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Figure 1: Consider two aligned sequences of spoken language phrases and gestures. The phrases, "entire bottom row" and
"expand and decay" are semantically different, but accompanied by the same gesture. The language embeddings of these two
sentences will be far apart in the semantic latent space. We want to guide the embeddings to be closer in the gesture-aware

embedding space for gesture generation.

ABSTRACT

Crossmodal grounding is a key technical challenge when generat-
ing relevant and well-timed gestures from spoken language. Often,
the same gesture can accompany semantically different spoken
language phrases which makes crossmodal grounding especially
challenging. For example, a gesture (semi-circular with both hands)
could co-occur with semantically different phrases "entire bottom
row" (referring to a physical point) and "molecules expand and
decay"” (referring to a scientific phenomena). In this paper, we in-
troduce a self-supervised approach to learn representations better
suited to such many-to-one grounding relationships between spo-
ken language and gestures. As part of this approach, we propose a

new contrastive loss function, Crossmodal Cluster NCE, that guides
the model to learn spoken language representations which are con-
sistent with the similarities in the gesture space. This gesture-aware
space can help us generate more relevant gestures given language
as input. We demonstrate the effectiveness of our approach on
a publicly available dataset through quantitative and qualitative
evaluations. Our proposed methodology significantly outperforms
prior approaches for gestures-language grounding. Link to code:
https://github.com/dondongwon/CC_NCE_GENEA.
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1 INTRODUCTION

Nonverbal behaviours such as body posture, hand gestures and
head nods play a crucial role in human communication [42]. Point-
ing at different objects, moving hands up-down in emphasis, and
describing the outline of a shape are some of the many gestures
that co-occur with verbal and vocal modalities of communication
[21, 31]. When creating new robots or embodied virtual assistants
designed to communicate with humans, it is important to generate
gestures that are relevant with their expressed language and speech
[5, 22, 34].

Improving relevance of a gesture requires greater levels of ground-
ing between spoken language and gestures, so that the generated
gestures are more precise and related to the language. Improving
the precision can be seen as restricting the mapping of semanti-
cally different language to a smaller subset of high quality gestures.
Learning this mapping requires solving a many to-one relation-
ship problem where the same gesture can be used for different
spoken phrases [12, 35] and modelling this relationship is a key
technical challenge. For example, a gesture pointing at themselves
is likely to co-occur with the spoken word ’me’ as well as 'my heart’.
This many-to-one relationship requires going beyond conventional
losses that focus on solely relying on a reconstruction quantity to
learn crossmodal grounding.

In this paper, we introduce the Crossmodal Cluster Noise Con-
trastive Estimation (CC-NCE) objective to learn a gesture-aware
embedding space, where the similarities and dissimilarities in the
gesture expressions are taken into account when learning language
embeddings. Our objective guides the model to learn a gesture-
aware embedding space via a contrastive loss, where spoken lan-
guage representations are consistent with the intra-cluster similari-
ties and inter-cluster dissimilarities in the gesture space. In order to
do so, we construct clusters in the gesture space in a self-supervised
way. The constructed clusters is able to distinguish similar and dis-
similar gestures, which can provide positive and negative samples
for the contrastive loss. Therefore, given two different language
sequences, CC-NCE guides their latent language representations to
be close together if their accompanying gestures are in the same
cluster and far apart if their gestures are in different clusters.

Our proposed CC-NCE Loss places an emphasis in learning the
many-to-one grounding between language and gestures. CC-NCE is
designed to provide additional incentive for the model to generate
a smaller subset of higher quality gestures closer to the ground
truth, with better performance on accuracy metrics. We conduct our
experiments on the publicly available PATS dataset [2]. We study
the effects of precision-coverage trade off, where the emphasis in
precision and grounding can potentially come at a cost of decreased
coverage.
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2 RELATED WORKS

Language in Gesture Generation. A rule-based approach was
proposed in an earlier study by Cassell et al. [6], where the behavior
expression animation toolkit (BEAT) was developed to schedule
behaviors, such as hand gestures, head nods and gaze. This approach
was extended to utilize linguistic information from input text for
selecting rules. [24, 27, 28, 30, 43].

