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ABSTRACT

The listener’s backchannel has the important function of encourag-
ing a current speaker to hold their turn and continue to speak, which
enables smooth conversation. The listener monitors the speaker’s
turn-management (a.k.a. speaking and listening) willingness and
his/her own willingness to display backchannel behavior. Many
studies have focused on predicting the appropriate timing of the
backchannel so that conversational agents can display backchannel
behavior in response to a user who is speaking. To the best of our
knowledge, none of them added the prediction of turn-changing
and participants’ turn-management willingness to the backchan-
nel prediction model in dyad interactions. In this paper, we pro-
posed a novel backchannel prediction model that can jointly predict
turn-changing and turn-management willingness. We investigated
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the impact of modeling turn-changing and willingness to improve
backchannel prediction. Our proposed model is based on trimodal
inputs, that is, acoustic, linguistic, and visual cues from conversa-
tions. Our results suggest that adding turn-management willingness
as a prediction task improves the performance of backchannel pre-
diction within the multi-modal multi-task learning approach, while
adding turn-changing prediction is not useful for improving the
performance of backchannel prediction.
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1 INTRODUCTION

For smooth conversation, the listener’s backchannel has the im-
portant function of encouraging the current speaker to hold their
turn and continue to speak. To display the appropriate backchannel
behavior (or start speaking instead), conversation participants must
carefully monitor the willingness of other conversational partners
to speak and listen (a.k.a. turn-management) and consider whether
or not to speak or yield (i.e., displaying backchannel behavior) on
the basis of their own willingness and other partners. Predicting
a listener’s backchannel can be beneficial for building conversa-
tional agents or robots as they are supposed to know when to
display backchannel behavior at the appropriate time. In the field of
human-agent/robot interaction, many studies have been dedicated
to computational modeling of backchannels to add new dimensions
to responses of agents and robots in interactions with humans.
Many studies have focused on developing backchannel prediction
models that can predict whether or not a backchannel occurs by us-
ing mainly acoustic and linguistic features, rarely the visual features
of speakers [2, 11, 13, 18, 32, 33, 39, 40, 42, 47, 48, 50].

There is a need to explore novel multi-task prediction models for
backchannels that incorporate multi-modal behaviors of speakers
and listeners to enhance human-agent/robot interactions in many
applications. Most previous work on backchannels has mainly inves-
tigated single-task learning approaches. Nevertheless, backchannels
co-occur with other drivers of smooth conversations, such as turn-
changing and turn-management willingness [27]. The relationship
between the backchannel, turn-changing, and turn-management
willingness has not been fully uncovered yet. We expect that multi-
task learning approaches could capture the dependencies between
these three conversation drivers and thus increase the performance
of backchannel prediction. As a result, it could be possible to enrich
human interactions with agents and robots.

In this paper, we investigate turn-changing and participants’
turn-management willingness during dyadic interactions with the
goal of jointly modeling turn-changing and willingness prediction
to improve utterance backchannel prediction (see Fig. 1). In par-
ticular, we focus on four types of willingness for speakers and
listeners: turn-holding (a.k.a. speaker’s willingness to speak), turn-
yielding (a.k.a. speaker’s willingness to listen), turn-grabbing (a.k.a.
listener’s willingness to speak), and listening (a.k.a. listener’s will-
ingness to listen) defined by [27] (see Section 3.4 for detailed defini-
tion) to improve backchannel prediction. In this study, we formulate
three main research questions:

Q1) Can joint modeling of turn-changing and backchan-
nels improve backchannel prediction?

Q2) Can joint modeling of turn-management willingness
and backchannels improve backchannel prediction?

Q3) Can tri-task modeling of turn-changing, turn-manage
ment willingness, and backchannels improve backchan-
nel prediction?

