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Rotating and swirling turbulence comprises an important class of flows, not only due to the
complex physics that occur, but also due to their relevance to many engineering applications,
such as combustion, cyclone separation, mixing, efc. In these types of flows, rotation strongly
affects the characteristics and structure of turbulence. However, the underlying turbulent flow
phenomena are complex and currently not well understood. The axially rotating pipe is an
exemplary prototypical model problem that exhibits these complex turbulent flow physics. By
examining turbulent statistics, the physical mechanisms responsible for turbulence suppression
are investigated. Direct numerical simulations are conducted at a bulk Reynolds number up
to Rep = 19,000 with rotation numbers ranging from N = 0 to 3. Within the chosen range of
Reynolds numbers, some Reynolds number dependence on the results was observed. Turbulent
kinetic energy budgets and Reynolds stresses were computed for these flows to quantify the
effects of rotation on the turbulent flow. It is found that rotation causes a reduction in
production near the wall and an increase in dissipation in inner-scaled dissipation. Additionally,
a small region of increased turbulent production was found near the center of the pipe flow.

I. Introduction
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Fig. 1 Relaminarization visualized by dye injected into a turbulent pipe flow entering a coiled tube (left) and

stationary/rotating pipe with dye entering on the right (middle). (right) Effect of rotation on friction coefficient.

(Figs. adjusted from[1, 2])

OTATING and swirling turbulent flows are of high importance to the engineering community due to their prevalence
Rin aerospace, industrial, and natural systems. In aerospace industries, wall-bounded rotating turbulence affects
almost every aspect of flight, from swept wings and wing-tip vorticies to turbo-compressors. Despite the prevalence of
these flows, little is known about the physical mechanisms responsible for some aspects of rotational turbulence. An
interesting aspect which can occur when rotating a turbulent flow is the phenomenon known as turbulence suppression,
which has been shown to cause reduction in drag at the wall[3-7], making the understanding of turbulence suppression
highly valuable for engineering applications.

Turbulence suppression has been observed in notable experiments dating back to the 1960s[2] and some Direct
Numerical Simulations (DNSs) of rotational pipe flows have been conducted at only relatively low Reynolds numbers[7—
10]. However, the understanding of turbulence suppression remains limited to the identification of the basic physical
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mechanisms responsible for inducing suppression. Axially rotating pipe flows provide an excellent prototypical case for
examination of turbulence suppression, as these flows eliminate unnecessary complications introduced by complex
geometry and can be realized effectively in both simulation and laboratory experiment. DNS of these flows was
conducted in conjunction with experimental research currently underway at the University of Kentucky[11].

In experiments by Kikuyama et al.[4], velocity distributions and hydraulic loss were obtained for downstream
positions in rotational flows at Reynolds numbers up to Re = 50,000, where Re = U D/v, in a domain of L = 160D, and
found that these flows reach a fully-developed state within 120D. In these experiments, increasing rotation was shown
to correspond to a reduction in friction coeflicient and the relationship between Richardson number and mixing length
established by Bradshaw[12] was verified. Depending on rotation rate, it may be relevant to describe a rotating pipe flow
as either: 1) a pipe flow regime with an additional axial rotation, defined by Re = U, D/v or 2) a rotating flow inside a
cylinder (solid body rotation) with an additional cross flow, defined by Re,, = U,,D/2v, where U,, is the velocity of the
wall. It can be seen that the rotation number, N, where N = QD /2U,, can be equivalently defined as a ratio between
these two Reynolds numbers. The competition for dominance between these two regimes was shown in experiments by
Nishibori et al.[5] where it was found that a rotating laminar layer close to the wall of axially rotating flows surrounds
the non-rotating turbulent core in the inlet region (20-60 diameters from the entrance), this laminarization destabilizes
downstream as the core begins to rotate, resulting in turbulent bursts which extend into the near-wall region. Reich and
Beer[6] examined flows from Re = 5,000 to 50,000 with rotation rates up to N = 5. In these experiments, effects of
rotation on mixing length were examined on a domain of L = 130D, reduction in friction coefficient was found and a
broad connection between turbulence suppression and the centrifugal force was established[6].