Rule based approaches were replaced by deep conditional neural
fields [8, 9] and Hidden Markov Models for prosody-driven head
motion generation [38] and body motion generation [25, 26]. These
use a dictionary of predefined animations, limiting the diversity
of generated gestures. Soon, neural network based models were
introduced, using unimodal inputs, specifically speech, to generate
a sequence of gestures [18], head motions [37] and body motions
[2, 3, 13, 14, 40]. On the other hand, Yoon et al. [45] uses only a text
input for gesture generation. More recently, multimodal models
utilizing both speech and language were developed. Kucherenko
et al. [23] combines the two representations via early fusion. In or-
der to account for the bi-modal relationship between language and
audio in the input modalities, Ahuja et al. [1] utilizes a crossmodal
attention mechanism to account for correlations between speech
and language. It is important to note that many prior approaches
[1, 2, 14, 23, 44] rely on reconstruction losses (L1 distance between
generated pose and ground truth) to learn the grounding between
gestures and language. In this paper, we argue that the inclusion of
an additional contrastive grounding loss is valuable to the model,
specifically to learn the many-to-one mapping between spoken
language and gestures.

Contrastive Learning. Contrastive learning has gained traction
recently due to its success in self-supervised learning. Oord et al.
[32] initially proposed the Contrastive Predictive Coding method
to learn informative representations in a self-supervised manner
via Noise Contrastive Estimation (NCE). NCE primarily relies on
learning an parameterized encoder to estimate the true distribu-
tion (positives) against random noise (negatives). He et al. [19]
proposed MoCo, which stores a long queue of samples, to insert
as negatives to contrast with augmented anchor samples. Chen
et al. [7] proposed SimCLR, which utilized large batch sizes, and
eliminating the need for large stored dictionaries. Park et al. [33]
offered a methodology called Patch-wise contrastive Loss, which
maximizes the mutual information between corresponding input
and output patches. More recently, a vein integrating clustering
mechanisms with contrastive learning has been proposed, where
unsupervised clusters are built in a unimodal space and noise con-
trastive estimation is applied [4, 20, 29, 39]. Finally, pertinent to our
crossmodal task, Udandarao et al. [41] projects each modality into
a joint embedding space where both modalities are present. Then,
they used supervised labels to retain intra-class and inter-class rela-
tionships for clusters in the joint space. Furthermore, their methods
are designed for downstream discriminative tasks, whereas our
task is generative. A key distinction is that our work utilizes self-
supervision to construct clusters, specifically in the output modality.
We utilize the clusters in the output modality such that the same
nature in is preserved in the representations of the input modality.
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Figure 2: The heatmap on the left is an actual overlay of gesture sequences that were clustered together using our self-
supervised clustering algorithm, which demonstrates intracluster similarity and intracluster dissimilarity of gestures. The
right is the actual t-SNE plot of language-embeddings after our CC-NCE Loss was applied. Our proposed approach brings
spoken language embeddings closer to each other for similar gestures and faraway for dissimilar gestures.
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Figure 3: Our proposed approach of self-supervised clustering in the output space of gestures. The constructed clusters are
used to find negative and positive samples for the Crossmodal Cluster NCE loss to learn a gesture-aware language embedding

space.

3 GESTURE GENERATION PROBLEM

Our primary task is to learn a generative model which translates
language (BERT tokens [11]) and speech (log-mel spectrograms)
modalities to relevant co-speech gestures. To that end, we learn
a joint embedding space where sentences X" and speech signals

X% are mapped to latent embeddings Z € Z using an encoder Ge.

These latent embeddings are further mapped to the space of human
upper-body poses represented in temporal skeletal keypoints, (i.e

¥P) using a decoder G, to optimize for the downstream task of
gesture generation.
Formally, we are given a sentence of K language tokens X" =
[xlw, x;’, .. x%] and a sequence of co-occurring speech features,
a _ a a
X4 = [xl Xy
poses YP = [yf, yb. y‘T’] with X4 and X" as input. Here yf €

RJ*2 are the xy-coordinates for ' frame for J joints of the body

. x%] We want to predict a sequence of T gesture



skeleton. x;" € R is the t'" word embedding with dimension K
and x{ € RM is the ¢1" speech frame with dimension M.
Thus, we have,

Z = Go(X%, XY 0) (1)
YP = Gy(Z;¥) @)

Parameters of this encoder-decoder model, 0, i/, are optimized
with true poses Y? as a training signal, which can be written as a
reconstruction loss, Ly¢c(6) where we use the following L1 distance
based on prior works [1, 2, 14, 23, 44, 45],

Lrec(0.9) = Eyr xa x»[IYF = G4(GeX*, XD (3)

Often, as in GAN-based models [1, 14], adversarial losses [15]
are included to alleviate the challenge of overly smooth generation
and regression to the mean caused by reconstruction loss [14]. This
adversarial loss is written as:

Ladn(0,9,n) = EyplogDy (YP)
+Exa,xw log (1 — Dr](Gd(Ge (x4, XW)))
4)
The model is jointly trained to optimize the overall loss function

L,
max réml/? Lrec(0,9) + ALyq (6,9, 1) (5)

The above formulation is similar to previous works in gesture
generation [1, 23, 45].