To address these questions, we first extract trimodal inputs
(acoustic, linguistic, and visual features) to directly predict an ut-
terance backchannel such as “yeah,’ “uh-huh," “hmm," and “right."
We second incorporate neither or both turn-changing prediction
and turn-management willingness prediction into backchannel pre-
diction. This integrated modeling approach is motivated by the
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intuition that humans are likely to control the listener’s backchan-
nel on the basis of turn-management willingness and turn-changing
(i.e., grab a turn). The multi-task learning framework can be useful
for taking into account dependencies among human behavior (e.g.
turn-changing) and internal state (e.g. turn-management willing-
ness) and for improving the overall performance of our prediction
model during dyad interactions [27]. We build a multi-prediction
model for turn-changing and willingness in addition to backchan-
nels, using a multi-modal multi-task learning paradigm, to increase
prediction performance.

To the best of our knowledge, our paper is the first study to
explicitly add turn-changing and turn-management willingness
prediction tasks to a backchannel prediction model. Furthermore,
there is no prior research that investigates all acoustic, linguistic,
and visual modalities of speakers and listeners for backchannel pre-
diction. Our study is also the first to construct a model for jointly
predicting backchannel, turn-changing, and turn-management will-
ingness and using trimodal information, that is, acoustic, linguistic,
and visual cues of both speakers and listeners.

2 RELATED WORK
2.1 Backchannel and Turn-changing Prediction

There are several studies on predicting backchannels by using only
the prosodic features of the preceding utterance of a speaker, such
as pitch and power [11, 13, 39, 40, 47, 48, 50], as well as linguistic
features [18, 42]. Moreover, some studies have used visual features
[39]. Similarly, some studies have developed models for predicting
actual turn-changing, i.e., whether turn-changing or turn-keeping
will take place, on the basis of acoustic features [3, 6, 10, 13, 19, 28,
34, 36-38, 41, 44, 49], linguistic features [34, 37, 38, 41], and visual
features, such as overall physical motion [3, 6, 8, 41] near the end
of a speaker’s utterances or during multiple utterances. Moreover,
some research has focused on detailed non-verbal behaviors, such as
eye-gaze behavior [3, 6, 19, 21, 25, 28], head movement [19, 22, 23],
mouth movement [24], and respiration [21, 26]. However, many
turn-changing prediction studies have also mainly used features
extracted from speaker behaviors rather than listener behaviors.
Only a few studies have investigated limited features and modalities
of listeners [21-26, 38]. Ishii et al. [27] used trimodal features, such
as acoustic, language, and visual cues extracted from both speakers
and listeners, and demonstrated that these trimodal features are
useful for improving the performance of turn-changing prediction.
This result supports our approach of using trimodal features from
both speakers and listeners for predicting backchannels.

2.2 Multi-task Learning Approach

As an attempt to use explicit multi-task learning for backchannel
and turn-changing prediction, Hara et al. [13] proposed a prediction
model that could predict backchannels and fillers in addition to
turn-changing by using a multi-task learning approach. The au-
thors extracted only acoustic features from a speaker’s acoustic
signals to train a multi-task prediction model. In their experiments,
the performance in predicting the listener’s backchannel did not im-
prove significantly. Our research utilizes not only speaker acoustic
information but also speaker and listener multi-modal information
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to explore the effects of simultaneously predicting turn-changing
and willingness.

There has been an attempt to use explicit multi-task learning for
turn-changing and turn-management willingness prediction. We
investigated the impact of modeling willingness to help improve
the task of turn-changing prediction [27]. We demonstrated that
explicitly adding willingness as a prediction task improves the
performance of turn-changing prediction. The results support our
novel idea of improving the backchannel prediction performance
through the joint prediction of backchannel, turn-management
willingness, and backchannel.

3 CORPUS
3.1 MM-TMW Corpus

To implement a backchannel prediction model, we used data from
the “MM-TMW Corpus” [27], which includes verbal and non-verbal
behavioral information from human dialogues. It consists of 12
face-to-face conversations of people who had never met before (12
groups of 2 different people). The participants were 24 Japanese,
ages 20-50 (mean: 32.0, STD: 8.4). They were seated opposite each
other. The conversations were structured and covered multiple
topics, including taxes and social welfare balance. The lengths were
unified to be around 10 minutes. The total time of all conversations
was around 120 minutes.

