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Abstract

Over the past few decades, the rapid democratization of high-throughput sequencing and
the growing emphasis on open science practices have resulted in an explosion in the amount
of publicly available sequencing data. This opens new opportunities for combining datasets to
achieve unprecedented sample sizes, spatial coverage, or temporal replication in population
genomic studies. However, a common concern is that non-biological differences between
datasets may generate batch effects that can confound real biological patterns. Despite
general awareness about the risk of batch effects, few studies have examined empirically how
they manifest in real datasets, and it remains unclear what factors cause batch effects and
how to best detect and mitigate their impact bioinformatically. In this paper, we compare two
batches of low-coverage whole genome sequencing (IcWGS) data generated from the same
populations of Atlantic cod (Gadus morhua). First, we show that with a “batch-effect-naive”
bioinformatic pipeline, batch effects severely biased our genetic diversity estimates,
population structure inference, and selection scan. We then demonstrate that these batch
effects resulted from multiple technical differences between our datasets, including the
sequencing instrument model/chemistry, read type, read length, DNA degradation level, and

sequencing depth, but their impact can be detected and substantially mitigated with simple
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bioinformatic approaches. We conclude that combining datasets remains a powerful approach
as long as batch effects are explicitly accounted for. We focus on IcWGS data in this paper,
which may be particularly vulnerable to certain causes of batch effects, but many of our

conclusions also apply to other sequencing strategies.
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Introduction

The field of population genomics has been strongly influenced by two major advances
over the past decades. First, high-throughput sequencing technology has rapidly evolved,
steadily lowering the cost of DNA sequencing (Costello et al., 2018; Elango, Banaganapalli,
& Shaik, 2019; Slatko, Gardner, & Ausubel, 2018). Second, the importance of reproducibility
and reusability has increasingly been recognized by researchers, journals, and funding
agencies alike, making data sharing an integral part of modern science (Gewin, 2016;
Lowndes et al., 2017; Wilkinson et al., 2016). As a combined result of these shifts, a plethora
of sequencing datasets from previous population genomic studies across the tree of life are
now publicly available (Benson et al., 2013; Field et al., 2009; Kaye, Heeney, Hawkins, de
Vries, & Boddington, 2009; Perez-Riverol et al., 2019).

This availability of pre-existing data brings new and exciting opportunities for combining
datasets to achieve unprecedented resolution in empirical population genomic studies, e.g.
with larger sample sizes, greater geographic coverage, or incorporation of temporal
replication or time series analysis (see De-Kayne et al., 2021 for a recent review). As
population genomics increasingly moves towards re-sequencing of entire genomes rather
than specific sets of markers, the potential for combining datasets across studies should
further grow. Yet, sequencing technology has evolved and diversified so quickly over the
past decades that most datasets are likely to differ in various aspects, such as the library
preparation method, sequencing platform, read type, and read length. In addition, DNA
quality and depth of sequencing will often vary among different batches of data. These
technical differences among datasets may create batch effects that can confound real

biological patterns (Leek et al., 2010).
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Typically, the best way to limit these technical artefacts is to keep data generation as
consistent as possible across batches of samples (e.g., adhering to the same sequencing
platform, read type, and read length) and/or to randomize samples from different groups (e.g.,
populations or time points) across different sequencing batches. However, neither of these
options may be available when we combine pre-existing datasets (De-Kayne et al., 2021).
When we supplement pre-existing datasets with new data, full randomization of samples is
also not possible since we do not have control over which samples are included in pre-
existing datasets. With sequencing platforms being gradually phased out (e.g., [llumina’s
recent discontinuation of the HiSeq platform), even generating new data with the same
configurations as in pre-existing datasets may not be an option (De-Kayne et al., 2021; Leigh,
Lischer, Grossen, & Keller, 2018). Furthermore, in addition to sequencing configuration,
factors such as DNA degradation can also lead to batch effects that cannot be controlled by
experimental design alone. We therefore need post-hoc bioinformatic approaches to detect
potential batch effects in our data and mitigate their impact.

Although most researchers are aware of the potential risk of batch effects in sequencing
data, only a few studies have explicitly discussed the causes and consequences of such issues,
and even fewer have explored bioinformatic approaches to address them with real data. For
example, Bélint et al. (2018) demonstrated that variation in DNA extraction and PCR
protocols may lead to batch effects in eDNA studies, but they did not suggest any
bioinformatic solutions to mitigate their impact. O’Leary et al. (2018) illustrated that
differences in library preparation protocol and sequencing coverage may lead to batch effects
with restriction site-associated sequencing (RAD-seq) data, but it is unclear whether their
recommend mitigation methods would be applicable when samples are not randomly
assigned to different batches. Leigh et al. (2018) provided one of the most thorough analyses

of batch effects to date, demonstrating that differences in read lengths in time-series RAD-
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seq data can lead to false signals of allele frequency shifts, but that stringent SNP filters,
indel alignment, read trimming, as well as a species-specific reference genome can be
effective remedies. Similarly, Kofler et al. (2016) examined how differences in read length
and insert size could affect mapping performance with Pool-seq data, and they showed that
intersecting results from two different mapping tools is an effective approach to reducing
batch effects when working with datasets with differing read length and insert size. Most
recently, De-Kayne et al. (2021) provided a broader conceptual overview of different causes
of batch effects in sequencing data and best practices to address them, particularly
highlighting important consequences of the shift from a four-channel to a two-channel
sequencing chemistry on Illumina platforms. However, it is still unclear how such impact
recommended mitigation methods are in practice.

