the speed of movement initiation
and the ability to perform rapid feedback corrections
(122, 165). When Wiener filters are properly optimized
by restricting window lengths, they outperform
Kalman filters and single-timestep OLE (122).

6.1. Optimizing Decoders for Closed-Loop
Performance

A key insight driving the recent improvements in BMI
performance has been the recognition that the patterns
of neural activity that are engaged during online BMI
control may be substantially different from the patterns
engaged when subjects move their native arms [mon-
keys (153, 196, 201, 202)] or when they attempt (or imag-
ine) movements to follow preprogrammed movements
of an effector [monkeys and humans (35, 200, 203)]. In
light of these differences, decoders are often initially
calibrated through an offline optimization process (as
described in sect. 5.4) and then recalibrated using data
collected during online control. One strategy—known as
orthoimpedance—consists in providing the subject with

assistance during online control, such that the decoder’s
output is modified by attenuating components of the
control signal that do not point toward the experi-
menter-defined target (9, 20, 24). Attenuating these
error components effectively serves as an online assist
to facilitate BMI control based on an initial, potentially
flawed decoder. The neuronal activity collected during
this assisted online control then serves as a training data
set to produce a recalibrated decoder. An alternative
and complementary approach—dubbed intention esti-
mation—attempts to infer the subject’s intent from neu-
ronal activity monitored during online control (203).
When a BMI is used to navigate between predefined tar-
gets, for example, in a reaching or a cursor control task,
one typically assumes that the subject intends to move
the effector straight to the target. During online control,
the actual decoded output may be noisy, resulting in a
mismatch between intended movement and decoded
movement. However, the inferred intention applied post
hoc can be used to produce a recalibrated decoder,
leading to a substantial improvement in subsequent
online performance (35, 196, 200). Intention estimation
can be implemented in a variety of ways (35, 153, 196,
200, 203), but these lead to similar performance (203).
Perhaps counterintuitively, intention estimation has
been shown to provide benefits even when building
decoders based on kinematic and neuronal activity col-
lected during native arm control (in monkeys) (201). That
is, a better online decoder can be achieved by largely
ignoring the actual movements of the native arm and
instead calibrating the decoder based on inferences of
what the monkey “intended” to do with its arm. During
native arm control, the arm does not necessarily move
directly to a target but instead may take a curved trajec-
tory or move off the target axis because of motor noise.
Iteratively updating a decoder during online control can
achieve high performance within minutes, even if the de-
coder begins from an arbitrary or uninformed starting
point (173, 204, 205). After a short period, the decoder
stabilizes, having achieved a solution that accurately
infers user intent (205).

In online control, BMIs face a trade-off between the
ability to produce rapid movements and allow fast cor-
rections and the ability to move precisely and hold still
when needed. Two parameters that define this trade-off,
and thus the overall feel of the BMI, are the degree to
which neuronal activity is smoothed, which determines
whether the decoder’s output changes rapidly or gradu-
ally in response to changes in neural firing patterns, and
the gain or speed scaling, which determines the conver-
sion between changes in decoder output and changes
in the effector movements (203). Less smoothing allows
for rapid changes in the decoder’s output but leads to
increased sensitivity to small fluctuations in neural
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activity that may be noise. Higher gains allow the user to
quickly move an effector across a workspace but may
also amplify noise, thereby making it difficult to hold the
effector still (206). Although higher gain and lower
smoothing allow for fast movements and quick adjust-
ments, lower gain and higher smoothing lead to more
stable estimates of intended movements and improved
stopping. Gain and smoothing can be adjusted in a prin-
cipled manner based on task demands and user-specific
latencies, leading to improved performance (207).
Additionally, some aspects of this trade-off can be
addressed by explicitly identifying brain states associ-
ated with stopping (190), scaling neuronal output nonli-
nearly to suppress baseline fluctuations and enhance the
dynamic range of the decoded output (207), or attenuating
speeds when jitter is detected (208). Finally, neural popula-
tion dynamics may provide more principled methods to
smooth data. For example, recurrent neural networks can
model the rich and complex temporal dynamics of neural
activity, and this knowledge can be used to reject features
of neural activity that are inconsistent with the learned dy-
namics. In offline settings, this denoising approach has
been shown to enable substantial improvements in decod-
ing accuracy over smoothing using just a single-timestep
OLE decoder (113), while also avoiding the fixed-smoothing
restrictions imposed by standard Kalman orWiener filters.
A challenge that currently limits online performance is

the inability to collect sufficient data to calibrate
decoders that generalize. Indeed, the relationship
between neural activity and behavior can be context
and task dependent (209–212). For example, the rela-
tion between neural activity and kinematics can change
depending on whether objects are present in the work-
space (209) or even on the identity of the objects (212).
One approach to achieve a robust decoder is to cali-
brate across different task contexts (160) over multiple
sessions (113, 130), or even across multiple subjects
(213).

6.2. Neural Adaptation and Learning

As outlined above, BMIs often adopt a biomimetic strat-
egy that exploits the way the brain naturally controls the
limb. A separate category of approaches places less em-
phasis on the match between an initial decoder and
native arm control and instead leverages adaptation of
the nervous system—and, potentially, parallel adaptation
of the decoder—to improve performance over time. In
early BMI studies with monkeys, experimenters would
often introduce a context switch after decoder calibra-
tion (e.g., removing a manipulandum that the monkey
used during calibration) before beginning online control,
which required that the monkey find an alternate strat-
egy to generate the patterns of neural activity required

to control the decoder. Despite this, monkeys were able
to learn to perform the task (100, 153, 161, 214).

More recently, BMIs have been used to probe the
capabilities, limitations, and timescales of neural adapta-
tion. In one example, monkeys learned to control an on-
screen cursor using a fixed but arbitrary mapping (215).
Over the course of days to weeks, the monkeys gradu-
ally shifted from being completely unable to use the cur-
sor to achieving near-perfect performance. During this
time period, the relation between individual neurons’ ac-
tivity and the cursor’s movements (i.e., the neurons’ tun-
ing) gradually stabilized. The monkeys could also learn
to use a second arbitrary decoder over the course of
days, while maintaining performance with the first de-
coder. This work provides compelling evidence of the
flexibility of the motor cortex to learn to generate and
consolidate new patterns of neural activity.
A recent series of studies invoked the concept of neu-

ral manifolds to systematically interrogate constraints on
the brain’s ability to generate new patterns of neuronal
activity (216–218). Monkeys were trained to use decoders
that were built by first mapping neural activity onto a low-
dimensional manifold and then mapping this manifold ac-
tivity onto the movements of a cursor. The experimenters
then perturbed the relation between neural activity and
cursor movements in two systematic ways: 1) perturba-
tions that only affected the second mapping, i.e., that pre-
served the mapping from neural activity onto the
manifold but changed the relation between manifold ac-
tivity and cursor movements (within-manifold perturba-
tions), and 2) perturbations that required the monkey to
generate patterns of activity that were not contained in
the neural manifold (outside-manifold perturbations).
Within a timescale of minutes to hours, monkeys could
readily learn to control the cursor after within-manifold
perturbations but were much slower to learn outside-
manifold perturbations (218), pointing to manifold struc-
ture, presumably reflecting the inherent circuitry of the
nervous system, as a fundamental constraint on the
brain’s ability to produce patterns of neural activity.
Furthermore, even for within-manifold perturbations, the
monkeys did not reshape their activity within the neural
manifold itself. Instead, monkeys continued to generate
the same patterns of activity but associated this activity to
correspond to different intended movements (216).
Subsequent studies of long-term learning demonstrated
that outside-manifold perturbations could be learned
over the course of days or weeks, and this learning corre-
sponded to the emergence of new patterns of activity
(217). These studies demonstrated that the brain can
much more readily learn to produce some patterns of
activation than others and that dimensionality reduction
techniques can be used to distinguish easy from hard
patterns.
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7. LONGEVITY AND STABILITY

Intracortical BMIs necessitate a craniotomy and implan-
tation of electrode arrays in the brain. For that reason,
the system should be sufficiently robust to last through
the user’s lifetime so that repeated surgeries are not
necessary. Although compelling BMI performance has
been achieved using intracortical electrodes that last for
years with minimal complications (219), neural interface
recording quality and stability face several challenges.
The principal challenge is that the ability to monitor neu-
ronal activity degrades progressively—and sometimes
critically—because of tissue reaction, degradation of the
implant, or failure of the connector (220, 221). Electrode
impedances decrease on the timescale of months, as do
the number and amplitude of observed action potentials
(221). In addition to changes in recording quality, electro-
des also exhibit changes in the specific neurons being
monitored within and across days, due mostly to small
movements of the electrodes relative to the surrounding
tissue (128–130).
As noted above, MUAs and LFPs, which reflect the ag-

gregate activity of neurons around the electrode, are far
more stable than individually sorted spikes and are often
accessible on electrodes with no discernible action
potential waveforms. These sources are thus more ro-
bust to degradations in signal quality. Hybrid decoding
strategies that leverage both signal types have demon-
strated high-performing control from intracortical arrays
with signal quality that may once have been considered
too poor for BMIs (35, 38, 144) and may be helpful in
extending the lifetime of BMIs.
A commonly held view is that implanted devices with

less spatial precision [e.g., electrocorticography (ECoG)]
may have advantages over intracortical interfaces, in
terms of either stability or longevity. Notably, however,
the performance of intracortical interfaces, even 2–3 yr
after implantation, remains severalfold higher than the
highest-performing alternatives (20, 35, 38, 160). As
described below, the robustness of intracortical BMIs
continues to improve, and emerging methods, described
next, may lead to ever more robust control.

8. DECODING STRATEGIES TO MITIGATE
INSTABILITIES OF THE NEURAL
INTERFACE

Standard practice to compensate for instabilities in the
signal has been to recalibrate the decoders, once or
several times per day (5, 9, 18, 20, 35, 37, 38, 160).
However, this intermittent recalibration not only inter-
rupts device use but also typically requires third-party
intervention. In addition, frequent changes in the

decoder may require the user to adapt to the change, as
if suddenly having to use a different tool.
Multiple strategies have been developed to mitigate

instabilities and avoid supervised recalibration (222).
One approach consists in automatically and continuously
recalibrating the BMI decoder during ongoing device
use (36, 223–227). For example, recent “semisuper-
vised” approaches have been developed to recalibrate
decoders on the fly, using a retrospective analysis of
data collected during the subject’s normal use of the BMI
(36, 225). This process mimics the intention estimation
process described above. For example, in a setting with
distinct targets, the neural activity preceding movement
to a given target likely reflects the subject’s intention to
move toward that target. This knowledge can be used to
update the decoder, much like the supervised online
recalibration procedures described above. In studies
with people with paralysis, semisupervised recalibration
represents the state of the art, conferring stability across
months of BMI use. However, the semisupervised
approach has been applied only to simple cases in which
the user’s intent can be deduced post hoc and may not
scale to more complex, naturalistic settings.
A promising and potentially complementary approach

consists in training neural network decoders with many
sessions distributed over extended periods of time, dur-
ing which the decoder is exposed to a wide variety of re-
cording conditions (130). This approach is based on the
idea that, although neural recordings may be unstable,
the specific configuration of observed neurons at a
given moment may be similar to a previously observed
condition. Neural networks are particularly valuable for
such applications, as they can learn and simultaneously
carry multiple mappings between neural activity and
intended movements. In experiments with monkeys, this
approach has yielded impressive improvements in
robustness, maintaining performance under conditions
that would lead to catastrophic failure with standard
decoders. One challenge will be to adapt such an
approach for clinical applications, where collecting such
large, supervised data sets constitutes a substantial
burden.
A separate class of approaches aims to leverage the