3.2 Turn-changing

Professionals transcribed all of the Japanese utterances and identi-
fied the spoken utterance segments by using the annotation scheme
of the inter-pausal unit (IPU) [33]. Each start and end of an utter-
ance was denoted as an IPU. When a silence interval of 200 ms
or more occurred, the utterance was separated. Therefore, when
an utterance was produced after a silent period of less than 200
ms, it was determined to be a continuation of the same utterance.
We excluded backchannels without specific vocal content from the
extracted IPUs. Next, we considered IPU pairs for the same person
in temporally adjacent IPU pairs as turn-keeping and those for
different people as turn-changing. The total number of pairs was
2208 for turn-keeping and 631 for turn-changing.

3.3 Backchannel

We focus on the utterance backchannel produced by the listener
during turn-keeping, which is often known to immediately occur
after the end of an utterance. We extracted listeners’ backchannels
during turn-keeping for use in this study. We extracted listeners’
utterance backchannels between the end of an utterance and 1000
ms afterward for each turn-keeping occurrence. As a result, the
total number of instances in which a backchannel occurred was
269, while the number of instances in which a backchannel did not
occur was 362 for turn-keeping.

3.4 Turn-management Willingness

Turn-management willingness scores were collected with multi-
ple external observers using, as reference, an annotation method
for multiple external observers [18]. The ten annotators carefully
watched each conversation video from the beginning of one utter-
ance (IPU) to the point just one frame (33 ms) before the beginning

of the next utterance to annotate willingness scores. The annotators
were not aware of who would become the next speaker because
they could only watch the video until the point just before the start
of the next speaker. This approach was applied to avoid affecting
the annotators’ judgement on the willingness of the speakers and
listeners to speak and listen. For each video, they gave scores to four
types of turn-management willingness of speakers and listeners.

e Turn-holding willingness (a.k.a. speaker’s willingness to
speak): Does the speaker have the will to hold the turn (continue
speaking)?

e Turn-yielding willingness (a.k.a. speaker’s willingness to
listen): Does the speaker have the will to yield the turn (listen
to the listener speak)?

e Turn-grabbing willingness (a.k.a. listener’s willingness to
speak): Does the listener have the will to grab the turn (start
speaking)?

e Listening willingness (a.k.a. listener’s willingness to lis-
ten): Does the listener have the will to continue listening to
the speaker speak?

The annotators scored each willingness index on a 5-point Lik-
ert scale, where 1 meant “He/she is not showing willingness," 5
meant “He/she is showing strong willingness," and 3 meant “un-
certain” We had the ten annotators score all videos to ensure good
reliability. We calculated the rater agreement by using the Intr-
aclass Correlation Coefficient (ICC). The ICC scores for all four
categories were over 0.870: ICC(2, 10) = 0.904 for speaker’s will-
ingness to speak, ICC(2,10) = 0.877 for speaker’s willingness to
listen, ICC(2,10) = 0.878 for listener’s willingness to speak, and
ICC(2,10) = 0.875 for listener’s willingness to listen. This suggests
that the data was very reliable. We used the average values of the
ten annotators as willingness scores.

4 PREDICTION MODELS
4.1 Motivation

To address Q1 and Q2, we implemented backchannel prediction
models that can jointly predict either turn-changing or turn-man
agement willingness by using a two-task learning approach. We
compared the performance of the backchannel prediction models
with a single-task prediction model for backchannels. We also im-
plemented three kinds of models for each of the three types of
prediction models by using the multi-modal behaviors of either the
speaker, listener, or both. To address Q3, we implemented models
for predicting backchannels that jointly predict both turn-changing
and turn-management willingness. We compared the performance
of the backchannel prediction models using a three-task learning
approach with a prediction model that can predict the backchannel
and either turn-changing or turn-management willingness using
the two-task learning approach.