In this paper, we present an empirical case study of batch effects in low-coverage whole
genome sequencing (IcWGS) data. Whole genome sequencing is arguably the sequencing
method that harbors the greatest potential for reusing and integrating datasets, since the
ability to combine across studies does not hinge on selection of the same restriction enzymes
(as in RAD-seq) or markers (as in SNP chips or microsatellites) (De-Kayne et al., 2021). In
particular, as a powerful and cost-effective approach to obtain whole-genome data, IcWGS is
becoming increasingly popular in the field of molecular ecology (Lou, Jacobs, Wilder, &
Therkildsen, 2021), but its sensitivity to batch effects has not yet been examined. Here, we
show how combining IcWGS datasets that differ in multiple ways can result in severe batch
effects in downstream population genomic inference, and we highlight strategies for
detecting and mitigating such impact using simple bioinformatic approaches. Although
IcWGS data may be especially susceptible to certain causes of batch effects investigated in

this paper because of the higher level of uncertainty in this data type, many of our
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conclusions should also apply to other types of sequencing data, including high-coverage

sequencing.

Materials and Methods

The data presented here originate from a IcWGS study of population structure and
adaptive divergence in Atlantic cod (Gadus morhua) in Greenlandic waters (Lou et al. in
prep). DNA was extracted from fin clips or gill tissue with the Qiagen DNeasy Blood &
Tissue Kit and libraries were prepared with the protocol described in Therkildsen & Palumbi
(2017). There was substantial variation in the preservation level of tissue samples from this
difficult-to-sample locality. For a subset of our samples, the DNA was relatively well-
preserved so we could prepare libraries with a sufficient insert size to make full use of cost-
effective paired-end sequencing. For another subset of samples, however, the DNA was so
degraded that the average insert size we could achieve in our libraries was only 100-150bp,
and accordingly, paired-end sequencing would lead to substantial redundancy among the
overlapping read-ends and adapter read-through (resulting in loss of >50% of the data).
Naively unaware of how severely it would affect our analysis downstream, we decided to
split our samples into two different batches for sequencing: one batch with single-end 125bp
read (for short-insert libraries; we will refer to this as “HiSeq-125SE”) and the other batch
with paired-end 150bp reads (which was more cost-effective for libraries with longer inserts;
we will refer to this as “NextSeq-150PE”). As the names imply, the two batches of data were
sequenced on different Illumina platforms, so they differ in their sequencing chemistry
(HiSeq 2500 with a four-color chemistry vs. NextSeq 500 with a two-color chemistry), and
they were also sequenced to different average depth of coverage per sample (0.8x vs. 0.3x,

see overview in Table 1).
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To assign different samples to the two sequencing batches, we used gel electrophoresis to
visually assess the level of degradation in all DNA extracts. We categorized samples with
strong low-molecular-weight smears on a gel as “degraded” and sequenced these in the
HiSeq-125SE batch. The majority of the remaining samples (well-preserved) were assigned
to the NextSeq-150PE batch, but to fill up lane capacity, a subset of the well-preserved
samples were sequenced in the HiSeq-125SE batch.

A total of 388 individuals were sequenced in these two batches, but we base our analysis
here on a subset of 163 individuals from 9 populations for which individuals were split
between the sequencing batches. For 3 of the 9 populations, the samples were split strictly
based on their degradation level (i.e. the degraded samples were all sequenced in the HiSeq-
125SE batch and the well-preserved samples were sequenced in NextSeq-150PE batch). For
the other 6 populations, all samples were well-preserved and were randomly split between the
two batches (sample sizes and depths of coverage in Figure S1). Since we do not expect there
to be systematic biological differences between individuals from the same population, we
have multiple independent sets of comparable samples split between batches, which allows us
to assess the effectiveness of our bioinformatic mitigation strategies, both for well-preserved
and degraded samples.

A detailed description of our entire data analysis pipeline is included in the
supplementary materials, and all scripts used in this paper are available on GitHub
(https://github.com/therkildsen-lab/batch-effect). Briefly, we first processed all samples with
a standard bioinformatic pipeline for IcWGS data without explicitly taking the differences
between the two sequencing batches into account (i.e., a “batch-effect-naive” pipeline). For
data filtering and mapping, we used Trimmomatic-0.39 (Bolger, Lohse, & Usadel, 2014) to
clip adapters, fastp-0.19.7 (Chen, Zhou, Chen, & Gu, 2018) to perform poly-G trimming,

bowtie2-2.3.5.1 (Langmead & Salzberg, 2012) to align reads to the gadMor3 reference
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genome (NCBI accession ID: GCF_902167405.1, Wellcome Sanger Institute, 2019),
samtools-1.11 (Li et al., 2009) to sort the resulting bam files, the MarkDuplicates module in
Picard Tools-2.9.0 (http://broadinstitute.github.io/picard/) to remove duplicated reads, the
clipOverlap module in BamUtil-1.0.14 (Jun, Wing, Abecasis, & Kang, 2015) to clip

We then used ANGSD-0.931 (Korneliussen, Albrechtsen, & Nielsen, 2014) to compute
genotype likelihoods and estimate individual heterozygosity across the entire genome in all
samples, taking both variable and invariable sites into account.