stability of the manifolds and dynamics underlying neu-
ral population activity (FIGURE 7) (108, 113, 186, 222,
228–232). As described above, manifolds are a prop-
erty of the underlying network rather than any individual
recorded neurons and thus do not require maintaining
recording of a specific set of neurons. Importantly, mani-
folds exhibit a consistent relationship with behavior
across month- to year-long timescales that is independ-
ent of neuronal turnover (108, 113, 233). Thus, decoders
trained to relate manifold activity to behavior may not
require recalibration. A separate challenge relates to
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manifold alignment, i.e., mapping changing neural activ-
ity onto the stable underlying manifold to maintain ro-
bust decoding (222, 228). Although this process is
straightforward if a supervised data set is available (i.e.,
when both the neural activity and the subject’s behavior
have been monitored), a supervised recalibration step is
necessary for each realignment. In that case, since
supervised data are available, there may be little benefit
to realignment over simply calibrating a new decoder,
save the possibility of achieving a high-performing de-
coder with less data through realignment. Instead, sev-
eral approaches are being developed to periodically
update the neural activity-to-manifold relationship in an
automated, unsupervised fashion (222, 228–232). One

stabilization approach, recently tested with monkeys,
exhibited stable online control in the presence of both
spontaneously occurring and imposed instabilities over
the course of a 5-day period (229). Without stabilization,
the monkeys were unable to adapt to these instabilities,
indicating that manifold stabilization can overcome pro-
gressive changes in the neuronal sample that would oth-
erwise substantially degrade BMI performance.

9. PERFORMANCE METRICS FOR BMIs

The field of intracortical BMIs has been steadily moving
beyond proof-of-concept demonstrations and toward

FIGURE 7. Leveraging manifolds and dynamics to improve brain-machine interface (BMI) stability. A: recording locations with a 24-channel v-probe in
monkey primary motor cortex (M1) from 44 recording sessions spanning 5mo. CS, central sulcus; Arc. sp., arcuate spur; PCd, precentral dimple. B: super-
vised alignment allowed recovery of a single neural manifold, with consistent trajectories across 5mo. Each trace is from a different session, with colors
for different 2-dimensional reach directions (reaches shown at bottom). C: decoding performance with/without manifold alignment. Each dot/trace repre-
sents an individual recording session. Decoding from observed activity with the 24-channel probe yielded poor estimates of hand velocity. The neural
manifold produced by LFADS achieved substantial improvement in accuracy for all 44 sessions, even though a single fixed linear decoder was used for all
sessions. GPFA, gaussian process factor analysis; LFADS, latent factor analysis via dynamical systems; VAF, variance accounted for. A–C taken from Ref.
108, with permission from Journal of Neuroscience. D: using a simple supervised method to align Utah array data to an underlying manifold decoder
across 2 yr of data (blue) consistently maintains decoding performance to within 5–10% of a daily-recalibrated decoder (gray). CCA, canonical correlations
analysis. Adapted from Ref. 233, with permission from Nature Neuroscience. E: manifold stabilization can maintain and recover online BMI performance
without supervised recalibration. Success rate (top) and acquisition times (bottom) over the course of a 5-day experiment in which synthetic instabilities
were periodically introduced. NC, not computed. Adapted from Ref. 229, with permission fromNature Biomedical Engineering.
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clinical translation. At the same time, large industry
efforts—Neuralink, Paradromics, Synchron, Kernel,
Facebook, Iota, and Microsoft, among others—are devel-
oping BMIs that span all levels of invasiveness toward a
wide range of commercial applications. Given these
trends, the ability to compare performance across
research groups and interfacing modalities is essen-
tial for understanding the capabilities and relative
merits of different approaches and for tracking pro-
gress. At present, however, such comparisons are
hampered by inconsistent metrics and reporting
standards. Thus, a crucial aspect of the field’s matu-
ration is the development of standardized metrics
that generalize across experimental paradigms.
Performance metrics generally divide into two

classes: functional metrics aim to assess real-world
capabilities (as would be important to an end user),
and control quality metrics gauge more fundamental
aspects of BMI control (as might be useful for detailed
comparisons of decoder performance or information
throughput). The advantage of functional metrics is
that they typically measure performance on real-world
tasks and are thus intuitive. They also have multiple
disadvantages. One is that they are application spe-
cific and thus may not generalize to other task
domains. A second is that, by evaluating end-to-end
performance of a complex system, it may be hard to
pinpoint the key factors driving performance (interface
modality, decoding or stimulation strategies, etc.),
which could hamper researchers’ ability to build off of
previous work. In contrast, control quality measure-
ments allow for fine-grained evaluation of BMI per-
formance, but they are hard to extrapolate to real-
world tasks. Thus, control quality measurements may
be more useful when comparing BMIs that have simi-
lar functional capacity and to disentangle the factors
that drive performance.
Regardless of the assessment type, performance reli-

ability is a crucial consideration for any assistive technol-
ogy yet has often been underemphasized in BMI
research. As discussed above, performance might vary
substantially across days or even over the course of
hours, sometimes necessitating intervention to restore
control. As a result, single-time point evaluations, best-
case reporting, or protocols that allow intervention from
a technician may paint a misleading picture of the poten-
tial clinical utility of a BMI, and evaluation standards that
emphasize reliability are critical to the field’s transla-
tional efforts.
Below, we summarize current and proposed assess-

ment standards and describe examples in which metrics
have facilitated rigorous quantitative comparisons across
studies and interfacing modalities. We also summarize
best practices for quantifying performance reliability.

9.1. Functional Metrics

For BMIs aiming to restore upper limb function, func-
tional metrics have been adapted from standard assess-
ments for patients who have had a stroke or spinal cord
injury. One such test is the box and blocks test (237),
which provides a rapid but somewhat limited assess-
ment of grasping and object transport. In this test, sub-
jects are tasked with picking up small blocks from one
compartment, transporting them over a barrier, and
releasing them into another compartment. The task is
scored based on how many blocks can be transferred
within a minute. The box and blocks test and variants
have been used to assess restoration of grasp via brain-
controlled FES (238) and robotic arms (6, 160). Another
common test is the Action Research Arm Test (ARAT;
Ref. 239), which assesses an individual’s ability to under-
take several activities of daily living, including grasp,
grip, and pinch, as well as gross arm movement. The
ARAT has also been used to gauge performance of
brain-controlled FES (238) and robotic arms (6, 20, 160).
In the latter studies, pinch and gross arm movement
tasks were removed, as these were beyond the capabil-
ities of the BMI. A third common test, the Graded and
Redefined Assessment of Strength, Sensibility, and
Prehension (GRASSP), was developed to assess upper
limb impairment for individuals with tetraplegia and
includes tests to assess grip strength, sensation, and the
ability to generate different grasp types (240). GRASSP
has been used to evaluate performance of brain-con-
trolled FES (18, 238).

As noted, clinical tests are often simplified because of
constraints of the BMI. For example, fine movements
and grasping small or noncompliant objects can be diffi-
cult with current robotic prostheses. Tests that require
these capabilities are thus eliminated when evaluating
the performance of BMI-controlled robotic arms. As
BMIs evolve, an additional performance metric will be
the degree to which standard clinical assessments can
be fully implemented.
As BMIs become more complex, it will be hard to dis-

entangle the factors that contribute to performance
improvements using functional measures alone. This
can be seen in current communication BMIs (4, 38, 213,
241, 242), where improvements in functional perform-
ance (correct words/min) can reflect a combination of
better decoding of neural intention and better machine
learning language models that add word correction and
word or phrase completion to predict a message’s con-
tent based on context. The former might reflect progress
in overcoming fundamental neural interfacing limita-
tions, whereas the latter is not specific to the BMI.
Additionally, complicated machine learning tools can
make it easy to “hack” limited functional performance
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metrics without generalizing to real-world use. For high-
DOF BMIs, these same issues will become especially im-
portant if the field begins to adopt artificially intelligent
controllers—as are becoming common in robotics—so
that low-level control details can be offloaded onto algo-
rithms that are largely independent of the brain inter-
face. In such situations, separate control quality
assessments may be critical for documenting neu-
rally driven performance gains.

9.2. Control Quality Metrics

A critical component of reaching is the ability to translate
the end effector between locations and accurately stop.
This aspect of point-to-point reaching movements has
been assessed with metrics based on Fitts’s law, which
describes how movement times scale for reaching
movements of varying difficulties in able-bodied individ-
uals (149, 206, 243). To quantify the difficulty of a given
movement, Fitts’s law provides a simple measure, the
index of difficulty (ID), which is a function only of the dis-
tance to a target and the size of that target. Empirical
studies in able-bodied subjects demonstrate that move-
ment times generally increase in proportion to the ID
(243). ID values are in units of Fitts’s bits, and perform-
ance in point-to-point movement tasks often combines
the rate of target acquisition and the difficulty of acquir-
ing those targets to yield an index with Fitts’s bits per
second as units. TABLE 1 demonstrates how Fitts’s law
can be used to compare performance across BMI cursor
control studies with people with tetraplegia (updated
from Ref. 35).

The advantage of Fitts’s law is that it provides an
avenue to quantify performance using simple point-to-
point reaching tasks, such as common center-out-and-
back reaching paradigms, thereby facilitating compar-
isons across studies. However, Fitts’s law suffers from

several limitations that limit its utility in evaluating BMI
performance. A major limitation is that there is no pre-
scribed hold time to consider a target successfully
acquired. Thus, in an extreme case, a BMI that quickly
and randomly drifted across a workspace could
achieve high performance without being under neural
control in any meaningful way. Another issue is that
BMIs often have particular failure modes (e.g., an
inability to reach specific targets), and it is unclear
how to factor failures into Fitts’s law-derived metrics.
Finally, signal-independent noise—relatively large for
slow movements and small for fast ones—typically
leads to movement times that do not follow Fitts’s law
(206). Because of the latter issue, the assumption that
movement times scale linearly with ID may be invalid,
which can confound performance comparisons across
tasks with different IDs.
An alternative method to evaluate control quality is the

grid task (10, 22, 38, 242, 244). In the two-dimensional (2-
D) case, the task divides a given workspace into a grid of
squares, and users must translate the end effector to the
target square and dwell to acquire or use an alternate
selection method (such as a neurally decoded “click”).
Although the spirit of the grid task is similar to Fitts’s law-
derived measures, an advantage is that it enforces a
higher degree of control precision because users must
avoid incorrectly selecting alternate targets. Thus, grid
tasks are replacing Fitts’s law-derived measures for quan-
tifying continuous control quality. Performance on the
grid task can be measured with achieved bitrate (10, 38,
242, 244, 246), which increases based on the user’s tar-
get acquisition rate and the difficulty of the task (grid reso-
lution). Finer grids can be used to test higher-precision
control, and dwell times can be optimized based on con-
trol quality to avoid incorrect selections. The use of bitrate
as a performance metric facilitates broad comparison,
including with commonly used communication tasks for

Table 1. Performance comparisons across clinical studies of cursor control

Study Interface
Motor Impairment

Etiology
Task Index of Difficulty,

Fitts’s bits
Fitts’s bits/s

Success
Rate, %

Gilja et al. 2015 (35) Intracortical (Utah array) ALS 2.28 0.93 95–100

Simeral et al. 2011 (149) Intracortical (Utah array) Brain stem stroke 2.28 0.27 95