4.2 Multi-modal Features

We used feature values of behaviors extracted during IPUs (i.e.,
the time between the start and end of an IPU) as input for the
prediction models the same as other research on backchannel or
turn-changing prediction [3, 5, 6, 10, 13, 16, 17, 20, 27, 28, 30, 34—
36, 38, 44]. This means that our models could predict backchannel,
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Figure 2: Architecture of multi-task prediction model for backchannels, turn-changing, and turn-management willingness
with input features of acoustic, linguistic, and visual modalities from speaker and listener.

turn-management willingness, and turn-changing at the end of a
speaker’s utterance (IPU). Since the duration between the end of a
speaker’s utterance and the start of the next speaker’s utterance
is about 620 ms on average, our models could predict the three
prediction targets about 620 ms before actual turn-keeping and
turn-changing occurred.

In this study, we aimed to investigate the impact of turn-management

willingness and turn-changing prediction on backchannel predic-
tion rather than propose and implement a very complex multi-
modal fusion strategy to outperform existing backchannel predic-
tion models. High-level abstracted features have recently been very
informative for various prediction tasks. For example, in one of
the most recent studies [46], a prediction model was proposed and
implemented to estimate self-disclosure utterances on the basis of
multi-modal features of acoustic, linguistic, and visual modalities
while utterances take place. The study demonstrated that the latest
high-level abstracted features, such as VGGish [15], BERT [7], and
ResNet-50 [14], were more informative than interpretable features,
such as MFCC [9], LIWC [29], and action unit [1], for estimating
self-disclosure utterances in dyad interactions. Moreover, these fea-
tures were very discriminative for predicting turn-changing and
turn-management willingness in dyad interactions [27], which is
similar to our study. To implement the prediction models, we used
automatically extracted high-level features from the recorded data
of the acoustic, linguistic, and visual modalities on the basis of an
existing study [27, 46].

Acoustic Modality. We used VGGish [15], which is a deep con-
volutional neural network, to extract features of the acoustic modal-
ity from the audio data. VGGish is a variant of the VGG model [45],
trained on a large YouTube dataset to classify an ontology of 632
different audio event categories [12], involving human sounds, an-
imal sounds, natural sounds, etc. The audio files were converted
into stabilized log-mel spectrograms and fed into the VGG model to
perform audio classification. The output 128-dimensional embed-
dings were post-processed by applying a PCA transformation (that
performs both PCA and whitening). Therefore, each audio sample

was encoded as a feature with a shape of T X 128, where T is the
time of a speaker’s utterance in seconds.

Linguistic Modality. We applied a data-driven method (BERT)
[7] to extract linguistic representations. BERT is a multi-layer bidi-
rectional Transformer network that encodes a linguistic sequence
into a fixed-length representation. We used a pre-trained BERT
model on Japanese Wikipedia! to transform each utterance into a
768-dimensional feature vector.

Visual Modality. For the visual modality, high-level represen-
tations were extracted by using ResNet-50 [14], which is a deep
residual convolutional neural network for image classification. We
used a ResNet-50 model that was trained on ILSVRC2012 [43], a
large scale dataset that contains about 1.2 million training sam-
ples in 1000 categories, to provide good generalization and yield
robust features. A feature set for a video sequence consisted of 2048-
dimensional vectors obtained from the penultimate layer computed
for each frame. As a result, the extracted features were in the shape
of T X 2048, where T is the number of frames during a speaker’s
utterance.

4.3 Implementation of Prediction Model

The backchannel was first predicted individually by using classifica-
tion models (for backchannel/non-backchannel prediction). Then,
turn-changing and turn-management willingness were jointly pre-
dicted in addition to backchannel prediction using classification
models (for turn-changing/keeping prediction) and regression mod-
els (for predicting turn-management willingness scores). A multi-
task model was then learned to jointly predict backchannels, turn-
changing, and turn-management. This facilitated the understand-
ing of the explicit impact of modeling turn-changing and turn-
management willingness on backchannel prediction. Our architec-
ture for a multi-modal multi-task model that can predict all three
tasks for backchannels, turn-changing, and turn-management will-
ingness is illustrated in Figure 2.