While numerous experimental studies have been conducted regarding rotating pipe flows, DNS of these flows have
been very limited. Simulations of axially rotating and non-rotating pipe flow were conducted by Feiz et al.[7] at Re =
4,900 and 7,400, as well as LES at Re = 20,000. Reduction in skin friction was found with increasing N and was
shown to become more significant at larger Reynolds numbers, as well as a decrease in streamwise velocity profiles with
increasing Re[7]. In studies by Orlandi & Fatica[8] and Orlandi & Ebstein[9], flows up to Re = 4,900 and rotation
numbers up to N = 10 were analyzed. By examining two-point velocity correlations, it was found that drag reduction
is related to the widening of streaks and changes to vortical structures in the near wall region. The observations by
Orlandi & Fatica[8] indicate that understanding the near-wall region of rotating flows is paramount to understanding
turbulence suppression. Due to the difficulty in taking experimental measurements in this region, it is clear that higher
Reynolds number DNS are required to gain insight into the complex problem of turbulence suppression. With this
in mind, simulations were conducted at Reynolds numbers Re = 5,300, 11,700, and 19,000 and rotation numbers in
the range N = 0-3. These studies build on previous work presented by Davis et al.[13, 14] and concurrent work by
Brehm et al.[15]. Some complimentary work on RANS modeling in rotating pipe flows using the present DNS data for
comparison are presented in a companion paper by Ashton et al.[16]. This modeling effort builds off initial work by
Ashton and Stoellinger [17] on the Elliptic Blending Reynolds Stress Model as a means to better capture turbulence
suppression in axially rotating pipe flow.

This paper is organized as follows: Section II discusses the chosen solver for these simulations, computational
domain considerations, and simulation requirements; mean velocity profiles are compared in Section III.A; Section
II1.B presents analysis of the effects of rotation on Reynolds stresses; turbulent kinetic energy is examined in Section
II1.C, and turbulent kinetic energy budgets are analyzed in Section IIL.D.

I1. Computational Methods

Simulations were conducted using the spectral element solver Nek5000, developed by Fischer et al[18]. Nek5000 is a
higher-order accurate, open source, spectral element solver used to solve the incompressible Navier-Stokes equations and
is well-known for its (spectral) accuracy, favorable dispersion properties, and efficient parallelization[19]. The spectral
element method is based on a weighted-residual approach for spatial discretization. For parallel computations, Nek5000
utilizes the message passing interface (MPI) protocol and has shown excellent scaling characteristics on HPC systems —
making it well-suited for large-scale turbulence flow computations. The mesh is comprised of hexahedral elements
with the solution being composed of N**-order tensor product polynomials within each element. Local lexicographical
ordering within each macro element, as well as the need to evaluate only O(E N*) discrete operators, which typically have
O(EN®) non-zeros, leads to the cache and vectorization efficiency[18]. A semi-implicit time-integration scheme is used
where the viscous terms of the Navier-Stokes equations are treated implicitly with third-order backward differentiation
(BDF3) and the nonlinear advection terms are explicitly extrapolated in time with third-order accuracy.

Nek5000 minimally uses external libraries to increase compile speed, and matrix operations are implemented
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in assembler code MxM routines to speed up computations. Furthermore, Nek5000 tests each of the three parallel
algorithms at the beginning of each run to determine which behaves optimally — thus parallelism is automatically
tuned for each machine[18]. The algebraic multi-grid (AMG) solver was chosen throughout this work from the different
pressure Poisson solvers available in Nek5000.

The choice of the domain size such that a fully developed flow can be obtained is an important issue both for
numerical simulations and experiments. Flow visualizations by Nishibori et al.[5] showed that coherent flow structures
form in the center of the pipe at high rotation rates. Thus, to avoid a negative impact of the domain size on the
computational results, it has to be ensured that the fluctuating velocities measured at two locations separated by a
streamwise distance of O(L) are uncorrelated. Orlandi and Fatica[8] found that a domain size of L/D = 7.5 for
Re =4,900 and N = 2 is sufficient to resolve the largest flow structures within the domain. Khoury et al.[19] showed a
domain size of L/D = 12.5 to be sufficient for pipe flows at Reynolds numbers up to Re = 37,700, being the more
conservative estimate, this domain was chosen for the current simulations. As shown in Fig. 2, periodic boundary
conditions were used at the inflow and outflow of the domain to allow the simulations to reach a fully developed state.
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Fig. 2 (a) Simulation domain and (b) mesh cross-section for the fully developed turbulent flow simulations.