Kim et al. 2011 (444) Intracortical (Utah array) ALS 2.15–2.36 0.16 45

Silversmith et al. 2021 (10) ECoG Brain stem stroke �3 0.49 (best)� 100 (best)

Wang et al. 2013 (377) ECoG Spinal cord injury 1.18 0.58�� 87 (best)

All studies measured performance in point-to-point movement tasks, allowing comparisons across interfacing modalities using Fitts’s bits per second.
Updated from Ref. 35. ALS, amyotrophic lateral sclerosis; ECoG, electrocorticography. �Task did not enforce hold times. ��Task required reduced con-
trol capabilities and precision relative to the other studies listed, as detailed in Ref. 35. Similar comparisons for studies with healthy monkeys have been
published previously [Gilja et al. 2012 (196)].
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EEG-based BMIs and with alternate tasks such as brain-
controlled handwriting (38, 242). TABLE 2 charts com-
parisons for selected high-performance BMIs spanning
various interfacing modalities and tasks (adapted from
Refs. 38, 242).
Control quality measurements become more chal-

lenging as BMIs scale to increasing degrees of freedom.
For multijoint control, quality can be assessed through
single-DOF tasks where users position individual joints
within prespecified acceptance windows (5). Alternatively,
for end effector control, sequence-matching tasks (20,
160) specify target postures that the user must match (end-
effector position, orientation, etc.). Task performance can
be quantified by completion times and path efficiency (i.e.,
the ability to achieve a straight-line path to target). These
measures are most useful for within-study comparison
(e.g., using different decoders or including sensory feed-
back, etc.). At present, the field lacks standardized metrics
to facilitate across-study or across-group comparisons of
high-DOF control. Additionally, several important aspects
of reaching and grasping, e.g., the ability to make curved
reaches in cluttered environments, the ability to track mov-
ing targets, etc., are not assessed by these measures.

9.3. Reliability

Reporting standards that assess reliability are critical for
assessing clinical utility because of the potential variabil-
ity of BMI control. An increasingly common practice is to

evaluate performance by creating a strict measurement
protocol a priori that specifies the sequence of events
when performing assessments (149). Such a protocol
might specify the number of measurements (e.g., num-
ber of evaluation sessions), how the BMI is to be cali-
brated, what to do in cases of failures, whether the BMI
can be recalibrated, and whether and how technicians
can intervene. If such protocols are followed and per-
formance on individual sessions is reported rather than
summaries, the variability in performance can be eval-
uated, which greatly increases confidence in reported
metrics.

10. SENSORY FEEDBACK FOR PROSTHETIC
CONTROL

10.1. The Importance of Somatosensation in
Everyday Life

When we interact with objects, we receive a barrage of
sensory signals from the hand that convey information
about the objects themselves—their size, shape, texture,
etc.—and about our interactions with them—contact tim-
ing, location, force, etc. (3, 251). Without these signals,
our ability to use our limbs, and in particular our hands,
would be severally impaired, as has been shown with
patients with peripheral neuropathies that have

Table 2. Performance comparisons across clinical studies of communication

Study Interface Task Participant
Motor Impairment

Etiology
Avg. Bitrate,

bps
Avg. ITR,

bps

Pandarinath et al. 2017 (38) Intracortical (Utah array) Point and click
(grid)

T6, T7, T5 ALS (2), SCI (1) 2.4 2.4

T5 SCI 4.2� 4.2�

Willett et al. 2021 (4) Intracortical (Utah array) Handwriting T5 SCI �6.18��

Silversmith et al. 2021 (10) ECoG Point and click
(grid)

B1 Brain stem stroke 0.71

Nijboer et al. 2008 (247) EEG P300 n = 4 ALS 0.08–0.32

Townsend et al. 2010 (246) EEG P300 n = 3 ALS 0.05–0.22 -

Pires et al. 2012 (248) EEG P300 n = 14 ALS (7), CP (5),
DMD (1), SCI (1)

0.05–0.43

Mainsah et al. 2015 (249) EEG P300 n = 10 ALS 0.01–0.60

Vansteensel et al. 2016 (250) ECoG Sequential speller n = 1 ALS 0.21

Performance measurements using a grid task facilitate comparisons to studies with different interfacing modalities and brain-machine interface (BMI) tasks.
�Single participant assessed with dense grid. ��Bitrate approximated with an empirical conversion factor (242). ALS, amyotrophic lateral sclerosis; CP, cerebral
palsy; DMD, Duchenne muscular dystrophy; ECoG, electrocorticography; EEG, electroencephalography; SCI, spinal cord injury; ITR, information transfer rate.
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destroyed their somatosensory input, both tactile and
proprioceptive. Indeed, these patients exhibit move-
ments that are slow and clumsy despite having intact
motor systems and report that all behaviors are effortful,
akin to running a daily marathon (252). Even milder sen-
sory deficits, produced for example by desensitizing the
fingertips with a local anesthetic, impair our ability to
exert an appropriate amount of force on objects (253) or
pick up small objects when vision of the contact points is
obstructed. To achieve a dexterous prosthesis will thus
require restoring not only movement but also the senses
of touch and proprioception, given their importance in
object interactions. Furthermore, somatosensation is
critical to our embodiment, the feeling that our bodies
are part of us. Indeed, deafferentation of a body part
leads to its disembodiment, and the real or perceived
afferentation of an artificial limb can lead to its embod-
iment (254–257); the pairing of the visual experience
of a part of our body touching something with the tac-
tile experience of touching it is critical to the embodi-
ment of that body part. Finally, touch plays a critical
role in affective communication. We touch the people
we love and seek to be touched by them (258). One
important and oft-overlooked consequence of limb
function is the loss of the ability to touch loved ones,
which only magnifies the psychological sequelae of
spinal cord injury (13).

10.2. The Neural Basis of Somatosensation

The palmar surface of the hand is innervated by
�17,000 nerve fibers that can be categorized into three
distinct classes, each sensitive to different aspects of
skin deformation (2, 259). Some nerve fibers, termed
slowly adapting, primarily track the time-varying depth of
indentation, whereas others, termed rapidly adapting,
respond primarily to changes in indentation. Most tactile
nerve fibers can only be activated when a small patch of
skin—their receptive field (RF)—is touched; the only
exceptions are Pacinian afferents, whose RFs can span
multiple digits and sometimes most of the hand. Pro-
prioceptive signals are carried primarily by nerve fibers
that innervate receptors in the muscles—spindles—and
fibers that innervate receptors in the tendons—Golgi
tendon organs (2). Tactile and proprioceptive signals
from first-order afferents are transmitted to the cuneate
nucleus (CN), located in the brain stem, which in turn
sends projections to the ventroposterior nucleus (VPN)
of the thalamus. VPN is the last stage of processing
before cortex, where somatosensory signals undergo
several more stages of processing (1). All tactile and pro-
prioceptive information (thus excluding thermoreception
and pain) is carried in the activity in these neural struc-
tures, but tactile signals remain segregated from

proprioceptive ones until intermediate to late stages of
cortical processing.

A key principle underlying somatosensory repre-
sentations is that of somatotopy (FIGURE 8). That is,
neurons that respond to stimulation of the hand are
adjacent to neurons that innervate the arm, which in
turn are near neurons that innervate the trunk. On
the other side of the hand representation is the face
representation. Even within the hand representation,
the digits are laid out systematically, with the thumb
lateral and anterior to the index, itself lateral and an-
terior to the middle finger, etc. (260). Proprioceptive
representations in cortex are also organized somato-
topically and generally follow their cutaneous coun-
terparts along the central sulcus (261).

10.2.1. Subcortical structures

Little is known about the response properties of neurons
in the cuneate nucleus (CN), the first recipient of somato-
sensory signals from the periphery. Traditionally, the CN
has been described as a passive relay station for affer-
ent signals, where no processing or even convergence
occurs. Some recent evidence from macaques suggests
otherwise, however (262, 263). Indeed, individual

FIGURE 8. Somatosensory neuraxis with possible targets of a neu-
ral interface for sensory feedback. Top left inset: somatosensory
cortex is organized somatotopically; the body map in somatosen-
sory cortex is much more clearly defined than that in motor cortex.
Top right inset: somatosensory cortex comprises 4 cortical fields.
Area 3a is proprioceptive, areas 3b and 1 are cutaneous, and area 2
exhibits both response properties.
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neurons seem to receive convergent input from multi-
ple classes of nerve fibers and exhibit response prop-
erties intermediate between those observed in the
nerve and those observed in cortex. The same seems
to hold for neurons in VPN, but the neural representa-
tions in CN and VPN have not been systematically
compared. Both CN and VPN are organized somato-
topically (264–266).

10.2.2. Somatosensory cortex

Located in the postcentral gyrus, somatosensory cortex
comprises four distinct cortical fields: Brodmann’s areas
3a, 3b, 1, and 2 (1) (FIGURE 8). Although these four corti-
cal fields are often referred to collectively as primary
somatosensory cortex, only area 3b meets the criteria of
a primary sensory area in terms of thalamic input and
cytoarchitecture (267). Neurons in area 3a exhibit exclu-
sively proprioceptive responses, neurons in areas 3b
and 1 exhibit exclusively cutaneous ones, and neurons
in area 2 receive convergent input from these two
streams of somatosensory information (1). The cutane-
ous stream of somatosensory cortex is organized hier-
archically, with area 3b at the bottom, area 2 at the top,
and area 1 in the middle. The size of receptive fields
increases and the response properties become increas-
ingly complex at higher processing stages. On the pro-
prioceptive side, area 3a is lower along the hierarchy
than area 2. Somatosensory cortex sends projections to
secondary somatosensory cortex and the parietal ven-
tral area, located in the lateral aspect of parietal cortex,
which contain high-level somatosensory representations
(1). Neurons in these areas tend to exhibit tactile and pro-
prioceptive responses, but the coding principles in these
areas remain elusive, so their relevance to neuropros-
thetics is uncertain.

10.3. Relative Merits of Different Somatosensory
Targets

For individuals with tetraplegia, stimulation of the soma-
tosensory nerves to convey sensory feedback—the pre-
ferred method for amputees—is not an option since the
connection between nerve and brain is compromised.
The most common target for electrical interfaces with
the central nervous system to restore somatosensation
is somatosensory cortex, which offers several advan-
tages. First, area 1 is located principally or entirely on the
crown of the postcentral gyrus, which makes it easily ac-
cessible with array technologies that are currently
approved for human use. Second, the well-defined
somatotopic organization of somatosensory cortex can
be leveraged to convey information about targeted
body parts, in particular the individual digits. Third,

somatosensory cortex is a large structure, which, in prin-
ciple at least, can be exploited to convey artificial feed-
back at a higher spatial resolution than the smaller
upstream structures. The main disadvantage of somato-
sensory cortex as a locus for somatosensory restoration
is that it is relatively high along the somatosensory hier-
archy. Indeed, whereas the pathway sketched out
above—called the medial lemniscal pathway—mediates
the conscious experience of touch and proprioception,
subcortical sensorimotor loops, for example spinal and
cerebellar loops, play a key role in the online control of
movement. Bypassing these loops may limit the efficacy
of interfaces with somatosensory cortex to guide motor
control.