After processing all samples with this “batch-effect-naive” bioinformatic pipeline, we
noticed systematic differences in our estimates of individual heterozygosity between the two
batches of data (Figure 1A “before”). To identify what aspects of the data were driving these
differences and assess whether there were ways to mitigate them, we separately examined the
impact of each of the following potential sources of technical artefacts: poly-G tails, base
quality score miscalibration, reference bias in read alignment, DNA degradation level, and
sequencing depth. In the following sections, we describe in turn our approach to assessing
and mitigating the effects of each of these sources. Many of these efforts are simply based on
modifying part of our “batch-effect-naive” pipeline outlined above (e.g. using the sliding-
window trimming functionality in fastp to more effectively remove poly-G tails, or applying
more stringent filtering in ANGSD when estimating heterozygosity to alleviate the impact of
base quality score miscalibration). In other cases, we also used ANGSD for SNP calling,
principal component analysis (PCA), and Fst estimation, and ngsL.D-1.1.0 (Fox, Wright,
Fumagalli, & Vieira, 2019) for LD estimation and removal of strongly linked SNPs (i.e. LD
pruning). Finally, to examine the effect of varying depth of sequencing coverage, we used
simulated data in addition to the empirical cod datasets. We used SLiM-3.3 (Haller &

Messer, 2019) to simulate populations distributed in a two-dimensional space, and ART-
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MountRainier (Huang, Li, Myers, & Marth, 2012) to simulate the IcWGS process to create
comparable datasets with varying sequencing depth (more details in the supplementary

material).

Results and Discussion

Across the two sequencing batches, we generated a total of 61.5 Gb raw sequencing data
for the 163 samples. The systematic biases in population genomic inferences that we
discovered pertain to estimates of genetic diversity, population structure, and selection scan.
For example, the NextSeq-150PE samples consistently have substantially higher estimates of
heterozygosity than HiSeq-125SE samples from the same population (Figure 1A “before™);
samples from the same population but different batches cluster separately in a PCA (Figure
1B “before”); and when pooling all populations together, a large number of loci exhibit
highly elevated levels of genetic differentiation (compared to the genome-wide mean)
between the HiSeq-125SE and NextSeq-150PE batches, which is not expected because they
are composed of samples from the same populations (Figure 1C “before”).

Based on our bioinformatic analysis, we found that all the potential sources of technical
artefact that we investigated (poly-G tails, base quality score miscalibration, reference bias,
DNA degradation level, and varying sequencing depth) contributed to the batch effects
observed in our data. We summarize these different causes of batch effects in Table 2, and in

the following sections discuss each issue separately in detail.

Presence/absence of poly-G tails
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A key factor that can cause batch effects when compiling data generated on different
sequencing platforms is variation in their sequencing chemistry. Across Illumina platforms,
an important change is the shift from a four-channel system (used e.g. on HiSeq instruments)
where each DNA base is detected with a different fluorescent dye, to a two-channel
chemistry, that uses the combinations of two different dyes. With the two-channel system
(implemented on newer platforms like NextSeq and NovaSeq), G is called when there is little
to no fluorescence signal. Accordingly, the absence of a signal can result from a true G base
in the DNA template, but any low-intensity fluorescence signal (regardless of the true base)
may also lead to a G call, which becomes problematic. Since the intensity of the fluorescence
signal tends to decrease with sequencing cycles, false calls of G tend to be enriched at the end
of reads, forming poly-G tails (De-Kayne et al. 2021). Although one might expect that reads
with poly-G tails would fail to map to the reference genome and therefore would not cause
problems downstream (especially with global alignment settings), we found that many of
these reads can in fact map to the reference genome with high confidence (i.e. with mapping
worse, these erroneous G calls are sometimes associated with high base quality scores
(Figure 2A), so they can survive per-base quality trimming, and can also pass base quality
filters in data analysis tools downstream. In our case, we found that poly-G tails were the
main culprit behind the inflated heterozygosity estimates of the samples in the NextSeq-
150PE batch (see comparison between Figure 1A “before” and Figure S3).

Poly-G trimming, as implemented in the program fastp (Chen et al., 2018), has been
proposed as a possible solution to this problem (De-Kayne et al. 2021). However, we found
that calls of other bases are often interspersed within poly-G tails, and fastp only allows a
maximum of five non-G bases in a poly-G tail. As a result, longer poly-G tails cannot be

completely removed by this functionality (Figure 2). In fact, although we included a poly-G
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trimming step in our “batch-effect-naive” pipeline, the enrichment of G bases at the end of
reads in our NextSeq-150PE data remained strong (Figure 2).