The different grid sizes, Nay, are provided in Table 1. Sufficient temporal and spatial resolution is required to
thoroughly study the intricate nature of turbulence, turbulence suppression and relaminarization. The computational
mesh shown in Fig. 2b. It was chosen to resolve the wide range of different turbulent scales. The radial, azimuthal and
streamwise grid spacings are reported in y*-units and different ranges are provided because the mesh varies within
the computational domain. Note that the friction factor (or skin friction values) used to calculate the grid spacings in
y*-units were obtained from non-rotating turbulent pipe flow simulations. The provided grid spacings in y*-units are
conservative estimates for the rotating pipe flow simulations because the skin friction values were expected to be lower
for a rotating pipe due to the relaminarization process.

Re f Art/ AR®*/ Azt Nay x 100 At Nas ft | fa
5,300 | 0.0375 | 0.14-4.4/1.5-4.5/3.0-9.9 20 0.00150 | 220,000 | 26.5 | 20
11,700 | 0.0300 | 0.16-4.7/1.5-5.0/3.0-9.9 120 0.00085 | 265,000 | 18 | 11.5
19,000 | 0.0270 | 0.15-4.5/1.5-4.8/3.0-10. 440 0.00053 | 400,000 | 14 | 6.5

Table 1 Details of turbulent pipe flow simulations assuming a streamwise extent of 15D, where Re refers to
Reynolds number, f = 8u?/ Ulf is the friction factor, NV,, is the number of grid points in the computational
domain, At is the chosen timestep, Ny, is the number of total timesteps, and Ar*, ARO®* and Az* are the grid
spacings measured in y*-units. Note that for the grid spacings different ranges are provided because the mesh is
non-uniform. The flow through time is f¢, and, finally, fa is the number of flow throughs over which temporal
averaging was conducted.

Since the convective terms of the incompressible Navier-Stokes equations are treated with an explicit time-integration
scheme, to allow for a stable numerical solution the non-dimensional timestep, A¢, corresponds to a CFL number of
less than 1. The timesteps provided in Table 1 were chosen to ensure CFL=0.75. To obtain fully-converged turbulent
statistics we require a total compute time of at least ten flow through times which includes an initial transient. The
total number of timesteps, Ny;, reported in Table 1 are based on flow through times providing sufficient accuracy in
the turbulent statistics that can be obtained from the simulations, where the number of flow throughs during which
averaging occurred is given by fa in Table 1.
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I11. Results

To gain an understanding of rotational effects in pipe flows; mean profiles, Reynolds stresses, turbulent kinetic energy,
and turbulent kinetic energy budgets were computed for each case. Turbulent statistics were obtained by computing time
averages at each point at run-time followed by spatial averaging in the streamwise and azimuthal directions. Values were
directly averaged in the streamwise direction, as the computational domain is uniform in this direction, but interpolation
onto a radially uniform grid was required for azimuthal averaging. Values which have been spatially and temporally
averaged in this manner are denoted with < - >.

To better understand turbulence suppression, a rigorous, quantifiable metric for measuring the degree of suppression
in a flow is needed. However, previous studies have yet to identify such a metric, with many studies using qualitative
features and some studies mentioning the existence of the phenomenon without classifying it in any way. One common
quantification of turbulence suppression is the measure of wall friction, but friction is completely determined by the
state of the flow at the wall, and does not directly characterize the flow as a whole. This metric should: 1. indicate the
existence of turbulence suppression in flows that contain the classical flow features associated with suppression, e.g.
friction reduction and a more parabolic mean profile; 2. be readily computable from turbulent statistics; and 3. should
be a sensible measure of turbulence. To identify this metric, turbulent kinetic energy is examined in Section III.C as
well as mean profiles and drag reduction in Section III.A. Turbulent kinetic energy budgets are examined in Section
II1.D, with an emphasis on examining the influences of the two competing regimes, i.e. the pipe flow regime and the
flow inside a rotating cylinder regime, in terms of the budget equation.