The CN may also be a viable target for neural interfa-
ces. As is the case with somatosensory cortex, the CN is
organized somatotopically, although this somatopy is
not as well mapped out as its cortical counterpart (266,
268). A potential advantage of the CN is that individual
neurons carry more elementary signals about limb state,
e.g., the length of a single muscle, and of contact events,
deformations of a small patch of skin, than does cortex.
In principle, these elementary feature detectors might
be activated in combination to convey information about
more complex stimulus features. The more elaborate
response properties of cortical neurons may be more
difficult to tap into. Another advantage is that the CN is
the lowest structure along the somatosensory neuraxis
that is still above any spinal cord injury (thus a viable tar-
get for tetraplegic patients), so interfaces with the CN
bypass fewer sensorimotor loops than their cortical
counterparts. However, a neural interface with the CN
faces several major challenges. First, it is a very difficult
structure to access surgically (266, 269). Second, it is
very small (�20 mm3 in humans), thereby offering only
limited spatial resolution given the limits imposed by
electrical stimulation (see below). Third, it is close to vital
brain regions that, if damaged, can have severe conse-
quences, including death.
A neural interface with the VPN—intermediate

between CN and cortex—would also benefit from soma-
totopic organization (264, 265). A major advantage of a
thalamic interface is that this structure is commonly
accessed for deep brain stimulation, so the targeting
approaches and implant technologies are already in
place. Furthermore, VPN is not as vulnerable a surgical
target as the CN. In amputees, microstimulation of VPN
has been shown to evoke tactile sensations experi-
enced on the missing limb (270–272). However, a VPN
interface would also bypass important sensorimotor
loops and is a relatively small structure compared to
cortex (though larger than CN), so it is not clear that
the advantages of a thalamic interface outweigh the
drawbacks.
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10.4. Effect of Electrical Stimulation on Neuronal
Activity

Electrical stimulation involves the transfer of charge from
the electrode tip, where the metal is exposed, to the tis-
sue surrounding it, which in turn activates nearby neurons
by polarizing their membranes (273). There are two types
of processes involved: faradaic and capacitive. A faradaic
process consists in converting a metal ion into an ion in
electrolyte during the cathodic phase (reduction) and the
reverse in the anodic phase (oxidation). A capacitive pro-
cess involves rearranging ions around the electrode.
Typically, stimulating electrodes are composed of noble
metals (platinum or platinum/iridium) or iridium oxide
because these do not corrode, as they might otherwise in
the salt water solution of the brain.

Electrical stimuli typically consist of trains of square
pulses that are charge balanced (anodal and cathodal
currents are equal) to avoid an accumulation of charge
in the neural tissue, which is liable to damage the tissue.
Each electrical pulse evokes a volley of synchronous
spikes in a volume of neurons around the electrode tip
(274). Most spikes are initiated in axons, as these are

more sensitive to electrical stimulation than the cell
bodies and dendrites. At a first approximation, the prob-
ability of an electrical pulse evoking a spike in a given
neuron is inversely proportional to the square of the dis-
tance between the electrode tip and that neuron’s near-
est process to the electrode tip. That is, the current
required to excite a neuron will increase with the square
of the distance between the electrode and the neuron
(FIGURE 9A) (274). Because the nearest axon to the
electrode determines a neuron’s probability of activa-
tion, electrically activated cell bodies are diffusely dis-
tributed across the tissue, within a volume (275). Other
factors also affect the electrical excitability of a neu-
ron, including its morphology and myelination (276)
as well as the conductivity of the tissue (277).
Nonetheless, increases in the current amplitude will
lead to recruitment of a greater neuronal volume, with
the density of activated neurons decreasing progres-
sively with distance from the electrode tip (278). The
threshold current also depends on pulse duration,
with longer pulses requiring less current, but levels off
to a value called that neuron’s “rheobase current”
(FIGURE 9B). The excitability of a neuron can be char-
acterized by its chronaxie, which refers to the pulse
duration that yields a threshold current of twice the
rheobase current, typically between 100 and 400 ms.
The spatial pattern of activation is dependent not just

on the amplitude of ICMS but also on its frequency.
Indeed, sensitivity to stimulation increases (thresholds
decrease) as frequency increases up to �250Hz (279),
so a greater volume of neurons will be activated at
higher frequencies than at low ones (280).
The volley of spikes induced by an electrical pulse is

typically followed by a period of hyperpolarization that
can last tens of milliseconds (281–283) and is also
observed in downstream targets of the electrically stimu-
lated neurons (282).

10.5. Safety

Direct-current ICMS can be used to produce lesions,
which can then be used as landmarks to reconstruct the
locations in the tissue where neuronal recordings were
obtained. At sufficient intensities, even charge-balanced
ICMS can damage the neuronal tissue. The intensity of
an electrical stimulus can be expressed as the amplitude
of each pulse (measured in amperes) and by its duration,
both of which impact its total charge (in amperes per
second or coulombs) (284). Another important consider-
ation is charge density—measured in coulombs per unit
area—which is most predictive of the damage the tissue
might incur. ICMS at 20 mA—corresponding to 2 nC/
phase for a pulse duration of 200 ms and 200 mC/cm2

given the area of a typical electrode tip—applied daily

FIGURE 9. Biophysics of electrical stimulation of neuronal tissue.
A: radial distance of direct activation of neurons, that is, the amount
of current required to elicit a spike 50% of the time with a single
cathodal pulse of 0.2-ms duration as a function of distance from the
electrode tip. K, current-distance constant. B: amount of current at a
given pulse duration required to elicit a spike 50% of the time with a
single cathodal pulse. A chronaxie is the pulse duration at a thresh-
old current level of twice the rheobase current (Irh). Adapted from
Ref. 274, with permission from Journal of Neurophysiology.
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for months causes neuronal death when the stimulation
pulses are constant over minutes or hours (285).
However, ICMS does not seem to have an impact on the
tissue—up to 20 nC/phase—when it is interleaved with
periods of no stimulation (286). Although the depend-
ence of tissue damage on injected charge has not been
systematically characterized, ICMS amplitudes rarely
exceed 100 mA and pulse trains are typically limited in
maximum duration to avoid damage as a precaution.

10.6. Perceptual Correlates of ICMS

The design parameters for ICMS include the intensity
and frequency of pulse trains as well as the location
on the cortical sheet where they are delivered. As
might be expected, the evoked sensory experience
varies substantially with the parameters of stimulation.
In some cases, the relationship between ICMS param-
eter and some aspect of the evoked percept is
straightforward. In many cases, however, that relation-
ship is complex.

10.6.1. Location

Electrical stimulation of somatosensory cortex has long
been known to evoke tactile sensations. Indeed, searching

for epileptic foci, Wilder Penfield and colleagues (75)
showed that stimulation of the surface of the postcentral
gyrus evoked sensations that ranged from paresthesias to
naturalistic tactile sensations. Famously, stimulation at dif-
ferent locations evoked sensations referred to different
parts of the body, leading to the discovery of the somato-
sensory homunculus.

ICMS applied to somatosensory cortex, including
areas 3b and 1, leads to highly localized tactile percepts
(FIGURE 10). Indeed, somatotopic organization implies
that all the neurons in a given volume of somatosensory
cortex respond to a common patch of skin, i.e., these
neurons send a common message about where a touch
occurred. Their activation is thus interpreted by down-
stream structures as signaling the presence of a tactile
stimulus at that skin location and, accordingly, gives rise
to a sensation that is experienced there. The location of
the evoked percept coincides with the location of the
receptive fields of the neurons around the stimulating
electrode (287, 288). For a given electrode, the location
of its projected field—the patch of skin where an electri-
cally evoked sensation is experienced—is highly stable
over periods of months or years (289). The constancy of
these projected fields is due to the remarkable stability
of body maps in the somatosensory cortex of adults
(290). That projection fields are highly localized and
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systematically mapped over the cortical sheet can be
exploited to convey information about the location on
the prosthesis of contact with objects. Whereas the rela-
tionship between the location of the electrode in the
brain and the corresponding location of the projected
field is systematic and stable, stimulation at different
locations evokes percepts that also differ in other ways
as well (see below).

10.6.2. Intensity

Increasing the current delivered to the brain, by increas-
ing the amplitude of the pulse or its width, leads to an
increase in the magnitude of the evoked percept, a rela-
tionship that is approximately linear (FIGURE 11A) (289),
as long as the stimulus is sufficiently strong to evoke a
sensation. Indeed, pulse trains that fall below a certain
amplitude—the detection (or absolute) threshold—are
too faint to be reliably perceived. The detection thresh-
old can be measured by having a subject report in which
of two sequential intervals an electrical pulse train was
presented (chance performance is 50%). Stimulus ampli-
tudes are chosen such that some are expected to be
perceived and others not. The detection threshold is
defined as the stimulus amplitude that yields 75% per-
formance on the task. Detection thresholds vary widely
from electrode to electrode, ranging from �15 mA up to
50 mA or more (279, 289, 291). As alluded to above,
detection thresholds decrease with frequency and level
off at�250 Hz.

Another way to gauge sensitivity to electrical stimula-
tion is by assessing subjects’ ability to discern changes
in stimulus amplitude. In a typical assessment, subjects
are sequentially presented with a pair of pulse trains

and report which of the two was more intense. The just-
noticeable difference (JND)—the change in stimulus am-
plitude that yields 75% performance on this task—can
be used as a gauge of sensitivity to amplitude changes.
JNDs are on average �30 mA in monkeys (279),
whereas humans are more sensitive, yielding JNDs on
the order of 15 mA (289). As is the case with detection
thresholds, JNDs vary widely across electrodes. With
natural stimulation, JNDs increase in proportion to the
reference stimulus, a phenomenon known as Weber’s
law (292). With ICMS, amplitude JNDs do not scale with
the reference amplitude, suggesting that the variability
in ICMS-evoked neuronal responses does not increase
in proportion to the mean strength of the responses as
is observed with natural stimulation (279). The detecta-
ble and safe range of stimulation—between 15 mA (the
detection threshold) and 100 mA (the maximum safe am-
plitude)—thus only allows for a few discriminable incre-
ments, between three and six depending on the
electrode. Given the relatively coarse resolution at
which changes in amplitude can be perceived, one
might hope to achieve better sensitivity by stimulating
through multiple electrodes at the same time. However,
sensitivity to stimulation delivered synchronously through
four electrodes—where each electrode is stimulated at
the same level—is equivalent to that when themost sensi-
tive of the electrodes is stimulated alone, even though
the latter approach only delivers a quarter of the current
(Ref. 293, but see Ref. 294).
Increases in current amplitude have an effect on the

local neuronal population that is broadly analogous to
increases in pressure (288, 295). Indeed, applying
greater force results in increased neuronal activation
and in the recruitment of neurons. Modulation of ICMS
amplitude can thus be used to convey information about
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applied pressure (see below). One might expect that
higher currents—which activate larger volumes of corti-
cal neurons whose receptive fields radiate outward—
would evoke sensations that are experienced over
larger swaths of skin. However, the reported area over
which an electrically induced tactile sensation is experi-
enced does not change systematically with changes in
current amplitude (296). Note, however, that increases
in the pressure applied via a probe of fixed size also
lead to recruitment of additional neurons in somatosen-
sory cortex without concomitant changes in the per-
ceived extent of the stimulus (295). The ability to discern
changes from intensity from changes in extent likely
stems from differences in the spatial pattern of neuronal
activation evoked by broad, low-intensity skin indenta-
tions and small, high-intensity ones. Changes in the spa-
tial profile of activation induced by electrical stimulation
presumably mimic changes induced by changes in pres-
sure rather than by changes in the spatial extent of a
skin indentation.