Instead, we found a sliding-window quality trimming approach more effective for
removing poly-G tails. This is based on the observation that going from the start to the end of
a read, there tends to be a region in which base quality starts to decrease significantly before
a poly-G section appears (Figure 2A, https://sequencing.qcfail.com/articles/illumina-2-
colour-chemistry-can-overcall-high-confidence-g-bases/). Therefore, we can move a sliding
window from the start to the end of a read; once the average base quality drops below a
threshold, we cut the window along with the remaining sequence after it. This approach is
implemented in fastp as the cut_right option, and in Trimmomatic as the
SLIDINGWINDOW option. Because a drop in base quality is often not immediately followed
by a poly-G tail, sliding-window base quality trimming may result in greater data loss than
necessary, but we found it to be much more effective at removing poly-G tails than targeted
poly-G trimming with existing tools (Figure 2A). Indeed, after applying this method (with
window size of 4 and average base quality threshold of 20), G bases are no longer enriched at
the end of reads in our samples sequenced in the NextSeq-150PE batch (Figure 2B), and the
initial disparity in heterozygosity estimates between the two batches is significantly reduced
(Figure S3). We therefore use the sliding-window-trimmed NextSeq-150PE data in all

subsequent analyses so that poly-G tails will not be a confounding factor.

Difference in levels of base quality score miscalibration

In an ideal scenario, a base quality score should accurately reflect the probability of the
base call being correct. In practice, however, these scores are often incorrectly calibrated

(Callahan et al., 2016; Ni & Stoneking, 2016), which can lead to batch effects if the levels of
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such biases differ across sequencing runs. For example, overestimated base qualities in one
batch of data may result in inflated estimates of genetic diversity because sequencing errors
are more likely to be interpreted as true variants. Such inflated estimates can lead to
erroneous conclusions about relative levels of diversity when compared to estimates
generated from other sequencing batches with more accurate quality scores. Base quality
score miscalibration can be particularly problematic for low-coverage data, because the
estimated probability of a base call being correct is central to the underlying probabilistic
analysis framework based on genotype likelihoods rather than called genotypes
(Korneliussen et al., 2014; Lou et al., 2021; Nielsen, Korneliussen, Albrechtsen, Li, & Wang,
2012).

A simple way to diagnose base quality score miscalibration is to compare diversity
estimates (e.g., individual heterozygosity) obtained with a relaxed and a stringent base quality
filter. If base quality scores are accurate, there should not be systematic differences between
these estimates. However, if base quality scores are miscalibrated, sequencing errors cannot
be accurately accounted for and can cause greater biases when they are more prevalent (i.e.
when a relaxed filter is used). Therefore, if systematic differences are observed between
diversity estimates obtained with different filters in one batch of data but not in others, base
score quality miscalibration could be causing batch effects. In this case, using a more
stringent base quality threshold for diversity estimates in all batches can provide more
comparable results. In our data, we found that heterozygosity estimates consistently
decreased in NextSeq-150PE samples after a more stringent base quality filter of 33 is
applied (as opposed to 20), suggesting that the base quality scores in the NextSeq-150PE
batch are overestimated (Figure 3). In contrast, heterozygosity estimates from HiSeq-125SE
samples slightly increased after the filter, suggesting that their base quality scores are

somewhat underestimated (Figure 3). As a result, within the same population, individuals in
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the NextSeq-150PE batch tend to have higher heterozygosity estimates than their
counterparts in the HiSeq-125PE batch when a relaxed base quality filter is applied (Figure
S3), but this difference is greatly reduced with a more stringent base quality filter (Figure 1A
“after), suggesting that this bioinformatic filtering is an effective mitigation strategy.

Using more stringent base quality thresholds is a logistically simple approach, but it has
the downside of potentially wasting large amounts of data. In comparison, base quality score
recalibration is a more robust, yet computationally involved, method to counteract base
quality score miscalibration. However, some of the most widely used recalibration methods
(e.g. as implemented in GATK and ANGSD) require a database of known variable sites,

which is not readily available for most non-model species. Methods that do not rely on such

effectiveness has not been extensively tested especially with low-coverage data.