4 METHOD

Our key contribution in this paper is to explicitly model the many-
to-one mapping between spoken language and gestures in the la-
tent space. This approach involves a two-step process, as shown
in Figure 3. Our novel loss function L¢c—pce guides the aligned
language representations to be close to each other if their corre-
sponding ground truth gestures are in the same cluster, and far
apart if their corresponding ground gestures gestures are not in the
same cluster. Thereby, creating a gesture-aware embedding space.
We also propose a clustering algorithm to find similar gestures
in a self-supervised, online manner. The algorithm first approxi-
mates the distribution of pairwise gesture similarity scores. With
the estimated mean and variance of the similarity score distribution,
it constructs batch-wise clusters, which compares itself with the
global clusters and then decides whether the batch-level cluster
should be merged or form its own cluster.

Finally, the optimization of the combined objective function
describes the full model,

max %nl/? Lrec(0,9) + Lago(0.9,10) + Lec-nce(0,¥)  (6)

4.1 Crossmodal Cluster NCE

Given the same gesture, many different spoken phrases could ac-
company it, as shown in Figure 1. Therefore, even semantically
different language embeddings corresponding to similar gesture
sequences should be mapped closer together in the latent space.
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In order to do so, we propose the Crossmodal Cluster Noise Con-
trastive Estimation Loss, inspired by the InfoNCE Loss [16, 17, 32]
to learn the gesture-aware embedding space.

4.1.1  Gesture-aware Embedding Space. The InfoNCE Loss [16, 17,
32] first samples an anchor input sequence. Its augmentations are
considered as positive samples, whereas the remaining elements
within the batch (or a stored queue) are considered as negative
samples [7, 19]. We want to guide the language latent space to be
close together for similar gesture sequences and far apart from
other dissimilar ones. Hence, sampling a positive or negative sam-
ple from the dataset requires additional knowledge of the output
gesture modality. To tackle this challenge, we construct unsuper-
vised clusters in the output gesture modality, which is described in
the next section, 4.1.2.

With these constructed clusters in the output gesture-domain, we
want to coerce the corresponding language embeddings to mimic
the inter-cluster and intra-cluster relationships in the gesture space.
We are given an anchor sequence with ground truth gesture se-
quences and the corresponding language embeddings, [y, z] respec-
tively. We are also given global clusters of gesture sequences and
their corresponding language embeddings. At this step, we want
to find the cluster which contains gesture sequences that are most
similar to the anchor gesture sequence. Mathematically, given a
set of clusters C, we find the most similar gesture sequence and
the aligned language embeddings: y/,z! = argmax (Sim(yc,y)),
V [yc,zc] € C). Here, we used the dot product as the similarity
metric. Given the anchor, z, we use the corresponding language
embeddings of the most gesture-wise similar cluster as the positive
samples z}. The language embedding sequences in other clusters
will be considered as negative samples z; = [C\z}|. With this as-
signment, we utilize properly assigned samples, in our Crossmodal
Cluster NCE .

exp(F(z)TF(z}))
exp(F(2)TF(z})) + exp(F(z) T F(z;))

Lec—nce = —E; |log (7)

The numerator encourages the semantically different language
representations to be closer since they belong in the same gesture
cluster. Given an anchor sequence z, and gesture-wise similar posi-
tive language embeddings z} and their dissimilar negatives z;, we
feed these language embeddings into an encoder, which we denote
as F(.) to learn the relationships in the gesture space. By doing so,
the Crossmodal Cluster NCE as shown in Equation 7 guides the
language embedding space to learn the similarities in the output
domain and projects them into a gesture-aware embedding space.