10.6.3. Frequency

As mentioned above, sensitivity to ICMS, as gauged by
the detection threshold, increases with pulse frequency
up to �250 Hz, at which point it levels off (279). One
might thus expect that increases in frequency lead to
increases in perceived magnitude, as is the case with
electrical stimulation of the nerve (297). Although this is
the case in monkeys (298), the same may not be true in
humans (299). However, changes in ICMS frequency
also have an impact on the quality of the sensory per-
cept. Quality refers to aspects of the sensory experience
beyond its intensity, spatial extent, or duration. For
example, a touch can be described as a texture, as an
indented edge, or as a moving surface, all of these
descriptors indicating different qualities. Indeed, animals
are able to distinguish changes in frequency independ-
ently of changes in amplitude, at least on some electro-
des, up to �200 Hz. As mentioned above, each ICMS
pulse evokes a spike in a large population of neurons. A
periodic pulse train will thus elicit a phase-locked
response in the activated population at the stimulation
frequency. Accordingly, the population firing rate
increases approximately linearly with frequency but is
also dependent on amplitude. Monkeys’ ability to distin-
guish frequency independently of amplitude suggests
that their behavior does not depend solely on the
strength of the evoked response at the population level.
Rather, animals may rely on the temporal patterning in
the neuronal response (298). Changes in ICMS fre-
quency have also been shown to impact sensory quality
in studies with human participants (299, 300). Low-fre-
quency ICMS tends to evoke intermittent tapping or

pressure sensations, whereas high-frequency stimula-
tion tends to evoke tingling or vibratory sensations.

10.6.4. Heterogeneity of the sensory experience

As discussed above, stimulating through electrodes at
different locations evokes sensations that are experi-
enced on different parts of the body, in a way that is pre-
dicted by the body maps in somatosensory cortex (288,
289). The sensory experience evoked through stimula-
tion of different electrodes also varies in other ways.
First, the detection thresholds and amplitude JNDs vary
widely across electrodes (279, 288, 289). Second, an
animal’s ability to distinguish ICMS frequency independ-
ently of amplitude varies across electrodes: On some
electrodes, animals can distinguish changes in ICMS fre-
quency nearly independently of changes in amplitude,
whereas on others changes in frequency or changes in
amplitude seem to have indistinguishable sensory corre-
lates (298). Third, the quality of the sensation evoked by
a given ICMS train varies widely: Some electrodes are
more liable to produce tapping or pressure sensations,
others tend to produce vibratory or tingling sensations,
and still others produce tactile motion percepts (289,
299–301). Remarkably, sensations are described as
being natural or nearly so; that is, humans experience
ICMS-evoked tactile sensations as being similar to sen-
sations that might be experienced through natural
touch. This is surprising given the unnatural patterns of
activation that are evoked via ICMS: each pulse synchro-
nously activates neurons within a volume of tissue,
regardless of their coding properties. Synchronized, per-
iodic activation of large populations of neurons is not
observed in healthy cortex and yet evokes nearly natu-
ral sensations.

Differences in the properties of the sensory experi-
ence—overall sensitivity, quality, etc.—seem to be unre-
lated to the electrodes themselves (e.g., impedance,
metallization). One possibility is that across-electrode
differences in the sensory correlates of ICMS are due to
differences in the depth of the electrode tip within the
cortical tissue. Indeed, detection thresholds have been
shown to be lower (and thus sensitivity higher) when the
electrode tip is deeper in the tissue (302). Depth effects
might thus account for across-electrode differences in
detection thresholds, because, even with a planar array,
electrode tips may not end up at the same depth within
the tissue. However, sensitivity varies more across elec-
trodes than would be expected given the dependence
of sensitivity on depth. Other differences in the sensory
experience across stimulation sites, such as differences
in sensory quality, are unlikely to be mediated by differ-
ences in the electrodes or in the depth of their tips.
Indeed, suprathreshold stimulation directly activates
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multiple cortical layers, thereby reducing the impact of
depth.
Rather, variability in the sensory experience likely

reflects differences in the function of activated neurons.
A case in point is the relationship between ICMS fre-
quency discrimination and submodality input. In area 3b,
the submodality input of neurons around the stimulating
electrode—that is, the subpopulation of nerve fibers
from which they receive their dominant input—is predic-
tive of animals’ ability to distinguish changes in fre-
quency of ICMS delivered through that electrode (303,
304). The submodality input of a neuron is one of the
factors that determine its function. This relationship
between submodality input and ICMS-evoked percepts
is consistent with the view that activation of neurons
with different functions will have different sensory
consequences.
The dependence of the electrically evoked sensation

on locus of stimulation hinges on two aspects of cortical
functional organization. First, somatosensory cortex is not
a homogeneous neural structure: Cortical neurons exhibit
a wide variety of response properties: Some neurons are
well suited to encode surface texture, others tactile
motion, etc. (1). Second, neurons with similar response
properties tend to cluster together. Neurons that are acti-
vated by an ICMS pulse train are thus more likely than not
to have some overlap in their function, and the evoked
sensory experience will reflect this. For example, one
patch of cortex may contain a greater preponderance of
neurons that play a role in fine texture perception.
Electrical activation of these neurons might thus be liable
to evoke a texture-like percept. Activation of an adjacent
population of neurons implicated in motion processing
might evoke a motion percept (300). The patchy distribu-
tion of sensations is consistent with a view that the fun-
ctional properties of neurons are not homogeneous
across the cortex. However, the relationship between the
functional properties of a neuronal population and the
quality of the sensory percept evoked when that popula-
tion is electrically activated has not been investigated.
The hindrance is that such questions about sensory qual-
ity can only be addressed in a human subject, endowed
with language, and human subjects enrolled in BMI
experiments tend to be at least partially deafferented, so
the native coding properties of neurons in somatosensory
cortex cannot be characterized. Nonetheless, the map-
ping between sensory quality and location may be
revealed by having subjects imagine different qualities
while monitoring responses over the cortical surface (301).

10.7. The Problem of Proprioception

Like touch, proprioception is critical to upper limb function
as evidenced by the severe deficits incurred when

proprioception is abolished (305). The importance of pro-
prioception extends to BMIs: a human participant was
tasked with moving a brain-controlled bionic hand
back and forth across a line positioned approximately
at her midline. She rapidly lost track of her arm, and
thus her ability to perform the task, when vision was
obscured (306). Even in the context of manual control,
proprioceptive signals convey information about the
state of the hand (261, 307), which in turn is critical to
sensing the structure of grasped objects (1, 308). In
light of this, efforts have been underway to evoke pro-
prioceptive sensations through ICMS of a cortical field
that has been implicated in proprioception, namely
Brodmann’s area 2. Indeed, neurons in area 2 exhibit
proprioceptive responses and contain a representa-
tion of the proximal limb and hand (307, 309–311).
Furthermore, the responses of neurons in area 2
depend on the direction in which the limb is moving,
much like their counterparts in M1 (309). This repre-
sentation of movement could in principle be lever-
aged to convey feedback about limb state. However,
experiments with monkeys suggest that electrical
stimulation of neurons with a given preferred direction
does not evoke a sensation of limb movement in that
direction (312). Furthermore, human participants rarely
report sensations of limb movement through electrical
stimulation of somatosensory cortex. Indeed, sensa-
tions reported as proprioceptive are often described
as movement of the skin and not around joints as is
the case with (natural) proprioception (300). One pos-
sibility is that proprioceptive sensations have not
been elicited through electrical stimulation of the
postcentral gyrus—where human-approved technol-
ogy can be deployed—because area 2 is not strictly
proprioceptive but rather is involved in integrating tac-
tile and proprioceptive signals, putatively to compute
the location of contacts in three-dimensional space. A
potential avenue toward artificial proprioception
would be to stimulate Brodmann’s area 3a, in which
neurons are exclusively driven by joint movements (1,
261). Area 3a stimulation has been shown to evoke
discriminable percepts in monkeys (313), but the qual-
ity of these percepts and its dependence on stimula-
tion parameters is unknown.

10.8. Closed-Loop Control

10.8.1. ICMS can be used to guide behavior

Ultimately, ICMS-based feedback needs to be applied in
the context of behavior. In early studies of ICMS-based
feedback, sensory signals were used to guide behavior
in ways that are approximately akin to using touch to
recognize objects in the dark. In one case, monkeys
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explored virtual “textures” with a brain-controlled arm
avatar, searching for a target texture (one of two or
three; FIGURE 12A) (314). Positioning the hand within ex-
perimenter-defined zones in the workspace led to the
delivery of temporally patterned pulse trains, with differ-
ent zones leading to different patterns. The location of
the zones changed from trial to trial, and the animal
explored the space to find each zone with the goal of
identifying the target zone, corresponding to a specific
pattern of ICMS (314). Animals were able to quickly learn
to use the tactile feedback to perform the task. In one
variant of this task, a human subject searched for a spe-
cific “object” in a “handbag,” signaled by ICMS (315).

ICMS of somatosensory cortex has also been used
for navigation. In one study, rats were trained to find
an invisible target by following ICMS signals (316).
Specifically, the strength of ICMS was modulated to

the extent that a photosensor fixed to the rat’s head
was pointed toward the target, which emitted invisible
light. After repeated exposure, the animals learned to
use ICMS signals to find the targets. In a similar study,
monkeys learned to reach toward unseen targets,
with direction and proximity information conveyed
through ICMS (317), a task that has also been applied
to a human participant (318). Finally, surface stimula-
tion of somatosensory cortex in a human subject was
used to guide the aperture width of an intact hand
(319), a one-dimensional analog to the two-dimen-
sional navigation tasks described above.

10.8.2. Functional benefits of artificial touch

Although the studies summarized above provided proof
of principle that ICMS-evoked sensations can be used to
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guide behavior, the artificial touch was used to explore a
workspace rather than guide object manipulation, the
more ethological use of touch. Indeed, the tasks would
have been trivial had visual information been available,
as is object recognition or navigation with vision as
opposed to without. During object interactions, tactile
feedback provides information about when the hand
makes contact with objects, where on the hand the
object makes contact, and the dynamics of the applied
force at each contact point (3). Basic information about
object interactions—contact timing, location, and force—
is poorly conveyed visually. First, contact points bet-
ween hand and object are often occluded. Second,
vision conveys little to no information about the force
applied on all but the most compliant objects. Third, vis-
ual signals are much slower than their tactile counter-
parts in signaling when contact with an object is
established.

To intuitively convey information about contact events,
the output of sensors located on a prosthetic hand can
drive ICMS through electrodes with somatotopically
appropriate projection fields. For example, the index fin-
gertip sensor on the prosthesis drives electrical stimula-
tion of an electrode with a projection field on the index
fingertip. That way, anytime the user makes contact with
an object with the (prosthetic) index fingertip, for exam-
ple, he or she will experience a sensation on the index
fingertip, thereby intuitively signaling contact location.
The timing of the sensory experience will correspond to
the timing of the contact, thereby conveying rapid feed-
back that contact is established. Finally, the time-varying
force can be conveyed by modulating the ICMS ampli-
tude—greater force resulting in stronger ICMS—which in
turn modulates the magnitude of the resulting percept in
a way that is broadly analogous to the sensory correlates
of changes in applied force (288, 295).
The benefit of artificial touch for object manipulation

with a brain-controlled bionic hand was tested with a
standard clinical test of limb function, used to assess the
sensorimotor sequelae of stroke: the Arm Research
Action Test (ARAT) (FIGURE 12B). The ARAT consists of
having the participant grasp and transport objects from
one location to another. The main index of performance
is the speed with which objects are transported (or
the number of objects transported over a fixed period
of time). Performance on this task was significantly
improved with artificial touch from without, despite the
constant presence of visual feedback (6). The participant
reported that a main benefit of the artificial touch was
the rapid feedback about contact timing. Accordingly,
he was more confident in reaching rapidly for the object,
knowing that he would receive immediate feedback as
soon as he touched it. Indeed, ICMS-evoked percepts
arise systematically faster than visual ones (320).