Difference in levels of reference bias / alignment error

When the read type and/or read length differ between batches, batch effects can arise
from systematic differences in reference bias and alignment error. Specifically, compared to
longer paired-end reads, shorter single-end reads carrying bases that are different from the
reference are less likely to be aligned to the reference genome (either correctly or incorrectly)
with high confidence, and therefore tend to receive low mapping quality scores. Also, shorter
single-end reads are more prone to alignment errors caused by insertions and deletions
(indels), leading to erroneous identification of SNPs in genomic regions adjacent to indels

(Leigh et al., 2018).
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We did not find indel-related alignment errors to be a cause of batch effects in our data,
presumably because we had a species-specific genome and performed indel realignment.
However, this issue has been discussed in detail in Leigh et al. (2018), so here we just
summarize their recommendations in Table 1 and focus our analyses on reference bias. After
removing poly-G tails from the NextSeq-150PE samples, we estimated Fst between the two
batches of data and found that although the background level of Fsr is very low, allele
frequencies at a large number of SNPs are strongly differentiated between the two batches
(Figure 1C “before”). This is not expected since they are composed of samples from the same
populations. Therefore, we closely examined the read alignment at several of these outlier
SNPs with the Integrative Genomics Viewer (Robinson et al., 2011). We show a typical
example in Figure 4A, where the Fst outlier SNP appears to have similar allele frequencies in
the two batches before a mapping quality filter is imposed. With a minimum mapping quality
filter of 20, the allele frequency at this SNP remains unchanged in the NextSeq-150PE batch.
However, in the HiSeq-125SE batch, reads with the non-reference allele (A) are entirely
removed by the mapping quality filter. As a result, the filtered data (erroneously) suggest a
strong differentiation between the batches.

The strong reference bias in the HiSeq-125SE batch as exemplified in Figure 4A is not a
singular case. We calculated the proportion of mapped reads surviving a mapping quality
filter of 20 in the HiSeq-125SE batch at all SNPs, and found that this proportion is
significantly lower in Fst outlier SNPs (those with Fst > 0.3 between the two batches, Figure
1C “before") compared to all other SNPs (t-test, p=2e-322, Figure 4B). In other words, Fsr
outliers are enriched at sites that have large numbers of reads filtered out due to the mapping
quality filter in the HiSeq-125SE batch of data.

Based on this pattern, a simple mitigation strategy is to locate the sites that have a high

proportion of low-mapping-score reads mapping to them (e.g. >10%) in a batch of data with



327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

single-end reads and/or shorter reads, and exclude them from further analyses. With this
method, we were able to eliminate the majority of the most conspicuous Fst outliers between
the two batches (Figure 1C “after”’). When different batches are composed of samples from
the same populations (as in our case), another effective approach could be to remove the
private alleles (those that are absent in one batch of data and are at intermediate frequency in
the other batch) from certain analyses (e.g. genome-wide PCA, Figure 1B “after”). Similarly,
calling SNPs with only one batch of data has been proposed as a potential strategy (De-
Kayne et al., 2021), but in our data, this approach resulted in strong ascertainment bias
(Figure S4).

alignment with a modified reference genome, where a randomly chosen third base replaces
the original base at each variable site identified in the first round of alignment. As suggested
by Kofler et al. (2016), using different alignment tools and intersecting their results may be
yet another promising mitigation method, since every tool has its own unique biases, which
can be minimized by considering results from another tool. However, both of these

approaches are computationally intensive and are not tested in this study.

Difference in levels of DNA degradation

Elevated levels of DNA degradation in one batch of data can also contribute substantially
to batch effects. This is particularly relevant for temporal studies as older samples are likely
to be more degraded, although other factors such as DNA preservation methods can also
introduce variation in DNA degradation levels between batches of samples from the same
time point (which is the case in our datasets where 34 samples from 3 populations were

poorly-preserved and were sequenced in the HiSeq-125PE batch).
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A major consequence of DNA degradation is deamination of cytosines (i.e., transition of
C bases into U bases), causing enrichment of C-to-T and G-to-A substitutions in more
degraded batches of data. Similar to base quality score miscalibration, these errors will also
inflate diversity estimates, as degradation patterns will be regarded as true variants. Indeed, in
our data, the degraded samples tend to have higher heterozygosity estimates than well-
preserved samples from the same population, after batch effects caused by poly-G tails and
base quality miscalibration are accounted for (Figure SA “before”). In addition, we found that
samples with different degradation levels also cluster separately on a PCA (Figure 5B
“before”), although in this case, the effect of DNA degradation is potentially confounded
with that of reference bias, and both are likely to play a role.

DNA degradation levels can often be assessed by visualizing the fragment length
distribution of the extracted DNA on an agarose gel, but a simple bioinformatic method to
detect degradation directly from sequencing data is to calculate the frequencies of different
base substitutions among the private alleles in each batch of data. Degraded samples should
show enrichment of C-to-T and G-to-A substitutions among its private alleles, which is
indeed the case for our HiSeq-125SE batch (which has 34 degraded samples) (Figure 5C). An
alternative method is to compare the change in diversity estimates after excluding all C-to-T
and G-to-A transitions (e.g., the -noTrans 1 option in ANGSD). Ignoring a subset of
variant types certainly results in decreases in diversity indices in all samples, but if some
samples are more strongly impacted, it means that DNA degradation levels are uneven
among samples (Figure 5D). In this case, the diversity estimates excluding transitions will be
more comparable between batches and less biased in a relative sense (Figure SA “after”).
Similar to the case of reference bias, when different batches are comprised of individuals
from the same populations, it could also be effective to exclude all private alleles in both

batches of data from certain analyses (e.g., genome-wide PCA, Figure 5B “after”).
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More robust, yet more computationally involved, methods to correct for batch effects
caused by DNA degradation include base quality score recalibration for degraded DNA (e.g.,
mapDamage) (Jonsson, Ginolhac, Schubert, Johnson, & Orlando, 2013), or using genotype

likelihood models that explicitly incorporate DNA damage (e.g., ATLAS) (Link et al., 2017).