4.1.2  Gesture-Based Clustering. We want to embed the knowledge
of the many-to-one relationship between spoken language and
gestures as shown in Figure 1. To do so, we need to find clusters of
similar gestures to provide positive and negative samples for many-
to-one grounding. Since we are not provided with annotations of
similar gesture clusters, we must do this in a self-supervised way.

The construction of unsupervised clusters can be computation-
ally heavy for large datasets and requires the number of clusters
which comes at a cost of an additional hyperparameter. To com-
bat these technical challenges, we propose an online approach for
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Figure 4: Generated keypoints superimposed on ground truth images for easy comparison. The usage of contrastive learning

produces gestures closer to the ground truth

constructing these clusters where the number of clusters are dy-
namically chosen while learning the crossmodal translation model.

We iterate through the data and find the mean j and standard
deviation & of the pairwise dot-product similarity (referred to as
Sim) of two arbitrary sequences of gestures. This metric is updated
using a moving average continuously. These metrics are utilized to
find a threshold, which is used to determine whether two sequences
are similar or not. For example, a sequence x is considered to be
similar to y, if Sim(x, y) > fI + 6. In essence, we are approximating
the mean and variance of a Gumbell distribution, where the statistic
of interest is Sim(x, y).

In practice, constructing and utilizing gesture-based clusters in
an online manner is a two step process, (1) Batch Clustering and
(2) Global Clustering, which is discussed below.

(1) Batch Clustering: The construction of the batch-wise cluster
is important, as we can only compute the gradients with respect to
the batch-wise embeddings and it would be infeasible to work with
the global clusters due to computational limitations.

We describe the algorithm that is used to find the batch-level
gesture clusters. In the first step, we calculate similarity metrics
for an arbitrarily chosen anchor pose sequence, yZ, with the other
pose sequences in the batch, y?[~ L], where "~ L" are indices of
sequences in the batch which has not been assigned to a cluster
yet. The anchor sequence and sequences in the batch, which yield
a similarity score greater than the threshold (Sim(y2, y®[~ L]) > ji
+ 0), are assigned to a batch-wise cluster. Within the batch-level
clustering, we want to discover clusters that are very different from
each other. By assigning the next anchor sequence to the sequence
with the lowest similarity score, the algorithm is able to find clusters
that are very different from each other. An important advantage of
this method is that it reduces the number of computations that needs
to be computed. With this new anchor, the previously mentioned
steps are applied recursively until all the sequences are assigned
and we get a batch-wise dictionary of clusters, Batchp. Throughout
this process, the latent embeddings corresponding to these gesture-
wise clusters are saved together. We refer the readers to Algorithm
1 in the appendix for more details.

(2) Global Clustering: After we obtain this batch-level dictionary
of clusters, Batchp, we update the global dictionary of clusters
Globalp. For each of the batch clusters, we sample a single sequence,

yfamp, from the batch cluster yb. Then, a sequence is sampled from
each of the clusters in the global clusters y9, we denote this as
yfamp, which contains |Globalp| sequences. We check whether

youm p sequence belongs in an existing cluster in Globalp with the
same thresholding logic: Sim(yfamp, yfamp) > ji + 6. If there exists
a pair in that exceeds the threshold, we merge the batch cluster to
the global cluster with the highest similarity value. Otherwise, we
assign the batch cluster as a new global cluster in Globalp. Similarly
to the batch clustering method, we save the corresponding latent
embeddings in the global dictionary as well. We refer the readers
Algorithm 2 for detailed description.

To tie this all back to our CC-NCE in Equation 7, we have
[ylc’b, zlc’b] € Batchp and [y?g, zgg] € Globalp, where cb indicates
cluster index for the batch and cg for the global dictionary. During
training, given the i-th batch-level cluster, [yib, zl.b], we treat the lan-
guage embeddings, 25’ , as the anchor sequences, because we want
the language embeddings to learn the relationships present in the
gesture space. Then, we find the most gesture-wise similar cluster in
the global dictionary y}, z} = argmax (Sim(ygg, yl.b)), v [ygg, zgg] €
Globalp). We use the corresponding language embeddings of the
most similar global cluster as the positive samples z}. The language
embedding sequences in other clusters in the global dictionary will
be considered as negative samples z; = [GlobalD \z” With this
assignment, we utilize properly assigned samples in our Crossmodal
Cluster NCE in Equation 7.