All of the objects presented in the ARAT were solid
objects, so modulating forces was not necessary, as it
would be to manipulate fragile objects, for example
(255, 257). Our ability to exert just enough force on an
object to it up and manipulate it without dropping it
depends on the sense of touch. The manual forces
exerted by an insensate bionic hand are likely to be
much higher than are those by a sensate one, but this
has not been investigated.

10.8.3. The problem of electrical artifacts

Closed-loop control involves reading out control signals
from brain regions involved in motor control and writing
in feedback signals to brain regions involved in percep-
tion. This bidirectional communication presents an addi-
tional challenge, namely that ICMS disrupts the ability to
read out neuronal signals. Indeed, an individual pulse
involves voltage transients measured in volts whereas
neuronal signals are measured in microvolts, six orders
of magnitude smaller. Each ICMS pulse thus drowns out
any neuronal signal over a period of time, even if record-
ing and stimulation sites are centimeters apart. Even
stimulation at the level of muscles in functional electrical
stimulation applications can produce large electrical arti-
facts on intracortical microelectrode recordings (321).
The problem of the electrical artifact can be mitigated by
using special amplifiers that allow charge to dissipate
rapidly and by using signal processing to remove com-
ponents of the potential that can be attributed to the
stimulating pulse to isolate spike-related potentials
(322). Regardless, hardware and signal processing strat-
egies are not sufficient to completely eliminate the stim-
ulation artifact, and signals obtained during each
stimulation pulse and shortly thereafter are discarded.
Accordingly, high-frequency ICMS is undesirable in the
context of closed-loop control because the more fre-
quent pulses require discarding more of the control
signals.

10.9. Next-Generation Artificial Touch

As sketched out above, current sensory encoding algo-
rithms are inspired by known coding properties of the
somatosensory system. For example, mapping between
bionic sensor and electrode leverages the body maps
in somatosensory cortex, and pressure feedback is ins-
pired by the measured effects of changes in pressure
on the evoked neuronal response. These algorithms
convey sufficient information about contact events to
improve the dexterity of brain-controlled bionic hands,
even in the presence of vision (6). The next generation
of algorithms will incorporate other known aspects of
tactile coding in cortex.
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For example, current algorithms track the pressure
exerted on the object using a linear mapping between
sensor output and ICMS amplitude. However, the
response of populations of neurons during the initiation,
maintenance, and termination of contact is character-
ized by massive transient responses—an increase in the
rate of response and in the size of the activated popula-
tion—at the onset and offset of contact (295) (FIGURE
13). These transient responses are >10 times stronger
than are their counterparts during maintained contact.
This phenomenon reflects the fact that neurons are
more sensitive to changes in skin deformation than they

are to static skin deformations. This property of the ag-
gregate neuronal response in cortex is inherited from
the periphery, where the same phenomenon is
observed. Sensory encoding algorithms for peripheral
nerve interfaces that mimic this sensitivity to contact
transients (323) have been shown to confer greater
dexterity to myoelectrically controlled bionic hands than
do the standard pressure tracking algorithms (255, 257).
Given the similarity of the peripheral and cortical responses
at the aggregate level (295), the same principles are likely
to yield improvements for brain-controlled prosthetic hands
endowedwith ICMS-based feedback.
As discussed above, the quality of sensation is

electrode dependent, a phenomenon that likely
reflects differences in the coding properties of local
neurons. One of the functions of nervous systems is
to extract behaviorally relevant information from pe-
ripheral sensory input. Different populations of neu-
rons in somatosensory cortex explicitly encode
certain types of sensory information that are not
encoded by upstream neurons (1). For example, a
subpopulation of cortical neurons is selectively sen-
sitive to tactile motion (324, 325). Sensory encoding
algorithms may be able to harness these feature
maps to convey information about high-level object
features. For example, object slip might be signaled
by activating populations of motion-sensitive neu-
rons. Indeed, the visual system provides a proof of
concept: activation of motion-sensitive neurons in
medial temporal cortex—an area of the brain special-
ized for the processing of visual motion—evokes a
visual motion percept (326). The ability to evoke vis-
ual sensations of directed movement is predicated
upon the functional topographies in medial temporal
cortex: neurons with similar direction preferences
are clustered together. To harness feature selectivity
in somatosensory cortex for use in artificial touch will
require that touch representations also be topo-
graphically organized, which remains to be seen.
That stimulation through different electrodes evokes
sensations with different qualities may be interpreted
as evidence for functional organization, but this phe-
nomenon has yet to be harnessed in the context of a
BMI.
Interactions with objects typically involve multiple con-

tact points distributed over the entire hand (327). Each
contact results in a spatio-temporal activity spanning
multiple millimeters of cortical surface (295). However,
most work on artificial touch has focused on single elec-
trodes, involving activation of local populations spanning
less than a millimeter of cortical surface: 100 mA, the
maximum confirmed safe current, activates neurons
�0.3 mm from the electrode tip (FIGURE 9) (328).
Stimulating through multiple adjacent electrodes may

FIGURE 13. Spatiotemporal dynamics of cutaneous responses in
somatosensory cortex. A: response to 70 repeated presentations of
an indentation delivered to the little finger, the profile of which is
superimposed on the raster. B: peristimulus time histogram of the
response at the hot zone electrode to the same stimulus. Shaded
area denotes the SE. The leftmost edge of the time scale bar indi-
cates stimulus onset. C: dynamics of the spatial extent of cortical
activation as a function of time. Adapted from Ref. 295, with permis-
sion from Cerebral Cortex.
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thus allow for the elicitation of more naturalistic patterns
of neuronal activation. In addition, little is known about
interactions across electrodes in the evoked perceptual
experience. The assumption is that the sensory experi-
ence evoked by ICMS through one electrode is inde-
pendent of stimulation at other electrodes, even though
there is anecdotal evidence to the contrary. The explora-
tion of multichannel ICMS opens up a world of possibil-
ities to improve the naturalness and intuitiveness of the
evoked percepts (329).

11. ALTERNATE SIGNAL SOURCES FOR
EFFERENT BMIs

In this review, we focus on intracortical BMIs, where pen-
etrating electrodes provide high-resolution readouts of
the activity of individual neurons, small groups of neu-
rons, and local field potentials. However, other methods
to monitor brain activity have been tested for BMIs or
related applications (FIGURE 14). Although a compre-
hensive review of all neural interfaces is beyond the
scope of this article, we explore the trade-offs inherent
to the different approaches to examine their potential
within the BMI space.

11.1. Noninvasive Interfaces

11.1.1. Electroencephalography

Perhaps the most widely used noninvasive brain inter-
facing method is the scalp electroencephalogram

(EEG), one of the oldest methods for measuring brain
activity (FIGURE 14A). Scalp EEG provides a coarse
readout of brain activity: potentials on a single elec-
trode may reflect electrical activity integrated over 10
cm2 or more, due to volume conduction between the
brain and scalp (330, 331). Scalp EEG thus captures
the activity of tens of millions of neurons acting in con-
cert (331) and constitutes a spatially and temporally
smoothed version of the LFP signals recorded from in-
tracranial electrodes (330).

The use of EEG signals for BMIs can be classified into
two categories of approaches (332). In one case, a sen-
sory stimulus—typically visual—is presented and the
evoked response is monitored via EEG. The user can
then volitionally modulate certain features of the
response to each stimulus, for example the so-called
P300, a spike in neuronal activity �300 ms after stimu-
lus onset (333–335), or the steady-state response to an
ongoing stimulus (336–338). The resulting binary signal
can be then used to control switches or to type by
selecting a letter when it is highlighted on the display.
This approach is not applicable to limb control.
Another strategy consists of leveraging EEG signals

for continuous control of cursors and, in principle at
least, bionic limbs. Typically, the EEG signal is filtered to
isolate the mu (8–12 Hz) or beta (12–25 Hz) bands in sen-
sorimotor cortical areas, which undergo a desynchroni-
zation when a subject makes or imagines a limb
movement (339). Users can then learn to modulate
these signals over the course of several sessions (340,
341). However, because of the limited spatial resolution
of the signal, imagined movement of a given limb results
in a stereotyped pattern of desynchronization across a

FIGURE 14. Neural interface alternatives. A: electroencephalographs (EEGs) use large electrodes to record field potentials from the surface of the
scalp. Epidural electrocorticography (Epi) records epidural field potentials (EFPs) from the surface of the dura. Subdural electrocorticography (ECoG)
records directly from the surface of the brain; intracortical electrodes penetrate the brain. Adapted from Ref. 332, with permission from Neuroscientist.
B, left: electrical signals (blue) are distorted during transmission from the brain to the scalp surface, whereas magnetic fields (purple) are not. MEG, mag-
netoencephalography. Adapted from Ref. 439, with permission from TKK Dissertations. Right: functional near-infrared spectroscopy (fNIRS) uses a
paired emitter and detector to shine near-infrared light onto brain tissue and measure the hemodynamic response. Adapted from Ref. 351, with permis-
sion from Journal of Biomedical Optics. C: emerging endovascular interfaces tunnel through vasculature to place electrodes within cerebral veins with-
out requiring a craniotomy. Adapted from Ref. 396, with permission from Journal of NeuroInterventional Surgery.
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broad area of cortex, obscuring information about indi-
vidual limb segments. Accordingly, to control multiple
degrees of freedom independently, users must learn
nonintuitive strategies, such as combining imagined
movements of both hands and both feet (339).
Several practical challenges also limit the utility of

scalp EEG for long-term assistive devices for people
with movement impairments. Measurements require
donning and doffing a cap and applying gel for higher-
quality signals. In surveys of potential users with spinal
cord injuries, the visibility of such technologies and the
potential impact on cosmesis and convenience are key
factors that limit enthusiasm (14). An additional challenge
is that �20% of subjects are unable to attain control of
EEG-based BMIs, potentially because of variations in
brain structure that cause the relevant control signals to
be undetectable from the scalp, a problem known as
“BCI illiteracy” (342–344).