Difference in sequencing depth

When datasets with different levels of sequencing depth are combined, the dataset with
lower depth is likely to generate less accurate population genetic parameter estimates (Lou et
al., 2021). For certain types of analysis, difference in sequencing depth between batches may
also lead to systematic biases. For example, some PCA methods are unsuitable with
extremely low-coverage data (Lou et al., 2021), and when extremely low-coverage and
higher-coverage data are combined, clustering patterns can become driven by read depth.
Here, to better illustrate the effect of sequencing depth without other factors interfering, we
first used simulated data instead of our empirical data. In Figure 6, we simulated nine
populations on a three-by-three grid, each connected to its neighbors by gene flow (this is the
same model used in Section 4.2 in Lou et al., 2021). We then simulated two batches of
sequencing data generation from variable numbers of samples in each population. The only
difference between the two batches of simulated data is their sequencing depth (either 0.125
or 4x, see supplementary material for details about the simulations). At low sample size (5 or
10 per population), PCAs generated from PCAngsd-0.98 (Meisner & Albrechtsen, 2018) and
the -doCov 1 option in ANGSD tend to group samples with the same read depth together
along one of the top PC axes, creating false patterns of clustering (Figure 6). In comparison,
the PCoA generated from the -doIBS 2 option in ANGSD is less prone to such biases

(Figure 6). We observed a similar pattern in our empirical data, where the PCA generated
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from the -doCov 1 option in ANGSD does not show obvious signs of batch effects when
other causes of batch effects are controlled despite the difference in sequencing depth
between the two batches (Figure 1B “after”, 4B “after”). In contrast, PCA generated from
PCAngsd still has individuals from different batches clustering separately (Figure S5).
Therefore, when dealing with batches of data with different sequencing depths, we
recommend using methods that are known to be less sensitive to read depth when possible.
Downsampling the batch of data with higher coverage and comparing the results generated
from before and after downsampling is another effective strategy to detect and mitigate such

batch effects.

Practical Considerations

In this paper, we provide an example of how batch effects can manifest when sequencing
datasets generated on different platforms are combined, and we showcase several simple
bioinformatic approaches to identify the potential causes of batch effects and mitigate their
impact. Researchers may wonder whether these mitigation measures should always be
implemented when different datasets are combined. We argue that this will depend on the
experimental design of each project. Specifically, if samples (or a subset of samples) are
randomly assigned to batches as in the case of our project, researchers can follow their
standard pipeline, but check for evidence of batch effects on all their results. For example,
they could color PCA plots by batches to examine if individuals from the different batches
tend to cluster separately, and they could verify whether heterozygosity estimated from one
batch of data is consistently higher/lower than other batches when biological factors are
controlled for (e.g. Figure 1A “before”, 1B “before”). If batch effects are observed in such

results, they can go through our list of potential causes and use the relevant filters to evaluate
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and mitigate the impact (Table 1). We also emphasize that a complete randomization is not
always necessary. Particularly, when new data is generated to supplement existing datasets, it
would be very helpful to sequence just a few individuals that are comparable to individuals
included in the existing datasets (e.g. these can be exactly the same individuals, or individuals
from the same populations at the same time points). In downstream analyses, comparisons of
these individuals among different batches could be used to detect potential artefacts. This
also highlights the importance of tissue banks in ensuring reusability of sequencing data (De-
Kayne et al., 2021).

However, if samples are not randomly assigned and if true biological signals may be
confounded with batch effects, it may no longer be possible to determine the presence /
absence of batch effects using standard analyses such as PCA or heterozygosity estimation.
In such cases, we would recommend researchers to take a subset of data from each batch, and
perform some of the tests that we have mentioned in this paper (e.g., comparing
heterozygosity estimates before and after applying a stringent base quality filter, calculating
the frequencies of different base substitutions in private alleles in each batch of data, etc.) as
a means to determine the presence/absence of batch effects.

We focused our investigation on IcWGS data in this paper. Compared with other
sequencing strategies, IcWGS has its unique challenges due to low data redundancy, reliance
on accurate base quality scores, and the difficulty in dealing with low-frequency SNPs (Lou
et al., 2021). Therefore, batch effects caused by poly-G tails, base quality score
miscalibration, and DNA degradation are likely to be more problematic for low-coverage
data. However, it is not difficult to imagine that all these issues can sometimes affect high-
coverage data as well, especially when the analysis in question depends on accurate genotype
calling at low-frequency SNPs (e.g., estimations of individual heterozygosity, site frequency

spectrum, Watterson’s theta, etc.). The reference bias / alignment error issue can be just as



452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

problematic for high-coverage data as it is for low-coverage data or pooled data (Kofler et al.,
2016; Leigh et al., 2018). Disparities in sequencing depth is unlikely to become an issue if
depth is higher than 20x in all batches. Otherwise, genotype calling in the batch with lower
coverage (even at medium coverage, e.g., 5x-20x) is likely to be more inaccurate, and may
therefore cause batch effects (Warmuth & Ellegren, 2019). In these cases, genotype-

likelihood-based inference may be preferable to genotype calling.