5 EXPERIMENTAL SETUP

5.1 Dataset

We use the PATS dataset [1, 2, 14] as the benchmark to measure per-
formance. It consists of aligned body poses, audio, and transcripts
for 25 speakers. We choose five speakers (maher, bee, lec_cosnmic,
oliver and colbert) with a wide range of linguistic content and
contrasting gesture styles for our experiments.

5.2 Baselines

We utilize the Multimodal Multi-Scale Transformer based GAN-
architecture [1] as a primary building block of our proposed model.
To the best of our knowledge, there have been no previous ap-
proaches that explicitly learn gesture-guided semantic spaces with



Lee et al.

‘ Model ‘ L1}
‘ Speaker: ‘ maher ‘ bee ‘ lec_cosmic ‘ oliver ‘ colbert ‘ Mean

| Without Lec—nee [1]

| 0.992 +0.024 | 0.955 £0.036 | 0.765 + 0.046 | 0.775 +0.025 | 0.092 0.004 | 0.716  0.00

‘ Lec—nce replaced by Lyoco [19]

| 0.983 +0.028 | 0.94 + 0.058

6
| 0.763 £ 0.042 | 0781 +0.021 | 0.091 + 0.002 | 0.771 + 0.086

|
|
| Ours | 0.881£0.02 | 0.918 +£0.017 | 0.737 £ 0.032 | 0.777 + 0.02 | 0.096 + 0.007 | 0.682 + 0.007 |
|
|
\

| Lec-nce replaced by Lygschwise [33] | 0.951 +0.033 | 0.937 +£0.019 | 0.731+0.019 | 0.874 £0.124 | 0.096 +0.003 | 0.769 + 0.085

Table 1: Ablation of various contrastive loss mechanisms for 5 speakers in PATS [2] for gesture generation in terms of precision
(L1). Ours utilizes the proposed L¢c—pce loss. Without Loc_pc. utilizes no contrastive learning at all, as proposed in [1]. L¢c—pce
is replaced by two other contrastive learning mechanisms Lyjoco [19] and Lygscpyyise [33] for comparison.

contrastive loss functions. We compare our model with other self-
supervised approaches, Lyioco and Lygschwise> by replacing the
loss function L¢c—pce in Equation 6.

Lec—nce replaced by Lyjoco: The contrastive learning proposed
in MoCo [19] builds a large queue of data samples. The queue is ref-
erenced to find positive samples, if the encoded views are from the
same image. Otherwise, the remaining elements are considered to
be negative. This model is similar to our proposed L¢¢—pce, Without
the utilization of clustering in the gesture space to assign positive
and negative labels and relying on data augmentation and noise
sampling for this assignment.

Lec—nce replaced by Lygicnwise: Another contrastive learning
approach: patch-wise contrastive learning [33] uses a specific con-
trastive loss, which maximizes the mutual information between the
corresponding input and output patches. The mechanism aligns
corresponding input-output patches at specific regions, which al-
lows it discretize inputs into patches and use them as positives and
negatives.

Without L¢c—,ce: We also compare our proposed model without
the Lcc—nce loss function which boils down to the backbone model

(1].

5.3 Experimental Methodology

In order to measure the precision and grounding of the generations,
specifically relevance and timing of the gestures, we report the L1
distance between generated and ground-truth gestures. To mea-
sure the distribution in the gesture domain, we utilize the Fréchet
Inception Distance (FID), which has been used in comparing ges-
ture distributions [1, 44], which measures the distance between the
distributions of the output generated poses and the ground truth.
These results are included in the Appendix Table 2,

5.4 Implementation Details

The baselines were all trained with their respective hyperparam-
eters. We remove the AISLE adaptive reweighting mechanism in
[1] for our backbone model as it feeds in various samples repeat-
edly into the model. Because our model constructs clusters in an
online manner, the re-sampling method causes the clusters to be
constructed with repeated samples, which can be problematic. Fur-
thermore, in order to initialize the global mean and standard de-
viation of similarity scores for two pairwise sequences fi, & for
online self-supervised clustering, we iterate through the data for
two epochs to find the mean i and standard deviation & of the

pairwise dot product similarity (referred to as Sim) of two arbitrary
sequences of poses, similar to approximating the mean and vari-
ance of a Gum-bell distribution. During this time, the Crossmodal
Cluster NCE is not applied. Finally, the encoder in 4.1 which learns
our gesture-aware embedding space is based on a U-Net structure
[36].