http://nlp.istikyoto-u.ac jp/index.php?BERT%E6%97%A5%E6%9C%AC%E8%AA%IE
Pretrained%E3%83%A2%E3%83%87%E3%83%AB
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Backchannel prediction. Backchannel prediction was consid-
ered a classification task. Either backchannel or non-backchannel
was labeled depending on whether or not the listener performed
an utterance backchannel behavior right after the end of the utter-
ances collected in Section 3.3. The classification model followed
the same structure as the regression one, except that it output a
two-dimensional vector for prediction. Cross entropy (CE) was used
as a loss function.

Turn-changing prediction. Turn-changing prediction was con-
sidered a classification task. Each turn was labeled as either turn-
changing or turn-keeping, depending on whether or not the current
listener became the next actual speaker, as described in Section
3.2. The classification model followed the same structure as the
regression one, except that it output a two-dimensional vector for
prediction. Cross entropy (CE) was used as the loss function.

Turn-management willingness prediction. We formulated
turn-management willingness prediction as a regression task and
used the average willingness scores from the ten annotators as the
ground truth described in Section 3.4. We learned a neural network-
based model to address our regression task. Unimodal features were
first fed into individual processing modules to be further processed
as 64-dimensional embeddings. For acoustic and visual modalities,
the processing module was a one hidden layer gated recurrent unit
(GRU) [4]. A fully connected (FC) layer was used for the linguistic
modality. The embeddings were then concatenated together and
forwarded into a FC layer with an output size of 192 for fusion. A
final linear layer followed, outputting the four types of predicted
willingness scores. It is worth mentioning that we selected mean
squared error (MSE) as our loss function.

Multi-task prediction. Our proposed multi-task model jointly
predicts backchannels, turn-changing, and turn-management will-
ingness. The model is based on the main structure for predict-
ing a single task, such as backchannel, turn-changing, or turn-
management willingness prediction, explained above, with the dif-
ference being that there is an FC layer for each task after the fusion
layer. The entire loss function is a weighted average of two MSEs
and a CE with the same weights.

5 EXPERIMENTS
5.1 Experimental Methodology

To answer question Q1, we mainly implemented two types of
backchannel prediction models: single-task learning prediction
models and multi-task learning prediction models incorporating the
turn-changing prediction task. We compared the performance of
the multi-task learning models and single-task models to investigate
whether incorporating turn-changing prediction into backchannel
prediction models improves backchannel prediction. We also imple-
mented three types of models for each model using the multi-modal
behaviors of either the speaker, listener, or both to investigate the
informativeness of features extracted from speakers and listeners.

To answer question Q2, we additionally implemented backchan-
nel prediction models that jointly predict turn-management will-
ingness. We compared the performance of the multi-task learning
models and single-task models to demonstrate that incorporating
turn-management willingness into backchannel prediction models

improves backchannel prediction. In the same manner as question
Q1, we also implemented three types of models using the multi-
modal behaviors of either the speaker, listener, or both to investigate
the usefulness of features from speakers and listeners.

To answer question Q3, we implemented backchannel prediction
models that jointly predict turn-changing and turn-management
willingness. We compared the performance of the multi-task learn-
ing models and other models mentioned above to demonstrate that
incorporating turn-changing and turn-management willingness
prediction into backchannel prediction models improves backchan-
nel prediction. Moreover, we implemented three types of models
using the multi-modal behaviors of either the speaker, listener, or
both to investigate the usefulness of features from speakers and
listeners.

All models were trained using the Adam [31] optimizer with
a learning rate of 0.0001 for 50 epochs. The batch size was 64.
Furthermore, we added dropout layers with a rate of 0.1 for the
FC layers. Leave-one-dyad-out testing (12-fold cross-validation
method) was used to evaluate model performance. With the testing,
we evaluated how much backchannels, turn-changing, and turn-
management willingness of new dyads could be predicted.