Conclusion

As we have illustrated in this paper, batch effects can be a pervasive source of bias in
various types of population genomic inference from combined IcWGS datasets. This is
further complicated by the fact that multiple factors can introduce batch effects and their
signals can be confounded. Accordingly, when possible (e.g., if new datasets are generated),
we should try to limit the extent of batch effects through experimental design. However, we
have also shown that, when treated meticulously, different causes of batch effects can be
disentangled, and their impact can be mitigated with simple bioinformatic filtering.
Therefore, we conclude that combining datasets remains to be a promising approach, as long

as batch effects are explicitly accounted for.

Data Availability Statement

Sequencing data that support the findings of this study will be openly available in Dryad

at [URL], reference number [reference number]. The entire bioinformatic pipeline will be

available in a GitHub repository release deposited in Zenodo (DOI: XXX).
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Tables and Figures

Table 1. Summary of the key differences between our two sequencing batches.

Sequencing Sequencing Sequencing Read Read DNA degradation Average Sample
batch platform chemistry type length level depth of size
(in bp) coverage per
sample*

34 samples in 3
HiSeq- HiSeq single populations are
125SE 2500 four-color end 125 degraded; all others 0.8x 88

are well-preserved
NextSeq- NextSeq paired

150PE 500 two-color end 150 well-preserved 0.3x 75

* After deduplication, overlap clipping, removal of reads with low mapping scores and poly-G trimming. See

Figure S1 for sample size in each population and the depth of coverage in each sample.



Table 2. A summary of possible causes of batch effects in population genomic studies with low-coverage whole genome sequencing data, and
methods to detect and mitigate their impact.

Cause

Identification

Mitigation

Presence/absence

of poly-G tails

Examine the base composition at each read
position in raw fastq files (e.g., with FastQC)
(Figure 2B)

Trim off ends of reads with low base quality within sliding windows (e.g.,
the cut_right option in fastp, or the SLIDINGWINDOW option in

Trimmomatic). (Figure 1A “after”, 2)

Difference in levels
of miscalibration in

base quality scores

Compare diversity estimates (e.g., individual
heterozygosity) using a relaxed vs stringent
base quality threshold within each batch
(Figure 3)

Use a more stringent base quality threshold in all batches (Figure 1A
“after”, 3)

Use base quality score recalibration (e.g., the SOAPsnp genotype
likelihood model) (Korneliussen et al., 2014)

Difference in levels
of reference bias /

alignment error

Spot check read alignments at outlier loci
(Figure 4A)

Check for enrichment of outlier loci in
genomic regions that have a high number of
low-mapping-score reads mapped to them
(Figure 4B)

Compare results using different alignment

tools

Perform indel realignment (e.g., the IndelRealigner tool in GATK3) (Leigh
et al., 2018; McKenna et al., 2010) or use a haplotype-based variant
discovery software (e.g. FreeBayes or HaplotypeCaller of GATK)

Use a species-specific reference genome (Leigh et al., 2018)

Trim all reads to the same length (Leigh et al., 2018)

Exclude genomic regions that have a high proportion of low-mapping-
score reads mapped to them (Figure 1C “after”)

Exclude private alleles of each batch from certain analyses (Figure 1B
“after”, 5B “after”)

Change variable sites in the reference genome to a randomly chosen third
base and redo read alignment (Giinther & Nettelblad, 2019)

Use different alignment tools and intersect their results (Kofler et al.,

2016)




Difference in levels
of DNA

degradation

Examine the fragment size distribution in DNA
extracts with gel electrophoresis

Compare the frequencies of different types of
base substitutions among the private alleles in
each batch (Figure 5C)

Compare the drop in diversity estimates (e.g.,
individual heterozygosity) after excluding all
transitions between different batches of data

(Figure 5D)

Exclude transitions from certain analyses (Figure SA “after”)

Exclude private alleles of each batch from certain analyses (Figure 5B
“after”)

Recalibrate base quality scores for degradated DNA (e.g., mapDamage)
(Jonsson et al., 2013)

Use genotype likelihood models that take post-mortem damage into

account (e.g., ATLAS) (Link et al., 2017)

Difference in

sequencing depths

Color individual by batch or sequencing depth
in a PCA to spot non-random clustering
(Figure 6)

Examine whether down-sampling of high-
coverage individuals systematically changes

the results

Use methods that are known to be less sensitive to differences in
sequencing depth (Figure 6)