11.1.2. Magnetoencephalography

Like EEG, magnetoencephalography (MEG) involves re-
cording signals that reflect the large-scale concerted
activity of neurons. When measured noninvasively, mag-
netic signals have some advantages over electrical sig-
nals. In particular, electrical signals are influenced by
currents in the interstice between the brain and scalp
and distorted by various inhomogeneities in the head,
whereas magnetic signals are not (345) (FIGURE 14B).
The improved signal transmission confers higher spatial
resolution to MEG than scalp EEG. Accordingly, MEG sig-
nals exhibit single-trial correlation with intended move-
ments (346–348). However, the magnetic inductions
produced by intracranial activity are quite small—typi-
cally 7–8 orders of magnitude smaller than the Earth’s
magnetic field—and thus require extremely sensitive
magnetometers to detect (349), typically accomplished
by large, liquid helium-cooled superconducting interfer-
ence devices (SQUIDs). MEG signals are also extremely
sensitive to electronic artifacts, so measurements are
generally made in dedicated rooms with multilayered
magnetic shielding and without any metal moving
nearby. Thus, MEG requires capital investment on the
scale of MRI systems (349) and has been confined to re-
stricted physical spaces, making it largely impractical for
assistive BMI applications. In recent years, an alternative
MEG technology based on optically pumped magneto-
meters has demonstrated sensitivity on par with SQUID
systems without the need for cryo-cooling (350). This
new technology may lower costs substantially and also
enable wearable devices, which has sparked commer-
cial interest from companies such as Kernel. Although
the technology may be game-changing for applications
in restricted physical settings, a general-purpose and

mobile assistive BMI would still require new solutions to
mitigate the influence of electronic artifacts.

11.1.3. Functional near-infrared spectroscopy

Neuronal activity in the brain results in a hemodynamic
response, i.e., changes in blood flow, volume, and oxy-
genation. Oxygenation, in particular, modulates the
absorption properties of brain tissue. Because near-
infrared light is minimally absorbed or scattered as it
travels through the scalp and skull, an emitter and a de-
tector at the scalp (typically at a distance of 3–4 cm) can
be used to shine near-infrared light onto brain tissue
and measure reflected light to noninvasively detect
changes in absorption due to the hemodynamic
response (FIGURE 14B). By increasing the distance
between the emitter and detector, deeper tissue can be
imaged. Functional near-infrared spectroscopy (fNIRS)
thus provides another noninvasive modality to monitor
brain activity that may be germane to BMIs (351–353).
However, fNIRS suffers from two critical weaknesses
that limit its potential. One is the slow timescale of the
hemodynamic response, as vascular changes occur sev-
eral seconds after the associated neural activity (351,
352), yielding an information transfer from fNIRS-based
BMIs that does not exceed 4 bits/min (352), much lower
than transfer rates from other interfaces typically meas-
ured in bits per second (38). Second is the coarse spatial
resolution—between 1 and 3 cm (354)—that precludes si-
multaneous control of multiple degrees of freedom. The
application of fNIRS to BMI has recently been the sub-
ject of some controversy after a demonstration of fNIRS-
based communication in subjects who were completely
locked-in because of advanced ALS (355). A reanalysis
of the collected data failed to replicate the findings and
led to retraction of the original paper (356, 357).

11.1.4. Electromyography

Myoelectric control is a common strategy for prosthetic
arm control by amputees (358). For people with spinal
cord injury, muscle activity above the site of lesion can
be harnessed as a control signal for FES-based prosthe-
ses (359). Perhaps surprisingly, individuals diagnosed
with “complete” spinal cord injury exhibited volitional
control of residual muscle activity below the site of injury
(360, 361). The preserved connections may prove useful
for prosthetic control even if they cannot support func-
tional use of the muscles. For example, activity can be
leveraged through remapping strategies, e.g., by using
toe activity as a control signal for FES-based restoration
of grasp (362). Additionally, recent work with paralyzed
individuals has demonstrated that noninvasive, high-
density electromyography (EMG) arrays can be used
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to record signals directly from forearm muscles of inter-
est—such as individuated finger movements and wrist
movements—and can even achieve single-motor unit
resolution (363, 364). At present, this emerging approach
has only been demonstrated in coarse movement
classification tasks, and the fidelity and flexibility of
the approach in comparison to other interfaces are
unknown.

11.2. Semi- and Minimally Invasive Interfaces

11.2.1. Electrocorticography

Subdural electrocorticography (ECoG) is a widely used
clinical approach for monitoring brain activity in patients
with medically intractable epilepsy. In these patients,
ECoG is used to delineate the epileptic seizure focus so
it can be surgically resected and to map cortical fields
associated with hand and face movements and lan-
guage to avoid resecting them (365, 366). Electrode
contacts are placed directly onto the pia mater above
cortex and are often in place for more than a week as
patients remain in the hospital (FIGURE 14A). ECoG pro-
vides access to large-scale sensorimotor rhythms below
50 Hz, which can also be monitored via EEG (including
mu and beta oscillations), as well as more focal, broad-
band changes that occur at frequencies above 50 Hz
and are largely inaccessible extracranially (365).

Of the neural interfacing alternatives, ECoG is most
likely to provide performance comparable to intracort-
ical devices. To date, the most widely tested ECoG
devices—standard clinical ECoG grids—offer coarse
cov-erage, with large contacts (>2 mm in diameter)
spaced �10 mm apart, where each contact monitors
LFP activity from >500,000 neurons (365). However,
more closely spaced contacts, e.g., 1- to 3-mm spac-
ing, allow for more focal monitoring of neuronal activ-
ity and have enabled higher-quality decoding of arm
and hand movements and speech (367, 368). ECoG
arrays with electrodes spaced even closer together
(on submillimeter scale) may yield readouts at an even
higher resolution (369–371). A potential advantage of
ECoG is the ability to cover larger extents of the corti-
cal surface than traditional intracortical devices [see,
e.g., Ref. 370, though recent intracortical alternatives
may minimize this difference (Refs. 372, 373)]. In gen-
eral, neurons within a given area often provide redun-
dant information, so achieving more diverse cortical
coverage may prove highly advantageous for high-
dimensional control. Additionally, the widespread
deployment of ECoG-based responsive neurostimula-
tion systems for epilepsy (374) provides a demonstra-
tion of long-term safety that could facilitate its clinical
translation in the context of BMIs.

ECoG signals are often considered more stable than
their intracortical counterparts. Indeed, for chronic
implants with 2- to 3-mm contacts and 4-mm intercon-
tact spacing, ECoG BMIs with fixed decoders have dem-
onstrate relatively stable offline decoding performance
(375) and can provide a substrate for subjects to achieve
stable online to control over the course of months (10).
Additionally, histological analysis after a chronic ECoG
implant revealed minimal damage to the cortical tissue
under the implant, although the device itself was encap-
sulated in collagenous tissue (376).
Despite the high signal stability (10, 377), standard

ECoG devices yield far poorer performance than intra-
cortical interfaces. For example, two-dimensional (2-D)
cursor control for point-to-point movement tasks was
worse with ECoG than with intracortical arrays (see
TABLE 1). Similarly, although an ECoG participant
improved substantially over the course of months on a
grid task and achieved a bit rate of 0.79 bits/s (10), per-
formance on this task with an intracortical BMI is mark-
edly higher (TABLE 2). For example, one participant
achieved 1.87 bits/s on his first-ever neural control ses-
sion (173), whereas three others maintained high quality
control for months to years after implantation, with
bitrates ranging from 1.4 to 4.2 bits/s (38, 242).
Some evidence suggests that recently developed

high-density ECoG devices with submillimeter resolution
may improve performance, having shown recording lon-
gevity on the scale of months to years (378, 379). As
such high-density ECoG devices become more widely
tested, a key design parameter in maintaining signal
stability may be minimizing tissue responses or fluid
buildup (376, 380–382). ECoG interfaces have recently
been used for control of powered exoskeletons,
for both restoration and rehabilitation applications
(383, 384).
Epidural field potentials (EFPs) are a variant of ECoG

in which electrodes are placed on the outer surface of
the dura mater (FIGURE 14A) (383, 385–387) to
decrease the risk of bacterial encephalitis by isolating
the implant from the intracranial space. Quantitative
comparisons suggest that EFPs yield a decreased sig-
nal-to-noise ratio and spatial resolution relative to sub-
dural ECoG (385) and thus provide a different balance
between signal quality and invasiveness than ECoG and
intracortical electrodes.

11.2.2. Stereoelectroencephalography

Stereoelectroencephalography (SEEG) provides an in-
triguing option for BMIs that has received little experi-
mental attention (388–390). Like ECoG, SEEG is an
invasive brain interface used to monitor brain activity in
patients with pharmacologically intractable epilepsy.
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SEEG uses penetrating depth electrodes that allow
access to deep structures, out of reach for intracortical
or ECoG arrays (388). Implanting SEEG electrodes only
requires drilling small burr holes into the skull, thereby
reducing the risk of complications in comparison with
the full-blown craniotomy required for intracortical elec-
trode arrays. Given the well-established safety history
for temporary (multiweek) SEEG implants (391–393),
these might be well suited for applications that do not
require permanent implants, such as neurorehabilitation.
The depth electrodes are also well suited for applica-
tions that target deeper structures, such as the motor
regions of the cingulate cortex. Whether SEEG takes
hold in the BMI space remains to be seen.

11.2.3. Endovascular interfaces

The emerging field of endovascular interfaces is pro-
viding an alternate approach to monitoring electrical
activity with reasonable fidelity, without requiring a
craniotomy (FIGURE 14C). These interfaces tunnel
through cerebral veins, which are split into those that
lie externally on the cortical surface and internal
veins that may even sit within sulcal folds. Transient
endovascular recording of brain activity was initially
reported in 1969 (394). Chronic endovascular record-
ing devices have recently yielded signal quality com-
parable to that of epidural field potentials (395),
thereby supporting restoration of some communica-
tion abilities in people with ALS (396).

11.2.4. Functional ultrasound

Functional ultrasound (fUS) is an emerging alternative to
monitor brain activity (397–401). Like fNIRS and fMRI, fUS
measures hemodynamic changes by monitoring changes
in cerebral blood volume. To image these changes with
high resolution, a craniotomy is performed and a small
piezo-electric array is placed on the surface of the dura
mater. High-frequency ultrasonic waves (�15 MHz trans-
mit frequency, imaged at �10 kHz) are transmitted into
the brain by the array. Measuring the waves reflected at
tissue interfaces reveals changes in cerebral blood vol-
ume. Such changes can be localized to regions on the
order of 100 mm and are strongly correlated with slow
fluctuations in neural firing rates (<0.3 Hz) at the imaged
location (400). In a recent study with monkeys, fUS
enabled single-trial decoding of upcoming movement
directions during a delayed saccade and reaching task.
Although the task was simple (two alternatives) and
decoding was performed on large time windows (sec-
onds), the study provides a proof of concept that fUS can
extract single-trial information about movement intention
(401). Further advances such as ultrafast ultrasound

localization microscopy (402) hold promise for high-reso-
lution noninvasive fUS.

12. NONINVASIVE SENSORY FEEDBACK

The development of noninvasive strategies to harness con-
trol signals from the brain entails parallel efforts to convey
somatosensory signals noninvasively, typically by electrically
or mechanically stimulating a sensate region of skin (403).
As in a cortical interface, the output of sensors on the bionic
hand drives the electrical or mechanical stimulus delivered
to the skin. For example, the output on each fingertip sensor
might drive the amplitude of each of five vibrators arranged
on the neck. That way, thumb forces would result in vibra-
tory sensations experienced at one neck location, index
forces with sensations on another location, and so on.

12.1. Feedback Modalities

For both electrical and mechanical stimulation, infor-
mation about contact events can be conveyed by stimu-
lating through different contacts (as in the example
above) or by modulating the stimulation parameters. For
example, contact force can be tracked in a graded fash-
ion by modulating the frequency or amplitude of stimula-
tion (404–408). In some cases, contact information can
be conveyed via more complex spatio-temporal map-
pings (409).