A. Mean Velocity Profiles

Streamwise mean velocity profiles were calculated for each case and are presented in Fig. 3 normalized by the
bulk velocity. From Fig. 3a, it can be seen that the dependence on Reynolds number is small, and that the profile is
dominated by rotation rate dependence. This obsevation agrees well with experimental data by Kikuyama et al.[4]. The
reduction in mean streamwise velocity towards the wall provides a strong indication of a reduction in mixing within the
flow, whereby high velocity flow remains concentrated towards the center of the flow. This results in a mean velocity
profile which appears to approach the laminar profile as the rotation rate is increased, which has been used in prior
works as an indication of turbulence suppression.

Normalizing the mean streamwise velocity with u, yields the inner-scaled value, which is presented in Fig. 3b.
Here, a significant deviation from the log-law is evident in rotational flow, with high dependence on N.
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Fig. 3 Mean streamwise velocity profiles for all Reynolds numbers (a) normalized with bulk velocity U, and
(b) in inner scaling.

Similar trends to those found in mean streamwise velocity are present in mean azimuthal velocity. Mean azimuthal
velocity profiles for Re = 19,000 are shown in Fig. 4a normalized by velocity at the wall, U,, in an inertial (laboratory)
reference frame. Swirl is shown in Fig. 4b, here in a reference frame rotating with the pipe. The location of the peak in
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swirl is unaffected by N, though the magnitude of the peak does show significant dependence on rotation. Reynolds
number dependence is seen in both magnitude and location of the peak, with the peak being shifted towards the center

of the flow for Re = 5,300.
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Fig. 4 (a) Mean azimuthal velocity (non-rotating reference frame) profiles normalized by the velocity of the
wall for Re = 19,000 and (b) a comparison of swirl profiles.

The friction Reynolds number, given by Re, = u,D/v, reduces significantly for low rotation rates followed by a
slight reduction for N = 3, as shown in Fig. 5. By normalizing Re, with Re: o, which is the friction Reynolds number
for the non-rotational flow at a given bulk Reynolds number, as shown in Fig. 5, the reduction in friction Reynolds
number can be more clearly visualized. The dependence of this reduction on bulk Reynolds number is initially quite
significant, with the percentage of reduction more than doubling from Re = 5,300 to Re = 11,700 for N = 1 and 3.
As the Reynolds number is increased further, however, the impact on drag reduction becomes less significant. An
abrupt change in the efficiency of friction reduction with increasing N can also be seen, with moderate rotation numbers
(N < 1) showing significant reduction in Re,, while rotating the flow beyond N = 1 results in only a modest additional
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Fig. 5 (a) Comparison of friction Reynolds number for different rotation Numbers. (b) Relative reduction of
friction Reynolds number (normalized by non-rotating friction Reynolds number).
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B. Reynolds Stresses
Reynolds stresses were evaluated in a streamline-aligned coordinate system offset from the streamwise, or z-direction,
by 65, which is given by:

1 Uz

2 . 2
v Uz +Ug 1

The profiles of this mean streamline angle 6, are shown in Fig. 6, where it can be seen that away from the wall, all
profiles begin to organize depending on rotation rate N due to the high dependence of both U, and Uy on N as evidenced
in Fig. 3 and Fig. 4. Close to the wall, mean velocity profiles adhere to the law of the wall, resulting in a sorting of 6,
by Re as seen in the inset for Fig. 6.

The effects of rotation on the Reynolds stress aligned with the
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as the Reynolds number increases contrary to the behavior of the
near-wall peak, which shows a very mild increase with increasing Fig. 6 Streamline angle 6; between stream-
Reynolds number for the non-rotating case. line and streamwise directions.
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Fig. 7 Normal Reynolds stress aligned with the streamline direction normalized by u?2 for (a) Re = 5,300, (b)
Re =11,700, and (c) Re = 19,000.