Down-sample data to achieve similar coverage across all individuals
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Figure 1. Examples of how batch effects are manifested in our data before correction, and
how they were mitigated after our correction. (A) Individual heterozygosity estimated from
each sample, grouped by populations on the y-axis and colored by batches, before and after
batch effect correction (i.e., using sliding-window quality trimming in addition to poly-G
trimming, and applying a more stringent base quality filter), in three representative
populations where no samples suffered from DNA degradation. (B) Genome-wide PCA with
all samples using an LD-pruned SNP list, colored by batches, before and after batch effect
correction (i.e., excluding SNPs that are invariable in one batch of samples but are at
intermediate frequencies in the other batch), in the same three populations as in (A). Grey
points represent samples from other populations. Two outlier points are removed from these
plots to better illustrate the broader pattern in the data. Sliding-window quality trimming is
performed in both “before” and “after”. (C) Fst between two batches of samples, before and
after batch effect correction (i.e., excluding SNPs that have a high number of low-mapping-
score reads mapped to them). Sliding window quality trimming is performed in both “before”
and “after”.
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Figure 2. Sliding-window quality trimming (cut_right option in fastp) is more effective at
removing poly-G tails in data generated by two-color-chemistry sequencing platforms than
poly-G trimming (trim_poly g option in fastp). (A) An example of how poly-G
trimming and sliding-window trimming affect a typical read with a poly-G tail. Base quality
score is shown on the y axis and fastp cut sites are indicated by vertical lines. (B) Base
composition at each read position in three randomly chosen samples, before trimming, after
poly-G trimming, and after sliding-window trimming. In both (A) and (B), poly-G trimming
is shown to remove part of the G enrichment towards the ends of reads, whereas sliding-
window trimming removes the poly-G tails entirely.
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Figure 3. Comparing individual heterozygosity estimates obtained with relaxed vs. stringent
base quality filter is a simple way to detect batch effects caused by base quality
miscalibration. Individual heterozygosity estimates in two batches of data before and after
applying a more stringent base quality filter (from 20 to 33) are shown on the y axis. Samples
in the NextSeq-150PE batch (left) have significantly lower heterozygosity estimates after a
more stringent filter is applied (paired samples t-test, p=6e-8) and therefore are likely to have
overestimated base quality scores. In contrast, samples in the HiSeq-125SE batch tend to
have slightly higher heterozygosity estimates after this filter is applied (paired samples t-test,
p=0.008), suggesting that their base quality scores are somewhat underestimated.
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Figure 4. Batch effects caused by different levels of reference bias can be detected and
mitigated by adjusting the mapping quality filter. (A) Screenshot from the Integrative
Genomics Viewer showing read alignment from NextSeq-150PE batch (top) vs. HiSeq-
125SE batch (bottom), and with (right) vs. without (left) a minimum mapping quality of 20.
Reads with the non-reference allele are all removed after imposing the mapping quality filter
in the HiSeq-125SE batch, leading to a false signal of allele frequency divergence between
the batches. (B) Distribution of the proportion of HiSeq-125SE reads failing a minimum
mapping quality filter of 20 in Fsr outliers and all other SNPs. Fsr outliers are enriched in
genomic regions where higher proportions of reads are filtered out. This proportion can thus
be used as a filter to remove the regions most affected by reference bias and mitigate the false
signals of allele frequency divergence between batches.
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Figure 5. Batch effects caused by difference in DNA degradation level and strategies to
detect and mitigate them. (A) Individual heterozygosity estimated from each sample, colored
by batches, before and after batch effect correction (i.e., excluding all transitions), in three
populations for which samples were split into batches based on their degradation level.
Sliding-window quality trimming and a more stringent base quality filter are applied in both
“before” and “after”. (B) Genome-wide PCA with all samples using an LD-pruned SNP list,
colored by batches, before and after batch effect correction (i.e., excluding SNPs that are
invariable in one batch but are at intermediate frequencies in the other batch), in the same
three populations as in (A). Grey points represent the rest of samples. Two outlier points are
removed from these plots to better illustrate the broader pattern in the data. Sliding-window
quality trimming is performed in both “before” and “after”. (C) Using the frequencies of
different base substitutions in private alleles to detect DNA degradation. There is an



enrichment of C-to-T and G-to-A substitutions in the HiSeq-125SE batch, suggesting higher
levels of DNA degradation in this batch. Reference alleles are assumed to be the wild-type
alleles in this figure. (D) Using the change in individual heterozygosity estimates after
filtering out transitions to detect DNA degradation. As expected, heterozygosity estimates in
all samples are negatively affected, but the degraded samples in the HiSeq-125SE batch
(right) are shown here to be more negatively affected than well-preserved samples in either
batch, suggesting that their heterozygosity estimates are inflated when transitions are
included (one-way ANOVA, p=8e-7).
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Figure 6. Some software programs are less sensitive to batch effects caused by different
sequencing depths than others. (A) PCA generated from PCAngsd. (B) PCA generated from
the -doCov 1 option in ANGSD. (C) PCoA generated from the -doIBD 2 option in
ANGSD. A total of nine populations are simulated, and the sample size per population
increases from left to right (as noted in panel headers). Green points mark individuals that are
sequenced at 0.125x, whereas dark blue points mark individuals that are sequenced at 4x.