The advantage of mechanical stimulation is that it
evokes naturalistic tactile sensations, in contrast to
electrocutaneous stimulation, which typically evokes
parasthetic sensations often described as unpleasant
(410–412). On the other hand, mechanical stimulators
are bulky, difficult to don and doff, and power hungry,
requiring frequent recharging. As discussed below,
one of the shortcomings of noninvasive approaches is
their limited bandwidth. One way to overcome this li-
mitation is to combine electrical and mechanical
modalities, as these can be perceived semi-independ-
ently, even when delivered simultaneously to the
same skin location (413).
Typically, the utility of noninvasive sensory feedback

is validated by demonstrating that subjects can perform
manual tasks with a prosthesis better with the feedback
than without. In most cases, these demonstrations have
involved amputees operating myoelectric bionic hands,
with sensory feedback delivered to the residual limb.
The ability to grasp and manipulate objects and to per-
ceive their properties (size, shape, compliance) is
improved with sensory feedback (407, 408, 414–418).
The same approaches could in principle be applied in
the context of BMIs for people with tetraplegia.
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12.2. Sensory Substitution

Noninvasive sensory feedback typically involves the
elicitation of touch sensations that are experienced
where the stimulus is delivered rather than on the hand.
As such, noninvasive tactile feedback—or at least any
form that is available to individuals with tetraplegia—is a
form of sensory substitution. Although such feedback
improves prosthetics use on simple tasks in a laboratory
setting, it is unclear whether this approach will gener-
alize to activities of daily living (419). First, signals con-
veyed through sensory substitution require that atten-
tion be deployed to them, in contrast to natural sensory
signals, whose integration into motor plans does not
require attention. Second, sensory substitution can only
convey information at a low bandwidth. Indeed, the devi-
ces themselves occupy large swaths of skin, and so only
a limited number of them can fit over available skin terri-
tory. More importantly, the cognitive demands of the
devices limits users’ ability to simultaneously take in in-
formation across more than a few channels at a time.
Given the complexity of the hand and the limited band-
width of sensory substitution, their potential to support
dexterous limb behavior is dubious. In a rare study to
test sensory substitution in the context of activities of
daily living (ADLs) performed at home, noninvasive tac-
tile feedback did not improve and in fact worsened per-
formance on ADLs (420).

These inherent limitations notwithstanding, sensory
substitution approaches can be improved by invoking
basic principles of biomimicry. For example, the somato-
sensory representations of contact events in the intact
nervous system emphasize contact transients relative to
maintained contact (FIGURE 13). Sensory substitution
devices that incorporate this feature of natural tactile
feedback better support prosthetics-mediated interac-
tions with objects than devices that do not (415).

12.3. Prognosis

As discussed above, for sensory feedback to improve
performance requires a modicum of precision and accu-
racy from the control system. Poor control does not bene-
fit from feedback, even under ideal conditions. Whether
noninvasive feedback will provide significant benefits to
noninvasive BMIs, which provide only rudimentary con-
trol, remains to be demonstrated.

13. A BROADER PERSPECTIVE ON BMIs

This article focuses on BMIs that restore reaching and
grasping through closed-loop control of an artificial end
effector or an individual’s paralyzed limb, where high-

fidelity readout and write-in are required to extract
moment-by-moment estimates of movement intention
and provide sensory feedback that can improve per-
formance on closed-loop tasks. At present, only invasive
interfaces, in particular intracortical recordings, and per-
haps electrocorticography, appear to provide the band-
width necessary for such restoration. For example, in
communication tasks, intracortical BMIs achieve orders
of magnitude higher performance than noninvasive
interfaces (38, 242). This difference is likely exacerbated
for high-DOF control applications such as robotic arms;
however, to our knowledge, there are no noninvasive
BMI reports that provide standardized metrics (such as
the functional clinical measures described above) that
would allow direct comparison. Given the relative acces-
sibility of noninvasive technologies, the lack of reports
may itself be telling about the suitability of noninvasive
interfaces for high-DOF applications.
We note, however, that alternate and emerging BMI

applications are well suited for noninvasive interfaces. A
key application is motor rehabilitation for individuals
with stroke, where BMIs may complement conventional
rehabilitation approaches (11). Rehabilitation BMIs read
out movement intention and provide concomitant down-
stream neuronal activation—via visual neurofeedback,
electrical stimulation, or exoskeleton-based movement
of the hand—to elicit sensory signals with the goal of
activating Hebbian-like plasticity mechanisms (339).
Particular neural correlates of movement intention that
are useful for rehabilitation, e.g., desynchronization of
mu sensorimotor rhythms, can be detected robustly by
using noninvasive interfaces such as MEG and EEG,
even in individuals with paralysis who lack residual
movements (11). Since an initial demonstration of the
potential of an MEG-BMI to support stroke rehabilitation
(421), several groups have demonstrated that BMI-based
interventions can lead to improved recovery over stand-
ard rehabilitation (11, 384, 422–424). As stroke is one of
the major worldwide causes of long-term motor disabil-
ity, an effective BMI for neurorehabilitation could
improve quality of life for millions of people.

13.1. Ethics of Implanted Devices

Although BMIs have potentially transformative impacts
on human health, both research and current and future
applications of BMIs raise a variety of ethical concerns,
which merit careful consideration by researchers, com-
panies, funding agencies, regulators, and end users.

Developing tools and therapies to alleviate the burden
of neurological disorders and injury is widely considered to
be an ethical imperative, which strongly motivates research
and development (425–428). However, any implantable
device involves some risk and, particularly for translational
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research, understanding and evaluating the sources of risk
is critical for risk-benefit analysis, informed consent, evalua-
tion by Institutional Review Boards, and protection of
research participants from harm (427). Neurosurgery for de-
vice implantation or replacement raises the possibility of
complications such as hemorrhage, stroke, or infection.
People with partial motor impairments may be particularly
susceptible to hard-to-quantify risks of damaging targeted
brain areas that support their residual motor ability.
Implanted devices also have multiple potential failure
modes, including malfunction, infection, erosion, and lead
migration, which can necessitate further corrective sur-
geries. Side effects or long-term consequences of electrical
stimulation are hard to predict; for example, deep brain
stimulation for movement disorders often results in unin-
tended effects on speech and may have poorly under-
stood side effects on mood, personality, cognition, or even
perceptions of identity and agency. There are also poten-
tial financial risks, such as unanticipated costs for device
maintenance and explantation. Furthermore, as implanted
devices become capable of gathering ever-increasing
quantities of personal or even intimate data, data privacy
and security become important considerations.
Another tension in BMI development is the gap between

researchers’ conceptions and the actual needs, priorities,
and values of the end users (429). The large financial
and time requirements involved in BMI research, combined
with the small study populations, often limit researchers’
interactions with potential end users. From the end users’
perspective, lack of familiarity with emerging BMI technolo-
gies leads to a lack of awareness of how BMIs might fit into
their everyday lives. The gap in knowledge and priorities
underscores the importance of continued surveys of the
end user population (13–15) and of direct interaction
between researchers and people with motor impairments.
As BMI technology matures, approaches such as user-cen-
tered design (429), which emphasizes understanding user
experiences and involving users in the design and develop-
ment process, may speed technology transfer and ensure
that researchers create technologies that are actually used.
More broadly, the field faces ethical considerations

that are unique to devices that harness and alter brain
function. BMIs can potentially affect fundamental aspects
of the human experience—identity, normality, authority,
responsibility, privacy, and justice (430). Devices that
restore function may restore a sense of identity and
empowerment to people with impairment, but this restored
function may also have unintended consequences. For
example, if a brain-controlled device results in injury or
damage to others, does the user bear sole responsibility?
Furthermore, the past decade has seen unprecedented,
world-changing events related to breaches of privacy and
misuse of personal data, sometimes with little accountabil-
ity. What are the consequences of privacy breaches when

the data in question relate to peoples’ thoughts?
Additionally, although BMIs may become wonderfully ena-
bling, they are an extremely resource-intensive technol-
ogy. How can we ensure that a lack of access does not
exacerbate societal inequity? Moreover, society has
unquestionably been affected by instant access to infor-
mation (and misinformation) through the internet and mo-
bile phones. What happens when this information can be
directly input into the brain? Such issues can be expected
to become even more prominent if the field shifts from a
focus on rehabilitation to enhancement, as considered
below. These and other issues make it imperative that bio-
ethicists have a significant voice in shaping the field, and
that regulatory frameworks are put into place to anticipate
and control detrimental effects of BMI technology on soci-
ety and human health (430, 431).

13.2. Beyond Sensorimotor Restoration

To date, BMI development has focused on restoration of
lost function. In addition to the efforts to restore upper limb
function discussed here, other efforts are underway to
restore vision (432, 433), locomotion (434), and even mem-
ory (435, 445). However, the possibility that we might be
able to flexibly interact with extracorporeal machines
through neural interfaces has spurred efforts to use BMIs
to enhance the abilities of able-bodied individuals. Early
attempts involved piloting a fighter jet using brain signals
or sensing infrared light through a brain interface (318) with
some measure of success. These were relatively simple
tasks, and performance was much poorer than that medi-
ated by limbs or infrared goggles. Nonetheless, the pre-
mise underlying BMI-mediated enhancement is that not
only might we be able to interact more flexibly through a
BMI than we can through our peripherals (limbs, senses),
artificial signals might bemultiplexed alongwith the natural
ones—on both the input and output sides. The same
pools of neurons might then be engaged in different func-
tions, perhaps even at the same time. For now, the band-
width of current BMIs is far too limited to allow for control
of a complex extracorporeal effector through brain sig-
nals or to convey feedback in a way that would comple-
ment our existing sensory systems. Restorative BMIs are
predicated upon the principle of biomimicry to control
complex anthropomorphic arms or interpret multidimen-
sional sensory signals. This technology leverages the
fact that we learn during childhood to control our bodies
and interpret sensory signals, thereby forming and hon-
ing the sensorimotor representations of our bodies. As
there exist no neuronal representations of arbitrary
extracorporeal effectors, native neuronal representa-
tions cannot be leveraged. Whether brains—especially
adult brains—can learn to flexibly control complex
and arbitrary extracorporeal devices remains to be
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demonstrated (436). The principles that underlie BMIs
might also be invoked to have brains communicating
directly with one another (437). One brain can send elec-
trical signals to another brain, which would then interpret
those signals. In principle, the two brains could thus
communicate with much greater flexibility over a greater
bandwidth. As is the case for other BMIs, however, this
connection between brains is currently so primitive that
it is dwarfed by the more traditional means of brain-to-
brain communication, namely language.

An interesting open question is whether humans
even have the capacity to communicate with substantially
higher information rates, or whether biology imposes fun-
damental limits on our capacity to process and transmit
information. For instance, recent work surveyed informa-
tion transfer rates for speakers of 17 different languages
and found that although the amount of information con-
veyed per syllable showed substantial variation across
languages (by more than a factor of 2), these differences
were counterbalanced by corresponding differences in
speech rates across languages (438). Thus, information
transfer rates showed remarkable consistency across lan-
guages (�39 bits/s), despite the potential for faster rates
in languages with higher per-syllable content. One inter-
pretation is that this consistency may reflect underlying
limits in the ability of the human nervous system to pro-
cess information. Alternatively, we may one day find that
such limits in part reflect constraints imposed by the com-
munication channels.
Although the current technology is far too primitive to

support enhancement BMIs, the private sector is begin-
ning to invest in BMI technology, which is liable to lead to
great strides therein. Imagine if we could one day inhabit
each other’s minds or access the whole of human knowl-
edge stored in the cloud as we can our own knowledge!
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