The < upup >* Reynolds stress is aligned in the radial direction
and experiences a general increase with rising N which may be caused by an increase in forcing in this direction from the
centrifugal force. The component of the Reynolds stress tensor aligned with the third direction (i.e. mutually orthogonal
to the streamline and radial directions), < uzusz >* also shows the formation of a second peak at the same location as
the peak observed in < uju; >*, indicating a transfer in energy in the fluctuations along the first and third directions.
The near-wall peak present in < uju; >* for N = 0 is now visible in < uzuz >, as this third direction aligns with the
direction of azimuthal forcing at the wall.
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Fig. 8 Normal Reynolds stress aligned with the radial direction normalized by uﬁ for (a) Re = 5,300, (b) Re =
11,700, and (c) Re = 19,000.
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Fig. 9 Normal Reynolds stress aligned with the third axis (i.e. orthogonal to the streamline and radial
directions.) normalized by uf for (a) Re = 5,300, (b) Re = 11,700, and (c¢) Re = 19,000.

C. Turbulent Kinetic Energy

Turbulent kinetic energy, k, describes the energy present in the fluctuating part of the flow and is, therefore, a
sensible candidate for quantifying turbulence suppression. Before defining a metric to measure suppression, however,
an appropriate normalization for k¥ must be selected. To determine this metric, k for each flow case was analyzed to
determine a normalization which is readily obtainable, physically sensible, and conforms to previous definitions of
turbulence suppression.

Turbulent kinetic energy was calculated using:

k = %«uluo + (uatz) + (usuz)) ?

and is shown in inner-scaling for each case in Fig. 10a-c. It is noted that the peak in k* near the wall experiences
a slight increase with increasing N and narrowing with additional Re; additionally, there is a marked increase in k*
towards the pipe centerline. The location of the near-wall peak is unaffected by Re, remaining constant at y* ~ 17,
while the peak away from the wall, formed at higher rotation rates, does show Reynolds number dependence in both
location and magnitude, and corresponds to a peak in production (see Fig. 14). At first glance, turbulence appears to
be enhanced by rotation in this scaling, which does not align with the current conception of turbulence suppression.
Additionally, much of the increase in k is concentrated towards the center of the flow, and, therefore, contributes less to
the overall turbulence. By multiplying k with r and normalizing by 2D, an inner-scaling for turbulent kinetic energy is
arrived at that accounts for the integral of k in the azimuthal direction, and, therefore, represents the contribution in the
integrand for the total turbulent kinetic energy, TKE. In this normalization, shown in Fig. 10d-f, it can be seen that the
contribution to the total turbulent kinetic energy due to the increase in k* away from the wall is far less than it appears
to be in Fig. 10a-c, though this normalization still shows an apparent increase in turbulent kinetic energy with rotation.

By normalizing k with U?, a decrease in the near-wall peak is evident with increasing rotation rate as seen in Fig.
12a-c. The peak formed away from the wall also shows significant Reynolds number dependence, reducing drastically
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with increasing Re. As the Reynolds number increases, the effect of rotation on k toward the center of the flow become

less significant while the decrease in the inner peak becomes more significant.
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Fig. 10 Inner-scaled turbulent Kinetic energy k for (a) Re = 5,300, (b) Re = 11,700, and (c) Re = 19,000, and
inner-scaled turbulent Kinetic energy multiplied with radial position for (d) Re = 5,300, (e¢) Re = 11,700, and (f)

Re = 19,000.

Using a similar process to the one applied to k¥, turbulent kinetic
energy is multiplied with r to compensate for the integrand and
normalized using UZD to obtain values that account for integration

over the cross-sectional area. This normalization is presented in Fig.

12d-f and a reduction in total turbulent kinetic energy can now be seen
for N = 0.5 at Reynolds numbers of 11,700 and 19,000. The second
peak is significantly diminished, as fluctuations toward the center
of the flow contribute less to the overall turbulent kinetic energy of
the flow. The total turbulent kinetic energy integrated over the cross
sectional area of the pipe is presented in Fig. 11 divided by the total
turbulent kinetic energy for the non-rotating case. The percentage
increase in TKE with N shows a strong dependence on Reynolds
number, decreasing significantly with increasing Re. TKE at Re =
5,300 N =1, for example, is 32% higher than the non-rotating case,
while TKE for Re = 19,000 at the same rotation number shows an
increase of less than 2%.
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Fig. 11 Change in total turbulent kinetic
energy.