6 RESULTS AND DISCUSSION

We substantiate our results by testing on five sampled speakers from
the PATS dataset, displayed in Table 1. We give detailed metrics for
each speaker for the precision metric L1, FID and their respective
means.

Impact on Precision: Our proposed model with the inclusion of
CC-NCE produces better L1 scores than other baselines (Table 1).
We see a significant decrease in L1 scores. This implies that our
CC-NCE model produces better well-timed and relevant gestures
compared to other baselines. Specifically, we see that other con-
trastive learning approaches, Lyoco and Lyaschwise have worse
L1 scores than that of the baseline model without any contrastive
learning (Without L¢¢—pce). This additionally shows that our pro-
posed method of constructing clusters in the output domain and
coercing the model to learn a gesture-aware embedding space is
beneficial.

Impact on Coverage: Although our results show improvements
in precision, there are important limitations to consider. We refer
the readers to Table 2. We see our model having worse FID scores,
which represents the coverage of the generated distribution. The no
contrastive learning [1] method, which uses an adaptive importance
sampling approach for better performance in coverage, produces
the best results. We are providing additional incentive for the model
to generate a limited subset of gestures, as we are mapping a large
language space to a smaller subspace of gestures. Therefore, a
decrease in the FID scores is explained by the trade-off between
coverage and precision. The qualitative figure shown in Fig. 4 shed
additional insight to this trade-off.

Impact of Loc—pce: We demonstrate the effectiveness of our Cross-
modal Cluster NCE Loss and display the resulting gesture-aware
embedding space (t-SNE plot) and self-supervised gesture clusters
(heatmap) in Figure 2. Firstly, the heatmap plot demonstrate that
the self-supervised clustered pose sequences are indeed similar.
Each row of the heatmap displays an overlay of three individual
64-frame sequences in a specific cluster (indices 6, 7, 9). The red
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| Model | FID | |
‘ Speaker: ‘ maher ‘ bee ‘ lec_cosmic ‘ oliver ‘ colbert ‘ Mean ‘
| Ours | 48.52£539 | 100.03 +20.74 | 4443 £971 | 5406+ 938 | 585+084 |50.58 £7.15 |

| Without Lec—nee [1]

| 21.38 £ 3.89 | 65.67 £ 11.35 | 23.14 + 11.03 | 46.48 + 1.12 | 6.77 £ 0.05 | 32.69 + 3.90 |

‘ Lec-nce replaced by Lyoco [19]

| 32.15 +20.83 | 74.892 + 24.17 | 2738 £ 16.71 | 48.78 £2.13 | 6.57 £0.16 | 39.66 + 12.38 |

| Lec-nce replaced by Lyaschwise [33] | 2645 £3.74 | 7023 £ 1052 | 38.95 + 4.02

| 49.47 £9.47 | 548+ 0.85 | 33.30 £3.74 |

Table 2: Ablation of various contrastive loss mechanisms for 5 speakers in PATS [2] for gesture generation in terms of coverage
(FID). Ours utilizes the proposed L¢c—pce loss. Without L.c—pce utilizes no contrastive learning at all, as proposedin [1]. Lec—pce
is replaced by two other contrastive learning mechanisms Lyjoco [19] and Lygscpayise [33] for comparison.

color indicates movements in the right arm and the blue color rep-
resents that of the left arm. For cluster 7, the gesture is dominated
by a raised right arm and an up and down motion of the left arm.
For cluster 9, the speaker is at their rest pose, with slight up and
down movements of the right arm. Finally, for cluster 6, we can see
that the left arm is mainly static, with movements on the right arm.
Visually, we can see that clusters 6 and 9 are quite similar, with
movements mainly dominated by the right arm, whereas cluster 7
is quite different. In the gesture-aware embedding space, we also
see that clusters 6 and 9 lie in closer regions in the t-SNE plot of the
language representations, in comparison to that of cluster 7. This
demonstrates that the intra-cluster and inter-cluster relationships
for gesture similarity and dissimilarity is indeed preserved in the
latent space as well. If the clustering information was not effectively
transferred to the latent space, we would not be able to visually see
the clusters in the t-SNE plot located in similar regions.
Qualitative Comparison: We refer the readers to Figure 4, which
shows a rendering of each model’s generated gestures superim-
posed on the ground truth images for easy comparison of the quality
of the generations. Our generated gestures are close to the ground
truth. Specifically, the many-to-one grounding between a smaller
subset of gestures and language allows for less noisy generations,
which are confined to a smaller higher quality subset of gestures,
which is due to the clustered gesture-aware embedding space. The
baseline model, denoted as "Without L¢ec—pce” [1], whose model
architecture is designed around minimizing the distribution dif-
ference between the generation and the ground truth, produces
gestures that are quite diverse but nonetheless divulges from the
ground truth. On the other hand, the contrastive learning based
methods Ours, Lyfoco [19], and Lygschwise [33], seem to generate
more relevant and precision gestures, which shows higher levels of
grounding.