For classification tasks such as backchannel and turn-changin
g prediction, we evaluated the performance using F1 scores. The
predictions of pairs of classifiers were compared by means of a
McNemar test at a 0.05 significance level. For a regression task
such as turn-management willingness prediction, we report the
concordance correlation coefficients (CCCs) between predicted and
actual scores (i.e., annotated ground truth). A high CCC value indi-
cates a high agreement between the values of the predicted scores
and ground truth. This means that the prediction and ground truth
values are similar to each other, and general trend changes for both
signals are the same. We compared the predictions of pairs of re-
gression models by means of two-sided Wilcoxon signed rank tests
at a 0.05 significance level.

5.2 Results

The models were fed with combinations of different multi-modal
features of speakers and listeners. The results of backchannel, turn-
changing, and turn-management willingness prediction are sum-
marized in Table 1. Model (0-B) is the base model of backchannel
prediction. There was a random prediction model that randomly
generated backchannel classes from learning data without using the
feature values of speakers and listeners. The F1 score of model (0-B)
was 0.557. Models (1) ~ (3) and (10) ~ (12) for the backchannel predic-
tion task significantly outperformed model (0-B) (p-value < 0.001).
This suggests that features extracted from speaker and listeners are
informative for backchannel prediction. However, models (4) ~ (6)
did not significantly outperform model (0-B) (p-value < 0.001).

Results of backchannel prediction using speaker/listener
behaviors. As shown in Table 1, models (1), (2), and (3) used fea-
tures of speakers, listeners, and both.

Comparing models (1) and (2), the F1 score of backchannel pre-
diction for model (2), which was 0.752, was significantly higher
than the 0.658 F1 score of model (1) (p-value < 0.001). This sug-
gests that listener features are more useful for predicting listener
backchannels than speaker ones.
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Table 1: Results of backchannel, turn-changing, and turn-management willingness prediction. Each row represents results
of model with different configuration of input features. Section 5 describes experiments in detail. F1 score is reported for
backchannel and turn-changing prediction. CCC is reported for each model for turn-management willingness prediction. Spk
and Lis note speaker and listener. B, T, and W note backchannel, turn-changing, and turn-management willingness prediction
in column of multi-task learning. Significantly highest performance for each prediction task is shown in bold with start mark

next to it.
Features | Multi || Backchannel | Turn-changing Turn-management Willingness Prediction (CCC)
Model Spk  Lis -task Prediction Prediction Spk Lis
# Learn. (F1 score) (F1 score) Turn-holding | Turn-yielding | Turn-grabbing ‘ Listening
(0-B) B 0.557%0.060 - - - - -
(0-T) T - 0.528+0.036 - - - -
(0-W) W - - 0.006+0.056 -0.017+0.054 -0.003+0.042 0.005+0.033
W |V B 0.658+0.062 - - - - -
®) v B 0.7520.046 - - - - -
G | v Vv B 0.772+0.078 - - - - -
@ |V B,T | 034440065 | 0.5920.045 - - - -
(5) v B, T 0.428+0.070 0.551+0.055 - - - -
© | v v | BT | 0378£0.045 | 0.617:0.057* - - - -
(7) v B, W 0.612+0.038 - 0.385+0.081 0.372+0.120 0.266+0.116 0.271+0.083
8) v B,W 0.742+0.043 - 0.194+0.102 0.212+0.084 0.342+0.121 0.261+0.103
9) v v B,W 0.852+0.081" - 0.393+0.048 0.410+0.075* 0.447+0.120 0.372+0.082
(10) v B, W 0.628+0.049 0.471+0.085 0.589+0.079 0.344+0.083 0.265%+0.095 0.264+0.117
(11) v B, T,W || 0.749+0.070 0.368+0.090 0.561+0.048 0.224+0.069 0.361+0.122 0.259+0.095
(12) v v B, W 0.849+0.077* 0.527+0.071 0.642+0.060* | 0.414 +0.075" | 0.471+0.081* 0.406+0.099*

Comparing model (3) with models (1) and (2), the F1 score of
model (3) with all features, which was 0.772, was significantly higher
than the performance of models with speaker features [model (1)] or
listener features [model (2)] (p-value < 0.001). This suggests that a
model using features extracted from both modalities of speakers and
listeners will outperform a model using features from one person.
We found an overall improvement in backchannel prediction by
fusing multiple features of speakers and listeners.