By normalizing with Uﬁ only a slight suppression in turbulence is seen for N = 0.5, and only for sufficiently high
Reynolds numbers. Applying this normalization, however, fails to account for the total kinetic energy available in the
mean flow. The rotational component of the mean velocity becomes more significant as rotation rate increases, and it
is, therefore, much more sensible to normalize by the total mean kinetic energy Ul% + Ug. In this new normalization,
suppression of turbulence is much more pronounced, with the increase towards the center of the flow now showing
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Fig. 12 Turbulent kinetic energy normalized by bulk velocity squared for (a) Re = 5,300, (b) Re = 11,700, and
(c) Re =19,000. Turbulent kinetic energy multiplied by radial position and normalized by UIfD is shown for (d)
Re =5,300, (¢) Re = 11,700, and (f) Re = 19,000. Normalization by the total mean Kinetic energy is shown for

(2) Re = 5,300, (h) Re = 11,700, and (i) Re = 19,000

significant reduction from traditional scaling, as seen in Fig. 12j-1. It
is also notable that this increase diminishes with increasing Reynolds
number, and is completely absent in the Re = 19,000 case, where all
rotation rates now show suppression of turbulence.

Looking at the total value for TKE integrated over the cross
section in Fig. 13, this normalization now shows reduction in TKE
for all cases at sufficiently high Reynolds number. The only case now
showing an excitation of total turbulent kinetic energy being Re =
5,300 N = 1. Previous descriptions of turbulence suppression relied

on either a qualitative definition or an evaluation of drag at the wall.

While drag measurements provide a way to quantitatively measure the
effects of rotation on the flow, it is not a good measure for turbulence
suppression. These types of measures only describe the state of the
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flow near the wall, and fail to account for the characteristics of turbulence in the flow. The ratio of total turbulent kinetic
energy to mean kinetic energy better describes the amount of turbulence in the flow, making this ratio much better
suited as a metric for quantifying turbulence suppression.

D. Turbulent Kinetic Energy Budgets
Just as turbulent kinetic energy is important in the quantification of turbulence suppression, an understanding of the
turbulent kinetic energy budgets aids in understanding the mechanisms which generate or dissipate turbulence. Two
competing extreme flow regimes are the pipe flow, characterized by Re, and rotating flow inside a cylinder (solid body
rotation), characterized by Re,,. The rotation number N essentially represents a ratio of these two Reynolds numbers.
The turbulent kinetic energy budget equation given by Eqn. (3) provides a description of the change in k due to
production of k from the mean flow, dissipation by molecular forces, and transfer by convection and diffusion.

, ’
ok ;o\ O {u; Kl , [ Ou. Ou,
— =—<uiu.> i) () —-— (k)(uj> +<u.(k+£)>—v u; S AR . 3)
ot J ox; _ ox; J o0 oxj  0x;
—— v
~~ Turbulent ti
Rate of change Production dissipation b(}zfogggﬁfllgr\;/ s
of k Diffusion

Transfer of turbulent energy
In fully developed turbulence, the left hand side becomes zero, as well as the convection term, resulting in a balance
between production P, dissipation €, and diffusion. Turbulent kinetic energy diffusion is described by three physical
mechanisms: viscous diffusion, V D; turbulent diffusion, 7' D; and pressure diffusion, PD, given by Eqn. (4), (5), and
(6), respectively,
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A reduction in peak production is observed with increasing rotation number as shown in Fig. 14a-c. At the lowest
Reynolds number, Re = 5,300, the peak takes on a similar value for all rotation rates, however, as the Reynolds number
is increased, a clear trend begins to emerge. The location of the peak is largely unaffected for moderate rotation rates, but
a modest shift in location is observed at N = 3 due to the dominance of rotation in flows for N > 1. Scaling production
with u? /v yields inner-scaling, see Fig. 14d-f, and provides a reasonable collapse of the data near the wall, while an
increase in production is noted towards the center of the flow. This peak is caused by the formation of peaks in normal
Reynolds stresses < uju; > and < uzu3 > combined with increased mean velocity gradients due to the more parabolic
profile induced by turbulence suppression, and corresponds to the peak in k shown in Fig. 10.