Limitations and Future Work Certain speakers with greater di-
versity contain gesture sequences that are quite different from that
of the majority of the cluster. The key challenge lies in constructing
self-supervised clusters in both the temporal and spatial dimension.
On the other hand, converting this into a supervised task, with
annotations collected for gesture clusters, would make CC-NCE
even more effective. Secondly, we observe that the generated ges-
tures have finger keypoints that are abnormal for specific speakers.
This may be due to the fact that the CC-NCE is confounding the
final objective function with the reconstruction loss, causing the
output generations to be noisy (especially since finger keypoints

in the data are noisy due to its versatile movements). Finally, ex-
cessive grounding information may contribute to mode collapse,
as it encourages the model to produce similar subset of gestures.
Studies need to be done to encourage grounding while preventing
convergence to a smaller subset of modes.

This approach shows promise in a wide variety of crossmodal
tasks to enforce stronger levels of grounding in a self-supervised
manner. Furthermore, pertinent to our task of gesture generation,
a more fine-grained clustering could be done spatially (clustering
based on left arm/right arm movements separately) and temporally
(considering differing levels of granularity). Finally, exploring other
options of domain-specific similarity metrics, such as DTW [10]
for speed-invariant gestures, may help construct better clusters.

7 CONCLUSION

In this paper, we studied crossmodal grounding in the context of
many-to-one mapping between spoken language and gestures for
the task of co-speech gesture generation. We introduced a new con-
trastive loss function Crossmodal Cluster NCE loss, which guides
the latent space to learn the similarities and dissimilarities in the
constructed clusters in the gesture domain. Furthermore, we offered
a mechanism to cluster temporal sequences in a self-supervised and
online fashion. We demonstrated the effectiveness of this approach
on a publicly available dataset, which indicated that our proposed
methodology outperformed prior approaches in grounding gestures
to language. We also observe, in-line with the precision-coverage
trade-off, that encouraging higher precision could potentially de-
grade the coverage of the generated gestures.
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Crossmodal Clustered Contrastive Learning:
Grounding of Spoken Language to Gesture

A APPENDIX Algorithm 2 Global Clustering

A.1 Crossmodal Cluster NCE: Algorithmic ~ Batchp: dictionary for batch-wise clusters
details Globalp: dictionary for global clusters

. o . . - (Y: global cluster index
In Algorithms 1 and 2 we describe, in detail, Batch Clustering and

; S - [i,6: mean and std. dev for similarity scores
Global Clustering that are key components for estimating our pro- _ Sim: Similarity Function
posed CC-NCE model.

yfamp = sample a pose sequence per cluster from Globalp

for i,values in Batchp do

yll.’, zg’ = values ( contains aligned poses & embeddings)
b

Algorithm 1 Batch Clustering

~ z%: is the encoded audio and language representation
- yb: corresponding ground truth pose
— L = torch.zeroes(|B|): vector to check if clustered

Batchp = dict(): dictionary for batch-wise clusters

b .
Ysamp = sample a single sequence from Yolus

for idx,score in enumerate(Sim(yé’amP,yfamp)) do
if score > i + ¢ then

; b b

- f1,6: mean and std. dev for similarity scores Globalp|idx] append (yclus’ chus)
- Sim: Similarity Function else
- C? batch-wise cluster index Cg=Cqg+1 , ,
a = rand(|B|) GlObalD[cg +1] = (yclus’zclus)
cb=o end if
while L not all True do end for

cb=cb+1 end for

Lla] = True return Globalp

v = y°[a]
for idx,score in enumerate(Sim(yZ, yb[~ L)) ) do
if score > ji + 6 then
Batchp[C?] append (yb [idx], 2z [idx])
L[idx] = True
end if
end for
dissimseq, idx = TopK(sim, 1, largest = False)
a = idx
end while
return Batchp
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