Results of multi-task prediction of backchannels and turn-
changing (related to Q1). We analyzed whether or not applying
multi-task learning to backchannel and turn-changing prediction
could improve backchannel prediction. Models (4), (5), and (6) con-
tained a multi-task learning technique for turn-changing prediction
in addition to backchannel single-task prediction models (1), (2),
and (3). We compared the performance of models (4) and (1), mod-
els (5) and (2), and models (6) and (3) for backchannel prediction.
Models (4), (5), and (6), which had F1 scores of 0.344, 0.428, and
0.378, respectively, had a significantly lower F1 score than models
(1), (2), and (3). This suggests that multi-task learning incorporating
turn-changing prediction into backchannel prediction models did
not improve the performance of backchannel prediction.

Results of multi-task prediction of backchannels and turn-
management willingness (related to Q2). We analyzed whether

or not applying multi-task learning to backchannel and turn-management

willingness prediction could improve backchannel prediction. Mod-
els (7), (8), and (9) used a multi-task learning technique for turn-
management willingness prediction in addition to backchannel
prediction models (1), (2), and (3) independently. We compared the
performance between models (7), (8), and (9) and (1), (2), and (3) for
backchannel prediction. Model (9), which had an F1 score of 0.852,

had a significantly higher F1 score than model (3). However, models
(7) and (8), which had F1 scores of 0.612 and 0.742, respectively, did
not have higher F1 scores than models (1) and (2). This suggests that
multi-task learning incorporating turn-management willingness
prediction into backchannel prediction models can improve the
performance of backchannel prediction when only using both the
speaker’s and listener’s features.

Additionally, we compared the performance among models (7) ~ (9),
with incorporated multi-task learning for backchannel prediction
and turn-management willingness. Model (9) fed with all features
performed best, and it achieved an F1 score of 0.852, being signif-
icantly higher than model (7) with speaker features or model (8)
with listener features (p-value < 0.001). This suggests that multi-
modal fusion using speaker and listener behaviors and multi-task
learning incorporating turn-management willingness prediction
were most useful for turn-changing prediction, taking into account
the results of models (0) ~ (9).

Results of multi-task prediction of backchannels, turn-c
hanging, and turn-management willingness (related to Q3).
We analyzed whether or not applying multi-task learning to backchan-
nel, turn-changing, and turn-management willingness prediction
could improve backchannel prediction. We compared the perfor-
mance of models (10) and (1), models (11) and (2), and models
(12) and (3) for backchannel prediction independently. The results
show that only model (12), which had a score of 0.849, had a sig-
nificantly higher F1 score than model (3). Models (10) and (11)
did not have a significantly higher F1 score than models (1) and
(2). This suggests that applying multi-task learning to backchan-
nel, turn-changing, and turn-management willingness prediction
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could improve backchannel prediction when only using both the
speaker’s and listener’s features.

Finally, we compared the performance of models (9) and (12),
which used multi-task learning frameworks incorporating only
turn-management willingness prediction and incorporating both
turn-changing and turn-management willingness prediction. There
was no significant difference in the performance of backchannel
prediction between them. This suggests that there is no significant
difference in the performance of backchannel prediction between
incorporating only turn-management willingness prediction and in-
corporating both turn-changing and turn-management willingness
prediction.

These results suggest that multi-modal fusion using speaker and
listener behaviors and multi-task learning applied to turn-mana
gement willingness prediction alone are useful for backchannel
prediction.