The magnitude of dissipation at the wall experiences an initial decrease as rotation is induced, followed by an
increase for sufficiently high rotation rates, as shown in Fig. 15a-c. The value of N at which the minima occurs was not
determined, but a Reynolds number dependence can be observed, with the minima occurring between N = 0.5 and N =
1 for Re = 5,300 and between N = 1 and N = 3 for the higher Reynolds number cases. Figure 15d-f shows dissipation
in inner-scaling and here three distinct regions can be seen, with the magnitude of ¢ increasing with increasing rotation
in the near wall and center regions, but decreasing with increasing rotation in the mid-region. Inner-scaled € begin to
show collapse onto a single profile as Re is increased for the moderate rotation cases, but no such collapse is evident for
N = 3, again indicating a change in characterization of the flow from a pipe flow with rotation to a flow inside rotating
cylinder with cross-flow as N increases beyond 1.

Dissipation at the wall is balanced by viscous diffusion, as shown in Fig. 16, where VD is given Eqn. (4). As with
the peak in production, a shift in location of the trough in viscous diffusion is noted for the highest rotation rate. This
shift towards the wall was also observed at N = 2 by Orlandi and Ebstein[9] in their study of rotating flows at Re =
4,900 (see Fig. 24c in the Appendix for a direct comparison). As with production and dissipation, a change in the
characterization of the flow is evident at N = 3 when viewing VD in inner-scaling, shown in Fig 16d-f, reinforcing the
notion that the flow is now dominated by the flow inside a rotating cylinder regime.
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Fig. 14 Turbulent kinetic energy production for (a) Re = 5,300, (b) Re = 11,700, and (c) Re = 19,000.
Inner-scaled production is presented in (d) Re = 5,300, (e) Re = 11,700, and (f) Re = 19,000.
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Fig. 15 Turbulent Kinetic energy dissipation for (a) Re = 5,300, (b) Re = 11,700, and (c) Re = 19,000.
Inner-scaled dissipation is presented in (d) Re = 5,300, (e) Re = 11,700, and (f) Re = 19,000.
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Fig. 16 Viscous diffusion for (a) Re = 5,300, (b) Re = 11,700, and (c) Re = 19,000. Inner-scaled viscous
diffusion is presented in (d) Re = 5,300, (e) Re = 11,700, and (f) Re = 19,000.

Turbulent diffusion is given by Eqn. (5) and shown in Fig. 17a-c. The near wall peak in 7D diminishes with
increasing rotation, and is completely absent for Re = 5300 N = 3. Unlike the previous budget terms, inner-scaled
turbulent diffusion does not completely collapse at moderate rotation rates, even at the highest Reynolds number, with a
notable difference between the magnitude of the minimum value for the moderate rotation rates (N = 0.5 and 1) and the
non-rotating case. The source of this difference has not been identified, though Reynolds number dependence cannot be
ruled out. As with the previously mentioned budget terms, the behavior of N = 3 flows show a marked difference to
flows at moderate rotation rates, again indicating dominance of the rotating regime. The high rotation number case
shows both an increase in the magnitude of the minimum and a shift in the peak closer to the wall. This behavior
matches well with observations by Orlandi and Ebstein [9] for N = 2 (see Fig. 24e in the Appendix).

Pressure diffusion, given by Eqn. (6), shows significant dependence on rotation number, with the increase in
centrifugal force driving a moderate increase in the peak for rotation rates N = 0.5 and N = 1, as well as a substantial
increase when N is increased to 3, as shown in Fig. 18a-c. The increase in the near-wall region remains evident even in
inner-scaling, though it does show a decrease with increasing Reynolds number, indicating that the profiles of PD* at
moderate rotation numbers may stay close together at sufficiently high Re. At N = 3, however, PD experiences a sharp
increase that, like discrepancies noted in other turbulent budget terms, likely arises from the dominance of the rotating
cylinder regime.

The analysis of turbulent kinetic energy budgets as a whole shows several trends emerging. Inner-scaling provides a
reasonable collapse of most budget terms when applied to the Re = 19,000 flows at rotation numbers of N < 1, with
notable exceptions being a small region of increase in production away from the wall and differences in the minimum
in turbulent diffusion and the maximum in pressure diffusion. Although it may be speculated that collapse at higher
Reynolds numbers than those studied here is still possible. However, notable evidence for a change in behavior of
the flow at N > 1 is observed in inner-scaling, with features such as, the peaks in production, viscous diffusion, and
turbulent diffusion shifting closer to the wall, and large differences in maxima and minima values of each budget term
when compared to pipe flow with N < 1. These trends for N = 3 correspond well with data collected by Orlandi and
Ebstein [9] at Re = 4,900 and N = 2, and serve to reinforce the notion that high N flows are dominated by rotation and
cannot be adequately characterized by "classical" pipe flow characteristics.
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Fig. 17 Turbulent diffusion for (a) Re = 5,300, (b) Re = 11,700, and (c) Re = 19,000. Inner-scaled turbulent
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IV. Conclusions

Highly-resolved DNS of rotating pipe flow were conducted at Reynolds numbers Re = 5,300, 11,700, and 19,000 at
rotation rates N = 0, 0.5, 1, and 3. Mean velocities, Reynolds stresses, turbulent kinetic energy, and turbulent kinetic
energy budgets were analyzed to study the phenomenon of turbulence suppression. Relations between mean streamwise
velocity and rotation number were found to be consistent with experimental data, and drag reduction was observed for
each rotating case. By analyzing turbulent kinetic energy, a metric was defined to quantify turbulence suppression by
normalizing the integral of turbulent kinetic energy by the total mean kinetic energy. This metric provides an easily
computable and consistent means to identify turbulence suppression in rotating pipe flows that aligns well with the
current definition of the phenomenon. Finally, inner-scaling was shown to work well in collapsing turbulent kinetic
energy budget terms to a single profile for rotation numbers up to N = 1, but flows at higher rotation rates to be
characteristic of pipe flow and are dominated by the flow inside a rotating cylinder regime.
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Appendix
Normal Reynolds stresses as well as Reynolds Shear stress for the non-rotating cases were compared to previous
DNS data from a study conducted by Khoury ez al.[19] and are presented in Fig. 19 in cylindrical coordinates. Reynolds
stresses for all cases, both rotating and non-rotating are presented in cylindrical coordinates in Fig. 20 for < u u, >,
Fig. 21 for < u,u, >*, Fig. 22 for < ugug >*, and Fig. 23 for < uzu, >*.
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Fig. 19 Comparison of inner-scaled Reynolds stresses to data by Khoury et al.[19] for (a) Re = 5,300, (b) Re =
11,700, and (c) Re = 19,000.
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Fig. 20 Streamwise normal Reynolds stress normalized by uf for (a) Re =5,300, (b) Re = 11,700, and (c) Re =
19,000.

DNS of rotating flows at the Reynolds numbers presented in this paper had not been previously conducted, therefore
TKE budget terms were validated by comparing values for Re = 5,300 with data from the studies conducted by Orlandi
and Ebstein[9] at Re = 4,900, as presented in Fig. 24.

15



Downloaded by Sean Bailey on February 28, 2022 | http://arc.aiaa.org | DOI: 10.2514/6.2019-3639

z2zzz

1 J 1 1 J O 1 1 1 1
0 50 100 150 0 100, 200 300 0 100 200, 300 400
y y y

(a) (b) (©)

Fig. 21 Radial normal Reynolds stress normalized by u% for (a) Re = 5,300, (b) Re = 11,700, and (c) Re =
19,000.
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Fig. 22 Azimuthal normal Reynolds stress normalized by u% for (a) Re = 5,300, (b) Re = 11,700, and (c) Re =
19,000.

(@) (b) (©
Fig. 23 Reynolds shear stress normalized by uf for (a) Re = 5,300, (b) Re = 11,700, and (c) Re = 19,000.
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Fig. 24 Comparison of turbulent kinetic energy budget terms for Re = 5,300 with DNS data from Orlandi &
Ebstein[9] at Re = 4,900.
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