6 DISCUSSION

6.1 Answer to Q1 Research Question

Backchannel prediction did not become more accurate when the
two tasks of turn-changing and backchannels were predicted simul-
taneously using the multi-task learning framework. This demon-
strates that adding turn-changing as a prediction target does not
improve the performance of backchannel prediction. Backchannel
and turn-changing/keeping are very closely related in dyad inter-
actions, but jointly predicting them at the same time does not seem
to improve the performance of backchannel prediction. This result
is in line with the results of another previous study [13] that at-
tempted to simultaneously predict turn-changing and backchannel
using only the listener’s voice acoustic information.

6.2 Answer to Q2 Research Question

Backchannel prediction became more accurate when the two tasks
of turn-management willingness and backchannel were predicted
simultaneously by using multi-task learning. This demonstrates
that explicitly adding turn-management willingness as a prediction
target improves the performance of backchannel prediction. This
introduces new possibilities for more accurately predicting human
behavior by predicting human psychological states at the same
time in conversations. The multi-task learning approach allows
a prediction model to learn the underlying relationship between
turn-changing willingness and backchannels. This result was simi-
lar to the results of another previous study [27] that investigated
the simultaneous prediction of turn-management willingness and
turn-changing using the trimodal information of speakers and lis-
teners. Therefore, multi-task learning supports a prediction model
in learning the underlying relationship between turn-management
willingness and backchannels.

6.3 Answer to Q3 Research Question

There was no significant difference in the performance of backchan-
nel prediction when two-task learning for turn-management will-
ingness and backchannel prediction and three-task learning for
turn-changing, turn-management willingness, and backchannel pre-
diction were applied. This demonstrates that adding turn-management

willingness alone as a prediction target improves the performance
of backchannel prediction.

From these results, it is thought that predicting multiple tasks
of human behaviors at the same time has no effect on improving
the prediction performance, but rather predicting human behavior
and mental states at the same time can improve the prediction of
human behavior. In other words, it was shown that it is important
to predict internal states simultaneously in order to increase the
performance of predicting human behaviors during dialogues. This
introduces new possibilities for more accurately predicting human
behaviors by predicting human psychological states simultaneously
in conversations.

6.4 Future Work

Our goal was to study the impact of jointly predicting turn-changing
and turn-management willingness on backchannel prediction. We
used automatic high-level abstract features extracted from acoustic,
linguistic, and visual modalities of speakers and listeners. We plan
to extract interpretable features, such as prosody [10, 16, 17, 20, 37,
38, 41] and gaze behavior [3, 21, 25, 28, 30], and implement more
advanced prediction models [37, 38, 41, 49] that were proposed
for turn-changing prediction but could be applied to backchannel
prediction to take into account temporal dependencies.

We treated only the utterance backchannel, which was a short
utterance such as “yeah,’ “uh-huh," “hmm," and “right,’ as the pre-
diction target. We plan to investigate the prediction of multi-modal
backchannels such as nodding and facial expressions by using our
proposed multi-modal and multi-task learning approach.

We also plan to incorporate our multi-modal multi-task predic-
tion models into conversational agent systems that can display
backchannel behaviors and increase the naturalness of agent be-
haviors. Since our backchannel prediction model uses multi-modal
behavior information and turn-management willingness from both
the speaker and the listener as input features, it is necessary to
include the past multi-modal behaviors and willingness of a con-
versational agent as well when generating backchannels of the
agent. Therefore, we aim to apply our prediction model to agents
that can express human-like multi-modal behaviors and have turn-
management willingness.

7 CONCLUSION

We built multi-modal and multi-task machine learning models for
predicting a listener’s backchannel as well as turn-changing and
turn-management willingness on the basis of trimodal behaviors
in conversations, that is, acoustic, linguistic, and visual cues. An
evaluation of our prediction models showed that a backchannel is
predicted most accurately when all of three of these modalities from
the speaker and listener are processed. Furthermore, backchannel
prediction becomes more accurate when turn-management will-
ingness and backchannels are predicted jointly by using multi-task
learning. However, joint turn-changing prediction is not useful
for backchannel prediction. These results suggest that more accu-
rate prediction models of human behaviors could be proposed and
built by incorporating another prediction task related to human
psychological states.
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